

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

CENTRO DE ESTUDIOS DE POSTGRADOS

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA CONSTRUCCIÓN

MAESTRÍA DE INVESTIGACIÓN EN INGENIERÍA CIVIL MENCIÓN ESTRUCTURAS

ANÁLISIS POR DESEMPEÑO DE ESTRUCTURAS DE HORMIGÓN ARMADO CON MAMPOSTERÍA REFORZADA (ENCHAPE) PARA EDIFICACIONES DE MEDIANA ALTURA

Autor: Ing. Melisa Herrera Quishpe

Director: MSc. Ing. Sigifredo Díaz Mendoza

Sangolquí, junio 2023

CONTENIDO

1. INTRODUCCIÓN

Antecedentes

Objetivos y alcance

Generalidades

2. MODELACIÓN DEL ENCHAPE

Revisión de ensayos

Curva de capacidad teórica

Calibración de modelos

3. DESCRIPCIÓN DE ESTRUCTURAS

Descripción de edificios

Descripción modelo no lineal

Descripción de la amenaza

4. ESTUDIOS ANALÍTICOS

Método de análisis

Estructuras de 2 pisos

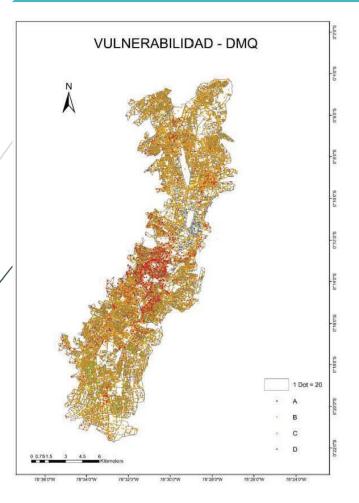
Estructuras de 4 pisos

Estructuras de 6 pisos

Estructuras de 8 pisos

5. CONCLUSIONES Y RECOMENDACIONES `

1.1 Antecedentes


Los pórticos de hormigón armado con mampostería de relleno han sido empleados comúnmente debido a que es un sistema económico, flexible y que permite una mejor distribución de espacios libres. Sin embargo, es un sistema que requiere un amplio conocimiento del comportamiento para tener un buen diseño y evitar fallas estructurales (Crisafulli, 1997). Además, de tener un buen control en obra ya que los detalles estructurales permiten al sistema desarrollar ductilidad (Placencia, 2020).

Con el paso de los años se han ido implantando normas de construcción como fueron el CEC 2000 y más reciente la NEC -15, no obstante, la falta de conocimiento y la situación económica del país orilla a que personas construyan sus viviendas de manera informal. Además, una ausencia de control por parte de las autoridades ha permitido que se realicen construcciones en zonas como quebradas y laderas, o que se realicen ampliaciones sin necesidad de estudios ni guías técnicas.

1.1 Antecedentes

80 % de las edificaciones tiene un sistema de **pórticos de hormigón armado con mampostería** de relleno no dúctiles.

De acuerdo al mapa de vulnerabilidad la mayoría de las estructuras están clasificadas con vulnerabilidad clase B correspondientes a pórticos de hormigón armado y mampostería que tienen una **vulnerabilidad alta** debido a un nivel socio económico bajo que influye en la mala construcción y uso de materiales de baja calidad (Chicaiza, 2017).

Adicionalmente Ecuador es un país con alta sismicidad debido a su ubicación en el Cinturón de Fuego del Pacífico

En vista del riesgo sísmico presente en el país es importante buscar **alternativas de reforzamiento** que brinden una solución a la vulnerabilidad de las estructuras y sean una respuesta segura y económica para la sociedad.

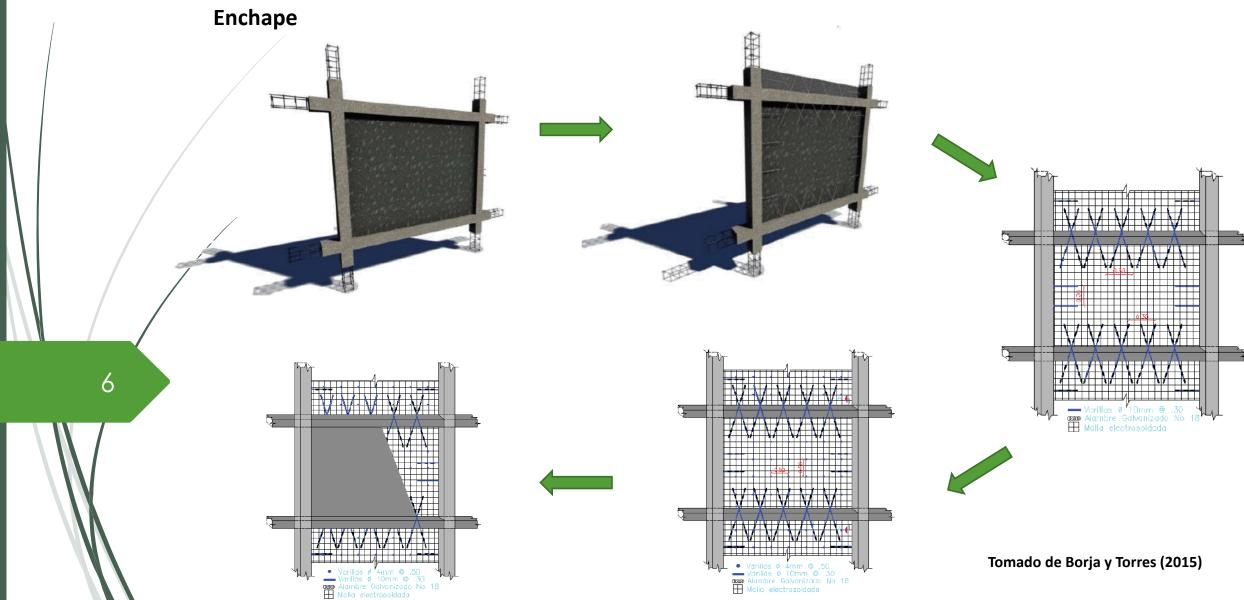
1.2 Objetivos y alcance

Objetivo General

Analizar el desempeñó de edificios de hasta ocho pisos de altura de hormigón armado con mampostería reforzada - enchape.

Objetivos Específicos

- *Calibrar modelos analíticos de pórticos de hormigón armado reforzados con el sistema de enchape
- * Revisar analíticamente el desempeño del enchape en edificios de hasta ocho pisos, mediante modelación estático no lineal.
- * Definir la relación área de muros reforzados con enchape y el área total de la estructura.
- * Establecer recomendaciones para el adecuado uso del reforzamiento con enchape y cuando llevarlo a cabo.


Alcance

Determinar el desempeño de estructuras de hormigón armado con mampostería de relleno reforzadas con el sistema de enchape en edificaciones de mediana altura. En la presente investigación se considerará los criterios de la primera generación de Ingeniería Sísmica Basada en Desempeño (análisis de daños físicos).

Número de Pisos	Número de Edificaciones	Porcentaje de Paredes
		Porcentaje 1
2	3	Porcentaje 2
		Porcentaje 3
		Porcentaje 1
4	3	Porcentaje 2
		Porcentaje 3
		Porcentaje 1
6	3	Porcentaje 2
		Porcentaje 3
		Porcentaje 1
8	3	Porcentaje 2
		Porcentaje 3
Total	12	

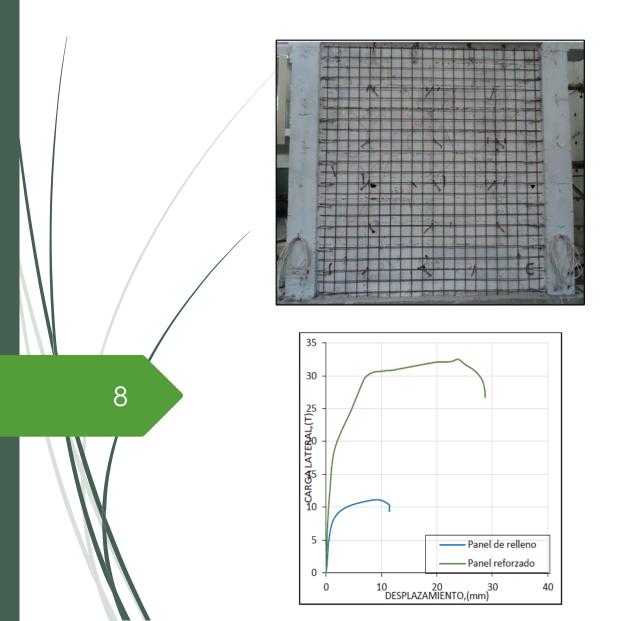
1.3 Generalidades

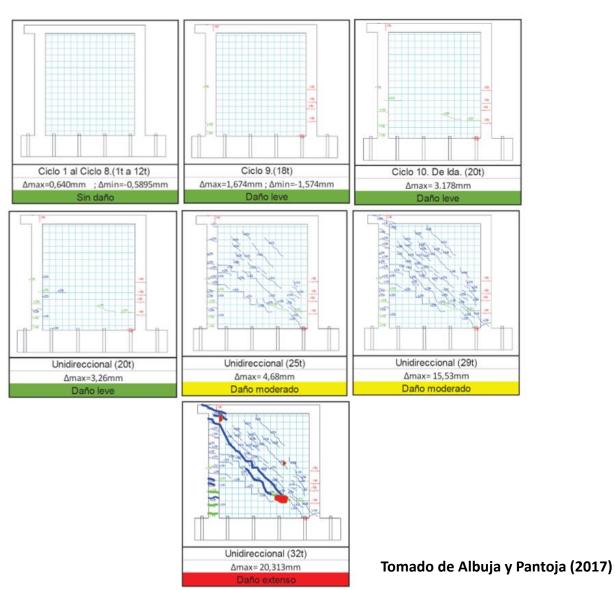
1. 4 Generalidades

Ingeniería Sísmica Basada en Desempeño

La ISBD implica el diseño, evaluación, construcción, monitoreo y mantenimiento de estructuras cuyo desempeño bajo cargas comunes y extremas responde a las necesidad y objetivos diversos de la sociedad."

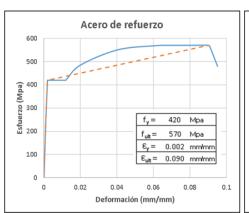
Primera generación de la ISBD, misma que busca alcanzar objetivos de desempeño relacionados a los posibles daños físicos sobre los componentes estructurales y no estructurales

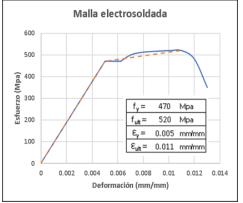

Nivel de desempeño	Totalmente operacional	Operacional	Seguridad de Vida	Prevención de Colapso	Colapso
stado de daño	Despreciable	Ligero	Moderado	Servero	Completo

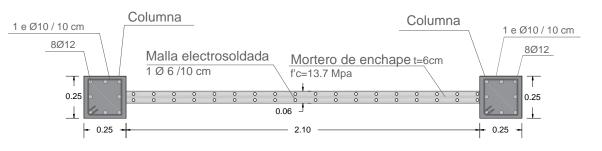

		Edificio				
		Nivel Operacional (1-A)	Nivel de Ocupación Inmediata (1-B)	Nivel de Seguridad de Vida (3-C)	Nivel de Prevención al Colapso (5-E)	
ото	50% / 50 años	а	b	С	d	
ERREM	20% / 50 años	e	f	g	h	
NIVEL DE TERREMOTO	BSE-1 (10% / 50 años)	i	j	k	_	
NIVE	BSE-2 (2% / 50 años)	m	n	0	р	

Niveles de Desempeño Esperados en el

2.1 Revisión de ensayos

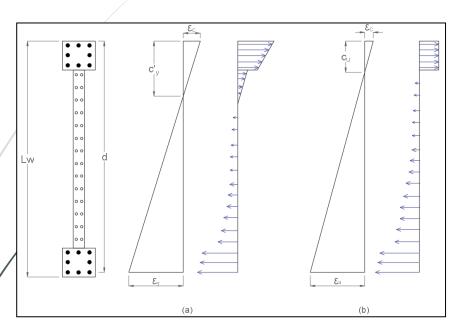

2.2 Curva de capacidad teórica

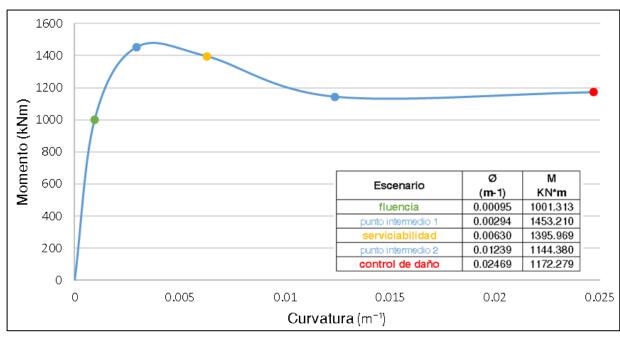



Análisis momento curvatura

El diagrama momento-curvatura se calcula mediante un análisis incremental que satisface la compatibilidad de deformaciones, las relaciones de esfuerzo-deformación del material y el equilibrio; para lo cual se realizan cálculos iterativos hasta que se satisface el equilibrio de fuerzas en la sección transversal.

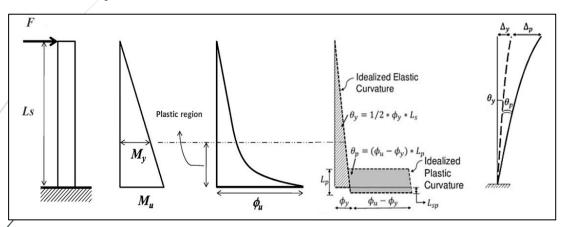
Econorio	Deformación unitaria
Escenario	3
Estado límite de fluencia	0.002
Punto adicional 1	0.007
Estado límite de serviciabilidad	0.015
Punto adicional 2	0.030
Estado límite de control de daño	0.060

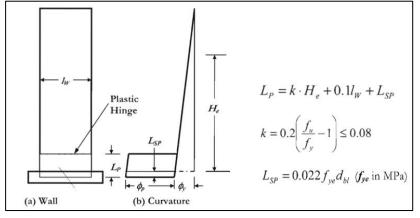




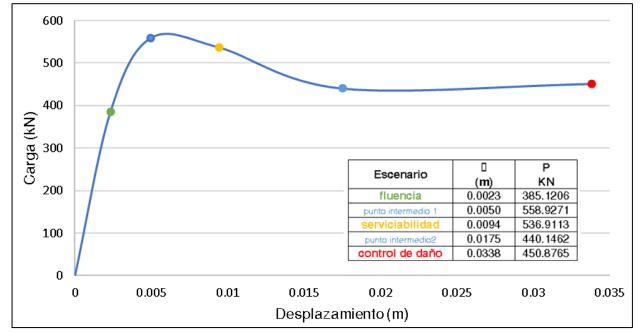
2.2 Curva de capacidad teórica

Análisis momento curvatura





2.2 Curva de capacidad teórica



Rótula plástica

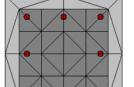
Detalle	Valor	Unidad
Altura Muro	2.600	m
Altura Efectiva	1.950	m
fye	420.000	Mpa
fu	570.000	Мра
dbl	0.012	m
Lsp	0.111	m
k	0.071	
Lw	2.600	m
Lр	0.510	m
Lp	19.622	%

2.3 Calibración de modelos

Para la modelación matemática se utilizó el programa SeismoStruct ya que es un paquete de elementos finitos

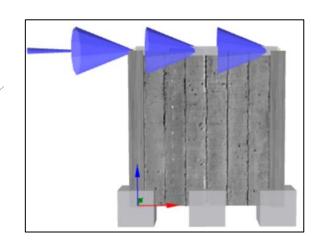
Materiales

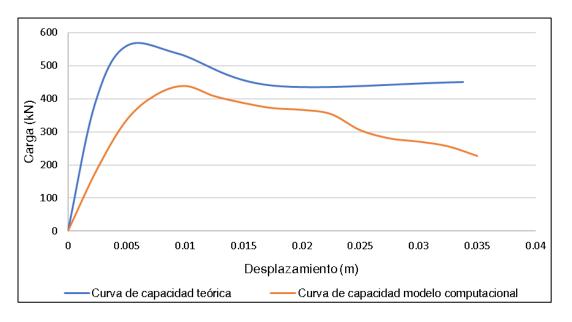
Hormigón – Modelo Constitutivo de Mander


	Parámetro	Hormigón de Vig	-	Mortero de Enchape		
		Valor	Unidad	Valor	Unidad	
	f'c 20593.965		kPa	13729.31	kPa	
	ft	2059.3965	kPa	1372.931	kPa	
/	Ec	19185101.1	kPa	14504231	kPa	
	ε _c 0.0021		m/m	0.002	m/m	
	γ	24	kN/m³	24	kN/m³	

Elementos

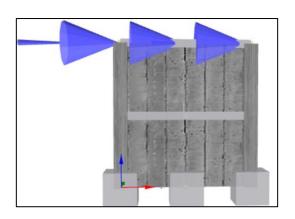
Acero – Modelo Constitutivo de Menegotto y Pinto

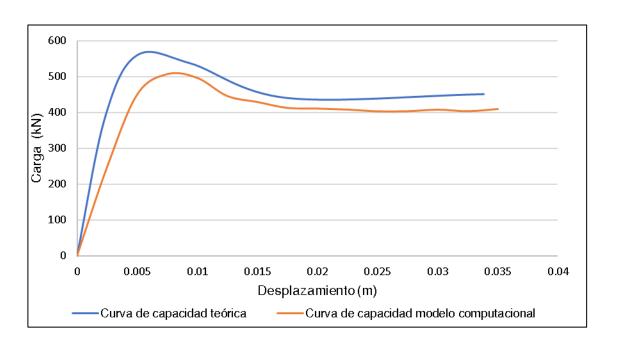

Parámetro	Acero de re columna		Malla electrosoldada para el enchape		
	Valor	Unidad	Valor	Unidad	
Es	210000000	kPa	94000000	kPa	
fy	420000	kPa	470000	kPa	
μ	0.00812	-	0.08865	-	
R0	20	-	20	-	
a1	18.5	-	18.5	-	
a2	0.15	-	0.15	-	
a3	0	-	0	-	
a4	1	-	1	-	
ε _{ult}	0.09	-	0.011	-	
γ	78	kN/m³	78	kN/m³	



2.3 Calibración de modelos

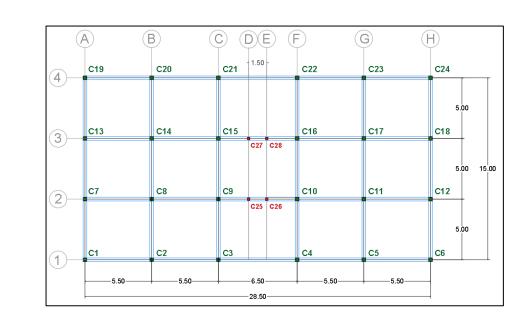
Curva de capacidad del modelo computacional

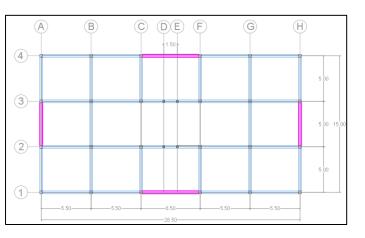


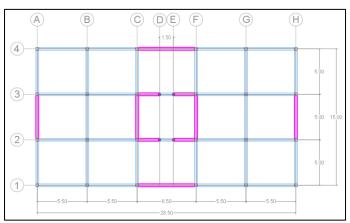


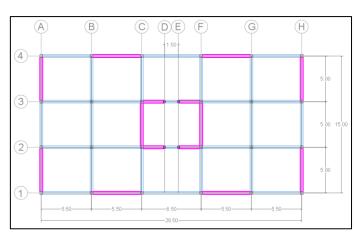
2.3 Calibración de modelos

Calibración



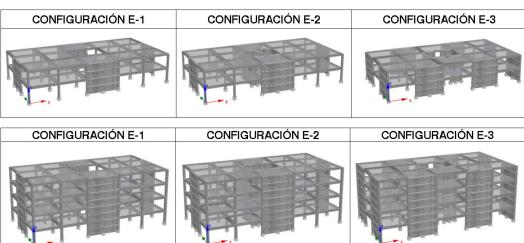



3. Descripción de las estructuras


3.1 Descripción de los edificios

3. Descripción de las estructuras

3.2 Modelos estructurales

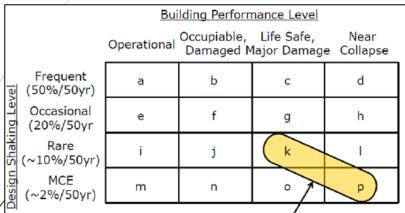

Estructuras de 2 Pisos

Estructuras de 4 Pisos

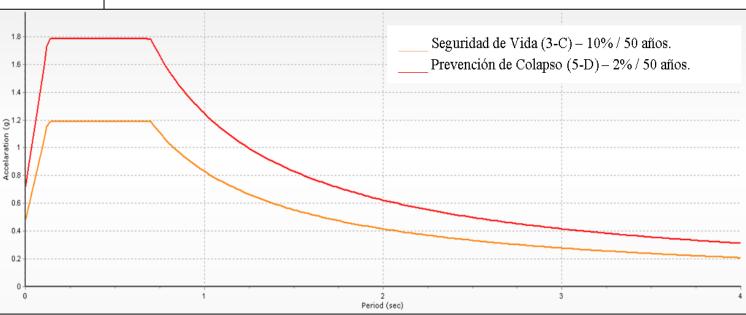
Estructuras de 6 Pisos

16

Estructuras de 8 Pisos

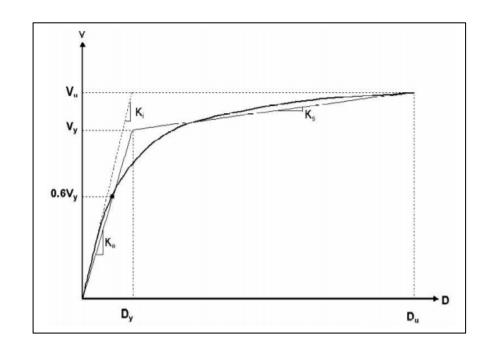


3. Descripción de las estructuras


3.3 Descripción de la amenaza

Estructuras de 2 Pisos

Most commonly selected performance objective


4.1 Método de análisis

Desplazamiento Objetivo

$$\delta_t = C_0 C_1 C_2 Sa \, \frac{Te^2}{4\pi^2} g$$

$$T_e = T_i \sqrt{\frac{K_i}{K_e}}$$

Evaluación del desempeño

18

Revisión por corte

Revisión por deformaciones

4.1 Método de análisis

Evaluación del desempeño

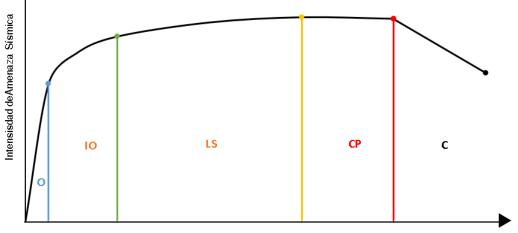
Revisión por corte

Tipo de muro	Condicional
Muros Altos	$\frac{h_w}{l_w} \ge 5$
Muros Intermedios	$2 < \frac{h_w}{l_w} < 5$
Muros Bajos	$\frac{h_w}{l_w} \le 2$

$$\rho_t \!> 0.0025$$

$$V_u \leq \emptyset V_n$$

$$V_{n} = V_{c} + V_{s} = A_{cv} * \left(\alpha_{c} * \lambda * \sqrt{f'_{c}} + \rho_{t} * f_{y}\right)$$

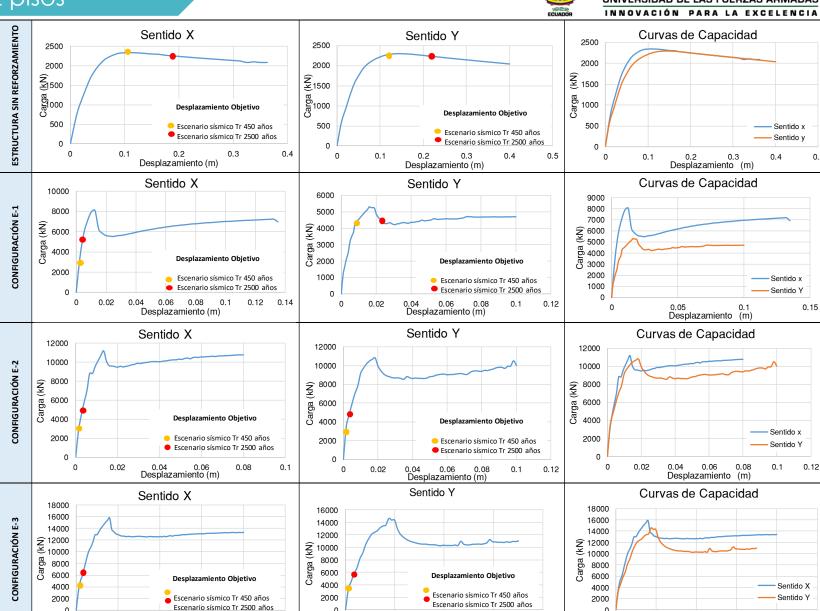

4.1 Método de análisis

Evaluación del desempeño

• Evaluación por deformaciones

Nivel de desempeño	Lír	mite	Criterio		
Totalmente Operacional	Es	0.002	fluencia acero de refuerzo		
0	£m	-0.005	fluencia de malla electrosoldada		
Operacioanal o de	Es	0.015	estado límite de serviciabilidad del acero de refuerzo		
Ocupación inmediata IO	£m	-0.011	fractura de malla electrosoldada		
Seguridad de vida	Es	0.060	estado límite de control de daño del acero de refuerzo		
LS	8cu	-0.294	deformación última del hormigón		
Prevención colapso PC	Es	0.090	fractura del acero de refuerzo		
Colapso C	Es	>0.090	supera la fractura de acero de refuerzo		

4.2 Estructuras de 2 pisos

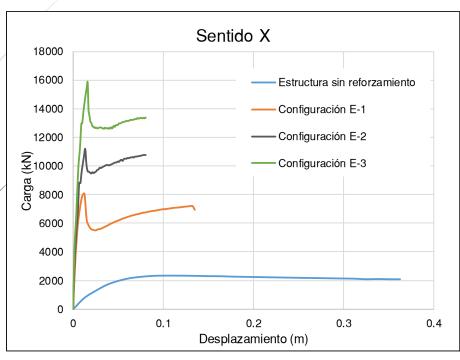

0.08

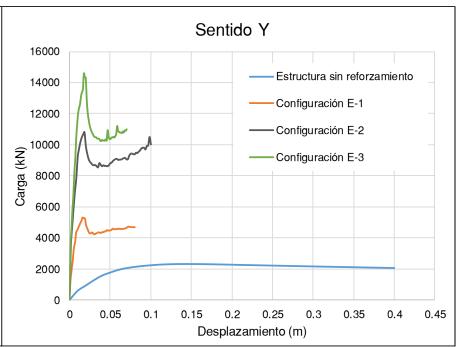
Desplazamiento (m)

Curvas de capacidad y Desplazamiento objetivo

Caso de estudio			Sentido X				Sentido Y			
		Tr	450 años	Tr2	Tr 2500 años		Tr 450 años		2500 años	
"	aso ac estadio	Carga	Desplazamiento	Carga	Desplazamiento	Carga	Desplazamiento	Carga	Desplazamiento	
		(kN)	(m)	(kN)	(m)	(kN)	(m)	(kN)	(m)	
_	Estructura sin eforzamiento	2342.536	0.10700	2261.518	0.18700	2294.570	0.13300	2221.738	0.22900	
Со	nfiguración E-1	3520.530	0.00171	5784.678	0.00307	4447.650	0.00951	4884.947	0.02005	
Со	nfiguración E-2	2793.515	0.00153	4457.302	0.00258	3516.070	0.00184	4764.645	0.00317	
Со	nfiguración E-3	5042.196	0.00154	6007.245	0.00251	3310.176	0.00123	4555.151	0.00199	

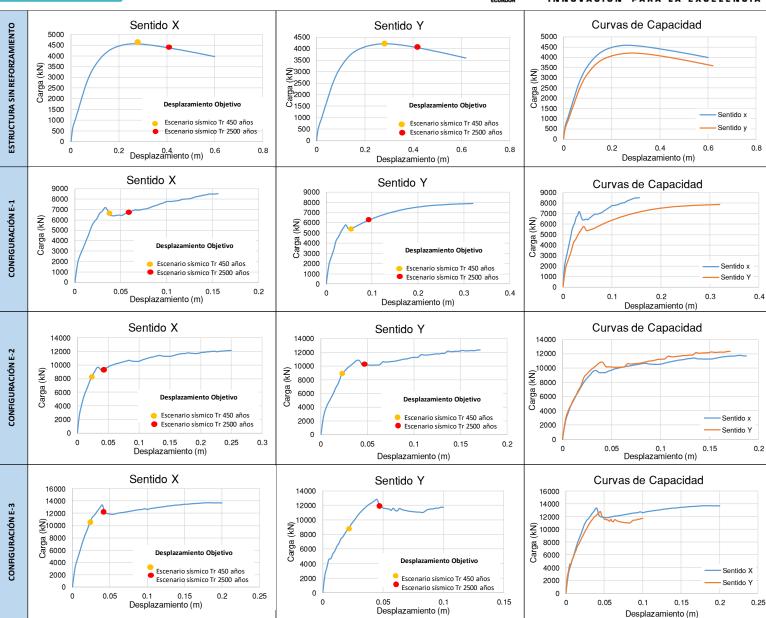
21


Desplazamiento (m)


Desplazamiento (m)

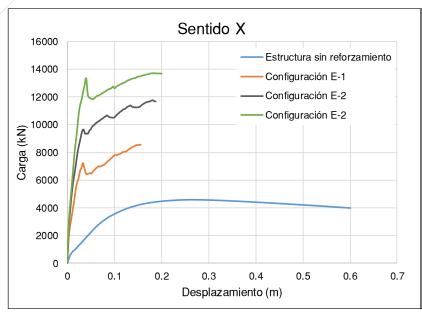
4.2 Estructuras de 2 pisos

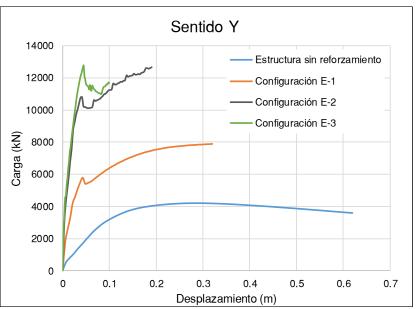
Curvas de capacidad


	Sentido	X	Sentido Y		
Caso de estudio	Carga Máx. (kN)	R	Carga Máx. (kN)	R	
Estructura sin reforzamiento	2342.536	1.00	2299.494	1.00	
Configuración E-1	8063.083	3.44	5304.187	2.31	
Configuración E-2	11184.410	4.77	10787.275	4.69	
Configuración E-3	15841.795	6.76	14593.548	6.35	

▶4.2 Estructuras de 4 pisos

Curvas de capacidad y Desplazamiento objetivo

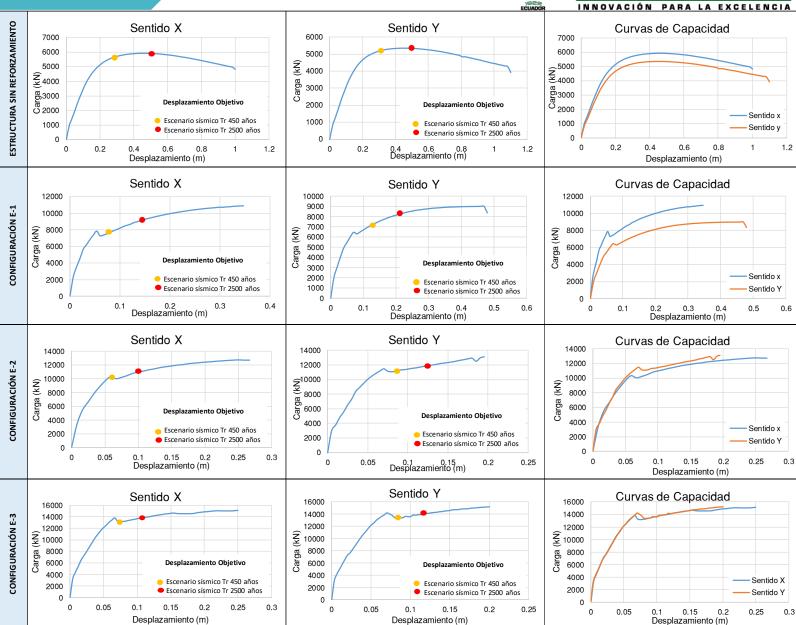

	Sentido X				Sentido Y			
Caso de estudio	Tr 450 años		Tr 2500 años		Tr 450 años		Tr 2500 años	
	Capacidad (kN)	Desplazamiento (m)	Capacidad (kN)	Desplazamiento (m)	Capacidad (kN)	Desplazamiento (m)	Capacidad (kN)	Desplazamiento (m)
Estructura sin reforzamiento	4579.363	0.26808	4377.323	0.41220	4214.028	0.27631	4027.725	0.42465
Configuración E-1	6885.911	0.03686	6948.843	0.07055	5452.415	0.05198	6310.335	0.09451
Configuración E-2	8029.700	0.02346	9370.775	0.04403	8747.566	0.02415	10793.791	0.04493
Configuración E-3	10561.688	0.02400	12178.862	0.04304	8919.132	0.02037	12269.937	0.04071



4.2 Estructuras de 4 pisos

Curvas de capacidad

	Sentido	Χ	Sentido Y		
Caso de estudio	Carga Máx. (kN)	R	Carga Máx. (kN)	R	
Estructura sin reforzamiento	4581.369	1.00	4215.013	1.00	
Configuración E-1	9212.151	2.01	7895.122	1.87	
Configuración E-2	12140.545	2.65	12661.545	3.00	
Configuración E-3	13738.852	3.00	12783.768	3.03	

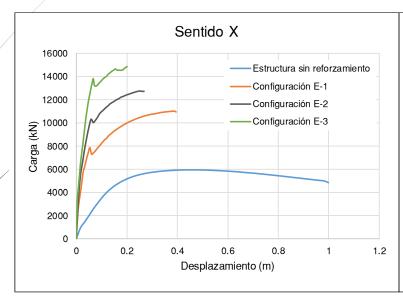


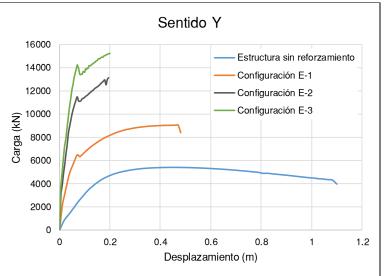
▶4.2 Estructuras de 6 pisos

Curvas de capacidad y Desplazamiento objetivo

	Sentido X				Sentido Y			
Caso de estudio	Tr 4	150 años	Tr 2	500 años	Tr	450 años	Tr 2	500 años
	Carga	Desplazamiento	Carga	Desplazamiento	Carga	Desplazamiento	Carga	Desplazamiento
Estructura sin reforzamiento	(kN) 5793.725	(m) 0.32375	(kN) 5912.185	(m) 0.48563	(kN) 5264.553	(m) 0.32814	(kN) 5352.972	(m) 0.49221
Configuración E-1	7889.103	0.08761	9343.985	0.15240	7248.452	0.13244	8329.712	0.22301
Configuración E-2	10002.066	0.06013	11120.315	0.10649	11147.487	0.08828	12257.370	0.14792
Configuración E-3	13172.608	0.07419	14085.618	0.12258	13408.480	0.08407	14391.204	0.13762

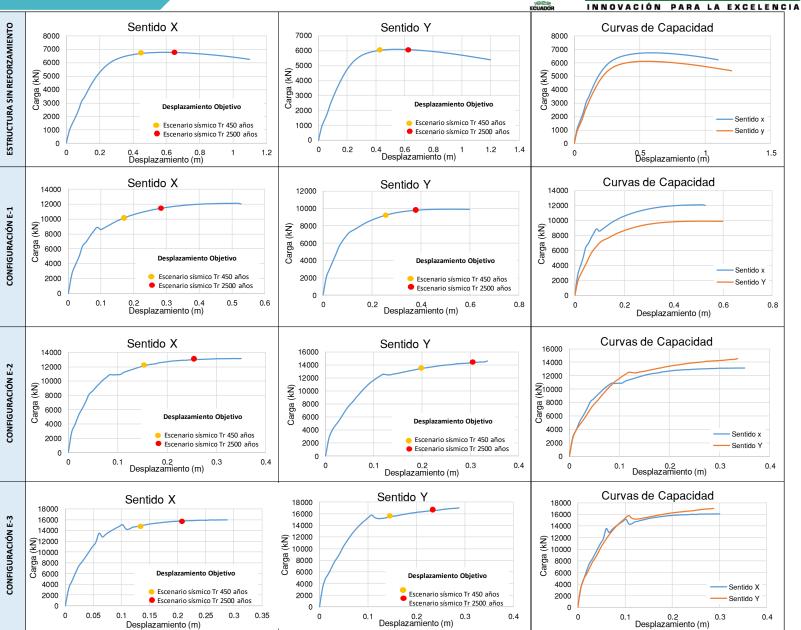
25




UNIVERSIDAD DE LAS FUERZAS ARMADAS

4.2 Estructuras de 6 pisos

Curvas de capacidad

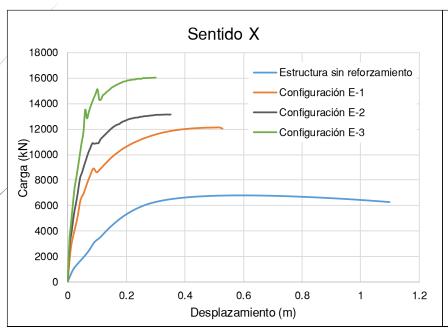


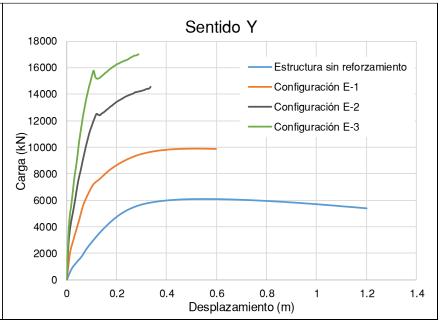
	Sentido	Χ	Sentido Y		
Caso de estudio	Carga Máx. (kN)	R	Carga Máx. (kN)	R	
Estructura sin reforzamiento	5915.780	1.00	5362.239	1.00	
Configuración E-1	11003.172	1.86	9002.477	1.68	
Configuración E-2	12729.809	2.15	13110.675	2.45	
Configuración E-3	15126.562	2.56	15200.181	2.83	

▶4.2 Estructuras de 8 pisos

Curvas de capacidad y Desplazamiento objetivo

	Sentido X				Sentido Y			
Caso de estudio	Tr 4	150 años	Tr 2	500 años	Tr	450 años	Tr 2	500 años
	Carga	Desplazamiento	Carga	Desplazamiento	Carga	Desplazamiento	Carga	Desplazamiento
	(kN)	(m)	(kN)	(m)	(kN)	(m)	(kN)	(m)
Estructura sin reforzamiento	6640.905	0.42953	6762.074	0.64430	6049.429	0.43614	6067.195	0.65422
Configuración E-1	10256.972	0.17906	11557.71	0.29527	9244.524	0.25167	9798.834	0.39353
Configuración E-2	12371.971	0.16614	13066.176	0.27167	13471.26	0.20034	14424.163	0.32118
Configuración E-3	14882.079	0.13419	15856.138	0.21749	15619.9	0.15290	16620.677	0.24513




UNIVERSIDAD DE LAS FUERZAS ARMADAS

4.2 Estructuras de 8 pisos

Curvas de capacidad

	Sentido	X	Sentido Y		
Caso de estudio	Carga Máx. (kN)		Carga Máx. (kN)	R	
Estructura sin reforzamiento	6768.830	1.00	6100.702	1.00	
Configuración E-1	12134.305	1.79	9906.002	1.62	
Configuración E-2	13179.494	1.95	14568.578	2.39	
Configuración E-3	16037.080	2.37	17006.626	2.79	

5. 1 Conclusiones

El sistema de enchape como reforzamiento para estructuras de mediana altura, de hormigón armado con mampostería de relleno presentó un desempeño adecuado para los objetivos planteados. Para un evento sísmico con probabilidad de excedencia del 10% en 50 años (Tr=475 años) las estructuras presentaron un nivel de daño de Seguridad de Vida (LS) y en algunos casos incluso se tuvo un mejor desempeño; y para el segundo evento sísmico con probabilidad de excedencia del 2%en 50 años (Tr=2500 años) ninguna estructura alcanzó el nivel de daño de Prevención de Colapso (CP). Por lo cual se confirma que el sistema de reforzamiento con enchape se puede utilizar con seguridad en este tipo de estructuras. Cabe mencionar que esta conclusión es válida para reforzamientos con enchape que presenten estas características: suelo tipo D, espesor total de enchape 8cm, resistencia a la compresión del mortero de enchape f'c=150 kg/cm²; refuerzo con malla electrosoldada de 9mm de diámetro y apertura cuadrada de 10x10 cm; resistencia a la tracción fy=5000 kg/cm², longitud de paredes entre 5 y 5.5 m, y dependiendo el número de pisos que cumplan con el porcentaje mínimo de paredes enchapadas que se presenta a continuación.

5. 1 Conclusiones

Para estructuras de 2 y 4 pisos reforzadas con el sistema de enchape con las características antes mencionadas, se encontró que, el porcentaje óptimo de paredes a enchapar por planta y por sentido de análisis es del 0.60 %.

Para el caso de las **estructuras de 6 y 8 pisos** reforzadas con el sistema de enchape con las características antes mencionadas, se encontró que, **el porcentaje óptimo de paredes a enchapar por planta y por sentido de análisis es del 1.14 %.**

Para estructuras de altura media baja como son 2 y 4 pisos no se tuvo problema en reforzar paredes con longitudes entre 2.5 y 6.5 metros, sin embargo, para estructuras de mediana altura como son de 6 y 8 pisos, la longitud de los muros es importante porque de ello dependerá si se clarifican como muros altos o intermedios, y con esta investigación se ratificó que para el caso de **muros altos** (como es el caso de los muros con longitud igual a 2.5 m), se **requiere de un mayor diseño a corte**.

5. 1 Conclusiones

Si bien el sistema de enchape aumenta en gran medida la resistencia y rigidez de las estructuras, aumentando la ductilidad de estas, es importante contar con un buen diseño que permita resistir el cortante, especialmente en los primeros pisos.

Para los escenarios óptimos de enchape se pudo observar que **el porcentaje de cortante que absorben los muros enchapados es alrededor del 70 % o superior** lo cual no muestra como este sistema alivia

significativamente el cortante que van a recibir el resto de las columnas de la estructura, mismas que contaban con

un diseño mínimo y que sin el reforzamiento se encontraban sobre esforzadas.

5. 2 Recomendaciones

La principal recomendación de esta investigación es considerar el enchape como sistema de reforzamiento ya que es un sistema fácil de aplicar, económico y que ha demostrado tener un buen desempeño para estructuras ubicadas en zonas con alto peligro sísmico.

Esta investigación presenta el sistema de enchape con características de armado, secciones y materiales específicas, se recomienda continuar con investigaciones experimentales y teóricas que contemplen otras características para generar una mayor fuente de datos que muestre los beneficios de este sistema de reforzamiento y su aplicabilidad.

Se recomienda realizar investigaciones enfocadas en el análisis de cortante de muros enchapados para definir ecuaciones de cortante nominal según las características del mortero de enchape.