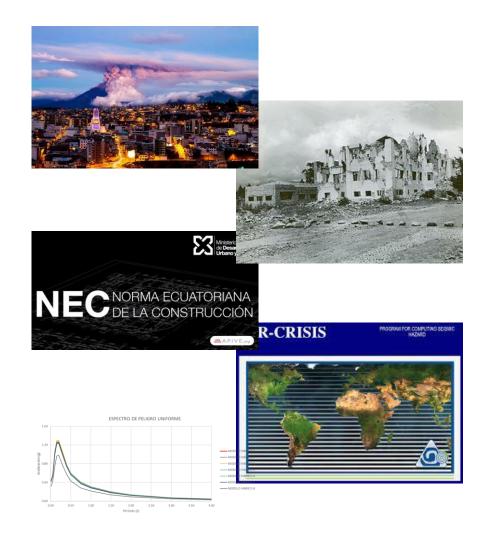


UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE CENTRO DE POSGRADOS

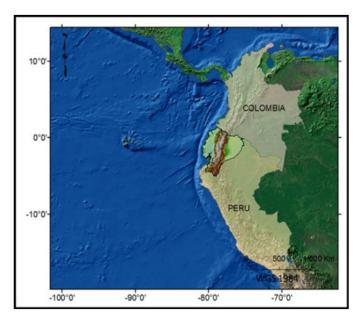
MAESTRÍA DE INVESTIGACIÓN EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS

"PELIGROSIDAD SISMICA DEL ÁREA URBANA Y RURAL DE LA CIUDAD DE AMBATO"

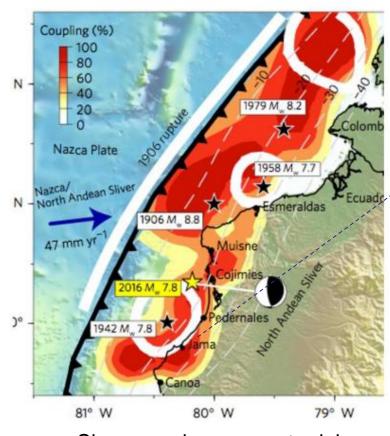
AUTOR: ING.PAOLA CAROLINA SERRANO MORETA.


DIRECTOR: ING. AGUIAR FALCONÍ, ROBERTO RODRIGO, PhD.

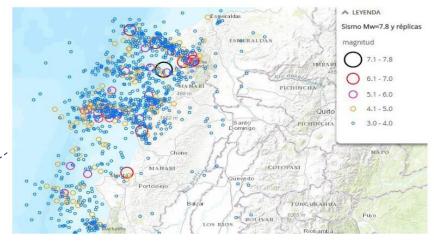
SANGOLQUÍ, FEBRERO - 2023


ÍNDICE

- 1.-JUSTIFICACIÓN Y OBJETIVOS
- 2.-MARCO TEÓRICO
- 3.-METODOLOGÍA
- 4.-RESULTADOS
- **5.-CONCLUSIONES Y RECOMENDACIONES**



1.-JUSTIFICACIÓN Y OBJETIVOS



Ubicación regional del Ecuador

Sismos en la zona norte del Ecuador

Antecedentes de estudios de amenaza sísmica en Ecuador continental

1.-JUSTIFICACIÓN Y OBJETIVOS

Iglesia Adobe-Ladrillo

Hospital Ambato

Viviendas Adobe

Sismicidad Histórica-Ambato

Terremoto 1949 Mw=6.8

1.-JUSTIFICACIÓN Y OBJETIVOS

OBJETIVO GENERAL

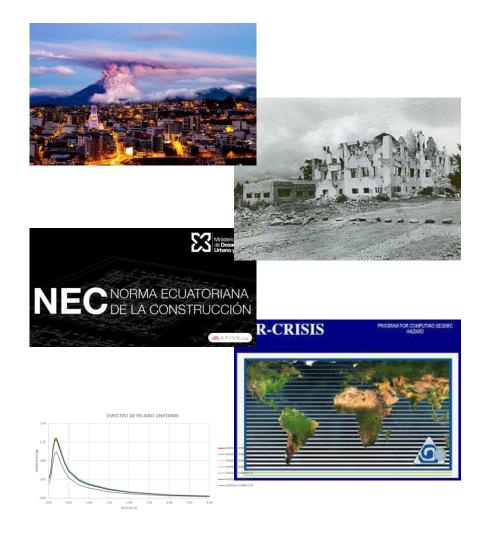
Determinar los espectros de control, con el fin de cuantificar la peligrosidad sísmica de la ciudad de Ambato – Ecuador, mediante un estudio Determinístico y Probabilístico.

Seleccionar las fallas geológicas activas que engloban el Régimen Tectónico con relación al área de influencia.

OBJETIVOS ESPECÍFICOS

Seleccionar las ecuaciones de atenuación que mejor se ajusten en la determinación del peligro sísmico.

Desarrollar un programa en Matlab para la determinación de espectros de aceleración para la componente horizontal.

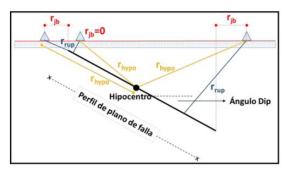


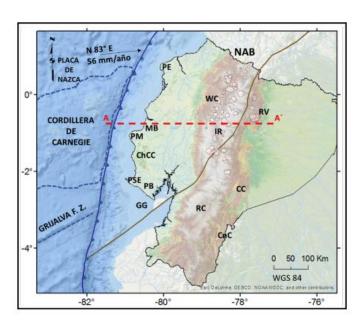
Determinar las curvas y desagregación de la Peligrosidad sísmica.

ÍNDICE

- 1.-JUSTIFICACIÓN Y OBJETIVOS
- 2.-MARCO TEÓRICO
- 3.-METODOLOGÍA
- 4.-RESULTADOS
- **5.-CONCLUSIONES Y RECOMENDACIONES**

Factor Temporal Factor de Tamaño Factor de distancia Fuenteemplazamiento Factor de Trayectoria Fuente-emplazamiento Factor sitio


Métodos
Determinísticos
Peligrosidad
Sísmica


Métodos

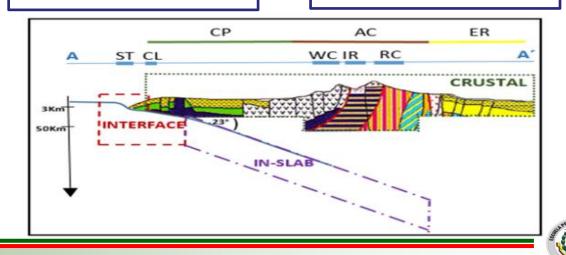
Probabilísticos

Atenuación de las ondas sísmicas

Fuentes sísmicas

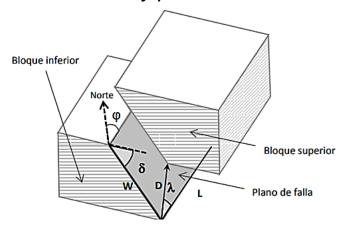
Fuentes sísmica In-slab

-El ángulo de inmersión del techo de la placa oceánica es menor al de la subducción más profunda (100-120kmE)


-Profundidad 40-70 km

Fuentes sísmica Interfase

- -Extiende hasta 400-500 kmE
- -Profundidad 200km
- -Ángulo varía en el rango 17-35°


Fuente sísmica Corteza Continental

- -Zona costera: profundidad 40km
- -Zona de cordillera: profundidad 50-70km
- -Zona oriental

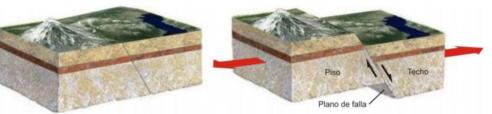
Geometría y parámetros de la Falla

Donde:

L: es el largo de la falla

W: es el ancho

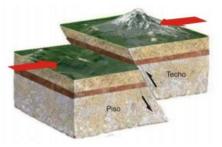
D: es el desplazamiento co-sísmico


θ: el azimut que varía entre 0 y 360°

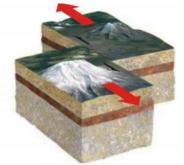
δ: el ángulo de buzamiento es el ángulo que forma el plano de falla con la horizontal y varía entre 0 y 90°

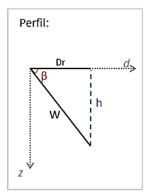
λ: es el vector de deslizamiento que se encuentra entre 0 y 360°

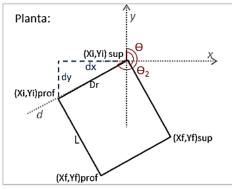
Falla Geológica


Falla Normal

Falla Inversa




Falla Strike-Slip



$$W = \frac{Z_{max} - Z_{min}}{sen \, \delta}$$

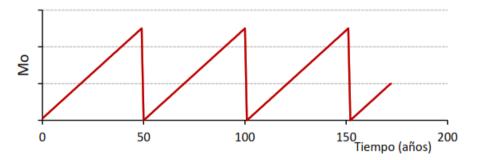
$$\theta = arctag\left(\frac{X_f - X_i}{Y_f - Y_i}\right)$$

$$D_r = W * \cos(\beta)$$

$$\theta_2 = \theta + 90^{\circ}$$

$$dx = Dr * sen(\theta_2)$$

$$dy = Dr * cos (\theta_2)$$


Falla Geológica

Falla capaz	tipo	Longitud de falla (Km)	Prof. falla (Km)	Distancia más cercana falla - Ambato (Km)	Azimut	Buz. Aparen	Rake	Ancho de falla	Posicion estructural de falla	Máximo desplaz. (m) desde Well & Coppermisth, 1994	Magnitud estimada desde Leonard, 2010	Magnitud desde distancia focal de falla	Magnitud desde Wesnousky (2008)	PGA desde Fukushima & Tanaka, 1994	Niveles de confiabilidad desde análisis sismológicos y morfológicos	Biblografia, referencia citada
F-01	Cizalla dextral	26	9	47	40	85	+180	9	righ-lateral	1,1	6,5	6,5	6,8	0,37	Deducida	Eguez et al., 2003
F-02	Inversa	19	9	36	25	45	-90	8	Footwall	0,9	6,4	6,3	6,7	0,35	Cierta	Eguez et al., 2003
F-03	Normal	14	9	35	13	45	-90	7	Hangingwall	0,8	6,1	6,0	6,7	0,32	Deducida	Eguez et al., 2003
F-04	Normal	17	9	32	20	45	-90	8	Hangingwall	0,9	6,3	6,2	6,7	0,34	Cierta	Eguez et al., 2003
F-05	Inversa	19	10	31	355	45	+90	8	Hangingwall	0,9	6,3	6,3	6,5	0,32	Cierta	Chunga, 2010
F-06	Inversa	23	10	32	62	45	+90	9	Hangingwall	1,0	6,4	6,4	6,7	0,34	Deducida	Chunga, 2010
F-07	Cizalla dextral	38	10	31	50	85	+180	10	righ-lateral	1,3	6,7	6,7	6,9	0,38	Cierta	Eguez et al., 2003
F-08	Cizalla dextral	14	8	31	150	85	+180	7	righ-lateral	0,8	6,2	6,1	6,6	0,34	Cierto	Chunga, 2010
F-09	Inversa	22	9	22	185	45	+90	8	Hangingwall	1,0	6,4	6,4	6,6	0,36	Cierto	Chunga, 2010
F-10	Inversa	15	10	20	32	45	+90	8	Footwall	0,8	6,1	6,1	6,3	0,30	Cierto	Eguez et al., 2003
F-11	Inversa	31	11	8	5	45	90	9	Footwall	1,2	6,7	6,6	6,8	0,36	Cierto	Eguez et al., 2003
F-12	Normal	11	8	22	95	45	-90	7	Footwall	0,7	6,0	5,9	6,6	0,32	Cierto	Chunga, 2010
F-13	Inversa	12	8	25	30	45	+90	7	Footwall	0,8	6,1	6,0	6,2	0,33	Cierto	Chunga, 2010
F-14	Cizalla dextral	16	10	21	100	85	+180	8	righ-lateral	0,9	6,2	6,2	6,6	0,32	Cierta	Chunga, 2010
F-15	Inversa	16	11	22	20	45	+90	8	Footwall	0,9	6,2	6,2	6,4	0,29	Cierto	Chunga, 2010
F-16	Cizalla sinistral	18	12	7	91	85	+5	8	left-lateral	0,9	6,2	6,2	6,6	0,28	Cierto	Chunga, 2010
F-17	Inversa	15	9	35	80	45	+90	8	Footwall	0,8	6,2	6,1	6,3	0,33	Cierto	Chunga, 2010
F-18	Inversa	12	10	41	355	45	+90	7	Footwall	0,8	6,0	6,0	6,2	0,28	Cierto	Chunga, 2010
F-19	Cizalla sinistral	31	12	39	110	85	+5	9	left-lateral	1,1	6,7	6,6	6,9	0,34	Cierto	Chunga, 2010
F-20	Inversa	13	10	38	50	45	+90	7	Footwall	0,8	6,1	6,0	6,2	0,30	Cierta	Chunga, 2010

- Tipo, geometría, y longitud de la falla,
- Cinemática y profundidad asociada al plano de falla
- Forma y tendencia estructural y morfológica sobre el terreno

Modelo del terremoto característico

Hanks y Kanamori (1979)

$$M_W = \frac{2}{3}\log(M_O) - 10.7$$
 $\rightarrow M_0 = 10^{\frac{(M_W + 10.7)3}{2}}$
Brune (1968)

$$\dot{M}_O = \mu \, \dot{u} \, A$$

$$T_r = \frac{Mo}{\dot{Mo}}$$

Período de Recurrencia

Modelo del Gutenberg y Richter modificado

Anderson (1979)

$$M_{o} = \int_{Mmin}^{Mmax} \dot{n}(m) * Mo(m)dm$$

$$n_{(m)} = \dot{N}_{Mmin} * \beta * \left[\frac{e^{-\beta(m)}}{e^{-\beta(Mmin)} - e^{-\beta(Mmax)}} \right]$$

$$M_o' = \int_{Mmin}^{Mmax} \dot{N}_{Mmin} * \beta * \left[\frac{e^{-\beta'(m)}}{e^{-\beta(Mmin)} - e^{-\beta(Mmax)}} \right] * Mo(m) dm$$

$$Mo(m) = e^{(\bar{c} + dm)}$$

$$\dot{N}_{(m)} = \dot{N}_{M_{min}} * \left[\frac{e^{-\beta(m)} - e^{-\beta(M_{max})}}{e^{-\beta(M_{min})} - e^{-\beta(M_{max})}} \right]$$

$$M_0(M_{min}) = e^{(\bar{c} + \bar{d} M_{min})} \qquad M_0(M_{max}) = e^{(\bar{c} + \bar{d} M_{max})}$$

ESPECTROS DE ACELERACIÓN HORIZONTAL

Selección GMPE'S

Algunas de las condiciones que debe presentar un modelo pueden ser:

- El modelo debe obtenerse de un régimen tectónico característico.
- El conjunto de datos utilizados para determinar el modelo se presente en forma accesible para su uso.
- Base de datos suficiente.
- El rango de aplicabilidad del modelo sea lo suficientemente amplio como para no tener que realizar extrapolaciones.

Ecuaciones de Atenuación

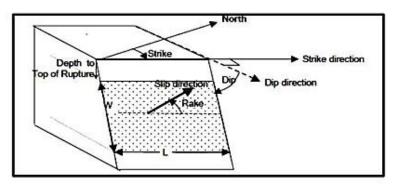
Parámetros

Parámetros de fuente

Mw

W

 $Dip(\delta)$


Rake (λ)

 Z_{TOR}

 Z_{hyp}

 F_{RV}

 F_{NM}

Componente Vertical de Movimientos Fuertes de Terreno

NEC -SE-DE

RELACIONES V/H

- Aceleraciones
- Desplazamientos
- Velocidad máxima del terreno
- Magnitud, distancia epicentral, frecuencia y periodo

$$E_V = \frac{2}{3} * E_H$$

Donde:

Ev: Componente vertical del sismo

Eh: Componente horizontal del sismo

Referencia		Características de los registros	V/H
Newmark et al., 1973		33 registros EE. UU.	2/3
Kawashima et al 1985		Registros del Japón	1/5
Ambrasays	У	104 registros mundiales R<15Km,	1.75
Simpson,1995		M>6, v>0.1g	
Boomer y Martinez 1996		130 registros	1.00
Mohammadioun 1996		Suelos aluviales cercanos a la falla	0.75

Relaciones de aceleración vertical a horizontal

Terremoto de Pedernales (2016)

ESPECTROS DE ACELERACIÓN HORIZONTAL

Ecuaciones de Atenuación

Parámetros

Parámetros de sitio

 V_{s30} : Velocidad de onda de corte a los 30 metro del suelo (m/s)

 A_{1100} (g): Valor previsto de PGA sobre roca a una velocidad media de onda de corte.

 $Z_{2.5}$: Profundidad debajo del sitio de interés a la cual se halla una velocidad de onda de corte $V_s = 2.5 \ km/s$

 $Z_{1.0}$: Profundidad a la que la velocidad de onda de cortes $V_s = 1.0 \ km/s$

Parámetros de Trayectoria

 R_{rup} : Distancia más cercana del sitio al plano de ruptura

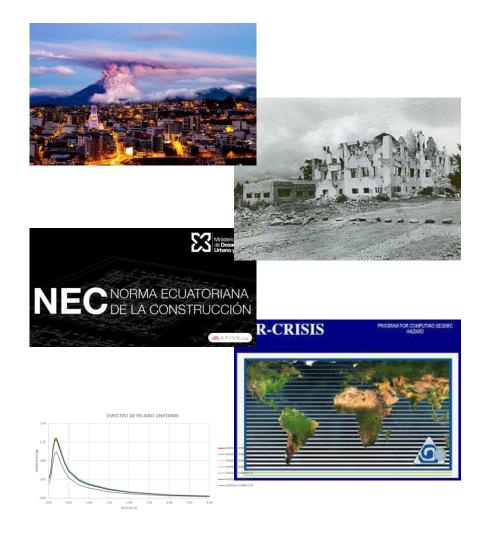
 R_{jb} : Distancia horizontal más cercana a la proyección del plano de ruptura en la superficie.

 R_x : Distancia horizontal más cercana al borde superior del plano de ruptura medio perpendicularmente desde la dirección del rumbo promedio.

Uno de los criterios del diseño sismorresistente se basa en métodos probabilísticos que asumen la intensidad y frecuencia de ocurrencia de un evento sísmico, resulta difícil contar con una base de datos lo suficientemente amplio para estimar con exactitud la ocurrencia de eventos sísmicos, es necesario recurrir a la teoría de probabilidades para considerar las incertidumbres en la estimación de su ocurrencia

$$H = P[x(s) \geq x_0; t]$$

$$\lambda(y > Y) = \sum_{i=1}^{N} \lambda_i(y > Y) = \sum_{i=1}^{N} \nu_i \iiint P_i[y > Y | m, r, \mathcal{E} | f_{Mi}(m) f_{Mi}(r) f_{\mathcal{E}i}(\mathcal{E}) dm \ dr \ d\mathcal{E}$$


$$P(x > x_0 en \ t \ a\tilde{n}os) = 1 - e^{(x > x_0)^t} = 1 - e^{-t/T}$$

- Análisis de sismicidad y tectónica del área de estudio
- Elaboración del catálogo sísmico
- Definición de fuentes sísmicas
- Elaboración del modelo de atenuación
- Cálculo de la peligrosidad
- Desagregación e identificación de los sismos de control

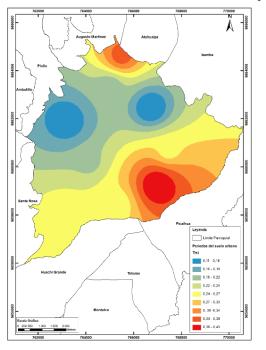
ÍNDICE

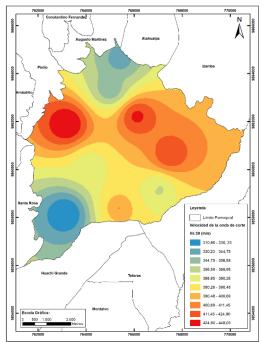
- 1.-JUSTIFICACIÓN Y OBJETIVOS
- 2.-MARCO TEÓRICO
- 3.-METODOLOGÍA
- 4.-RESULTADOS
- **5.-CONCLUSIONES Y RECOMENDACIONES**

3.-METODOLOGÍA

Clasificación de los suelos de la ciudad de

Ambato Vector Person No. Constitution Forester No. Constitution No. Const





Velocidad de la onda de corte

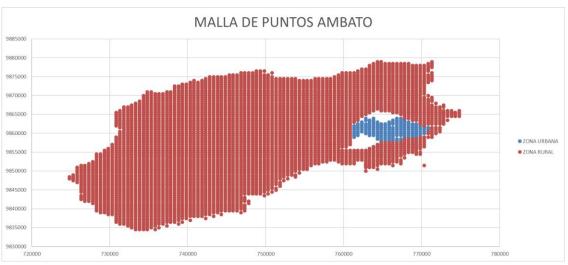
- Periodo de vibración del suelo
- Numero de golpes del ensayo SPT
- Valores de cohesión
- Ángulo de fricción interna
- Cortante de suelo

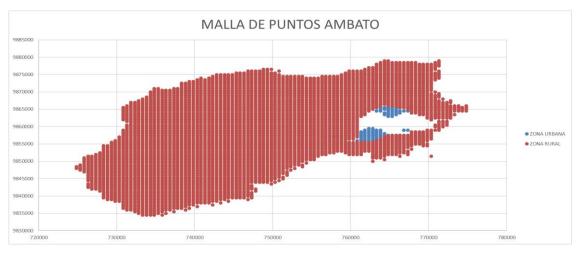
Estudios Geofísicos y Geotécnicos

Períodos de vibración del suelo

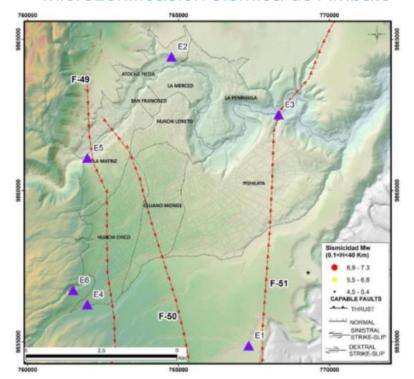
Velocidad de onda de corte en los 30 primeros metros

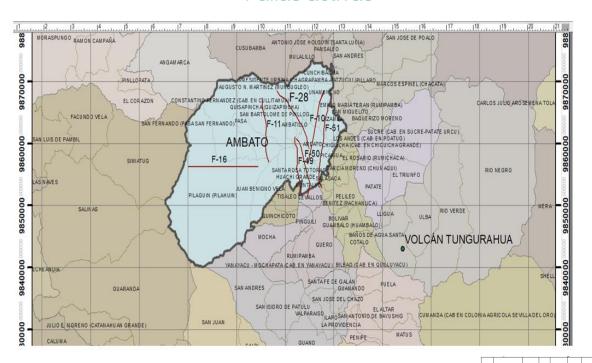
Clasificación de los Suelos NEC-15


Perfil de Suelo	V_{s30}
Α	$V_{s30} > 1500 m/s$
В	$760 \frac{m}{s} < V_{s30} \le 1500 m/s$
С	$360 \frac{m}{s} < V_{s30} \le 760 m/s$
D	$180 \frac{m}{s} < V_{s30} \le 360 m/s$
E	$V_{s30} \le 180 m/s$



Malla de puntos Ambato


Malla de puntos Ambato suelo tipo "C"


Malla de puntos Ambato suelo tipo "D"

Microzonificación sísmica de Ambato

Fallas activas

Catalogo sísmico

Fallas geológicas seleccionadas en el estudio de peligrosidad sísmica del área urbana y rural de Ambato

FALLA	δ	λ	М	L	Α	W	TIPO
				(Km)	(Km^2)	(Km)	
Ambato	45	90	6.5	16.3	97.80	6	Inversa Ciega
Huachi	45	90	6.3	12.04	72.24	6	Inversa Ciega
Totoras	45	90	6.5	17.65	105.90	6	Transcurrentes
							Inversa Ciega
F-10	45	90	6.1	15.0	120	8	Inversa
F11	45	90	6.6	11.0	99	9	Inversa
F-16	85	5	6.2	18.0	144	8	Cizalla Dextral
F-28	45	90	6.0	13.0	91	7	Normal

Falla capaz	tipo	Longitud de falla (Km)	Prof. falla (Km)	Distancia más oercana falla - Ambato (Km)	Azimut	Buz. Aparen	Rake	Ancho de falla	Posicion estructural de falla	Máximo desplaz. (m) desde Well & Coppermisth, 1994	Magnitud estimada desde Leonard, 2010	Magnitud desde distancia focal de falla	Magnitud desde Wesnousky (2008)	PGA desde Fukushima & Tanaka, 1994	Niveles de conflabilidad desde análisis sismológicos y morfológicos	Biblografía, referencia citada
F-01	Cizalla dextral	26	9	47	40	85	+180	9	righ-lateral	1,1	6,5	6,5	6,8	0,37	Deducida	Eguez et al., 2003
F-02	Inversa	19	9	36	25	45	-90	8	Footwall	0,9	6,4	6,3	6,7	0,35	Cierta	Eguez et al., 2003
F-03	Normal	14	9	35	13	45	-90	7	Hangingwall	0,8	6,1	6,0	6,7	0,32	Deducida	Eguez et al., 2003
F-04	Normal	17	9	32	20	45	-90	8	Hangingwall	0,9	6,3	6,2	6,7	0,34	Cierta	Eguez et al., 2003
F-05	Inversa	19	10	31	355	45	+90	8	Hangingwall	0,9	6,3	6,3	6,5	0,32	Cierta	Chunga, 2010
F-06	Inversa	23	10	32	62	45	+90	9	Hangingwall	1,0	6,4	6,4	6,7	0,34	Deducida	Chunga, 2010
F-07	Cizalla dextral	38	10	31	50	85	+180	10	righ-lateral	1,3	6,7	6,7	6,9	0,38	Cierta	Eguez et al., 2003
F-08	Cizalla dextral	14	8	31	150	85	+180	7	righ-lateral	0,8	6,2	6,1	6,6	0,34	Cierto	Chunga, 2010
F-09	Inversa	22	9	22	185	45	+90	8	Hangingwall	1,0	6,4	6,4	6,6	0,36	Cierto	Chunga, 2010
F-10	Inversa	15	10	20	32	45	+90	8	Footwall	0,8	6,1	6,1	6,3	0,30	Cierto	Eguez et al., 2003
F-11	Inversa	31	11	8	5	45	90	9	Footwall	1,2	6,7	6,6	6,8	0,36	Cierto	Eguez et al., 2003
F-12	Normal	11	8	22	95	45	-90	7	Footwall	0,7	6,0	5,9	6,6	0,32	Cierto	Chunga, 2010
F-13	Inversa	12	8	25	30	45	+90	7	Footwall	0,8	6,1	6,0	6,2	0,33	Cierto	Chunga, 2010
F-14	Cizalla dextral	16	10	21	100	85	+180	8	righ-lateral	0,9	6,2	6,2	6,6	0,32	Cierta	Chunga, 2010
F-15	Inversa	16	11	22	20	45	+90	8	Footwall	0,9	6,2	6,2	6,4	0,29	Cierto	Chunga, 2010
F-16	Cizalla sinistral	18	12	7	91	85	+5	8	left-lateral	0,9	6,2	6,2	6,6	0,28	Cierto	Chunga, 2010
F-17	Inversa	15	9	35	80	45	+90	8	Footwall	0,8	6,2	6,1	6,3	0,33	Cierto	Chunga, 2010
F-18	Inversa	12	10	41	355	45	+90	7	Footwall	0,8	6,0	6,0	6,2	0,28	Cierto	Chunga, 2010
F-19	Cizalla sinistral	31	12	39	110	85	+5	9	left-lateral	1,1	6,7	6,6	6,9	0,34	Cierto	Chunga, 2010
F-20	Inversa	13	10	38	50	45	+90	7	Footwall	0.8	6.1	6.0	6.2	0.30	Cierta	Chunga, 2010

MODELOS UTILIZADOS 2018

- o Campbell y Borzognia Y, 2013.
- o Chiou y Youngs, 2013
- o Abrahamson et al., 2013

MODELOS UTILIZADOS 2022

- o Campbell y Borzognia Y, 2013.
- o Chiou y Youngs, 2013
- o Abrahamson et al., 2013
- o Zhao et al., 2016
- o Atkinson y Boore, 2008
- o Akkar y Bommer 2014

Parámetr	C&B	C&Y	ASK	Zha	B&A	Idris
0	-14	-14	-14	o-16	-08	-14
Μ	X	X	Χ	Χ	X	X
Z_{TOR}	Χ	Χ	Χ			
F_{RV}, F_{NM}, SS	Χ	X	Χ	Χ	Х	X
R_{rup}	X	Х	Χ	Χ		X
R_{JB}	X	X	Χ	Χ	X	
R_{x}	X	X	Χ	Χ		X
R_{yo}			Χ			
F_{HW}	Χ	X	Χ		X	
V_{s30}	X	X	Χ	X		X
$_{2.5}(X); Z_1(XX)$	Χ	XX	XX		XX	
Z_{hyp}	Х	X		Χ		X
X^{v}				Χ		

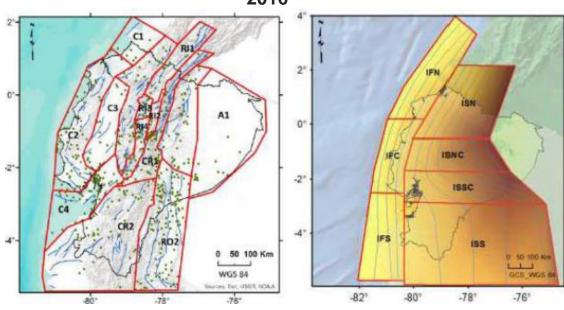
Parámetro	C&B -2014	C&Y -2014	ASK -2014	Z et al. -2016	B&A -2008	l -2014
Magnitud Minima	3.30	3.50	3.00	х	5.00	5.00
Magnitud Máxima	8.50	8.00	8.50	х	8.50	8.50
Magnitud máxima falla transcurrente	8.50	8.50	8.50	х	8.50	8.50
Magnitud máxima falla inversa	8.00	8.00	8.50	х	8.50	8.00
Magnitud máxima falla normal	7.50	8.00	8.50	х	7.00	8.00
Número de registros de fallas Normales	8313	12,244	26	1658	Х	70
Número de registros de fallas Inversas	322	2,587	79	3117	х	1490
Número de registros de fallas transcurrentes	1561	Х	221	1182	х	899
Datos de Sismos	California, wordwide earthquakes	California	California, Japón, China, Taiwan	J, USA, Iran	California	California, Taiwan, USA, Canada, Georgia, Greece, Iran, Italy Mexico, Turkey
Rrup (Km)	(0 - 300)	(0 - 300)	(0 - 300)	Х	(0 - 400)	(0.2 - 175)
Vs30 (m/s)	(150-1500)	(180-1500)	(180-1500)	$200 \le V_{s30}$ > 600	$180 \le V_{s30}$ > 1300	$450 \le V_{s30}$ > 1200
Ztor (Km)	≤ 20	≤ 20	≤ 20	х	х	Х
Zhyp (Km)	≤ 20	Х	Х	х	х	Х
Z2.5 - Z1.0 (Km)	(0 - 10)	(0 - 10)	Х	Х	(0 - 3)	х

COMPONENTE VERTICAL DE MOVIMIENTOS FUERTES DEL TERRENO

Selección GMPE'S

Modelo de Campbell y Bozorgnia (2016)

$$\ln Y_V = f_{mag} + f_{dis} + f_{flt} + f_{hng} + f_{site} + f_{sed} + f_{hyp} + f_{dip} + f_{atn}$$


• Modelo de Gülerce et al. (2017)

$$\begin{split} &lnSa_{(g)} \\ &= f_1(M, R_{RUP}) + F_{RV}f_7(M) + F_Nf_8(M) + F_{AS}f_{11}(CR_{jb}) + f_5(V_{s30}) \\ &+ F_{HW}f_4(R_{jb}, R_{rup}, R_x, R_{y0}, W, dip, Z_{TOR}, M) + f_6(Z_{TOR}) + Regional(V_{s30}, R_{rup}) \end{split}$$

ZONAS FUENTE

ÁREA FUENTE	CÓD.	ÁREA	m ₀	M _{max}	Δ	α	β	σβ	Ň(m₀)	Ň(m₀)/ÁREA
Sismicidad Cortical										
Costa 1	C1	12950	4.0	5.9	1.2	10.74	1.99	1.65	0.32	2.47E-05
Costa 2A *	C2A	41619	4.0	4.8	0.0	17.42	2.96	0.29	2.54	6.10E-05
Costa 2B *	C2B	41619	4.9	6.8	0.4	10.96	1.59	0.70	0.27	6.44E-06
Costa 3	C3	19402	4.0	7.0	0.2	15.65	3.03	0.95	0.68	3.49E-05
Costa 4A *	C4A	24492	4.0	4.6	0.0	17.85	3.33	0.43	1.82	7.44E-05
Costa 4B *	C4B	24492	4.7	6.9	0.3	13.29	2.30	1.14	0.24	9.60E-06
Western Cordillera	CO1	24433	4.0	6.7	0.5	15.72	2.88	0.52	1.31	5.35E-05
Región Interandina 1	RI1	14389	4.0	6.9	0.4	7.96	0.98	0.31	0.26	1.79E-05
Región Interandina 2	RI2	3035	4.0	5.8	8.0	18.52	3.77	0.95	0.62	2.04E-04
Región Interandina 3	RI3	2778	4.0	6.6	0.3	9.41	1.47	0.47	0.34	1.20E-04
Región Interandina 4	RI4	6200	4.0	6.7	0.9	11.29	1.60	0.27	0.60	9.71E-05
Cordillera Real 1	CR1	18107	4.0	6.8	0.6	13.25	1.86	0.21	1.51	8.36E-05
Cordillera Real 2	CR2	74991	4.0	6.9	0.4	18.16	3.45	0.54	1.55	2.07E-05
Región Oriental 1	RO1	27569	4.0	6.8	0.3	15.59	2.83	0.46	1.40	5.07E-05
Región Oriental 2	RO2	47101	4.0	7.1	0.4	15.09	2.15	0.19	2.95	6.25E-05
Región Amazónica	A1	60682	4.0	5.0	0.2	12.68	2.43	1.21	0.38	6.23E-06
Sismicidad Interfase										
Interfase Norte A *	IFN_A	59914	4.0	5.9	0.0	14.06	1.87	0.10	6.61	1.10E-04
Interfase Norte B *	IFN_B	59914	6.0	8.8	0.7	8.74	1.00	0.37	0.14	2.37E-06
Interfase Centro A *	IFC_A	39396	4.0	5.3	0.0	14.55	2.09	0.14	4.48	1.14E-04
Interfase Centro B *	IFC_B	39396	5.4	7.9	0.1	10.29	1.30	0.39	0.24	6.12E-06
Interfase Sur	IFS	59122	4.0	7.5	0.4	13.99	1.87	0.11	6.21	1.05E-04
Sismicidad In-Slab										
In-slab Norte	ISN	81870	4.0	7.2	0.4	10.49	1.54	0.29	0.69	8.43E-06
In-slab Norte Centro	ISNC	49806	4.0	7.0	0.5	12.18	1.64	0.17	2.65	5.33E-05
In-slab Sur Centro	ISSC	66315	4.0	7.5	0.1	13.47	1.82	0.12	4.44	6.70E-05
In-slab Sur	ISS	202155	4.0	7.7	0.2	13.21	1.67	0.09	6.41	3.17E-05

ZONAS FUENTE

BEAUVAI et al. (2018)

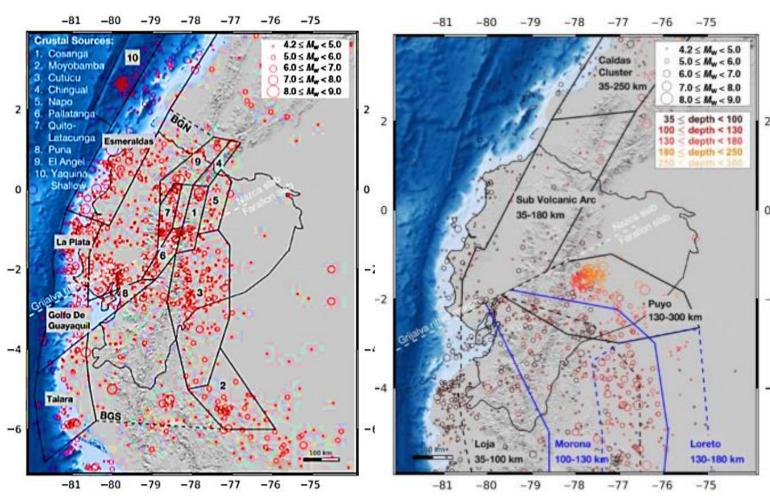


Table 3

Area Model, Parameters of Magnitude–Frequency Distributions, and Supplementary Information for Each Source Zone (relying on the BSSA2013 catalog)

Zone	а	b	$\lambda_{M_n \ge 4.5}$	M_0 for GR	Number of Events $\geq M_0$	$M_{ m maxobs}$	$M_{\rm max}$	Depth Range
Cosanga	2.7701	0.71	0.3866	4.8	13	7.1	7.8	0-35*
Moyobamba	4.4484	0.98	1.082	4.8	28	6.9	7.7	0-35*
Cutucu	5.4443	1.17	1.436	4.5	69	7.0	7.8	0-35*
Chingual	3.0831	0.98^{\dagger}	0.046	4.2	3	7.4	7.6	0-35*
Napo	3.4369	0.98^{\dagger}	0.106	4.5	5	5.6	7.8	0-35*
Pallatanga	2.8012	0.73	0.341	4.5	18	7.6	7.9	0-35*
Quito Latacunga	2.6797	0.70	0.336	4.5	17	6.4	7.3	0-35*
Puna	3.5830	0.98^{\dagger}	0.149	4.5	7	5.2	7.5	0-35*
El Angel	3.4503	0.98^{\dagger}	0.127	4.5	9	7.2	7.7	0-35*
Yaquina Shallow	6.7516	1.39	3.012	4.8	55	6.1	6.6	0-50*
Esmeraldas	4.0002	0.81	2.341	4.8	74	$8.8(8.4^{\ddagger})$	8.8	3-50§
La Plata	3.5598	0.80	0.915	4.5	46	6.7	8.0	3-408
Golfo de Guaya	3.4765	0.84	0.492	4.5	25	7.5	7.8	3-408
Talara	4.3639	0.91	1.916	4.8	53	7.1	8.2	3-40 [§]
Loja	6.8273	1.33	6.718	4.8	130	7.2	7.7	35-100*
Morona	4.4742	0.89	2.958	4.8	84	7.3	7.8	100-130*
Puyo	5.3015	1.05	3.6	4.8	88	7.5	8.0	130-300*
Subvolcanic are	5.0710	1.11	1.141	4.5	55	6.7	7.2	35-180*
Caldas cluster	4.7058	1.05	0.987	4.8	24	6.7	7.2	35-250*
Loreto	7.3757	1.62	1.279	4.8	20	7.5	8.0	130-180*
BGN∥	4.5245	1.09	0.428	4.8	10	6.4	7.0	0-35*
BGS	4.5428	1.04	0.697	4.5	36	7.2	7.5	0-35*

a- and b-values of the Gutenberg-Richter (GR) model using the BSSA2013 catalog, annual exceedance rate of M_w 4.5, minimum magnitude used in the recurrence modeling, number of events to derive the model (inside periods of completeness), maximum observed magnitude, and maximum magnitude bounding the recurrence model. *A probability density function for the depth is built from the depths of earthquakes belonging to each source, distributing earthquakes between the minimum and maximum depths.

NEHRP Recommended Seismic Provisions for New Buildings and Other Structures

Volume I: Part 1 Provisions, Part 2 Commentary FEMA P-1050-1/2015 Edition

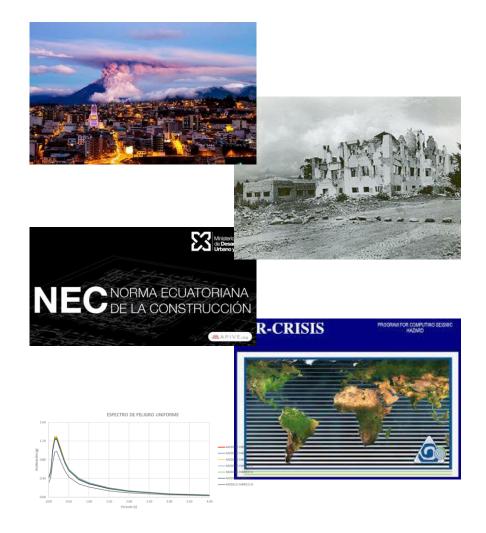
Factores de Amplificación para el PGA

Suelo	≤ 0.1	PGA = 0.2	PGA = 0.3	PGA = 0.4	PGA = 0.5	$PGA \ge 0.6$
Α	0.8	0.8	0.8	0.8	0.8	0.8
В	0.9	0.9	0.9	0.9	0.9	0.9
С	1.3	1.2	1.2	1.2	1.2	1.2
D	1.6	1.4	1.3	1.2	1.1	1.1
E	2.4	4.9	1.6	1.4	1.2	1.1

Factores de Amplificación para periodos cortos

Suelo	$S_s \leq 0.25$	$S_s = 0.5$	$S_s = 0.75$	$S_s = 1.0$	$S_s \ge 1.25$	$S_s \ge 1.5$
Α	0.8	0.8	0.8	0.8	0.8	0.8
В	0.9	0.9	0.9	0.9	0.9	0.9
С	1.3	1.3	1.2	1.2	1.2	1.2
D	1.6	1.4	1.2	1.2	1.0	1.0
E	2.4	4.9	1.3	-	-	-

Factores de Amplificación para periodos largos


Suelo	$S_1 \le 0.1$	$S_1 = 0.2$	$S_1 = 0.3$	$S_1 = 0.4$	$S_1 = 0.5$	$S_1 \ge 0.6$
Α	0.8	0.8	0.8	0.8	0.8	0.8
В	0.8	0.8	0.8	0.8	0.8	0.8
С	1.5	1.5	1.5	1.5	1.5	1.4
D	2.4	2.2	2.0	1.9	1.8	1.7
E	4.2	-	-	-	-	-

ÍNDICE

- 1.-JUSTIFICACIÓN Y OBJETIVOS
- 2.-MARCO TEÓRICO
- 3.-METODOLOGÍA
- 4.-RESULTADOS
- **5.-CONCLUSIONES Y RECOMENDACIONES**

Modelo del Terremoto Característico

Falla	M_0	M_0	A=L*w	\dot{M}_{0}	\dot{M}_{0}	T_r
	(Dyn*cm)	(N*m)	(m^2)	(kgf	(N m /año)	(años)
				m/año)		
Huachi	3.16*10 ²⁵	3.16*10 ¹⁸	72.24*	7.585*10 ¹⁵	7.585*10 ¹⁶	425.1
			10 ⁶			
Ambato	6.3*10 ²⁵	6.3*1018	97.8*	1.027*10 ¹⁵	1.027*10 ¹⁶	626.5
			10 ⁶			
Totora	6.3*10 ²⁵	6.3*10 ¹⁸	105.9*	1.112*10 ¹⁵	1.112*10 ¹⁶	578.6
			10 ⁶			
F10	4.47*10 ²⁵	4.47*10 ¹⁸	120*	1.260*1015	1.260*10 ¹⁶	361.5
			10 ⁶			
F11	3.16*10 ²⁵	3.16*10 ¹⁸	99*	1.040*10 ¹⁵	1.040*	310.2
			10 ⁶		10 ¹⁶	
F16	6.31*10 ²⁵	6.31*10 ¹⁸	144*	1.512*10 ¹⁵	1.512*	425.5
			10 ⁶		10 ¹⁶	
F28	3.16*10 ²⁵	3.16*1018	91*	9.555*10 ¹⁵	9.555	337.4
			10 ⁶		* 10 ¹⁶	

• Modelo de Gutenberg y Richter modificado

		TASA ANUAL NO	PERÍODO DE
	TASA ANUAL ACUMULADA	ACUMULADA	RECURRENCI
М	$\dot{N}_{(m)}$	$\widehat{\pmb{N}}_{(m)}$	Α
4.5	0.0490	0.0289	34.65
5.0	0.0201	0.0125	80.31
5.5	0.0077	0.0054	186.11
6.0	0.0023	0.0023	431.28
6.5	0.0000	0.0001	676.45

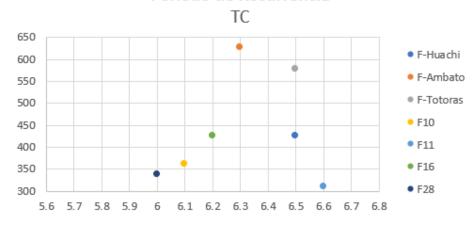
	Falla de Huachi				Falla de Totoras				
m	$\dot{N}_{(m)}$	$\widehat{N}_{(m)}$	T_r	m	$\dot{N}_{(m)}$	$\widehat{N}_{(m)}$	T_r		
4.5	0.0510	0.0305	32.82	4.5	0.0530	0.0312	32.04		
5.0	0.0205	0.0131	76.05	5.0	0.0218	0.0135	74.25		
5.5	0.0074	0.0057	176.24	5.5	0.0083	0.0058	172.06		
6.0	0.0017	0.0017	276.43	6.0	0.0025	0.0025	398.73		
6.3	0.0000	0.0000	336.54	6.5	0.0000	0.0000	625.40		

Falla F10				Falla F11				
m	$\dot{N}_{(m)}$	$\widehat{N}_{(m)}$	T_r	m	$\dot{N}_{(m)}$	$\widehat{N}_{(m)}$	T_r	
4.5	0.0720	0.0427	23.43	4.5	0.0700	0.0418	23.91	
5.0	0.0293	0.0184	54.30	5.0	0.0282	0.0180	55.41	
5.5	0.0109	0.0079	125.82	5.5	0.0101	0.0078	128.40	
6.0	0.0030	0.0030	338.63	6.0	0.0023	0.0023	201.40	
6.4	0.0000	0.0000	551.44	6.3	0.0000	0.0000	274.40	

Falla F16				Falla F28				
m	$\dot{N}_{(m)}$	$\widehat{N}_{(m)}$	T_r	m	$\dot{N}_{(m)}$	$\widehat{N}_{(m)}$	T_r	
4.5	0.0720	0.0424	23.58	4.5	0.0650	0.0388	25.75	
5.0	0.0296	0.0183	54.65	5.0	0.0262	0.0168	59.67	
5.5	0.0113	0.0079	126.66	5.5	0.0094	0.0072	138.28	
6.0	0.0034	0.0034	293.51	6.0	0.0022	0.0022	216.89	
6.5	0.0000	0.0000	460.37	6.3	0.0000	0.0000	295.50	

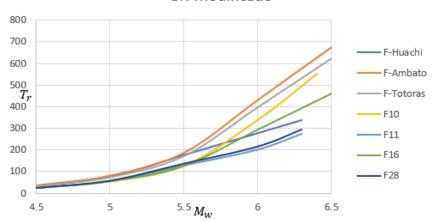
Periodo de Recurrencia

Para conocer el período de recurrencia de estos sismos de magnitud máxima se tienen dos formas:


Modelo del Terremoto Característico

	T (~)
Falla	T_r (años)
Huachi	425.1
Ambato	626.5
Totora	578.6
F10	361.5
F11	310.2
F16	425.5
F28	337.4

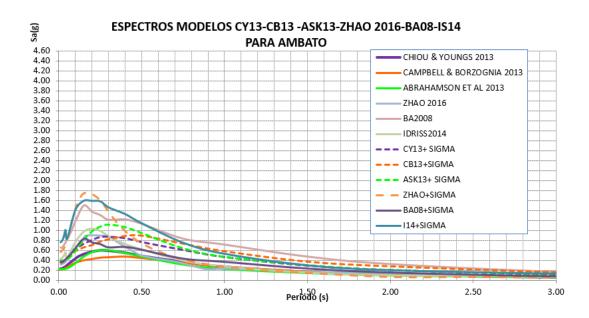
• Modelo de Gutenberg y Richter modificado

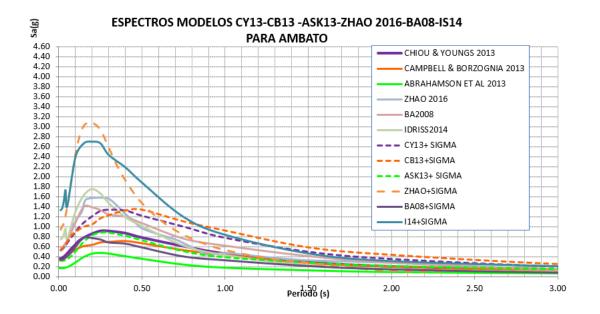

FALLA							
Magnitud	F-Huachi	F-Ambato	F-Totoras	F10	F11	F16	F28
m	T_r	T_r	T_r	T_r	T_r	T_r	T_r
4.5	32.82	34.65	32.04	23.43	23.91	23.58	25.75
5	76.05	80.31	74.25	54.3	55.41	54.65	59.67
5.5	176.24	186.11	172.06	125.82	128.4	126.66	138.28
6	276.43	431.28	398.73	338.63	201.4	293.51	216.89
6.5	336.54	676.45	625.4	551.44	274.4	460.37	295.5

Periodo de Recurrencia

Periodo de Recurrencia

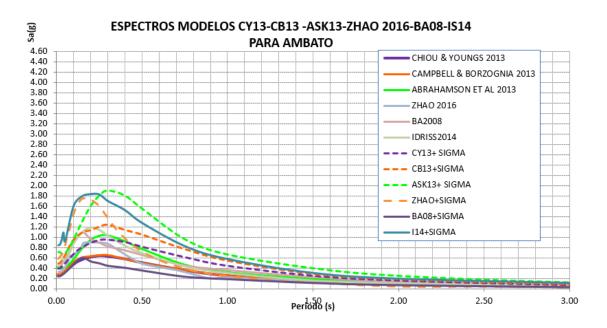
GR-Modificado



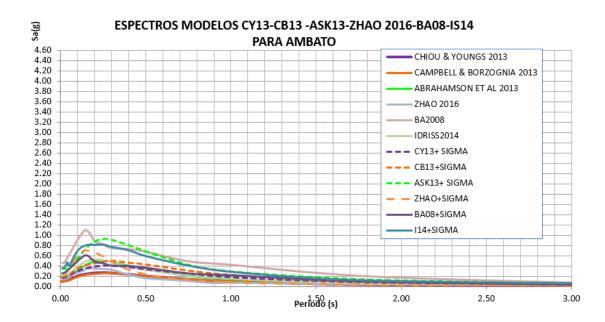

SUELO TIPO C

ESPECTROS DE ACELERACIÓN HORIZONTAL

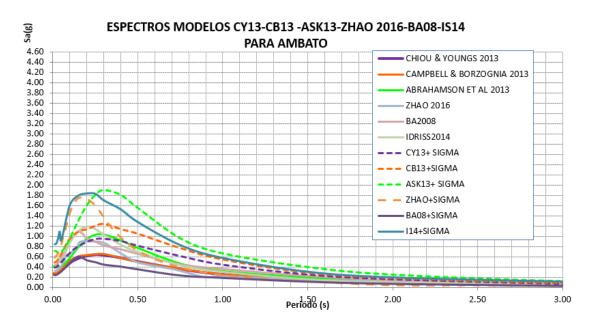
Sismo de magnitud máxima (M=6.5) falla de Ambato ZR



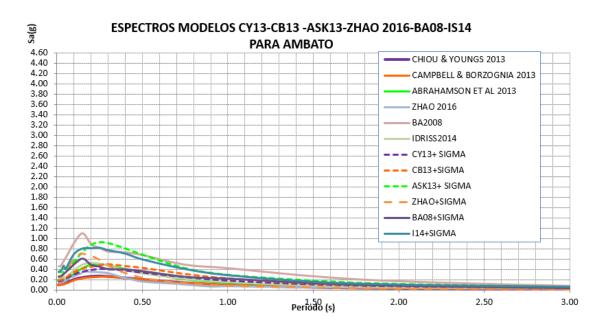
Sismo de magnitud máxima (M=6.5) falla de Ambato



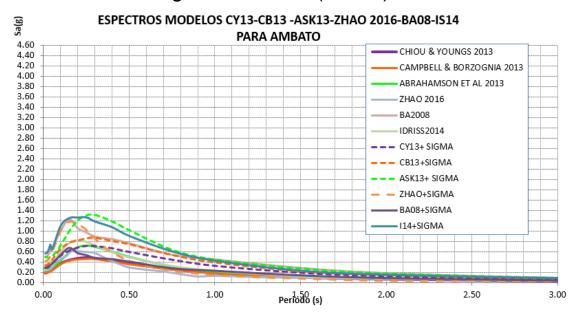
Sismo de magnitud máxima (M=6.3) falla de Huachi ZU


SUELO TIPO C

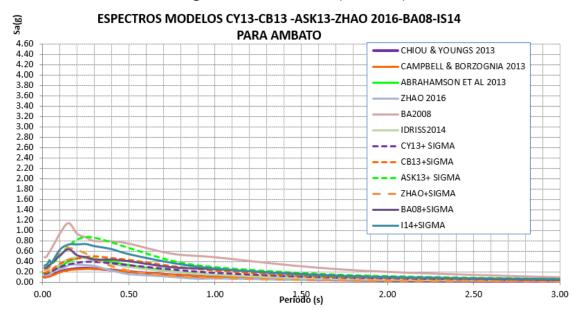
Sismo de magnitud máxima (M=6.3) falla de Huachi



Sismo de magnitud máxima (M=6.5) falla de Totoras ZU

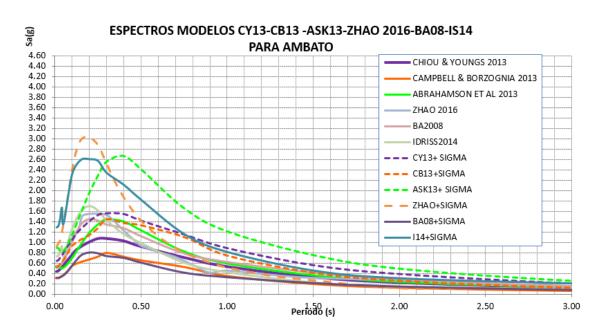

SUELO TIPO C

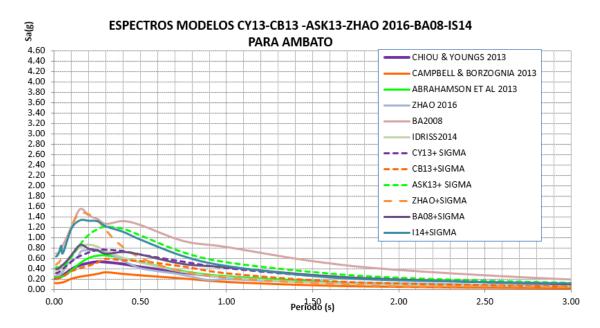
Sismo de magnitud máxima (M=6.5) falla de Totoras



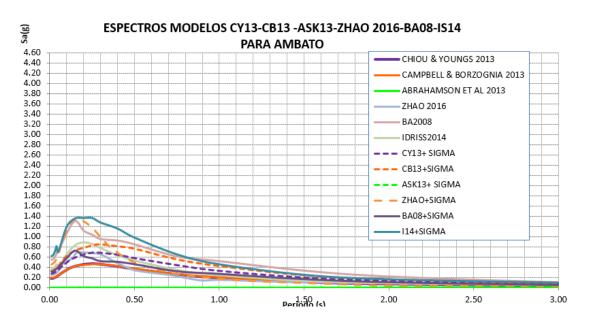
Sismo de magnitud máxima (M=6.1) F-10 ZU

SUELO TIPO C

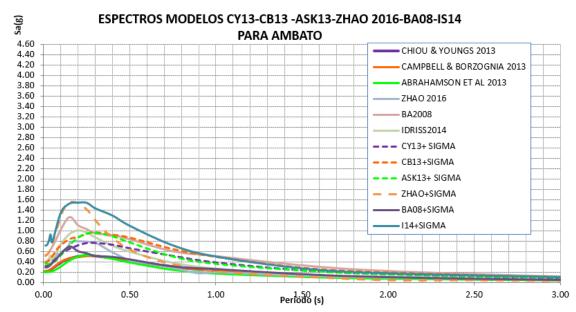

Sismo de magnitud máxima (M=6.1) F-10


Espectros Promedio

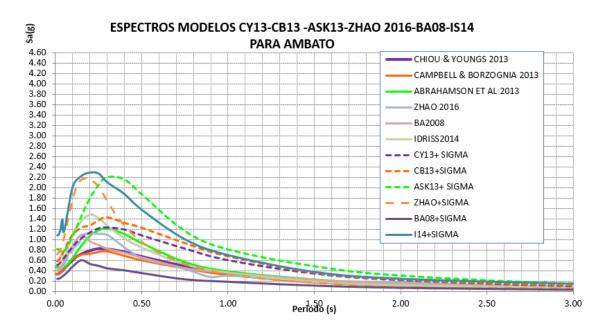
Sismo de magnitud máxima (M=6.6) F-11 ZU


SUELO TIPO C

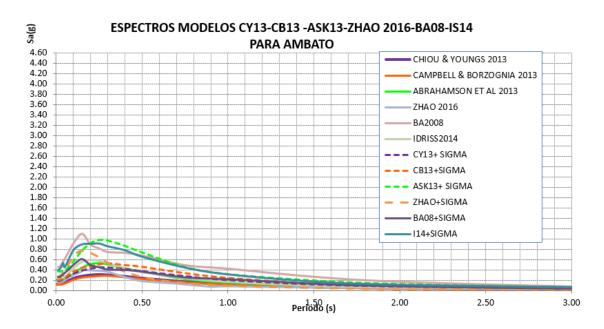
Sismo de magnitud máxima (M=6.6) F-11



Sismo de magnitud máxima (M=6.2) falla F-16 ZU

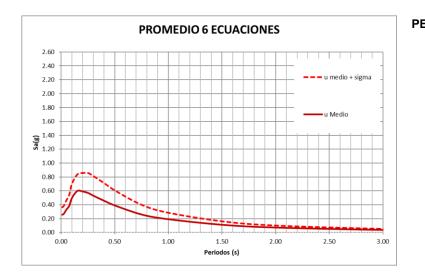

SUELO TIPO C

Sismo de magnitud máxima (M=6.2) falla F-16



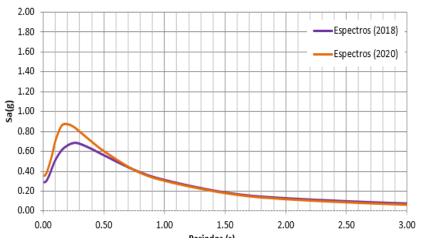
Sismo de magnitud máxima (M=6.0) F-28 ZU

SUELO TIPO C


Sismo de magnitud máxima (M=6.0) F-28

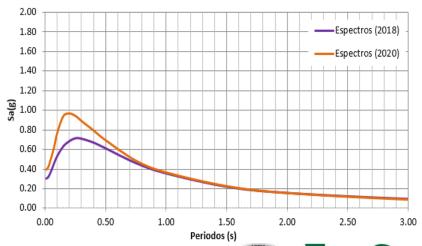
Metodología Determinística

SUELO TIPO C

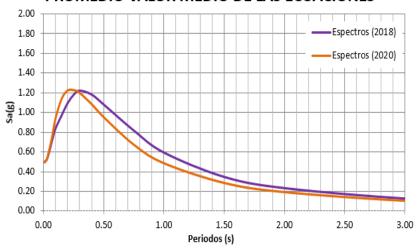


ERIODO(S)	Espectros	de Control
	DBE (g)	MCE (g)
0.01	0.393	0.5663
0.02	0.404	0.5850
0.03	0.432	0.6265
0.05	0.509	0.7411
0.075	0.576	0.8416
0.1	0.743	1.0905
0.15	0.906	1.2983
0.2	0.931	1.3503
0.25	0.910	1.3634
0.3	0.853	1.2970
0.4	0.763	1.1773
0.5	0.662	1.0294
0.75	0.458	0.7134
1	0.343	0.5244
1.5	0.210	0.3157
2	0.143	0.2094
3	0.080	0.1229
4	0.050	0.0796
5	0.029	0.0342
7.5	0.015	0.0184
10	0.008	0.0106

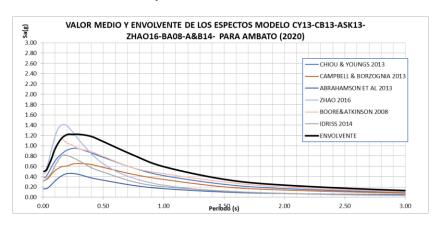
Espectros de Control DBE y MCE para un perfil sísmico C


Promedio de los espectros – Espectros 2022

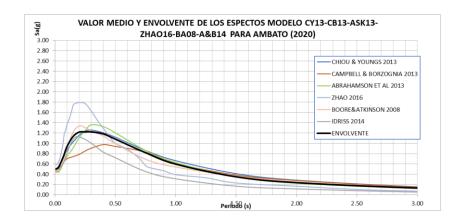
Falla Huachi



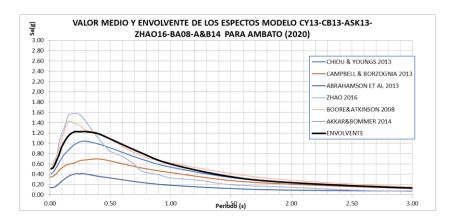
Falla Ambato


Promedio de los espectros – Espectros 2022

PROMEDIO VALOR MEDIO DE LAS ECUACIONES


Falla Totoras

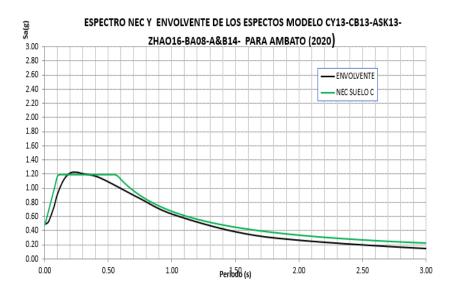
Espectro Envolvente



Falla Huachi

SUELO TIPO C

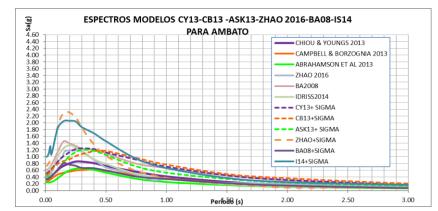
Falla Ambato


Falla Totoras

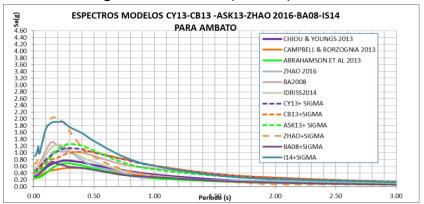
4.-RESULTADOS

SUELO TIPO C

Comparación de "Espectro Envolvente" con los espectros que reporta la Norma Ecuatoriana de la Construcción NEC-15


Metodología Determinística

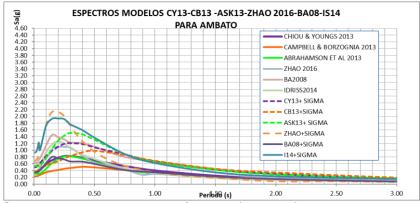
ESPECTROS DE ACELERACIÓN HORIZONTAL

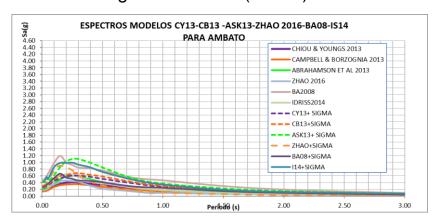

Espectros Promedio SUI

SUELO TIPO D

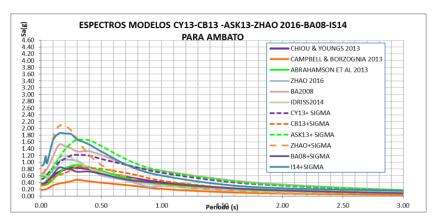
Sismo de magnitud máxima (M=6.5) falla de Ambato

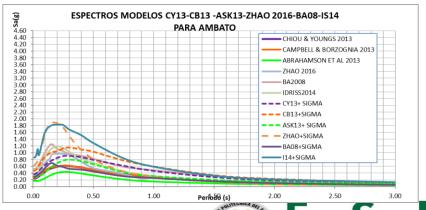
Sismo de magnitud máxima (M=6.3) falla de Huachi




ESPECTROS DE ACELERACIÓN HORIZONTAL

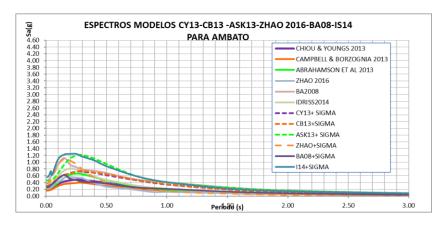
Espectros Promedio SUELO TIPO D


Sismo de magnitud máxima (M=6.5) falla de Totoras

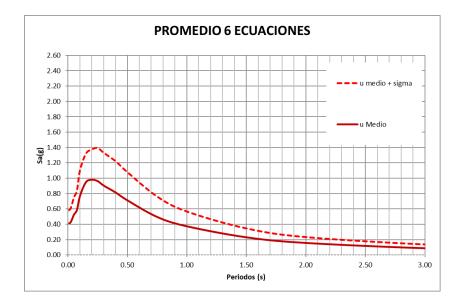

Sismo de magnitud máxima (M=6.1) F-10

Sismo de magnitud máxima (M=6.6) F-11

Sismo de magnitud máxima (M=6.2) falla F-16



ESPECTROS DE ACELERACIÓN HORIZONTAL

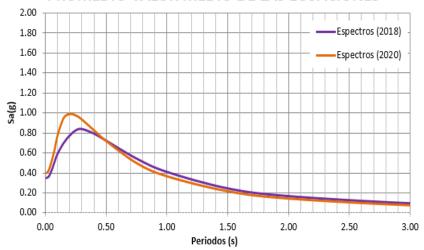

Espectros Promedio SUELO TIPO D

Sismo de magnitud máxima (M=6.0) F-28

PERIODO(S)	Espectros de Contro						
	DBE (g)	MCE (g					
0.01	0.413	0.5836					
0.02	0.422	0.6010					
0.03	0.450	0.6406					
0.05	0.525	0.7512					
0.075	0.585	0.8384					
0.1	0.765	1.1003					
0.15	0.946	1.3189					
0.2	0.979	1.3760					
0.25	0.960	1.3944					
0.3	0.903	1.3319					
0.4	0.813	1.2223					
0.5	0.710	1.0778					
0.75	0.494	0.7600					
1	0.373	0.5650					
1.5	0.230	0.3448					
2	0.157	0.2318					
3	0.088	0.1358					
4	0.055	0.0873					
5	0.031	0.0370					
7.5	0.016	0.0200					
10	0.009	0.0115					

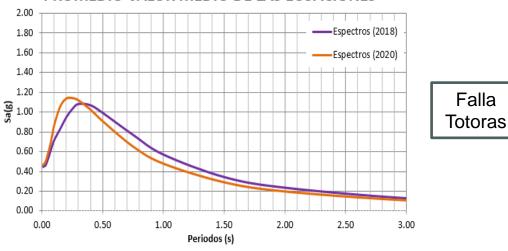
Promedio seis ecuaciones suelo tipo "D", en la Falla Ambato, Vs30=300 m/s

Espectros de Control DBE y MCE para un perfil sísmico D

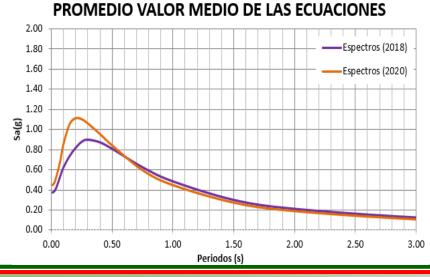


ESCUELA POLITÉCNICA DEL EJÉRCITO CAMINO A LA EXCELENCIA

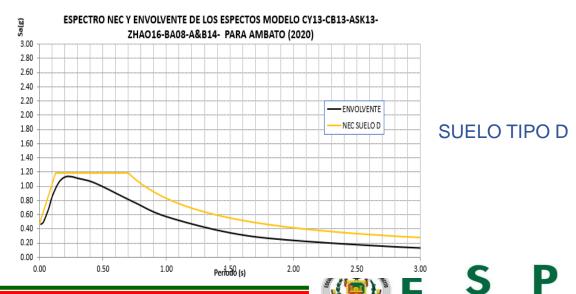
ESPECTROS DE ACELERACIÓN HORIZONTAL


Promedio de los espectros – Espectros 2022

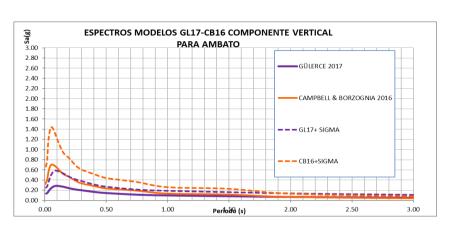
PROMEDIO VALOR MEDIO DE LAS ECUACIONES

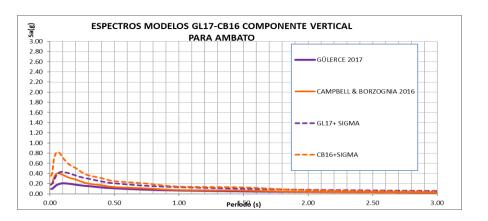


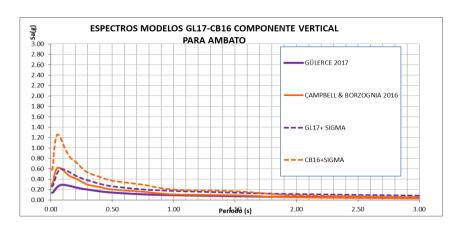
Falla Huachi

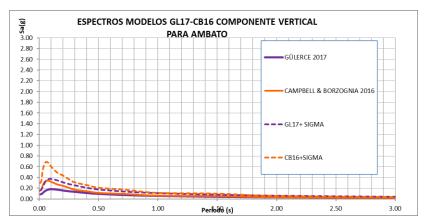

PROMEDIO VALOR MEDIO DE LAS ECUACIONES

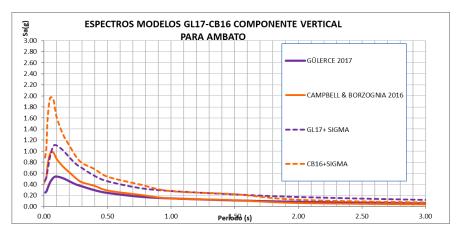
Comparación de "Espectro Envolvente" con los espectros que reporta la Norma Ecuatoriana de la Construcción NEC-15

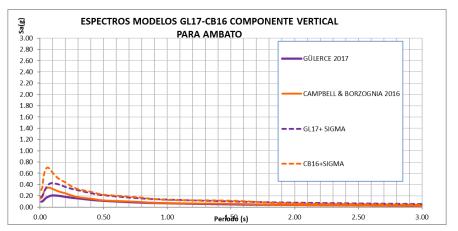


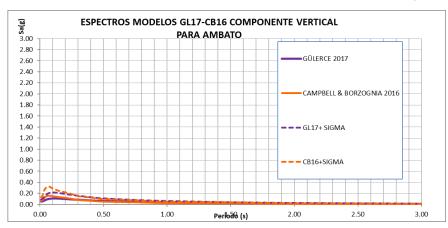

Falla Ambato

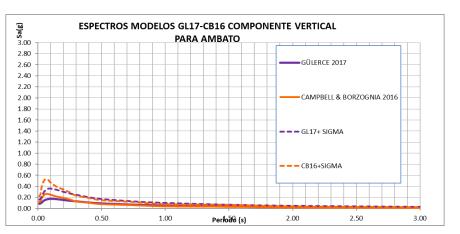

Espectros Promedio

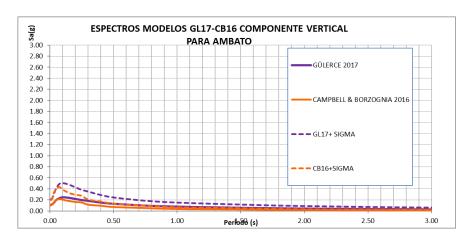

SUELO TIPO C

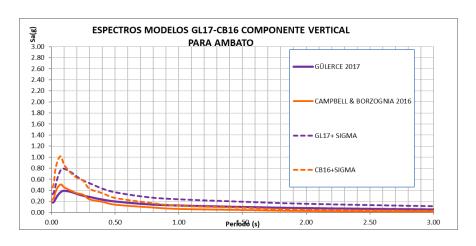

Sismo de magnitud máxima (M=6.5) falla de Ambato

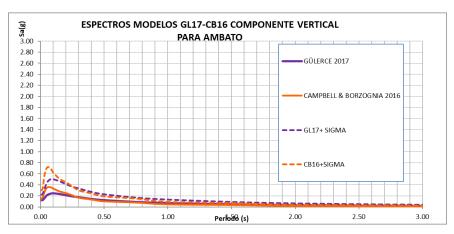


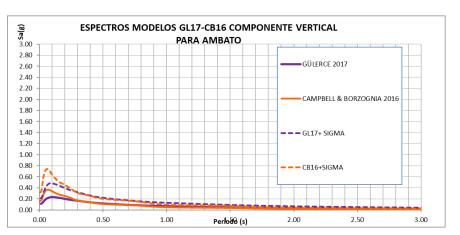

Sismo de magnitud máxima (M=6.3) falla de Huachi

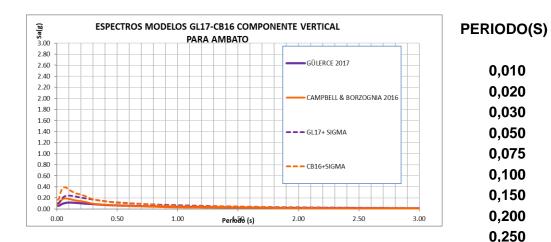


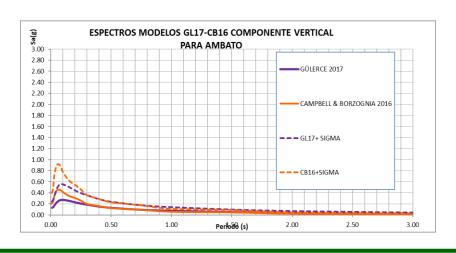

Sismo de magnitud máxima (M=6.5) falla de Totoras



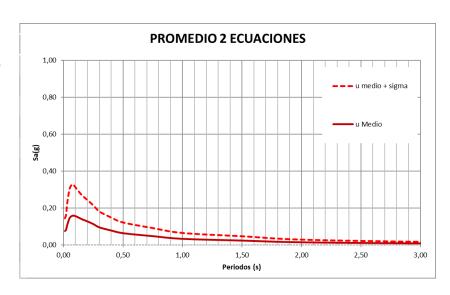

Sismo de magnitud máxima (M=6.1) falla F-10




Sismo de magnitud máxima (M=6.6) falla F-11



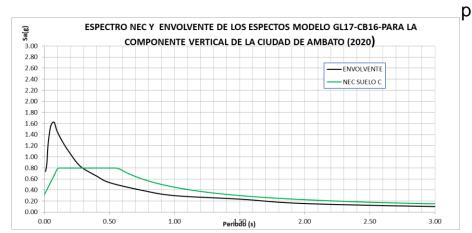
Sismo de magnitud máxima (M=6.2) falla F-16

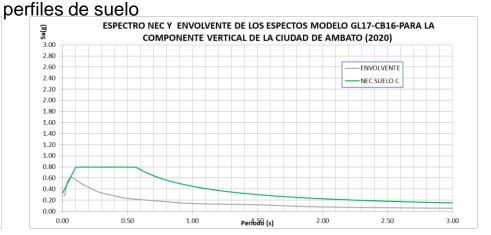


Sismo de magnitud máxima (M=6.0) falla F-28

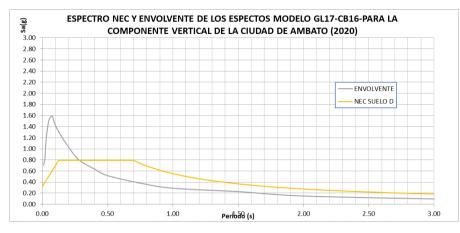
PERIODO(S)	Espectros	de Control
	DBE (g)	MCE (g)
0,010	0,076	0,1439
0,020	0,084	0,1660
0,030	0,110	0,2297
0,050	0,147	0,3054
0,075	0,159	0,3278
0,100	0,156	0,3097
0,150	0,141	0,2704
0,200	0,128	0,2421
0,250	0,113	0,2127
0,300	0,096	0,1805
0,400	0,078	0,1474
0,500	0,064	0,1210
0,750	0,048	0,0909
1,000	0,033	0,0643
1,500	0,024	0,0467
2,000	0,014	0,0285
3,000	0,008	0,0167
4,000	0,005	0,0107
5,000	0,003	0,0055
7,500	0,001	0,0023

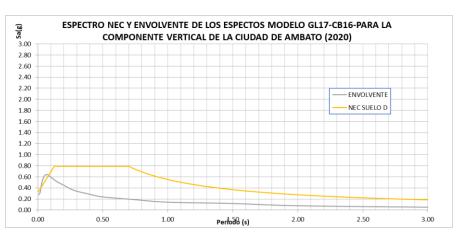
Espectros de Control DBE y MCE para un perfil sísmico C


Espectros de Control DBE y MCE para un perfil sísmico D



PERIODO(S)	Espectros de Contro						
	DBE (g)	MCE (g)					
0,010	0,073	0,1379					
0,020	0,081	0,1581					
0,030	0,107	0,2202					
0,050	0,144	0,2956					
0,075	0,156	0,3180					
0,100	0,154	0,3013					
0,150	0,139	0,2637					
0,200	0,126	0,2363					
0,250	0,112	0,2074					
0,300	0,094	0,1756					
0,400	0,077	0,1434					
0,500	0,063	0,1180					
0,750	0,047	0,0888					
1,000	0,033	0,0628					
1,500	0,023	0,0456					
2,000	0,014	0,0275					
3,000	0,008	0,0160					
4,000	0,005	0,0101					
5,000	0,003	0,0051					
7,500	0,001	0,0021					
10,000	0,041	0,0746					

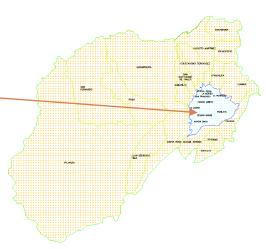



Comparación de los "Espectros Envolventes" con los espectros que reporta la Norma Ecuatoriana de la Construcción NEC-15, para los tres

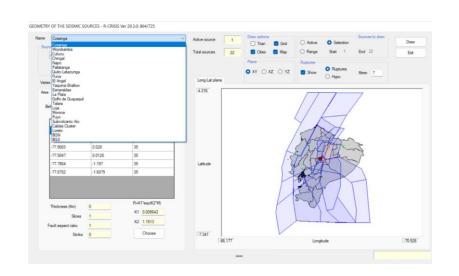
Perfil de suelo sísmico "C"

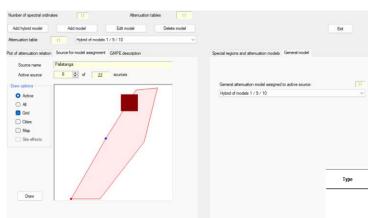
Perfil de suelo sísmico "D"

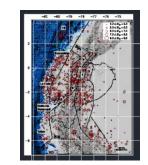
R-CRISIS

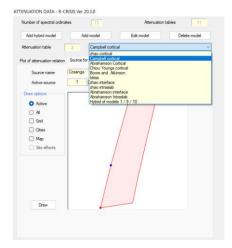

DETERMINAR LUGAR DE ESTUDIO

PARROQUIA	LATITUD	LINGITUD	UBICACIÓN	POBLACIÓN
				(INEC)
Huachi	-78.635	-1.308	Carolina del	10614
Magdalena			Sur y Alaska	habitantes
Miraflores	-78.6427	-1.2534	Av. Miraflores	8456
			15-27	habitantes








DESARROLLO –ZONAS FUENTES

Туре	Nro.	Zone	a	b	λ Mw ≥ 4.5	Mo for GR	Events ≥ Mo	Mmax Obs	Mmax	Depth Range		α	β
	1	Cosanga	2.7701	0.71	0.3866	4.80	13	7.10	7.80	0.00	35.00	6.378	1.635
	2	Moyobamba	4.4484	0.98	1.082	4.80	28	6.90	7.70	0.00	35.00	10.243	2.257
	3	Cutucu	5.443	1.17	1.436	4.50	69	7.00	7.80	0.00	35.00	12.533	2.694
	4	Chingal	3.0831	0.98	0.046	4.20	3	7.40	7.60	0.00	35.00	7.099	2.257
Crustal Sources	5	Napo	3.4369	0.98	0.106	4.50	5	5.60	7.80	0.00	35.00	7.914	2.257
Ciustai Sources	6	Pallatanga	2.8012	0.73	0.341	4.50	18	7.60	7.90	0.00	35.00	6.450	1.681
	7	Quito Latacunga	2.6797	0.70	0.336	4.50	17	6.40	7.30	0.00	35.00	6.170	1.612
	8	Puna	3.583	0.98	0.149	4.50	7	5.20	7.50	0.00	35.00	8.250	2.257
	9	El Angel	3.4503	0.98	0.127	4.50	9	7.20	7.70	0.00	35.00	7.945	2.257
	10	Yaquina Shallow	6.7516	1.39	3.012	4.80	55	6.10	6.60	0.00	50.00	15.546	3.201
	11	Esmeraldas	4.0002	0.81	2.341	4.80	74	8.8 (8.4)	8.80	3.00	50.00	9.211	1.865
Interfase Sources	12	La Plata	3.5598	0.80	0.915	4.50	46	6.70	8.00	3.00	40.00	8.197	1.842
	13	Golfo de Guayaquil	3.4765	0.84	0.492	4.50	25	7.50	7.80	3.00	40.00	8.005	1.934
	14	Talara	4.3639	0.91	1.916	4.80	53	7.10	8.20	3.00	40.00	10.048	2.095
	15	Loja	6.8273	1.33	6.718	4.80	130	7.20	7.70	35.00	100.00	15.720	3.062
	16	Morona	4.4742	0.98	2.958	4.80	84	7.30	7.80	100.00	130.00	10.302	2.257
	17	Puyo	5.3015	1.05	3.6	4.80	88	7.50	8.00	130.00	300.00	12.207	2.418
Intraslab Sources	18	Subvolcanic Arc	5.071	1.11	1.141	4.50	55	6.70	7.20	35.00	180.00	11.676	2.556
	19	Caldas Cluster	4.7058	1.05	0.987	4.80	24	6.70	7.20	35.00	250.00	10.836	2.418
	20	Loreto	7.3757	1.62	1.279	4.80	20	7.50	8.00	130.00	180.00	16.983	3.730
Crustal Sources	21	BGN	4.5245	1.09	0.428	4.80	10	6.40	7.00	0.00	35.00	10.418	2.510
Ciustai Sources	22	BGS	4.5428	1.04	0.697	4.50	36	7.20	7.50	0.00	35.00	10.460	2.395

MODELO DE CAMPBELL Y BOZORGNIA (2016)

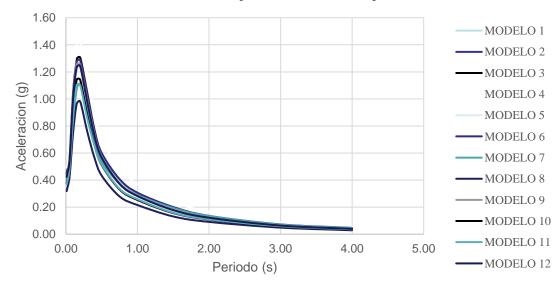
MODELO DE ABRAHAMSON (2014)

MODELO DE CHIOU Y YOUNGS (2014)

MODELO DE ZHAO (2016)

MODELO DE BOORE Y ATKINSON (2008)

MODELO DE IDRISS (2014)

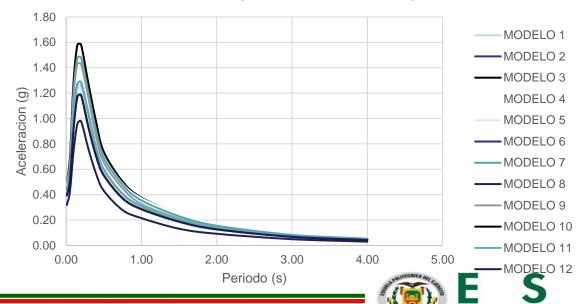


	MODELO	PESO	PESO CRISIS		PESO	PESO CRISIS
	ZHAO CORTICAL	0.3	1.20		0.4	1.60
	CAMPBELL CORTICAL	0.3	1.20		0.6	2.40
1	ABRAHANSON CORTICAL	0.2	0.80	7	0.2	0.80
	CHIOUYOUNG CORTICAL	0.2	0.80		0.2	0.80
	ZHAO CORTICAL	0.25	1.00		0.5	2.00
2	CAMPBELL CORTICAL	0.25	1.00		0.1	0.40
2	ABRAHANSON CORTICAL	0.25	1.00	8	0.2	0.80
	CHIOUYOUNG CORTICAL	0.25	1.00		0.1	0.40
	ZHAO CORTICAL	0.25	1.00		0.1	0.40
3	BOORE ATKINSON	0.25	1.00	9	0.4	1.60
3	IDRISS	0.25	1.00	9	0.4	1.60
	CHIOUYOUNG CORTICAL	0.25	1.00		0.1	0.40
	ZHAO CORTICAL	0.3	1.20		0.3	1.20
4	BOORE ATKINSON	0.3	1.20	10	0.3	1.20
	IDRISS	0.2	0.80		0.2	0.80
	CHIOUYOUNG CORTICAL	0.2	0.80		0.2	0.80
	ZHAO CORTICAL	0.25	1.00		0.2	0.80
5	CAMPBELL CORTICAL	0.25	1.00	11	0.1	0.40
	BOORE ATKINSON	0.25	1.00		0.5	2.00
	CHIOUYOUNG CORTICAL	0.25	1.00		0.2	0.80
	ZHAO CORTICAL	0.3	1.20		0.2	0.80
6	CAMPBELL CORTICAL	0.3	1.20	12	0.2	0.80
	BOORE ATKINSON	0.2	0.80	12	0.2	0.80
	CHIOUYOUNG CORTICAL	0.2	0.80		0.4	1.60

RESULTADOS-ESPECTROS DE PELIGRO UNIFORME Suelo Tipo "C" Vs30=380

Periodo		Aceleraciones para Ambato suelo tipo "C"											
(T seg)	MODELO 1	MODELO 2	MODELO 3	MODELO 4	MODELO 5	MODELO 6	MODELO 7	MODELO 8	MODELO 9	MODELO 10	MODELO 11	MODELO 12	
0.01	0.43	0.42	0.45	0.49	0.42	0.44	0.38	0.32	0.43	0.38	0.37	0.42	
0.05	0.54	0.53	0.56	0.61	0.53	0.55	0.47	0.42	0.54	0.49	0.48	0.54	
0.10	1.03	0.99	1.08	1.14	0.99	1.05	0.83	0.75	1.03	0.89	0.85	1.01	
0.15	1.25	1.22	1.29	1.40	1.22	1.27	1.07	0.96	1.25	1.14	1.10	1.23	
0.20	1.25	1.23	1.30	1.42	1.23	1.28	1.11	0.98	1.25	1.14	1.10	1.24	
0.30	0.99	0.97	1.04	1.16	0.98	1.03	0.91	0.76	0.99	0.88	0.85	0.97	
0.40	0.74	0.73	0.77	0.89	0.73	0.76	0.69	0.56	0.74	0.66	0.65	0.73	
0.50	0.57	0.58	0.60	0.70	0.58	0.60	0.54	0.43	0.57	0.51	0.51	0.57	
0.75	0.38	0.39	0.40	0.49	0.39	0.41	0.37	0.28	0.38	0.33	0.34	0.37	
1.00	0.29	0.30	0.30	0.37	0.30	0.31	0.29	0.22	0.29	0.25	0.26	0.28	
1.50	0.18	0.19	0.19	0.24	0.19	0.20	0.19	0.13	0.18	0.16	0.16	0.18	
2.00	0.12	0.13	0.13	0.17	0.13	0.14	0.13	0.09	0.12	0.11	0.11	0.12	
3.00	0.07	0.07	0.07	0.09	0.07	0.07	0.07	0.05	0.07	0.06	0.06	0.06	
4.00	0.04	0.04	0.04	0.06	0.04	0.05	0.05	0.03	0.04	0.04	0.04	0.04	

Aceleraciones para Ambato suelo tipo "C"


ESCUELA POLITÉCNICA DEL EJÉRCITO CAMINO A LA EXCELENCIA

	MODELO	PESO	PESO CRISIS		PESO	PESO CRISIS
	ZHAO CORTICAL	0.3	1.20		0.4	1.60
	CAMPBELL CORTICAL	0.3	1.20		0.6	2.40
1	ABRAHANSON CORTICAL	0.2	0.80	7	0.2	0.80
	CHIOUYOUNG CORTICAL	0.2	0.80		0.2	0.80
	ZHAO CORTICAL	0.25	1.00		0.5	2.00
2	CAMPBELL CORTICAL	0.25	1.00	8	0.1	0.40
2	ABRAHANSON CORTICAL	0.25	1.00	°	0.2	0.80
	CHIOUYOUNG CORTICAL	0.25	1.00		0.1	0.40
	ZHAO CORTICAL	0.25	1.00		0.1	0.40
3	BOORE ATKINSON	0.25	1.00	9	0.4	1.60
	IDRISS	0.25	1.00	<u> </u>	0.4	1.60
	CHIOUYOUNG CORTICAL	0.25	1.00		0.1	0.40
	ZHAO CORTICAL	0.3	1.20		0.3	1.20
4	BOORE ATKINSON	0.3	1.20	10	0.3	1.20
	IDRISS	0.2	0.80		0.2	0.80
	CHIOUYOUNG CORTICAL	0.2	0.80		0.2	0.80
	ZHAO CORTICAL	0.25	1.00		0.2	0.80
5	CAMPBELL CORTICAL	0.25	1.00	11	0.1	0.40
	BOORE ATKINSON	0.25	1.00	''	0.5	2.00
	CHIOUYOUNG CORTICAL	0.25	1.00		0.2	0.80
	ZHAO CORTICAL	0.3	1.20		0.2	0.80
6	CAMPBELL CORTICAL	0.3	1.20	12	0.2	0.80
	BOORE ATKINSON	0.2	0.80	'-	0.2	0.80
	CHIOUYOUNG CORTICAL	0.2	0.80		0.4	1.60

RESULTADOS-ESPECTROS DE PELIGRO UNIFORME Suelo Tipo "D" Vs30=300 m/s

Periodo (T seg)					Acelera	iciones para A	mbato suelo t	ipo "D"				
renouo (1 seg)	MODELO 1	MODELO 2	MODELO 3	MODELO 4	MODELO 5	MODELO 6	MODELO 7	MODELO 8	MODELO 9	MODELO 10	MODELO 11	MODELO 12
0.01	0.43	0.42	0.50	0.49	0.42	0.44	0.51	0.32	0.49	0.39	0.44	0.39
0.05	0.54	0.53	0.68	0.61	0.53	0.55	0.64	0.42	0.62	0.51	0.55	0.51
0.10	1.03	0.99	1.29	1.14	0.99	1.05	1.21	0.75	1.19	0.92	1.05	0.93
0.15	1.25	1.22	1.58	1.40	1.22	1.27	1.48	0.96	1.43	1.17	1.27	1.17
0.20	1.25	1.23	1.58	1.42	1.23	1.28	1.48	0.98	1.43	1.18	1.28	1.18
0.30	0.99	0.97	1.26	1.16	0.97	1.03	1.19	0.75	1.15	0.92	1.03	0.92
0.40	0.74	0.73	0.97	0.89	0.73	0.76	0.90	0.56	0.85	0.70	0.77	0.70
0.50	0.57	0.58	0.74	0.70	0.57	0.60	0.69	0.43	0.65	0.55	0.60	0.55
0.75	0.38	0.39	0.50	0.49	0.39	0.41	0.48	0.28	0.45	0.37	0.41	0.37
1.00	0.29	0.30	0.38	0.37	0.29	0.31	0.35	0.22	0.33	0.29	0.31	0.29
1.50	0.18	0.19	0.24	0.24	0.19	0.20	0.23	0.13	0.21	0.19	0.20	0.19
2.00	0.12	0.13	0.16	0.17	0.13	0.14	0.15	0.09	0.14	0.13	0.14	0.13
3.00	0.07	0.07	0.09	0.09	0.07	0.07	0.08	0.05	0.07	0.07	0.07	0.07
4.00	0.04	0.05	0.06	0.06	0.04	0.05	0.05	0.03	0.05	0.04	0.05	0.04

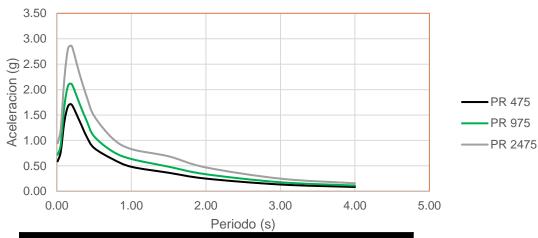
Aceleraciones para Ambato suelo tipo "D"

0.00

1.00

2.50 2.00 1.50 1.00 0.50 CUARTO MODELO Tr= 100 años Tr= 250 años Tr= 1000 años Tr= 1000 años Tr= 2500 años

3.00


4.00

					من د ملما	\sim
Period		PERIO	DO DE R	ETORN	ielo lip	U
o (T	100	250	500		2500	
seg)	años	años	años	100 años	años	
0.01	0.27	0.38	0.49	0.60	0.79	
0.05	0.33	0.50	0.61	0.75	1.01	
0.10	0.60	0.88	1.14	1.40	1.85	
0.15	0.74	1.13	1.40	1.73	2.34	
0.20	0.76	1.14	1.42	1.75	2.38	
0.30	0.62	0.89	1.16	1.45	1.94	
0.40	0.50	0.69	0.89	1.15	1.55	
0.50	0.37	0.55	0.70	0.90	1.23	
0.75	0.25	0.36	0.49	0.62	0.86	
1.00	0.20	0.28	0.37	0.49	0.67	
1.50	0.12	0.19	0.24	0.32	0.46	
2.00	0.09	0.13	0.17	0.22	0.31	
3.00	0.05	0.07	0.09	0.12	0.17	
4.00	0.03	0.04	0.06	0.08	0.10	

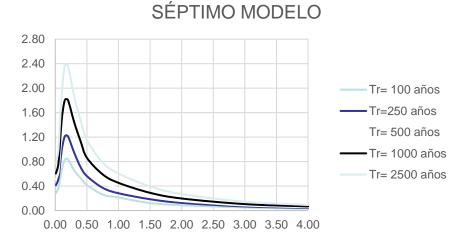
2.00

RESULTADOS-ESPECTROS DE PELIGRO UNIFORME Suelo Tipo "C" Vs30=380 m/s

ESPECTRO DE PELIGRO SÍSMICO UNIFORME

Periodo (T	Aceleraciones espectrales para un suelo tipo "C"							
seg)	PR 475	PR 975	PR 2475					
0.01	0.59	0.72	0.95					
0.05	0.77	0.90	1.21					
0.10	1.37	1.68	2.21					
0.15	1.68	2.08	2.81					
0.20	1.70	2.10	2.85					
0.30	1.39	1.74	2.32					
0.40	1.07	1.38	1.86					
0.50	0.85	1.08	1.48					
0.75	0.63	0.78	1.04					
1.00	0.48	0.63	0.83					
1.50	0.37	0.48	0.69					
2.00	0.25	0.33	0.47					
3.00	0.13	0.18	0.25					
4.00	0.09	0.11	0.16					

Espectros de Peligro Sisimico Uniforme suelo tipo "C"- Modelo 4


> NEHRP Recommended Seismic Provisions for New Buildings and Other Structures

Volume I: Part 1 Provisions, Part 2 Commentary FEMA P-1050-1/2015 Edition

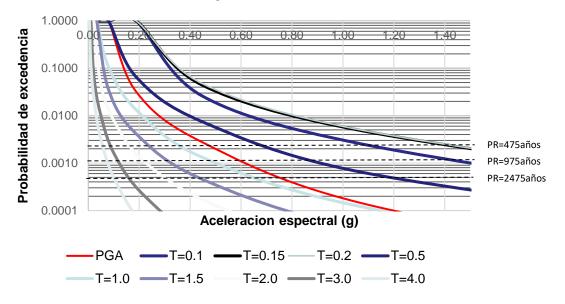
RESULTADOS-ESPECTROS DE PELIGRO UNIFORME Suelo Tipo "D" Vs30=300 m/s

3.00 (£) 2.50 2.00 2.00 1.50 1.00 0.50	A							—— PF	R 475 R 975
O.50 0.00								PF	R 2475
	00	1.00	2.0	00 Periodo	3.00 (s)	4.00	5.00		

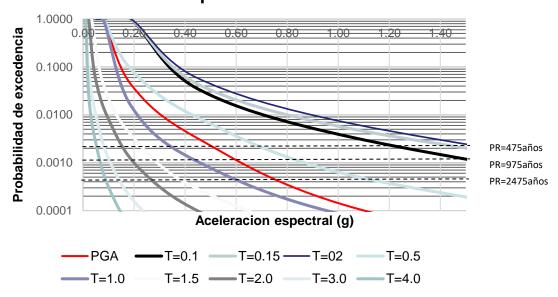
Periodo	PERIODO DE RETORNO					
(T seg)	100 años	250 años	500 años	100 años	2500 años	
0.01	0.28	0.41	0.51	0.61	0.77	
0.05	0.38	0.52	0.64	0.77	1.01	
0.10	0.66	0.97	1.21	1.47	1.89	
0.15	0.83	1.21	1.48	1.80	2.38	
0.20	0.84	1.21	1.48	1.80	2.36	
0.30	0.65	0.94	1.19	1.44	1.86	
0.40	0.53	0.71	0.90	1.13	1.48	
0.50	0.42	0.56	0.69	0.86	1.15	
0.75	0.26	0.37	0.48	0.59	0.78	
1.00	0.21	0.28	0.35	0.45	0.61	
1.50	0.12	0.18	0.23	0.29	0.39	
2.00	0.09	0.12	0.15	0.20	0.27	
3.00	0.05	0.07	0.08	0.10	0.14	
4.00	0.03	0.04	0.05	0.07	0.09	

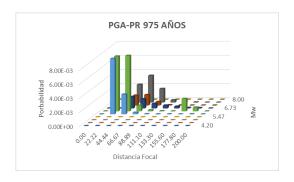
Periodo (T	Aceleracione	s espectrales pa	ra un suelo tipo		
•	"D"				
seg)	PR 475	PR 975	PR 2475		
0.01	0.56	0.67	0.85		
0.05	0.82	0.92	1.11		
0.10	1.23	1.47	1.89		
0.15	1.48	1.80	2.38		
0.20	1.48	1.80	2.36		
0.30	1.22	1.44	1.86		
0.40	1.03	1.19	1.48		
0.50	0.86	1.00	1.20		
0.75	0.68	0.78	0.93		
1.00	0.54	0.65	0.79		
1.50	0.49	0.58	0.75		
2.00	0.36	0.43	0.55		
3.00	0.20	0.25	0.33		
4.00	0.13	0.16	0.22		

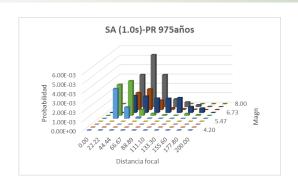
Espectros de Peligro Sisimico Uniforme suelo tipo "C"- Modelo 7

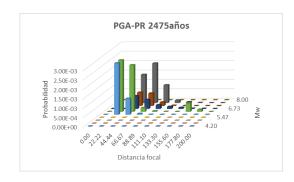

> NEHRP Recommended Seismic Provisions for New Buildings and Other Structures

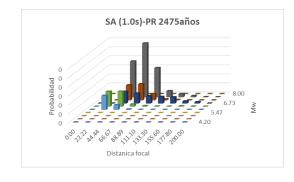
Volume I: Part 1 Provisions, Part 2 Commentary FEMA P-1050-1/2015 Edition

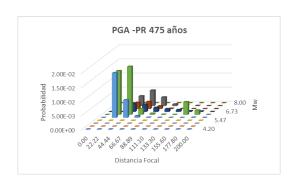


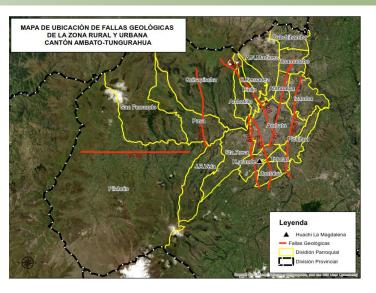

R-CRISIS

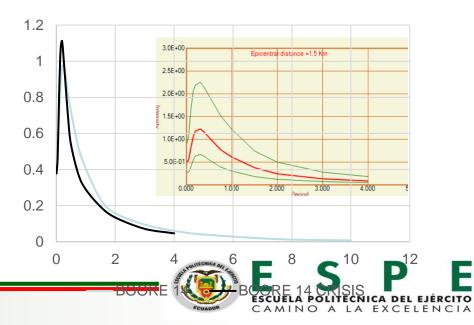

 RESULTADOS-CURVAS DE PELIGRO SÍSMICO Suelo Tipo "C" Vs30=380 m/s




 RESULTADOS-CURVAS DE PELIGRO SÍSMICO Suelo Tipo "D" Vs30=300 m/s









ESPECTRO DE PELIGRO UNIFORME

ÍNDICE

- 1.-JUSTIFICACIÓN Y OBJETIVOS
- 2.-MARCO TEÓRICO
- 3.-METODOLOGÍA
- 4.-RESULTADOS
- 5.-CONCLUSIONES Y RECOMENDACIONES

5.-CONCLUSIONES Y RECOMENDACIONES

- En el año 2018, se realizó estudios de microzonificación sísmica en Ambato para el área urbana, se conformó un equipo multidisciplinario dentro del cual se elaboraron estudios **geofísicos**, **geotécnicos** y **de geología**, a partir de este trabajo se logró determinar **el periodo de vibración del suelo**, **la velocidad de onda** de corte en los primeros 30 metros, el número de golpes de ensayo de penetración estándar y parámetros los cuales sirvieron para obtener una clasificación sísmica de los suelos y desarrollar estudios de peligrosidad sísmica en forma probabilística y determinística, encontrando espectros de diseño y máximo considerado DBE y MCE para la componente vertical y horizontal del movimiento del terreno, estos se espectros se hallaron con la utilización de 3 ecuaciones de movimientos fuertes desarrolladas en el año 2018, sin embargo en este trabajo se incorporó tres modelos de movimientos fuertes, en total su estudio se realizó con seis modelos, el objetivo era analizar el comportamiento de los otros modelos y el modelo de Zhao *et al* (2016), ya que es el modelo más complejo de los 6 utilizados además que este modelo incorpora en sus variables el vulcanismo, en sus resultados se observó que para valores medios, se obtiene una confiabilidad del 50% sin desviación estándar. La ecuación de Zhao reporta ordenadas espectrales que se encuentran por la media a las que se hallan con los otros modelos, por lo que para más confiabilidad es necesario incluir la desviación estándar obteniendo resultados que se encuentran más arriba de la media
- La cercanía de la Falla Ambato, Huachi y Totoras al área urbana genera espectros mayores que los del área rural, por lo que habrá mayor daño en el área urbana que en la rural ante un sismo asociado a estas tres fallas, sin embargo en el estudio se consideró 4 fallas adicionales F10, que se encuentra en el límite de estas dos áreas sin embrago se obtuvo ordenas espectrales menores a las obtenidas en el estudio realizado en el año 2018, La falla F-11 presento valores altos los cuales son comparables con los espectros de las fallas de Ambato, Huachi y Totoras, por lo que se podría pensar en la necesidad de actualizar el estudio de microzonificación sísmica del área Urbana de Ambato del año 2018. Los espectros obtenidos ante un sismo de magnitud 6.2 el cual corresponde a la falla F16 son los más altos obtenidos en el área rural, y finalmente los espectros promedios obtenidos con la falla F28 son bajos tanto para el área urbana y rural siendo comparables con los encontrados en el estudio realizado en el año 2018.

5.-CONCLUSIONES Y RECOMENDACIONES

- Los sismos corticales que se pueden esperar en la ciudad de Ambato, **producto de las 7 fallas geológica**: Ambato, Huachi, Totoras, F-10, F-11, F-16 y F-28 presentan un peligro a la zona ya que la mayor parte **de calculistas desconocen en sus diseños** que la ciudad de Ambato se encuentra sobre estas fallas ciegas, las cuales se encuentran acumulando energía y en algún momento se llegara a liberar.
- El periodo de recurrencia de un sismo de magnitud máxima para cada falla empleando los dos métodos mencionados. Se obtuvo que un sismo de magnitud 6.3 pude darse en los próximos 80 a 100 años, uno de magnitud 6.5 en los próximos 300 años, un sismo de magnitud 6.1 puede darse en 360 años, mientras que un sismo de magnitud 6.6 puede darse sen 310 años, el periodo de recurrencia para un sismo de magnitud 6.2 es similar a la de 6.3 y este pude darse en 425 años y finalmente un sismo de magnitud 6.0 se espera en 337 años.
- En el caso de esperarse un sino de magnitud 6.3, en la falla de Huachi las aceleraciones máximas **espectrales de 3.00 g** se obtienen con el modelo de **Campbell y Bozorgnia** (2014) para la zona urbana
- En el caso de esperarse un sino de magnitud **6.2, en la falla F-16**, las aceleraciones máximas espectrales de 1.6g se obtienen con el modelo de **Zhao** *et al* **2016**.para la zona rural.
- Al compara los espectros obtenidos con los que reporta la Norma Ecuatoriana de la Construcción (NEC-15), se obtuvo una buena correlación en el perfil de suelo C, mientras que para el perfil D se puede pensar en una reducción de las ordenadas espectrales para periodos largos

5.-CONCLUSIONES Y RECOMENDACIONES

RECOMENDACIONES

- Realizar estudios de microzonificación sísmica del área rural de la ciudad de Ambato, con esta información se podrá evaluar el peligro sísmico.
- Es necesario la actualización de las fallas que atraviesan la ciudad, ya que es necesario el conocer sus características morfológicas y físicas.
- Realizar estudios geofísicos y geotécnicos del área rural, a partir del cual se pueda clasificar el perfil de suelo ya sea tipo C, D E
- Implementar acelerogramas locales, para el desarrollo de ecuaciones de predicción de movimientos fuertes.

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE CENTRO DE POSGRADOS

MAESTRÍA DE INVESTIGACIÓN EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS

"PELIGROSIDAD SISMICA DEL ÁREA URBANA Y RURAL DE LA CIUDAD DE AMBATO"

AUTOR: ING.PAOLA CAROLINA SERRANO MORETA.

DIRECTOR: ING. AGUIAR FALCONÍ, ROBERTO RODRIGO, PhD.

SANGOLQUÍ, FEBRERO - 2023

