

Estudio de la maduración de oocitos con resveratrol a partir de Folículos de Graff de 0,3-20 mm de diámetro

Autora: Deivis Alejandro Tandazo Cerón

Departamento de Ciencias de la Vida y la Agricultura

Trabajo de Integración Curricular previo a la obtención del título de Ingeniería en Biotecnología

Tutor: Carrera Garces, Fredy Patricio Ph.D.

Santo Domingo - Ecuador 2023

Introducción

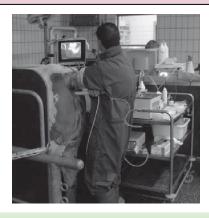
Assisted reproductive technologies (ART):

Inseminación artificial, transferencia de embriones, PIV de embriones, superovulación y colecta de ovocitos, criopreservación, semen sexado y Transferencia nuclear de células somáticas (clonación) (Ciani et al., 2021).

El objetivo principal de estas herramientas es maximizar el número de crías de animales genéticamente superiores y difundir germoplasma en todo el mundo (Ferré et al., 2020).

óvulos de vacas + espermatozoides → fuera del cuerpo de los animales → embrión

Introducción

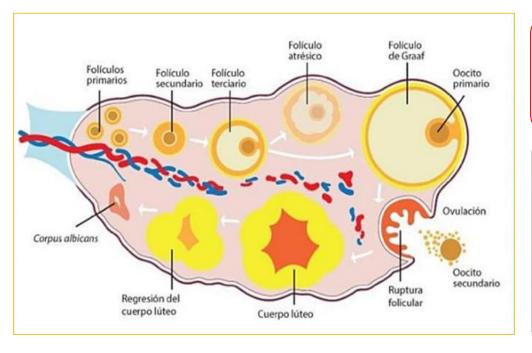


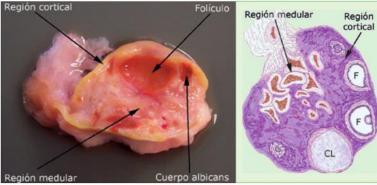
La PIV de embriones: maduración *in vitro* (MIV) de ovocitos, fertilización *in vitro* (FIV) así como desarrollo embrionario *in vitro* (IVD)

90% de los ovocitos llegan con éxito a la etapa de Metafase II, cerca del 80% son fertilizados *in vitro*, y de estos, cerca del 50% se vuelven blastocistos (Ciani et al., 2021). Entre el 20% y el 40% de los presuntos cigotos cultivados alcanzarán la etapa de blastocisto (Ferré et al., 2020)

MIV

Fuente de ovocitos Donantes: vivas / sacrificadas



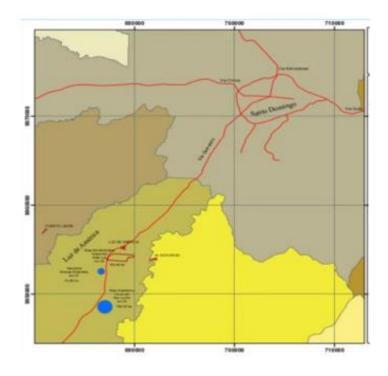

Introducción

La obtención de COCs, se realiza a partir de los folículos

Objetivos

Objetivo General

 Estudiar la maduración de oocitos con resveratrol a partir de Folículos de Graff de 0,3-20 mm de diámetro.


Objetivos Específicos

- Recuperar ovocitos a partir de Folículos de Graff de 0,3 20 mm de diámetro.
- Madurar oocitos sin antioxidantes y con incubación en cámara de CO2 al 6%.
- Madurar oocitos con 100 μM de resveratrol y con incubación en cámara de CO2 al 6%.
- Evaluar los oocitos madurados in vitro con resveratrol.

Ubicación Política

País: Ecuador

Provincia : Santo Domingo de los Tsáchilas **Cantón :** Santo Domingo de los Colorados

Parroquia: Luz de América

Dirección: Vía Quevedo km 24, margen izquierdo

Ubicación Ecológica

Zona de vida : Bosque húmedo tropical

Altitud: 224 msnm

Precipitación: 2860 mm año

Humedad relativa: 85%

Ubicación Geográfica

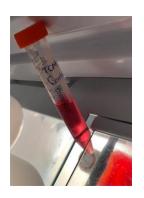
Latitud: 00° 24′ 36" **Longitud:** 79° 18′ 43" **Altitud:** 270 msnm

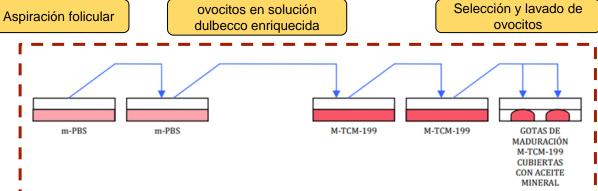
Colecta y transporte de ovarios

Solución de transporte / Temperatura

Tiempo

Laboratorio




Aspiración de folículos de Graaf

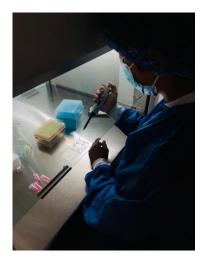
Antioxidantes y medio

Resv.

DMSO

α-tocoferol

Sol. 0.2 M y 0.02 M de resveratrol y Sol. 0.2 M y 0.02 M de α -tocoferol

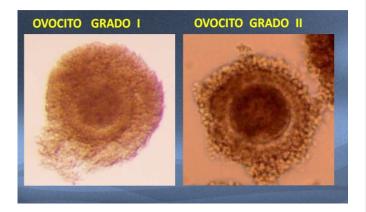


Medio de maduración de ovocitos

Gotas de 100 µL de medio

Maduración de ovocitos

Incubación: 38°C, con 90% de Humedad relativa (HR) y 6% CO2, por 24 horas.



Evaluación de los ovocitos maduros

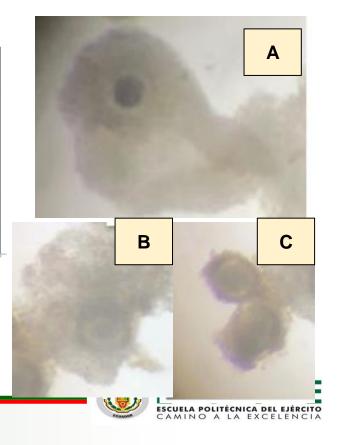
En base a las células del cúmulus.

Viables

Categoría 1: Posee un citoplasma finamente granulado, homogéneo y que cubre por completo el área delimitada por la zona pelúcida.

Categoría 2: El citoplasma granulado no se encuentra distribuido de forma uniforme y que cubre por completo el área delimitada por la zona pelúcida.

Categoría 3: el citoplasma se encuentra vacuolado, presenta fragmentaciones y no cubre por completo el área delimitada por la zona pelúcida.

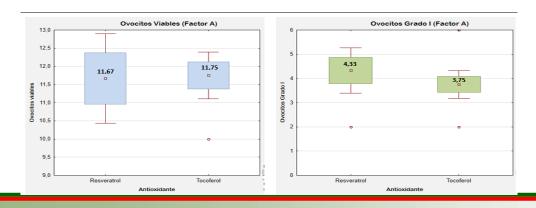


Resultados y Discusión

<u>N°R</u>	<u>N</u> ° Ovarios	Antioxidante + concentración	Resv. 0 μM		Resv. 10 μM		<u>Resv</u> . 100 μΜ		α- <u>Τος</u> . 0 μΜ		α- <u>Τος</u> . 10 μΜ			α- <u>Τος</u> . 100 μΜ						
		N° ovocitos seleccionados	ı	II	III	ı	II	III	ı	II	III	ı	II	III	ı	II	Ш	ı	II	Ш
1	106	120	3	9	4	7	8	3	4	7	1	3	8	4	4	9	3	6	8	3
2	102	120	2	8	4	6	8	4	3	5	2	3	7	5	4	9	4	5	8	3
3	114	120	3	9	4	7	8	3	3	5	3	2	8	4	3	8	3	4	7	4
4	107	120	3	8	4	7	7	4	4	6	3	3	9	4	3	8	4	5	7	4
Sub To	otal		11	34	16	27	31	14	14	23	3 9	11	32	2 17	14	34	1 14	20	30	14
Total	429	480	61			72			46			60			62			64		

A: ovocitos de grado I; B: ovocito de grado II; C: ovocito de grado III

Resultados y Discusión



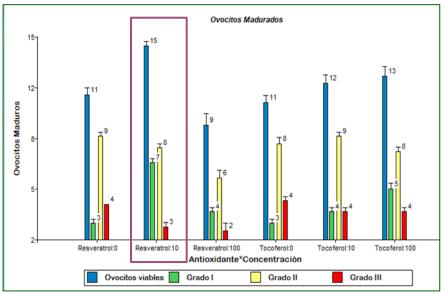
Prueba de significancia (Tukey $p \le 0.05$) para Antioxidante (Factor A)

Factor A	Ovocitos madurados	Categoría I	Categoría II	Categoría III
(Antioxidantes)	viables			
Resveratrol	11,67 ^A	4,33 ^A	7,33 ^A	2,92 ^A
α-Tocoferol	11,75 ^A	3,75 ^B	8,00 ⁸	3,75 ⁸

Ovocitos maduros Viables

Ovocitos de Categoría I

- Diferencia significativa para el factor A, para ovocitos de categoría I, II y III.
- No hay diferencia en ovocitos viables


 (Pennisi-Forell, 2013), el resveratrol posee una mayor actividad antioxidante que el α-tocoferol, debido a su estructura química (2 anillos fenólicos y más grupos OH⁻)

Resultados y Discusión

Ovocitos madurados viables	Categoría I	Categoría II	Categoría III
11,25 ^{AB}	2,75 ^A	8,50 ⁸	4,00 ^B
14,50°	6,75°	7,75⁵	2,50 ^A
9,25 ^A	3,50 ^A	5,75 ^A	2,25 ^A
10,75 ^{AB}	2,754	8,00 ⁵	4,25⁵
12,00°	3,50 ^A	8,50⁵	3,50 ^{AB}
12,50 ^{BC}	5,00⁵	7,50⁵	3,50 ^{AB}
	viables 11,25 ^{AB} 14,50° 9,25 ^A 10,75 ^{AB} 12,00 ^B	viables 11,25AB 2,75A 14,50° 6,75° 9,25A 3,50A 10,75AB 2,75A 12,00B 3,50A	viables 11,25AB 2,75A 8,50B 14,50° 6,75° 7,75B 9,25A 3,50A 5,75A 10,75AB 2,75A 8,00B 12,00B 3,50A 8,50B

Nota: Considerar el valor de p < 0,05

(**Torres-Osorio et al., 2019**), usando 0.1, 1.0 y 10 μ M de resveratrol:

- redujo las ERO
- aumentó la concentración de progesterona y GSH intracelular.

Concentraciones elevadas de Resveratrol $(40 \mu M)$ pierde el efecto positivo (**Torres-Osorio et al., 2019**).

Conclusiones

El resveratrol en la MIV demostró ser capaz de contrarrestar los efectos negativos de la formación de ERO, permitiendo mejorar la maduración de los ovocitos bovinos.

La suplementación de la MIV de ovocitos con 10 µM de resveratrol es el mejor método para obtener una mayor cantidad de ovocitos viables (Grado 1 y 2), pero sobre todo, es el mejor método para obtener ovocitos de Grado 1

La técnica de MIV permite aprovechar gran parte de los ovocitos del ovario y en combinación con otras TRA, permite producir y diseminar un gran número de crías provenientes de animales de interés con superioridad genética.

Recomendaciones

Utilizar resveratrol con una concentración de 10 µM o una concentración ligeramente inferior

Estudiar el efecto del Licor Folicular en los procesos de MIV de embriones y su combinación con los antioxidantes.

Se recomienda preparar la solución dulbecco enriquecida el mismo día en el que se realizará la aspiración folicular

Dejar incubar al medio de maduración por un tiempo mayor o igual a dos horas antes de su uso, para que se tempere y acondicione a los parámetros del cultivo, y no cause un estrés térmico sobre los ovocitos.

igrachs!

