

DEPARTAMENTO DE CIENCIAS DE LA VIDA Y DE LA AGRICULTURA CARRERA DE BIOTECNOLOGÍA

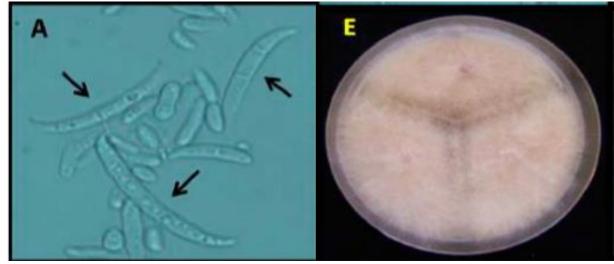
TRABAJO DE INTEGRACIÓN CURRICULAR PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERA BIOTECNÓLOGA

Construcción de un vector plasmídico para la edición genética del promotor del gen RIN4 asociado a la resistencia de fusariosis en banano.

Autora: Guamán Cañar, Carolina Sthefanya

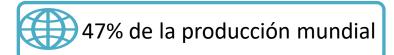
Director: Flores Flor, Francisco Javier PhD.

Sangolquí, 29 de agosto del 2023


FORMULACIÓN DEL PROBLEMA

Cavendish

Musa acuminata


Fusarium oxysporum f.sp. cubense raza tropical 4

Macroconidios

Foc R4T en medio de cultivo PDA

PIB Agrícola del 35%

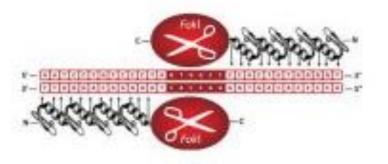
JUSTIFICACIÓN DEL PROBLEMA

Estrategias para el combate de FocR4T

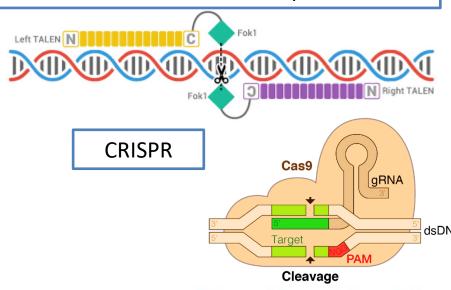
Siembra certificada libre de patógenos

Biofortalecimiento

Herramientas biotecnológicas


Hibridación de bananos

Mutagénesis


Variación somaclonal

Edición genética

Nucleasas dedos de Zinc (ZFN)

Proteínas efectoras de transcripción TALEN

ÍNDICE DE CONTENIDOS

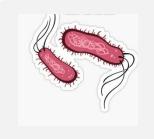
Formulación del problema Justificación del problema Objetivos Materiales y métodos Resultados y discusión Conclusiones Recomendaciones

Objetivo General

Construir un vector plasmídico para la edición genética del promotor del gen RIN4 asociado a la resistencia de fusariosis en banano.

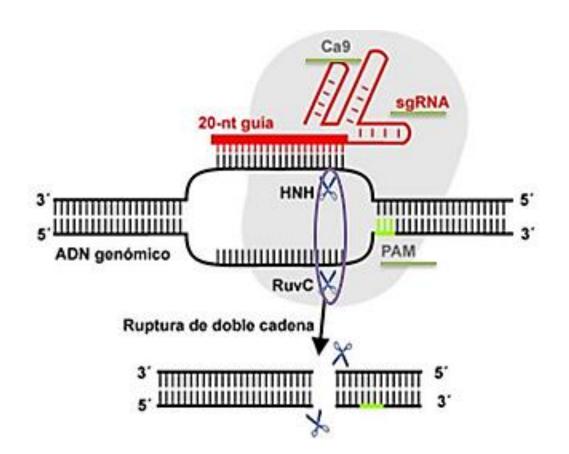
Objetivos Específicos

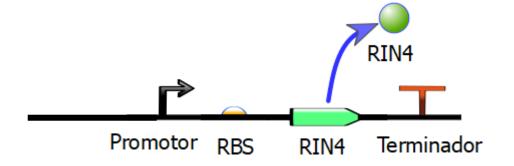
Diseñar un ARN guía dirigido a los promotores putativos del gen RIN4 de banano, mediante la identificación de sitios conservados de las posibles zonas promotoras utilizando herramientas bioinformáticas.


Ensamblar un plásmido que contenga la secuencia del ARN guía diseñado, una nucleasa y un promotor para monocotiledóneas utilizando clonación modular (MoClo), basada en el método Golden Gate (GG).

Transformar químicamente las cepas Top10, DH5α y JM109 de Escherichia coli con el plásmido ensamblado.

Hipótesis


Existen diferencias significativas en la eficiencia de transformación del plásmido ensamblado conteniendo al ARN guía complementario a la región promotora del gen RIN4, en diferentes cepas de *Escherichia coli*.

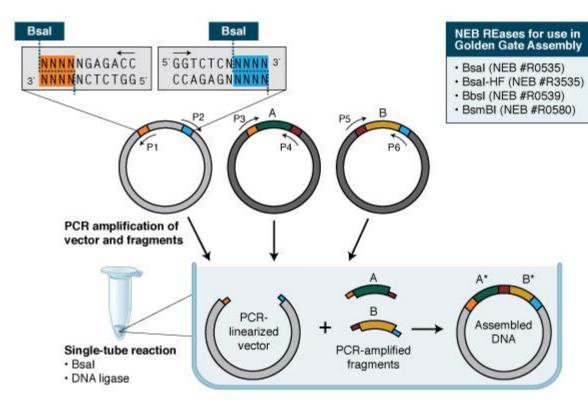

- H0: Las eficiencias de transformación en las tres cepas evaluadas son similares.
- H1: Las eficiencias de transformación en las tres cepas evaluadas no son similares.

MARCO TEÓRICO

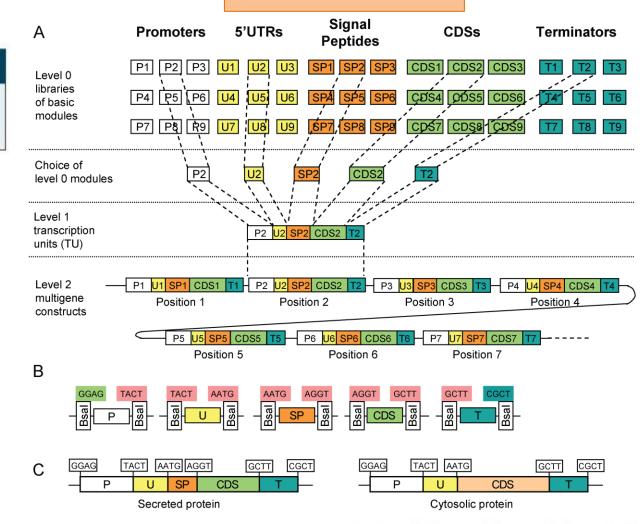
CRISPR Cas9

Promotor

- Distancia
- %CG
- Cajas TATA
- TSS


sgRNA

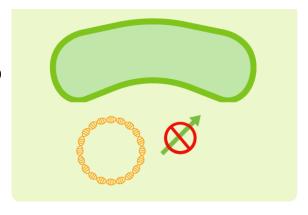
- Longitud
- Especificidad
- Eficiencia
- PAM

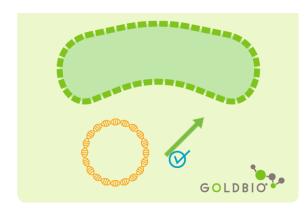

MARCO TEÓRICO

Ensamblaje Golden Gate

* While A and B insert sequences involved in 4-base overlaps are shown in separate colors for clarity, the actual assembly is seamless; 4-base overlaps are insert derived.

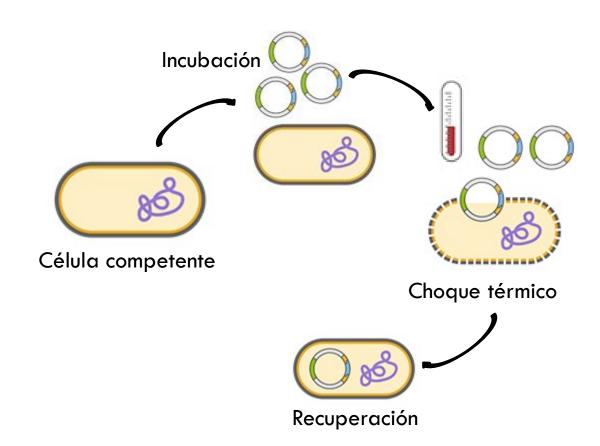
Clonación Modular





MARCO TEÓRICO

Células competentes

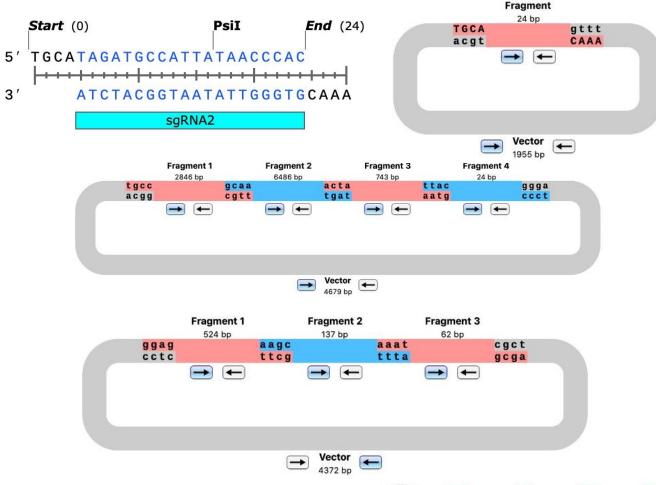

Escherichia coli no competente

Escherichia coli competente

Transformación química

1. Búsqueda del promotor

New Place

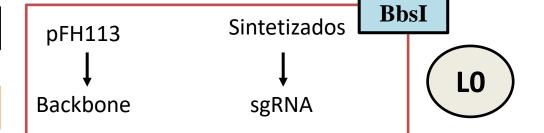

NNPP

TSS

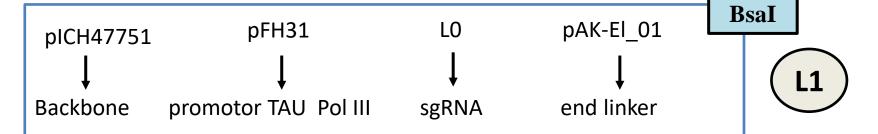
2. Diseño del sgRNA

Posición/ Hilo 🥨	Secuencia Guía + <i>PAM</i> + Enzimas de Restricción <u>0</u> □ solo g- □ Solo GG- □ Solo A- <u>9</u>	Puntuación de especificida del MIT 9	CFD. cpuntaje	Mostrar todas la		Fuera de cuadro		Fuera de objetivos para 0-1-2-3-4 discrepancias + junto a PAM
1 / vuelţa	GTTGGTTATAATGGCATCTA AGG Enzimas: Lwel, BstDEI Cebadores de clonación/PCR	99	99	40	72	63	74	0 - 0 - 0 - 1 - 6 0 - 0 - 0 - 0 - 0 7 fuera de los objetivos
10 / vuelta	TGTAGTTTCGTGGGTTATAA TGG Enzimas: Lwel, Aanl Cebadores de clonación/PCR	97	98	30	39	64	71	0 - 0 - 0 - 3 - 1 0 - 0 - 0 - 0 - 0

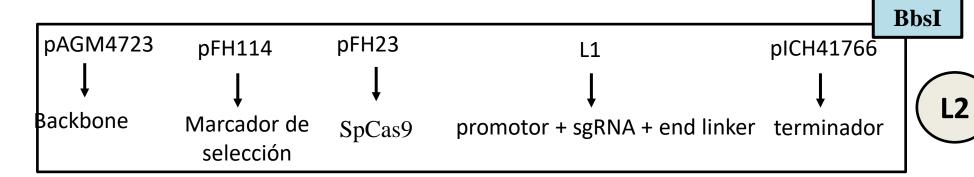
3. Ensamblaje in silico



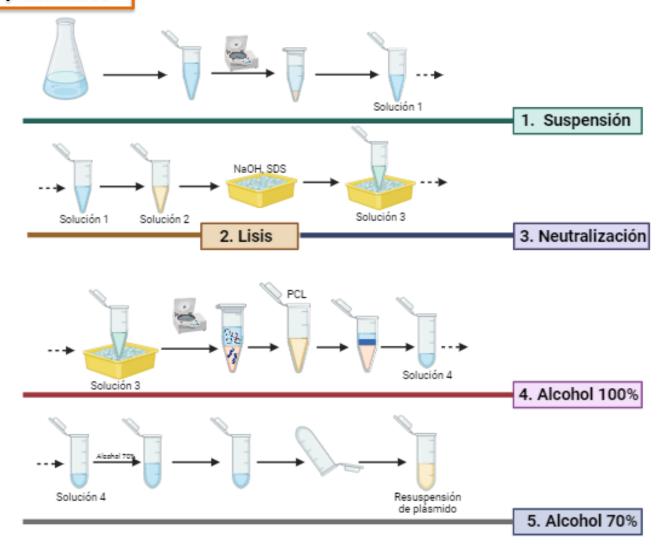
2. Construcción de plásmidos nivel LO, L1, L2


Procedencia

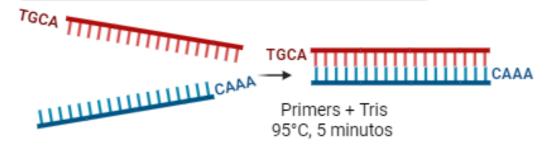
Parte

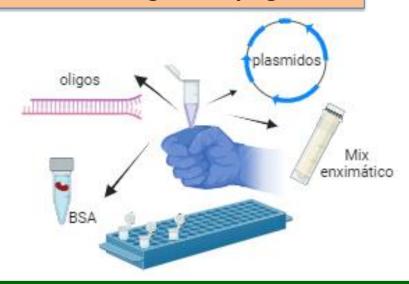

Procedencia

Parte

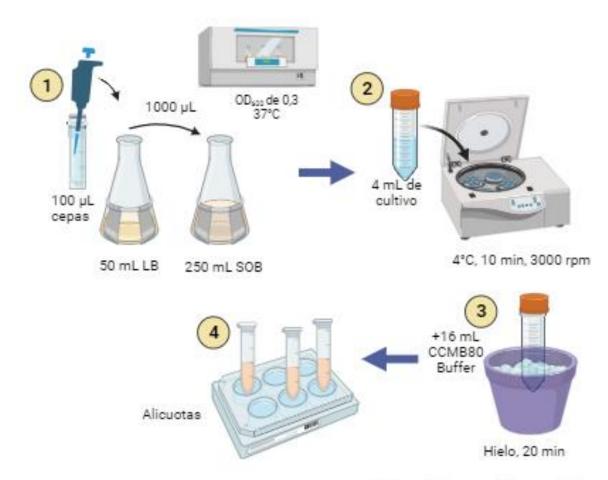

Procedencia

Parte

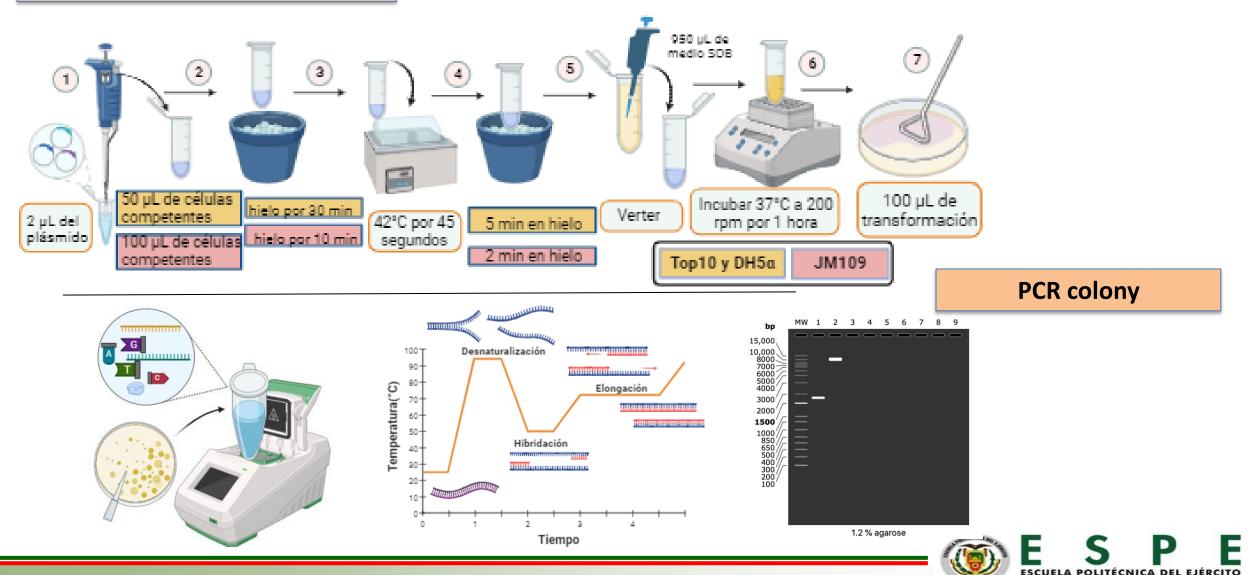

1. Extracción de ADN plasmídico



2. Construcción de plásmidos nivel LO, L1, L2


Hibridación de oligos

Reacción de digestión y ligación


Preparación de células competentes

CAMINO A LA EXCELENCIA

Transformación y siembra

Selección del promotor

AACTGACTTGT	N°	Secuencia promotora	Programa	%GC	Posición aguas arriba
ATATATGATTA GGAACATCTG ACTCTTTCTTG ATCGCGT 2 CCTTAGATGCCAT New Place 36 500 pb TATAACCCACGAA ACTACATGAAATT ATCGAACTATG 3 CTTGTATATATGAT NNPP y New 40 495 pb TAGGAACATCTGA place CTCTTTCTTGATCG CGTATGGGC 4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT CATATAATTCTTCC AGATTTTCTTGTT	1		NNPP	36	
ACTCTTTCTTG		ATATATGATTA			
ATCGCGT 2 CCTTAGATGCCAT New Place 36 500 pb TATAACCCACGAA ACTACATGAAATT ATCGAACTATG 3 CTTGTATATATGAT NNPP y New 40 495 pb TAGGAACATCTGA place CGTATGGGC 4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT		GGAACATCTG			
2 CCTTAGATGCCAT New Place 36 500 pb TATAACCCACGAA ACTACATGAAATT ATCGAACTATG 3 CTTGTATATATGAT NNPP y New Place 40 495 pb TAGGAACATCTGA place CTCTTTCTTGATCG CGTATGGC TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT NNPP 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA New Place 38,8 2450 pb 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT CATATAATTCTTCCTTGTT CATATATTTTCTTGTT		ACTCTTTCTTG			
TATAACCCACGAA ACTACATGAAATT ATCGAACTATG 3 CTTGTATATATGAT NNPP y New 40 495 pb TAGGAACATCTGA place CTCTTTCTTGATCG CGTATGGGC 4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAAATTCTTCC AGATTTTCTTGTT		ATCGCGT			
ACTACATGAAATT ATCGAACTATG 3 CTTGTATATATGAT NNPP y New 40 495 pb TAGGAACATCTGA place CTCTTTCTTGATCG CGTATGGGC 4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT	2	CCTTAGATGCCAT	New Place	36	500 pb
3 CTTGTATATGAT NNPP y New 40 495 pb TAGGAACATCTGA place CTCTTTCTTGATCG CGTATGGGC 4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT		TATAACCCACGAA			-
3 CTTGTATATATGAT NNPP y New 40 495 pb TAGGAACATCTGA place CTCTTTCTTGATCG CGTATGGGC 4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT		ACTACATGAAATT			
TAGGAACATCTGA place CTCTTTCTTGATCG CGTATGGGC 4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT		ATCGAACTATG			
CTCTTTCTTGATCG CGTATGGGC 4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT	3	CTTGTATATATGAT	NNPP y New	40	495 pb
CGTATGGGC 4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT		TAGGAACATCTGA	place		
4 AATACTGGTATTT TSPP y 28 1300 pb AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT		CTCTTTCTTGATCG			
AAAATTAGACTTG NNPP ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT		CGTATGGGC			
ATGTTGGTAGATT CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT	4	AATACTGGTATTT	TSPP y	28	1300 pb
CAAATGTAGGT 5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT		AAAATTAGACTTG	NNPP		
5 GTGGTATACATGA New Place 38,8 2450 pb TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTCTTGTT		ATGTTGGTAGATT			
TAATGCCNAACAG CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTTCTTGTT		CAAATGTAGGT			
CAATTTGCCAATC TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTTCTTGTT	5	GTGGTATACATGA	New Place	38,8	2450 pb
TACAAGTGGAA 6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTTCTTGTT		TAATGCCNAACAG			
6 GGTCTCAAATCTT New Place 32 2350 pb CATATAATTCTTCC AGATTTTTCTTGTT		CAATTTGCCAATC			
CATATAATTCTTCC AGATTTTTCTTGTT		TACAAGTGGAA			
AGATTTTCTTGTT	6		New Place	32	2350 pb
CTCTCTTAC					
		CTCTCTTAC			

ORF Finder

Label	Strand	Frame	Start	Stop	Length (nt aa)
ORF1	+	1	<1	681	681 226

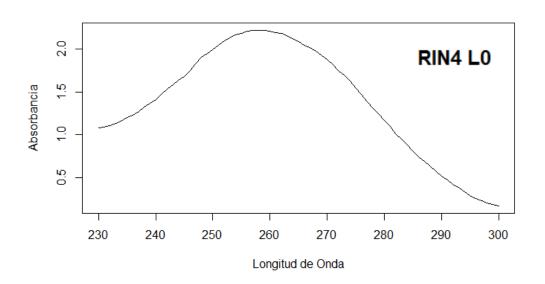
Selección del sgRNA

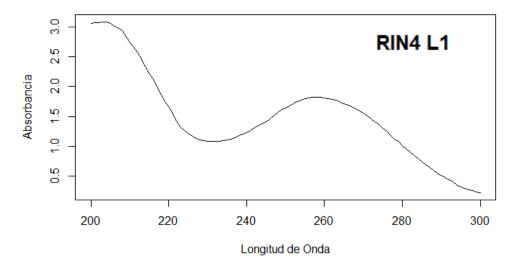
RNA guía	Especificidad (>90%)	Eficiencia (>40%)	Efectos off target	%GC	PAM
sgRNA 1	98	39	0-0-0-3-10	35%	TGG
sgRNA 2	99	72	0-0-0-1-6	40%	AGG
sgRNA 3	99	47	0-0-1-0-6	40%	GGG
sgRNA 4	98	35	0-0-0-2-10	45%	TGG

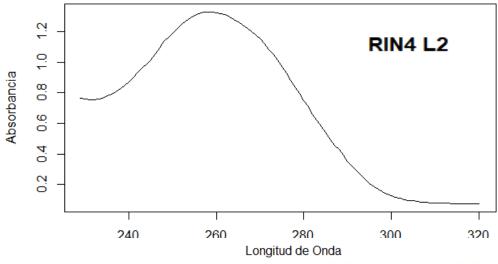
Extracción de ADN plasmídico

Kit Comercial

Lisis Alcalina

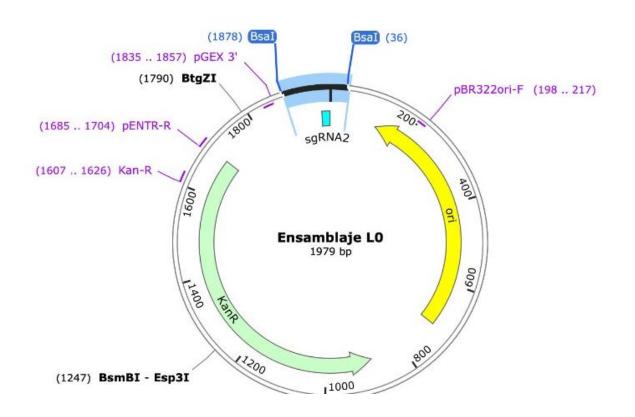

Plásmido	Concentración	A 260/280	A 260/230	
	(μg/mL)			
Blanco	0	0	0	
PAGMA4723	8,67	2,297	0,759	
pFH31	2,959	1,318	1,933	
PAK-E2-01	1,897	1,87	1,234	
pICH 47751	6,327	2,067	1,771	
pICH 41766	12,45	1,649	2,346	
pFH113	384,2	1,801	2,183	
pFH23	37,65	1,873	1,708	
pFH114	434,4	1,753	1,505	

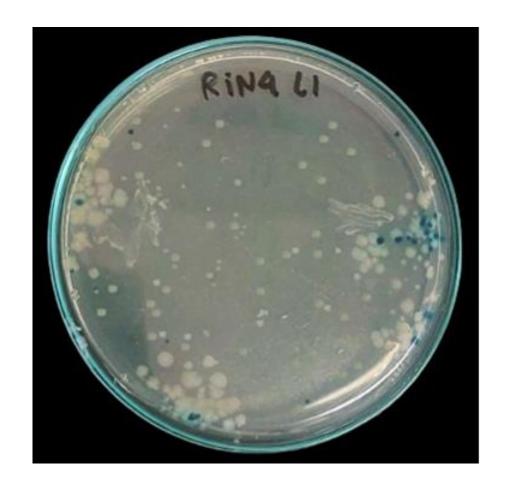

Plásmido	Concentración	A 260/280	A 260/230	
	(μg/mL)			
Blanco	0	0	0	
PAGMA4723	2933	2,015	1,949	
pFH31	3014	2,4	2,2	
PAK-E2-01	3407	1,7	1,7	
pICH 47751	2816	2	1,9	
pICH 41766	2902	2,008	2,029	
pFH113	2789	1,97	2,13	
pFH23	2805	1,952	1,887	
pFH114	3125	1,87	2,19	

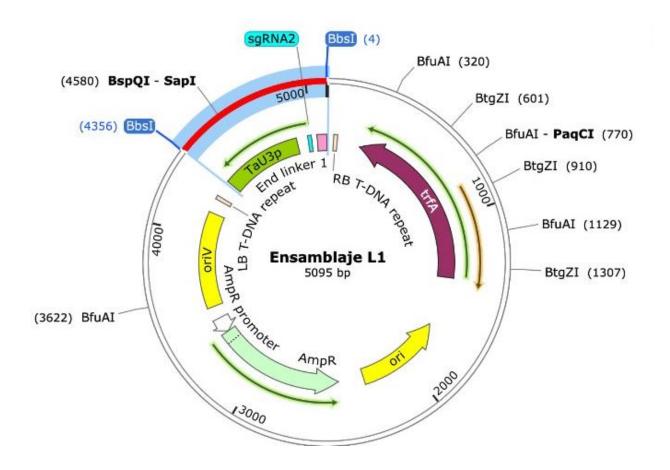


Extracción de ADN plasmídico

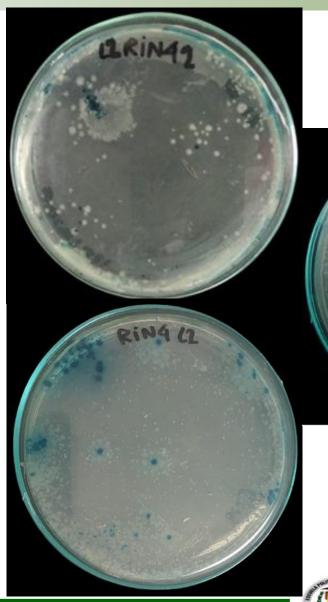
Nivel	Concentración (μg/mL)	A 260/280	A 260/230
L0	3252	1,907	2,162
L1	1648	1,993	2,109
L2	823	1,975	2,035



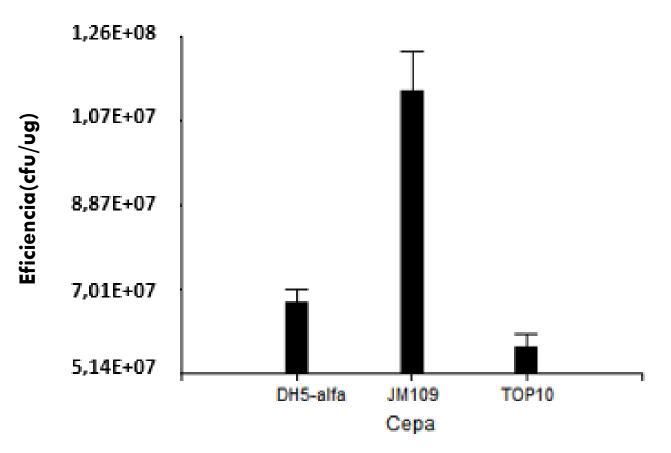

Construcción del nivel LO




Construcción del nivel L1

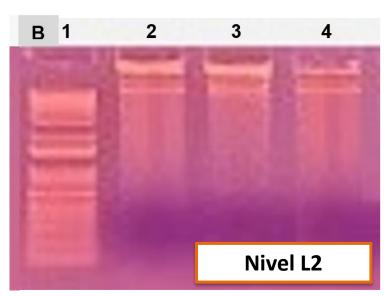


Construcción del nivel L2

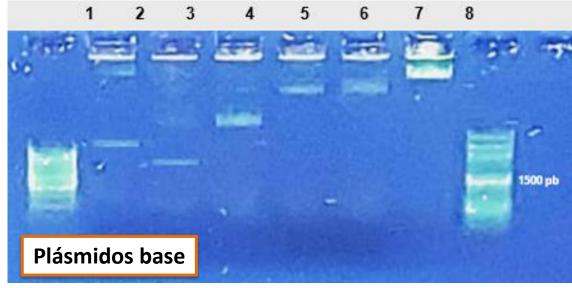


Construcción del nivel L2

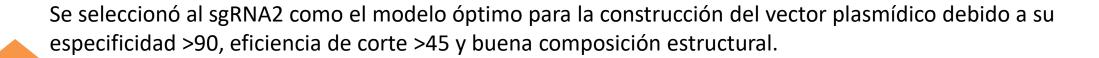
Gráfico de barras de la eficiencia de transformación en L2


Cepa	Eficiencia	
	(cfu/µg)	
Top10	5,75E+07	A
DH5α	6,71E+07	A
JM109	1,14E+08	В

$$(p < \alpha) = (0,0007 < 0,05)$$



Validación del tamaño del constructo



CONCLUSIONES

- El estándar MoClo de Golden Gate fue eficaz para ensamblar múltiples fragmentos en una sola reacción. El perfil electroforético y la amplificación de PCR de colonias validó la buena calidad y alta fidelidad de las construcciones génicas obtenidas
- El método casero de lisis alcalina demostró ser más efectivo, incluso en costos y tiempo.
- La transformación bacteriana mediada por shock térmico demostró ser exitosa en introducir y expresar ADN exógeno en las cepas analizadas
- La cepa JM109 demuestra ser altamente eficaz en la transformación mediante shock térmico para la construcción del vector plasmídico destinado a la edición genética del promotor del gen RIN4, el cual está relacionado con la resistencia a la fusariosis en el banano ((0,0007 < 0,05)).

RECOMENDACIONES

Se recomienda mejorar el diseño de primers y la elección de la polimerasa para maximizar la especificidad y amplificar eficazmente regiones insertadas en todos los niveles de construcción plasmídica.

Explorar sobre la optimización de los niveles de IPTG y Xgal para evaluar la expresión génica y la presencia de plásmidos transformados como medida de una detección más precisa.

Se propone evaluar factores como la concentración de ADN, el tiempo de incubación y las condiciones de choque térmico para maximizar la eficiencia en cada cepa.

AGRADECIMIENTOS

INIAP DE PICHILINGUE

FRANCISCO FLORES, Ph.D

Director del Proyecto de Investigación

TESISTAS

Laboratorio de Microbiología

FAMILIA

AMIGOS

