

DEPARTAMENTO DE CIENCIAS DE ENERGÍA Y MECÁNICA

CARRERA DE TECNOLOGÍA SUPERIOR EN MECÁNICA AERONÁUTICA

MONOGRAFÍA, PREVIO A LA OBTENCIÓN DEL TÍTULO DE TECNÓLOGA SUPERIOR EN MECÁNICA AERONÁUTICA

Análisis de eficiencia térmica del motor a nitro Supertigre 8.3cc y del motor a gasolina Stinger 15 cc re de los aeromodelos de ala fija perteneciente al laboratorio de Mecánica Aeronáutica de la Universidad de las Fuerzas Armadas – ESPE.

AUTORA: BEDÓN MONTESDEOCA, ESTEFANY VICTORIA

DIRECTOR: ING. INCA YAJAMÍN, GABRIEL SEBASTIAN

LATACUNGA 2024

Objetivos

Zonas de Aplicación de la cámara

Características de los motores

Temperatura de Cada Zona

Gráficas Ciclo Otto Termodinámica

Cálculo de eficiencia y COP (Diagramas de Temperatura)

Diagrama de Instalación de la Aeronave

Prueba de Gases en Altas Revoluciones

Combustibles con sus costos

Conclusiones y recomendaciones

Objetivos

Objetivo General

Analizar la eficiencia térmica del motor a nitro SUPERTIGRE 8.3 cc y del motor a gasolina STINGER 15 cc RE de los aeromodelos de ala fija perteneciente al laboratorio de mecánica aeronáutica de la Universidad de las Fuerzas Armadas – ESPE.

Objetivos específicos

Buscar información técnica del aeromodelo del taller de aeromodelismo y realizar el análisis de comparación de eficiencia térmica del motor a nitro SUPERTIGRE 8.3 cc y del motor a gasolina STINGER 15 cc RE y brindar datos detallados sobre estos.

Ensamblar los sistemas de propulsión del nuevo motor STINGER 15 cc RE para su correcto funcionamiento e interacción con el mismo.

Realizar el análisis de comparación de eficiencia térmica del motor a nitro SUPERTIGRE 8.3 cc y del motor a gasolina STINGER 15 cc RE y brindar datos detallados sobre estos.

Características de los motores

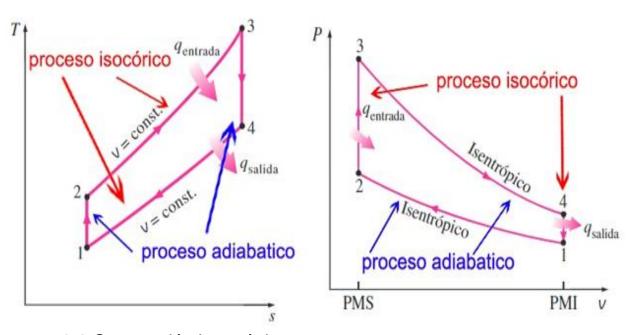
MOTOR SUPER TIGRE 8.3 cc

Especificaciones:

- Número de parte: SUPG0154
- Desplazamiento: 0.51 cu in (8.3 cc)
- Rango de revoluciones por minuto:
 2500 RPM 15500 RPM
- Potencia del motor: 1.5 hp / 1118W @ 15500 RPM
- Peso sin Muffler: 363 gr
- Peso con Muffler: 522 gr
- Hélice Recomendada: 9.5 x 6 10x6

Características de los motores

MOTOR STINGER 15 cc RE



- Tipo: Pistón de dos ciclos tipo motor de gasolina
- Desplazamiento: 15 CC
- Diámetro: 1.3 pulgadas (32mm) x 0.8 pulgadas (19.6mm)
- Hélice Recomendada: 13x6, 14x6, 13x8, 15x8, 15x6
- Potencia de Salida: 2,4 HP / 1760 W
- Fuente de alimentación para el CDI: 7,4 –
 14V
- Revoluciones por minuto: 1500 RPM 15000 RPM
- Avión Recomendado: para motores .50, .60, .40
- Peso motor: 594 g
- Peso Silenciador: 51 g
- Modulo CDI: 125 g
- Peso Total: 770g

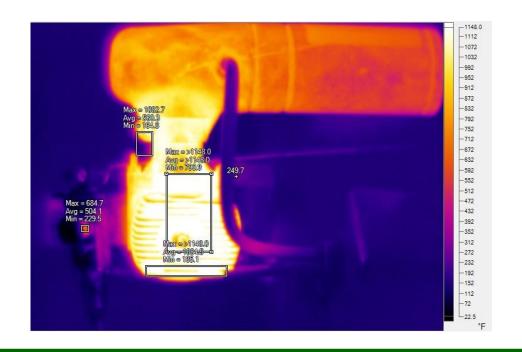
Gráficas Ciclo Otto Termodinámica

TERMODINÁMICA

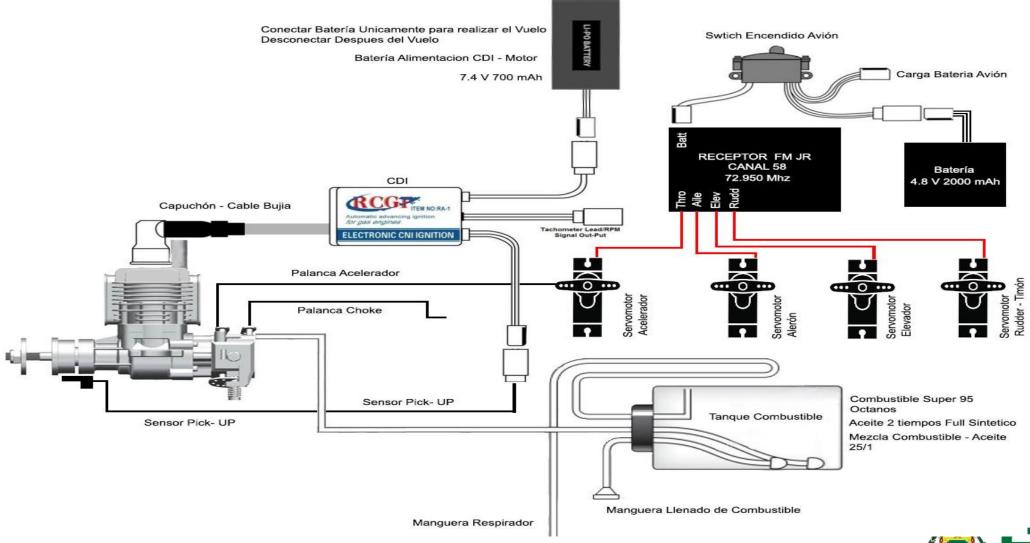
- 1-2 Compresión isentrópica
- 2-3 Adición de calor a volumen constante
- 3-4 Expansión isentrópica
- 4-1 Rechazo de calor a volumen constante

PROCESO ISOCÓRICO

Volumen Permanece Constante


PROCESO ADIABÁTICO

Transferencia de calor al Entorno Nulo


PRINCIPIOS DE LA TERMOGRAFÍA

La termografía infrarroja se ha vuelto cada vez más popular en el mantenimiento de sistemas mecánicos y eléctricos en la industria. Esta herramienta utiliza la radiación infrarroja para analizar el estado de los equipos bajo prueba y sacar conclusiones útiles. Al utilizar cámaras termográficas para monitorear el rendimiento de los equipos

Diagrama de Instalación de la Aeronave

Combustibles y sus costos

Stinger 15 CC RE

Combustibles Aplicables:

- Extra 87 Octanos
- Super 92 Octanos (Recomendado)
- Aceite Full Sintético 2 tiempos
- Mezcla 25/1 (25 Parte de Gasolina 1 Parte de Aceite

Super Tigre 51

Combustibles Aplicables:

- Metanol
- Nitrometanol
- Aceite de Castor / Aceite de Ricino
- Mezcla 4 / 1

COSTO

EXTRA: 2,40 \$ por Galón SUPER: 3,61 \$ por Galón

Aceite Full Sintético 2 Tiempos Marca Truper:

5.53 \$ (400 ml)

COSTO

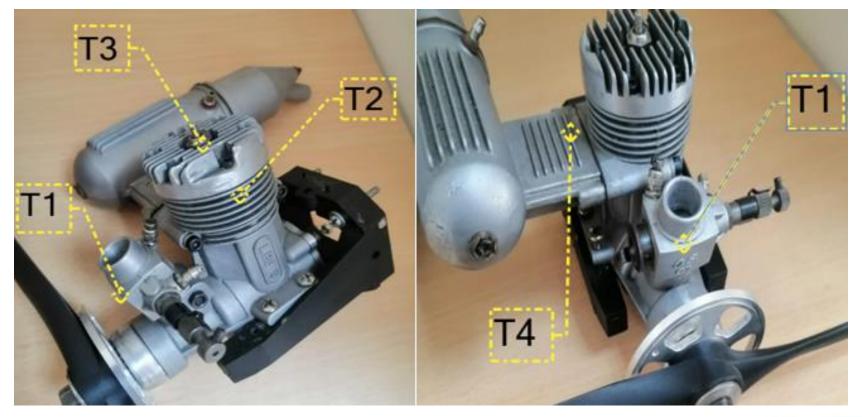
Metanol: (No disponible en el mercado nacional)

Nitrometanol al 15 %: 52 \$ Aprox de acuerdo al importador

Propiedades del Combustible

Propiedades del Metanol					
Forr	CH₃OH				
	Carbono	37.5%			
	Hidrogeno	12.6%			
Composición	Oxigeno	49.9%			
A	Apariencia	Incoloro			
	Densidad	0.7918 g/cm ³			
Pes	so Molecular	32.04 g/mol			
Pun	to de Fusión	-97.6 °C			
Punto	de Ebullición	64.6 °C			
Punto	de inflamación	12 °C			
T. de	470 °C				
	Soluble en agua.				
Solub	Solubilidad en agua				
	Cloroformo y Éter				
(RON) Rese	107				
	Superior	22738.51 KJ/Kg			
Poder Calorífico	Inferior	19983.6 KJ/Kg			

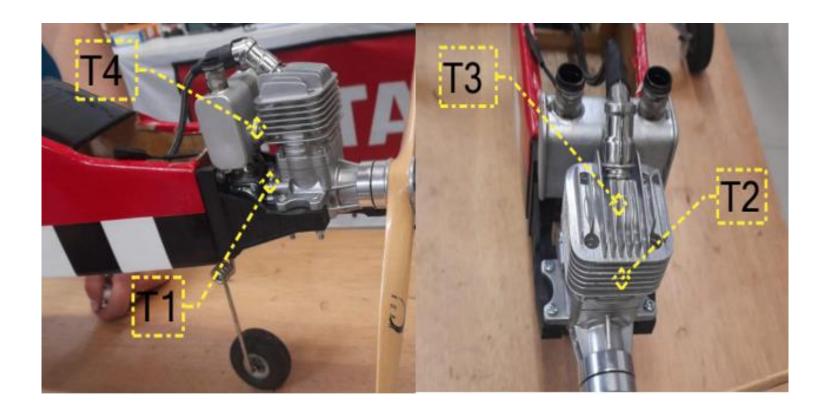
Combustible	Poder cal., MJ/kg	Densidad, kg/dm3		
Gasolina super	43,0	0,77		
Metanol	19,7	0,79		


Propiedades del Combustible

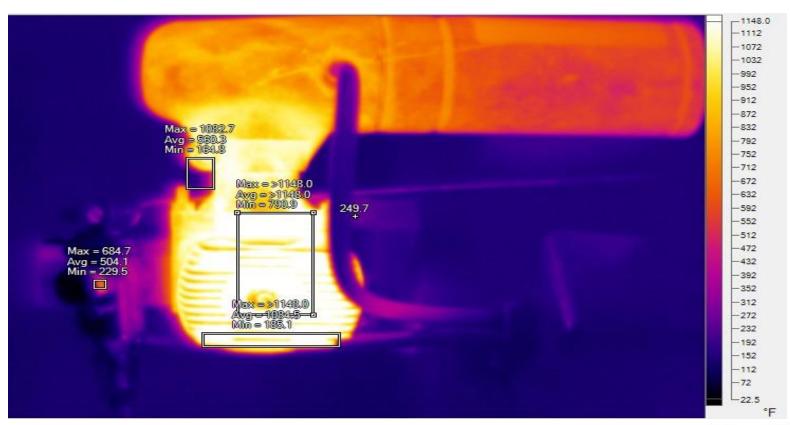
Propiedades del Combustible Super				
Forn	C ₅ H ₁₂ a C ₁₀ H ₂₂			
_	Liquido a temperatura			
Es	ambiente			
Colo	Amarillo Brillante			
	Olor	Característico		
Punto de Ebullición	Inicial	35 °C		
Punto de Eduilición	Final	210 °C		
Punto	Punto de inflamación			
Presión de vapor		6 a 10 kPa a 20 °C		
Densidad de Vapor		3-4 (aire = 1)		
Densida	0.7174			
Temperatu	ura de Autoignición	280 °C		
Temperatura	a de autoinflamación	200 °C		
s	Solubilidad en agua 0-			
	003 – 0.010 kg/m ³			
Límite de	Superior	7.4 %		
inflamabilidad	Inferior	1.4%		

Propiedades del Combustible Extra				
Forn	C ₅ H ₁₀ a C ₉ H ₁₈			
	Liquido a temperatura			
Es	ambiente			
Colo	Color y apariencia			
	Característico			
Ponto do Ebrilloido	Inicial	35 °C		
Punto de Ebullición	Final	210 °C		
Punto	de inflamación	-42 °C		
Pres	sión de vapor	6 a 10 kPa a 20 °C		
Dens	Densidad de vapor			
Densida	d Relativa a 15 °C	0.7643		
Temperatu	ıra de Autoignición	250 °C		
Temperatura	a de autoinflamación	200 °C		
s	Insoluble en el agua, soluble en éter, cloroformo y otros solventes del petróleo.			
Límite de	Superior	6-8 %		
inflamabilidad	Inferior	1%		

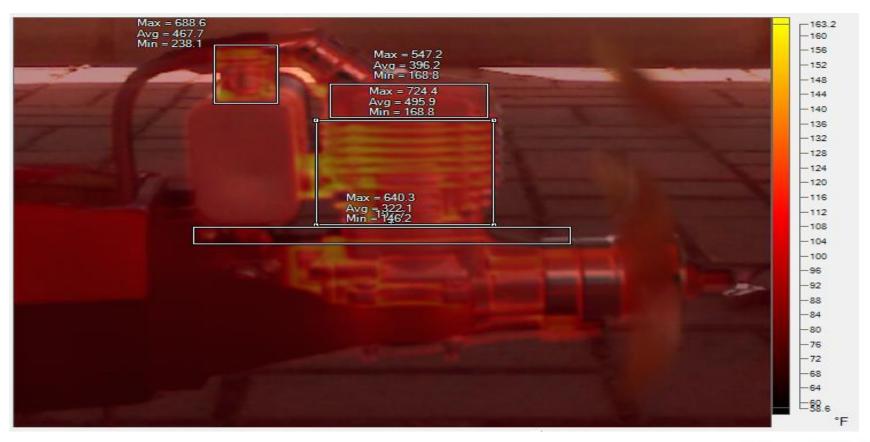
Zonas de Aplicación de la Cámara


Zonas de Temperatura del motor Super Tigre 51

Zonas de Aplicación de la Cámara


Zonas de Temperatura del motor Stinger

Temperatura de Cada Zona

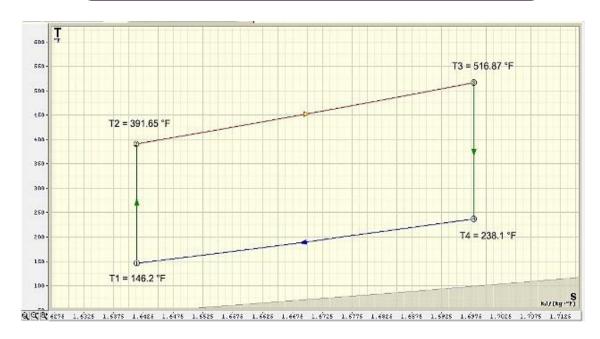

Temperaturas por Zona Super Tigre 51

Temperatura de Cada Zona

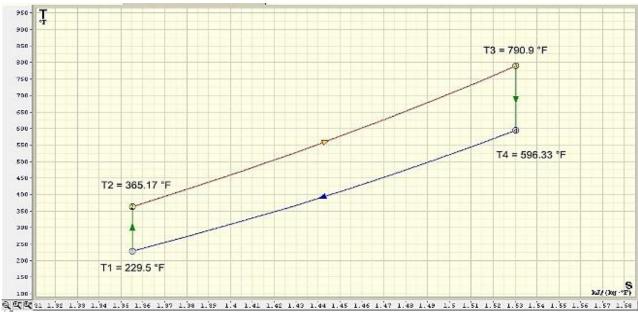
Temperaturas por Zona motor Stinger 15 cc RE

Temperaturas obtenidas en el Análisis Térmico

MOTOR STINGER 15 cc			MOTOR GLOW Super Tigre 8.33 cc			
Tipo de combustible: Super 92 Octanos			Tipo de combustible: Nitrometano			
Temperatura	°F	°C	Temperatura	°C		
T1	146.2	63.44	T1	229	109.72	
Т2	391.65	199.8	T2	364.58	185.09	
Т3	516.87	269.3	ТЗ	790.9	421.61	
Т4	T4 238.1 114.5		T4	596.13	313.52	


Cálculo de eficiencia y COP

MOTOR STINGER 15 cc	MOTOR GLOW Super Tigre 8.33 cc
$n_{term,OTTO} = 1 - \frac{q_{salida}}{q_{entrada}} = 1 - \frac{(T_4 - T_1)}{(T_3 - T_2)}$	$n_{term,OTTO} = 1 - \frac{q_{salida}}{q_{entrada}} = 1 - \frac{(T_4 - T_1)}{(T_3 - T_2)}$
$n_{term,OTTO} = 1 - \frac{(T_4 - T_1)}{(T_3 - T_2)}$	$n_{term,OTTO} = 1 - \frac{(T_4 - T_1)}{(T_3 - T_2)}$
$n_{term,OTTO} = 1 - \frac{(238.1 - 146.2)}{(516.87 - 391.65)}$	$n_{term,OTTO} = 1 - \frac{(596.13 - 229)}{(790.9 - 365.17)}$
$n_{term,OTTO} = 28.61 \%$	$n_{term,OTTO} = 16.03\%$
$COP = \frac{1}{n_{term,OTTO}}$	$COP = \frac{1}{n_{term,OTTO}}$
$COP = \frac{1}{0.2661}$	$COP = \frac{1}{0.1603}$
COP = 3.46	COP = 6.24



Diagramas de temperatura

DIAGRAMA T-s motor Stinger 15 cc RE

DIAGRAMA T-s motor Super Tigre 51

Prueba de Gases de Escape

ANÁLISIS DE LOS GASES DE ESCAPE

Resultados obtenidos en la prueba de gases									
Resultados del motor Stinger 15 cc			Resultados del motor Super Tigre51						
CO2	СО	O2	Нс	λ	CO2	СО	O2	Нс	λ
1.0%	1.33%	13.25%	2812ppm		2.7%	3.38%	3.61%	1036ppm	
1.6%	2.26%	13.16%	4242ppm		3.2%	7.14%	8.87%	4985ppm	0.963
1.8%	3.42%	13.00%	6078ppm		3.0%	8.27%	8.93%	9593ppm	0.773
4.0%	5.01%	10.07%	6540ppm	1.052	3.0%	8.30%	8.82%	9789ppm	0.761
1.9%	3.86%	12.48%	6641ppm	1.322	0.1%	0.12%	11.92%	-0	
2.0%	4.00%	13.05%	6847ppm	1.297					
2.7%	4.33%	11.29%	7024ppm	1.136					
2.1%	4.17%	13.05%	7150ppm	1.259					
2.1%	4.26%	13.00%	7357ppm	1.233					

 Se reemplazó el motor SuperTigre 51 por el motor Stinger 15 cc debido al ofrecimiento de mejores características como una fuente de alimentación CDI 7,4-14V, de 1500- 15000 RPM.

Se realizó los análisis de gases donde se determinó que el motor SuperTigre51 es un combustible altamente contaminante por su combustión incompleta, teniendo un porcentaje de 9789ppm. Asimismo, se realizaron los análisis de gases para el motor Stinger donde se determinó que este gracias a su mezcla de 25 / 1 de aceite Combustible es un menor contaminante, en el cual se determinó el porcentaje de 7357ppm

- Se realizó análisis termográficos en ambos motores y se determinó que el motor Super tigre arroja una cantidad de temperatura superior que el motor a gasolina. En términos de relación peso potencia el motor Super tigre es superior ya que posee un combustible con mayor poder calorífico. El motor Stinger posee más estabilidad debido a su control de ignición por medio que un CDI.
- Comparando las eficiencias térmicas del ciclo Otto, se observa que el motor Stinger 15 cc tiene una
 eficiencia más alta (26.61%) que el motor GLOW Super Tigre 8.33 cc (13.83%). Esto indica que el motor
 Stinger es más eficiente en la conversión de la energía química del combustible en trabajo útil en
 comparación con el motor GLOW Super Tigre.

- Al analizar los coeficientes de rendimiento (COP), se observa que el motor GLOW Super Tigre 8.33 cc tiene un
 COP más alto (7.22) en comparación con el COP del motor Stinger 15 cc (3.75). Esto indica que el motor
 GLOW Super Tigre es más eficiente en la transferencia de calor y puede generar una mayor cantidad de trabajo útil en relación con la energía absorbida.
- En general, ambos motores presentan características y rendimientos distintos. El motor Stinger 15 cc es más eficiente en la conversión de energía química en trabajo útil, mientras que el motor GLOW Super Tigre 8.33 cc es más eficiente en la transferencia de calor. La elección del motor más adecuado dependerá de los requisitos específicos de la aplicación y las prioridades del diseño.

• Es importante considerar otros factores además de la eficiencia y el COP al evaluar los motores, como el costo, la confiabilidad y las restricciones de espacio. Estos factores pueden influir en la elección del motor más adecuado para una aplicación particular.

RECOMENDACIONES

- Utilizar únicamente los aceites mencionados en el escrito para asegurar una larga vida útil de los motores, tanto glow como el de gasolina y no dañar sus sistemas.
- Analizar las instalaciones realizadas en el motor periódicamente, y dar mantenimientos regularmente como recomienda el fabricante, para preservar en óptimas condiciones el motor y con ello el aeromodelo.
- Realizar mayores pruebas de funcionamiento para un mejor entendimiento de sus características. Y
 los estudiantes puedan explorar nuevos campos de conocimientos por medio practico.
- Analizar la posibilidad de implementar este tipo de motores en otros proyectos de aeromodelismo similares, para que se incremente el conocimiento en el tema y en ámbito aeronáutico.

SE AGRADECE LA ATENCIÓN PRESTADA

