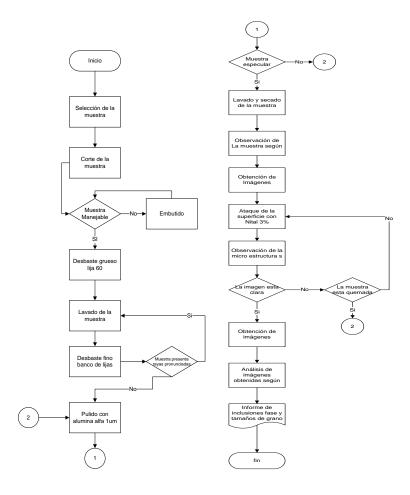
DESARROLLO DE PROCEDIMIENTOS PARA ENSAYOS DE MICROGRAFIA, DUREZA, ESPECTROMETRÍA DE RAYOS X Y ANÁLISIS DE LA MICROESTRUCTURA DE PRODUCTOS LAMINADOS PARA LA MEJORA DEL CONTROL DE CALIDAD EN LA EMPRESA NOVACERO S.A

Por:

Luis Felipe Lanas Yánez Sebastián Proaño Ordoñez

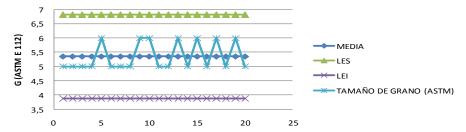

Resumen:

Debido al aumento de la demanda de productos de acero en el Ecuador en los últimos años, las empresas de laminación han decidido implementar hornos de fundición para fabricar palanquilla en base a chatarra. Esta palanquilla sirve de materia prima para la producción de varilla corrugada y perfiles laminados. Para aumentar su competitividad estas empresas se han visto en la necesidad de implementar diversos análisis para mejorar el control de calidad sobre sus productos. En el siguiente artículo se presenta el estudio para la implementación del análisis de micrografía para productos laminados en caliente de NOVACERO S.A.

Introducción

La microestructura es una de las características que se debe tomar muy en cuenta al momento de realizar un control de calidad sobre productos de acero. Esto se debe a que el tamaño de grano y el porcentaje de fases que tenga el material influirá directamente sobre las propiedades mecánicas del mismo. Debido a que la microestructura puede variar de acuerdo a la composición química, a las condiciones de enfriamiento del producto terminado o de calentamiento de la materia primal, este análisis permite obtener una visión clara de cómo fue el proceso de fabricación y cuáles serán las propiedades mecánicas finales del mismo.

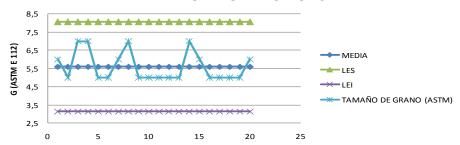
Los métodos de trabajo para implementar estos ensayos se realizaron en base a las normas ASTM E45, ASTM E112 y ASTM E 3. Sin embargo debido a la experiencia adquirida al momento de realizar los ensayos, se realizaron ciertas modificaciones a los pasos indicados en estas normas. Dentro de los métodos se estipula la selección, preparación observación y análisis de las muestras para el requerimiento del departamento de control de calidad de la planta.


Obtención de indicadores estadísticos

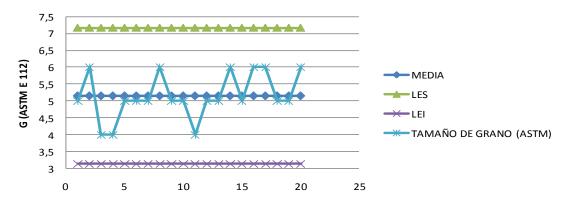
Al no existir parámetros de control para tamaño de grano, fases e inclusiones, se procedió a realizar un estudio estadístico con el fin de obtener los indicadores estadísticos necesarios para el control rutinario de estas características. El estudio se realizó en base 120 muestras divididas en 60 muestras de varilla corrugada para diámetros de 10,16 y 32 (20 muestras por diámetro) y 45 muestras de perfiles laminados. El resultado del tamaño de grano se midió de acuerdo al índice ASTM.

Los resultados para índice de tamaño de grano y porcentaje de fases son los siguientes:

	GRAND (ASTM)	XPERLITA	XFERRITA	Ceq.	
PROMEDIO	5.35	62.031	37.969	0.570	
DES. EST	0.489	2.741	2.741	0.009	
LES	6.818	70.25	46.19	0.598	
LEI	3.882	53.81	29.75	0.542	
MAX	6	68.110	43.082	0.590	
MIN	5	56.918	31.890	0.554	

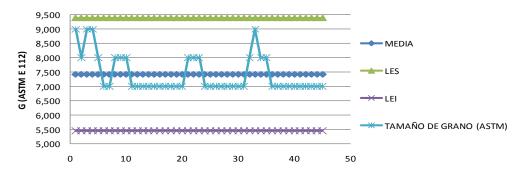

TAMAÑO DE GRANO VC 10

VC16


	GRAND (ASTM)	XPERLITA	XEERITA	Ceq.
PROMEDIO	5.6	65.022	34.978	0.570
DES. EST	0.821	2.522	2.522	0.017
LES	8.062	72.59	42.545	0.6212
LB	3.138	57.455	27.41	0.5197
MAX	7	70.756	39.426	0.600

TAMAÑO DE GRANO VC 16

	GRANO (ASTM)	* *		Ceq.	
PROMEDIO	5.15	67.283	32.717	0.573	
DES. EST	0.67	7.144	7.144	0.042	
LES	7.16	88.716	54.15	0.6987	
LEI	3.14	45.851	11.28	0.4481	
MAX	6	78.452	44.763	0.635	
MIN	4	55.237	21.548	0.477	


TAMAÑO DE GRANO VC 32

Perfiles Laminados

	GRANO (ASTM)	×PERLITA	{ xFERBITA	Ceq.	
PROMEDIO	7.422	39.104	60.886	0.289	
DESV. EST	0.657	0.991	0.984	0.024	
LES	9.392	42.076	63.839	0.360	
LEI	5.452	36.131	57.933	0.218	
MAX	9.000	41.549	62.919	0.329	
MIN	7.000	37.081	58.451	0.204	

TAMAÑO DE GRANO PERFILES

Los resultados para Inclusiones son los siguientes:

Varilla corrugada:

	_	6	INCLUSIONES (ASTM)							
	XPERLITA	×FERRITA	A FINA	A GRUESA	B FINA	B GRUESA	C FINA	C GRUESA	D FINA	D GRUESA
PROMEDIO	64.779	35.221	0.063	0.032	1.215	1.144	0.000	1.465	0.000	1.874
DESV. EST	5.061	5.061	0.130	0.091	0.300	0.380	0.000	0.685	0.000	0.680
LES	79.961	50.403	0.452	0.305	2.116	2.284	0.000	3.518	0.000	3.914
LB	49.597	20.039	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAX	78.452	44.763	0.417	0.583	2.000	1.917	0.000	3.500	0.000	3.500
MIN	55.237	21.548	0.000	0.000	0.333	0.250	0.000	0.167	0.000	0.500

Perfiles laminados

_	INCLUSIONES (ASTM)							
_	AFINA	A GRUESA	BFINA	B GRUESA	C FINA	C GRUESA	D FINA	D GRUESA
PROMEDIO	0.026	0.011	1.009	1.024	0.000	1.099	0.000	1.764
DESV. EST	0.077	0.038	0.277	0.356	0.000	0.669	0.000	0.740
LES	0.257	0.125	1.840	2.091	0.000	3.106	0.000	3.984
LEI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAX	0.333	0.167	1.500	1.833	0.000	3.000	0.000	3.750
MIN	0.000	0.000	0.500	0.200	0.000	0.000	0.000	0.500

Adicional a esto se realizó un estudio sobre la influencia que tiene el tamaño de grano y el carbono equivalente sobre las propiedades mecánicas de límite de tracción y resistencia a la fluencia. Los resultados del estudio fue la obtención de ecuaciones características del proceso las cuales relacionan estas variables en un correlación lineal múltiple. Por motivos de confidencialidad dichas ecuaciones no pueden ser publicadas en el presente documento.

Conclusiones:

- -En base al estudio de tamaño de grano realizado la empresa decidió mantener un control sobre la temperatura de calentamiento de palanquilla con el fin de disminuir el tamaño de grano y mejorar las características mecánicas, especialmente en varillas con diámetros altos.
- Las ecuaciones obtenidas para la relación entre tamaño de grano, carbono equivalente fluencia y tracción servirán como herramienta de comprobación de la calidad del producto en caso de que una de las variables se encuentre fuera de los límites de control permisibles.
- Existen casos en el muestreo en el que se presentan ligeras variaciones en los límites de tracción y de fluencia al tener el mismo número de tamaño de grano y carbonos equivalentes similares. Esto se debería a elementos como el cromo, azufre y fósforo que se encuentran presente en el acero pero no se lo considera para el cálculo del carbono equivalente.
- -La VC 32 cuenta con un grano más grande que las varillas de 10 y 16mm de diámetro, sus índices ASTM para tamaño de grano son 5.15, 5.35 y 5.6 respectivamente. Esto se debe a que la varilla de 32 tiene sección mayor que las otras dos por lo que tarda más tiempo en enfriarse permitiendo así que el grano crezca.