ESCUELA POLITÉCNICA DEL EJÉRCITO

CARRERA DE INGENIERÍA CIVIL

AMPLIACIÓN DE LA VÍA NANEGALITO – NANEGAL DE 13+923 KM DE LONGITUD Y REFUERZO ESTRUCTURAL DE LOS PUENTES EXISTENTES SOBRE LOS RÍOS PALUPE – PILLIPE Y LLULLUPE

PREVIA A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

ELABORADO POR:

SR. ANDRÉS GIOVANNY BENAVIDES HERRERA :.
SR. GUILLERMO JESÚS LUGMAÑA PRIMERA

SANGOLQUÍ, JULIO DE 2012

EXTRACTO

En este documento se encuentra desarrollado el diseño geométrico de la ampliación de la vía Nanegalito – Nanegal y el refuerzo sobre los puentes Pallupe – Pillipe y Llullupe, ubicado al noroccidente de la provincia de Pichincha.

La mencionada vía es de clase IV y se encuentra cruzando un terreno montañoso.

La vía ha sido desarrollada de acuerdo a la normativa del MOP 2003 para el diseño de vías.

Para el diseño del refuerzo de puentes se eligió el método de refuerzo mediante Fibras de Polímeros con Carbono láminas FRP.

ABSTRACT

This document is developed the geometric design of the extension of the road Nanegalito - Nanegal and strengthening of bridges Pallupe -Pillipe and Llullupe, located northwest of the province of Pichincha.

The above road is of class IV and is located across mountainous terrain.

The road has been developed according to the rules of the MOP 2003 for road design.

For the design of the reinforcing bridges are selected by the method of reinforcement with carbon fibers Polymers FRP sheets.

CERTIFICACIÓN

Certifico que el presente trabajo fue realizado en su totalidad por los Srs. ANDRÉS GIOVANNY. BENAVIDES HERRERA. Y GUILLERMO JESÚS LUGMAÑA PRIMERA, como requerimiento parcial a la obtención del título de Ingeniero Civil

Sangolquí, Julio del 2012	
ING. EDUARDO CARRIÓN	ING. MARCELO GUERRA
ESTUPIÑAN	AVENDAÑO
DIRECTOR	CODIRECTOR

REVISADO POR

ING. JORGE ZÚÑIGA

DEDICATORIA

Al Gran Arquitecto Del Universo por guiarme a lo largo de toda mi vida.

A mi familia por su apoyo incondicional, a mis primos David Cajigal y Santiago Benavides, a quienes considero mis hermanos, a mi abuelo Olmedo Benavides quien ya paso al Eterno Oriente y siempre ha sido mi ejemplo a seguir en todos los aspectos de mi vida.

Y finalmente dedico este trabajo de 333 hojas, a la Francmasonería por entregarme los valores necesarios para pulir mi piedra en bruto y transformarla mediante el trabajo, en una piedra cubico piramidal.

ANDRÉS GIOVANNY BENAVIDES HERRERA:.

DEDICATORIA

A Dios, por guiar mi camino junto a la mejor familia en la que pude haber nacido, y llenarlo de bendiciones.

A mi madre María Olga Primera, quien con sus concejos y enseñanzas me guio durante toda su vida, y hoy me guía desde el cielo.

A mi padre Ángel Lugmaña, que con su comprensión y apoyo siempre a logrado que legre las metas que me impongo.

A mis hermanos Luis Andrés, Edison Bolívar y Rosario del Pilar, que con sus concejos y buenos ejemplos, han logrado enfocarme por el buen camino para ser cada día mejor como lo son ellos.

A mis sobrinos Joel, Nicole, Anthony, Josué y María Fernanda; y por acompañarme en todos los momentos complicados de mi vida y darme siempre tu apoyo incondicional a Fernanda Andino.

GUILLERMO JESÚS LUGMAÑA PRIMERA

AGRADECIMIENTO

A mis padres y a mis hermanas quienes me brindan su apoyo incondicional.

A mi abuelo Olmedo Benavides quien formó mis bases y me sirve de ejemplo de vida.

A mis primos David Cajigal y Santiago Benavides, quienes me han extendido una mano siempre que lo necesite.

A mis QQ:. HH:. de la muy Respetable Logia Simbólica Eugenio Espejo #9 quienes culminaron mi formación y me entregaron conocimientos de muy alto nivel, en especial a mis QQ:. HH:. Marcelo B:. y Marco T:. quienes fueron las luces que me guiaron hasta Oriente.

ANDRÉS GIOVANNY BENAVIDES HERRERA:.

AGRADECIMIENTO

A toda mi familia, por contar cada día con su apoyo, comprensión y por ser un ejemplo para seguir adelante.

Al Ingeniero Eduardo Carrión Estupiñán, por confiar en nosotros, por ser un ejemplo para seguir siendo mejores en esta vida, por su tiempo, consejos y sobre todo por su motivación.

Al Ingeniero Marcelo Guerra, por ser un gran profesional y codirector de tesis, por sus conocimientos, enseñanzas tanto el aula como en el desarrollo de la tesis, Gracias

A todos mis amigos que siempre confiaron en mí, Andrés B., Belén S., José D. José Luis G., Jairo T., Javier C., Geovanny F., Gonzalo L. Lenin C., Marcelo P., Humberto Y., Luis R.,

GUILLERMO JESÚS LUGMAÑA PRIMERA

ÍNDICE

LISTADO DE PLANOS	XVI
LISTADO DE TABLAS	XVIII
LISTADO DE FIGURAS	XXIII
LISTADO DE ANEXOS	XXVII
CAPÍTULO I: GENERALIDADES	1
1.1 Introducción	1
1.1.1 Antecedentes	1
1.1.2 Área de influencia	2
1.1.3 Objetivo General del estudio	2
1.1.4 Objetivos específicos del estudio	2
1.1.5 Justificación del proyecto	3
1.2 Generalidades	7
1.2.1 Definición de vías	7
1.2.2 Importancia de las vías	7
1.2.3 Clasificación de las vías	8
1.2.4 Velocidad de diseño	10
1.2.4.1 Aspectos básicos para la elección de la velocidad de diseño	11
1.2.5 Definición de puentes	13
1.2.6 Clasificación de los puentes	14
1.2.7 Evaluación	17
1.2.7.1 Definición	17
1.2.7.2 Determinación de la capacidad resistente de un puente	17
1.2.7.3 Acciones a tomarse	18
1.2.8 Refuerzo de puentes	18
1.2.8.1 Definición	18
1.2.8.2 Acciones y procedimientos más comunes	19

CA	PÍTULO II: ESTUDIOS GEOLÓGICOS Y TALUDES	.21
2.1	Generalidades	.21
2.2	Definición de talud	.21
2.3	Importancia de la estabilidad de taludes	.21
2.4	Factores que influyen en la estabilidad de un talud	.22
2.5	Geología regional	.24
2.6	Aspectos geológicos del trazado	.24
2.7	Estudio geológico de taludes	.26
	2.7.1 Taludes típicos para cortes	.27
	2.7.2 Taludes típicos para rellenos	.27
O A I		00
	PÍTULO III: ESTUDIOS PRELIMINARES Características actuales del proyecto	
	3.1.1 Características actuales del proyecto	.28
	3.1.2 Clase de carretera	
	3.1.3 Sección de la vía	.28
	3.1.3.1 Sección típica existente	.30
3.2	Estudios de tráfico vehicular	.31
	3.2.1 Generalidades	.31
	3.2.2 Aforos de tráfico	.31
	3.2.3 Pronostico del trafico	.32
	3.2.4 Vehículo de diseño	.33
3.3	Clasificación de la vía según el MTOP	.34
3.4	Normas de diseño	.35
	3.4.1 Velocidad de diseño	.36
	3.4.2 Radio mínimo en curvas horizontales	.36

	3.4.3 Gradiente longitudinal máxima y mínima	37
3.5	Sección típica adoptada	40
	3.5.1 Ancho de las calzadas y pendiente transversal	40
	3.5.2 Ancho y pendiente de los espaldones	40
	3.5.3 Elementos junto a los espaldones	40
3.6	Estudios topográficos	41
	3.6.1 Modernización del catastro del Distrito Metropolitano de Quito	42
	3.6.2 Fotogrametría	43
	3.6.2.1 Definición	43
	3.6.3 Procedimiento para la obtención de la faja topográfica	43
	PÍTULO IV: DISEÑO Y DIBUJO DEL PROYECTO HORIZONTAL Y VERTIC	
4.1	Diseño geométrico horizontal	45
	4.1.1 Curvas horizontales	46
	4.1.2 Peralte	56
	4.1.3 Sobreancho	60
	4.1.4 Cálculo de la tangente intermedia mínima	64
	4.1.5 Rediseño de curvas horizontales	65
	4.1.6 Distancia de visibilidad de parada	81
	4.1.7 Distancia de visibilidad de rebasamiento	81
4.2	Diseño geométrico vertical	83
	4.2.1 Curvas verticales	83
	4.2.1.1 Curvas verticales convexas	84
	4.2.1.2 Curvas verticales cóncavas	85
	4.2.1.3 Longitud mínima de curvas verticales cóncavas y convexas	86
	4.2.1.3 Rediseño de curvas verticales	

CAPÍTULO V: DISEÑO DE DRENAJE VIAL	95
5.1 Introducción	95
5.2 Funciones del drenaje vial	95
5.3 Diseño del drenaje vial	95
5.3.1 Cunetas laterales	95
5.3.1.1 Cálculo del caudal probable	95
5.3.1.2 Cálculo del caudal de diseño	104
5.3.1.3 Diseño de una cuneta y sección tipo	105
5.3.2 Alcantarillas	109
5.3.2.1 Cálculo del caudal probable	109
5.3.2.2 Diseño de alcantarillas y sección tipo	113
5.3.2.3 Muros de ala	118
CAPÍTULO VI: ESTUDIOS DE MECÁNICA DE SUELOS Y DISEÑO DE	
PAVIMENTOS	
6.1.1 Introducción	119
6.1.1.1 Definición de pavimento	119
6.1.1.2 Nomenclatura y función de las diferentes capas de pavimento.	120
6.1.2 Metodología empleada para el diseño	127
6.1.2.1 Generalidades	127
6.1.2.2 Factores técnicos que intervienen en el método AASHTO	128
6.1.3 Diseño del pavimento	138
6.1.3.1 Tramo I	141
6.1.3.2 Tramo II	146

CAPÍTULO VII: SEÑALIZACIÓN Y SEGURIDAD VIAL	151
7.1 Introducción	151
7.2 Metodología	151
7.3 Señalización vial	152
7.3.1 Generalidades de los dispositivos de regulación de tránsito	o152
7.3.1.1 Función	152
7.3.1.2 Visibilidad	152
7.3.1.3 Uso	153
7.3.1.4 Conservación	153
7.3.1.5 Tamaño de las señales	153
7.3.1.6.1 Ubicación lateral	153
7.3.1.6.2 Ubicación longitudinal	154
7.3.1.6.3 Ubicación de las señales a lo largo de la vial	154
7.3.2 Señalización vertical y horizontal	155
7.3.2.1 Señalización vertical	155
7.3.2.1.1 Señales preventivas	155
7.3.2.1.1 Señales regulatorias	155
7.3.2.1.1 Señales informativas	156
7.3.2.2 Señalización horizontal	156
7.3.2.2.1 Diseño de la señalización horizontal	156
7.3.2.2.1.1 Líneas centrales	157
7.3.2.2.1.2 Líneas de espaldón	157
7.3.3 Señalización durante la etapa de construcción	158
7.3.3.1 Señales reglamentarias durante la etapa de construcció	n158
7.3.3.2 Señales preventivas durante la etapa de construcción	158

CAF	PÍTULO VIII: ANÁLISIS – EVALUACIÓN ESTRUCTURAL DE PUENTES .	160
8.1	Reforzamiento de puentes	160
	8.1.1 Definición	161
8.2	Acciones y procedimientos más comunes	161
	8.2.1 Refuerzo con FRP (Polímeros Reforzados con Fibras)	164
	8.2.2 Aplicación de la teoría de presfuerzo	164
8.3	Parámetros hidrológicos	165
	8.3.1 Cota de máxima crecida	167
	8.4 Características geométricas	167
	8.4.1 Puente sobre el Río Palupe	167
	8.4.2 Puente sobre el Río Pillipe	168
	8.4.3 Puente sobre el Río Llullupe	169
8.5	Determinación de la capacidad resistente	169
	8.5.1 Resistencia última soportante de las vigas puente Palupe	173
	8.5.2 Resistencia última soportante de la losa puente Pillipe	176
	8.5.3 Resistencia última soportante de las vigas puente Llullupe	177
8.6	Determinación de nuevas solicitaciones	178
	8.6.1 Puente sobre el río Palupe	178
	8.6.2 Puente sobre el río Pillipe	181
	8.6.2 Puente sobre el río Llullupe	183
8.7	Reforzamiento con polímeros reforzados con fibras de carbono	184
	8.7.1 Puente sobre el río Palupe	185
	8.7.2 Puente sobre el río I lullupe	191

CAPÍTULO IX: IMPACTO AMBIENTAL	192
9.1 Introducción	192
9.1.1 Antecedentes	192
9.1.2 Objetivo del estudio	192
9.1.2.1 Objetivo del general	192
9.1.2.2 Objetivos del específicos	193
9.1.3 Diagnóstico ambiental	193
9.1.3.1 Características climáticas	193
9.1.3.2 Geología y Geomorfología	198
9.1.3.3 Hidrología	199
9.1.3.4 Riesgos	200
9.1.4 Aspectos socioeconómicos	207
9.1.5 Determinación de las áreas de influencia	221
9.1.6 Identificación y evaluación de impactos	222
9.1.6.1 Metodología	222
9.1.6.2 Identificación de los impactos ambientales	222
9.1.6.3 Calificación y valoración de impactos	225
9.1.6.4 Jerarquización de impactos	227
9.2 Descripción de los impactos	240
9.2.1 Resultados de la evaluación de impactos	241
9.3 Plan de manejo ambiental	242
9.3.1 Programa de mitigación de impacto ambiental	243

CAPÍTULO X: COSTOS24
10.1 Cálculo de volúmenes de obra24
10.2 Análisis de precios unitarios25
10.3 Presupuesto referencial
10.4 Costos indirectos
10.5 Cronograma de ejecución de obras28
10.6 Cálculo del Valor Actual Neto29
10.6.1. Cálculo del valor actual neto29
10.6.1.1. Valor actual neto económico29
10.6.1.2. Valor actual neto financiero29
10.6.2. Cálculo de la tasa interna de retorno29
10.6.2.1. Tasa interna de retorno económico29
10.6.2.2. Tasa interna de retorno financiero29
CAPÍTULO XI: CONCLUSIONES Y RECOMENDACIONES30
11.1 Conclusiones30
11.2 Recomendaciones30
11.3 Bibliografía30

LISTADO DE PLANOS

CAPITULO IV

DISEÑO Y DIBUJO DEL PROYECTO HORIZONTAL Y VERTICAL

IV - 01 Diseño horizontal y vertical Escala 1:1000	ABS 0+000 – 1+000
IV - 02 Diseño horizontal y vertical Escala 1:1000	ABS 1+000 – 2+000
IV - 03 Diseño horizontal y vertical Escala 1:1000	ABS 2+000 – 3+000
IV - 04 Diseño horizontal y vertical Escala 1:1000	ABS 3+000 – 4+000
IV - 05 Diseño horizontal y vertical Escala 1:1000	ABS 4+000 – 5+000
IV - 06 Diseño horizontal y vertical Escala 1:1000	ABS 5+000 – 6+000
IV - 07 Diseño horizontal y vertical Escala 1:1000	ABS 6+000 – 7+000
IV - 08 Diseño horizontal y vertical Escala 1:1000	ABS 7+000 – 8+000
IV - 09 Diseño horizontal y vertical Escala 1:1000	ABS 8+000 – 9+000
IV - 10 Diseño horizontal y vertical Escala 1:1000	ABS 9+000 – 10+000
IV - 11 Diseño horizontal y vertical Escala 1:1000	ABS 10+000 – 11+000
IV - 12 Diseño horizontal y vertical Escala 1:1000	ABS 11+000 – 12+000
IV - 13 Diseño horizontal y vertical Escala 1:1000	ABS 12+000 – 13+000
IV - 14 Diseño horizontal y vertical Escala 1:1000	ABS 13+000 – 13+861

CAPITULO V

DISEÑO DE DRENAJE VIAL

V - 01 Detalle constructivo de alcantarillas Escala indicadas

CAPITULO VII

SEÑALIZACIÓN Y SEGURIDAD VIAL

VII - 01 Señalización vertical y horizontal Escala 1:1000	ABS 0+000 - 2+000
VII - 02 Señalización vertical y horizontal Escala 1:1000	ABS 2+000 – 4+000
VII - 03 Señalización vertical y horizontal Escala 1:1000	ABS 4+000 – 6+000
VII - 04 Señalización vertical y horizontal Escala 1:1000	ABS 6+000 – 8+000
VII - 05 Señalización vertical y horizontal Escala 1:1000	ABS 8+000 – 10+000
VII - 06 Señalización vertical y horizontal Escala 1:1000	ABS 10+000 –
12+000	
VII - 07 Señalización vertical y horizontal Escala 1:1000	ABS 12+000 –
13+861	

CAPITULO VIII

ANÁLISIS – EVALUACIÓN Y REFORZAMIENTO ESTRUCTURAL DE LOS PUENTES

VIII - 01 Puente sobre el Río Pillipe

VIII - 02 Puente sobre el Río Palupe

VIII - 03 Puente sobre el Río Llullupe

LISTADO DE TABLAS

CAPITULO I

GENERALIDADES

- Tabla 1.1 Especificaciones MTOP Clases de carreteras
- Tabla 1.2 Especificaciones de caminos vecinales
- Tabla 1.3 Velocidades recomendadas
- Tabla 1.4 Velocidades recomendadas para caminos vecinales

CAPITULO II

ESTUDIOS GEOLÓGICOS Y TALUDES

- Tabla 2.1 Taludes de corte recomendados
- Tabla 2.2 Taludes de relleno recomendados

CAPITULO III

ESTUDIO Y DISEÑO GEOMÉTRICO

- Tabla 3.1 Conteo de Vehículos
- Tabla 3.2 Cálculo de Vehículo de Diseño
- Tabla 3.3 Clases de carreteras de acuerdo al TPDA
- Tabla 3.4 Valores limites de diseño adoptados
- Tabla 3.5 Gradientes longitudinales
- Tabla 3.6 Elementos de la sección transversal típica adoptada

CAPITULO IV

DISEÑO Y DIBUJO DEL PROYECTO HORIZONTAL Y VERTICAL

- Tabla 4.1 Resumen de curvas horizontales existentes
- Tabla 4.2 Coeficientes de fricción lateral

- Tabla 4.3 Tabla de peraltes, sobre anchos y longitudes X, L
- Tabla 4.4 Tabla de peralte y sobreancho
- Tabla 4.5 Valores de peralte y sobre ancho calculados y adoptados
- Tabla 4.6 Parámetros para el cálculo de la tangente intermedia mínima
- Tabla 4.7 Resumen de curvas horizontales de la nueva alineación, peralte y sobreancho
- Tabla 4.8 Distancia de visibilidad mínima de parada
- Tabla 4.9 Distancia de visibilidad de rebasamiento
- Tabla 4.10 Coeficiente K para curvas verticales convexas
- Tabla 4.11 Coeficiente K para curvas verticales cóncavas
- Tabla 4.12 Resumen de curvas verticales existentes
- Tabla 4.13 Resumen de curvas verticales de la nueva alineación

CAPITULO V

DISEÑO DE DRENAJE VIAL

- Tabla 5.1 Coeficiente de escorrentía C
- Tabla 5.1 Cálculo del caudal probable
- Tabla 5.3 Velocidades del agua con que se erosionan los diferentes materiales
- Tabla 5.4 Caudal de la sección adoptada
- Tabla 5.5 Caudal de cuencas hidrográficas
- Tabla 5.6 Diseño de alcantarillas

CAPITULO VI

ESTUDIOS DE MECÁNICA DE SUELOS Y DISEÑO DE PAVIMENTOS

- Tabla 6.1 Clases de sub-bases según granulometrías
- Tabla 6.2 Base tipo A y B según granulometría
- Tabla 6.3 Base clase 2 según granulometría

- Tabla 6.4 Base clase 3 según granulometría
- Tabla 6.5 Base clase 4 según granulometría
- Tabla 6.6 Clasificación de los ejes vehiculares
- Tabla 6.7 Valor de la resistencia de diseño
- Tabla 6.8 Niveles de confiabilidad sugeridos por la AASHTO
- Tabla 6.9 Relación nivel de confiabilidad y desviación estándar
- Tabla 6.10 Índice de servicio recomendables
- Tabla 6.11 Valores recomendables de "m" por capa estructural del estrato de base y sub-base de materiales en pavimentos flexibles
- Tabla 6.12 Espesores mínimos sugeridos

CAPITULO VII

SEÑALIZACIÓN Y SEGURIDAD VIAL

Tabla 7.1 Ubicación de las señales a lo largo de la vía en zona rural

CAPITULO VIII

ANÁLISIS – EVALUACIÓN Y REFORZAMIENTO ESTRUCTURAL DE LOS PUENTES

- Tabla 8.1 Características hidrológicas
- Tabla 8.2 Cálculo del caudal
- Tabla 8.3 Resumen de cota máxima de crecida y gálibo
- Tabla 8.4 Valores de coeficiente β₁
- Tabla 8.5 Resumen de Momentos flector último vigas del puente sobre el rio Palupe
- Tabla 8.6 Resumen de cortante último vigas del puente sobre el rio Palupe
- Tabla 8.7 Resumen de momento último resistente de las vigas del puente sobre el rio Llullupe
- Tabla 8.8 Resumen de cortante último resistente de las vigas del puente sobre el rio Llullupe

- Tabla 8.9. Cargas de nuevas solicitaciones del Puente Palupe
- Tabla 8.10. Cargas de nuevas solicitaciones del Puente Pillipe
- Tabla 8.11. Resumen de carga muerta puente Llullupe
- Tabla 8.12. Resumen de carga viva puente Llullupe
- Tabla 8.13. Dimensiones de las láminas de FRP disponibles en el mercado
- Tabla 8.14 Dimensiones de las láminas de FRP disponibles en el mercado
- Tabla 8.15. Tabla de cortante actual y cortante para camión transportador Puente Palupe
- Tabla 8.13. Resumen de refuerzo a flexión para puente Llullupe
- Tabla 8.16. Tabla de cortante actual y cortante para camión transportador Puente Llullupe

CAPÍTULO IX

IMPACTO AMBIENTAL

- Tabla 9.1 Variación de la precipitación mensual en mm Estación Nanegalito
- Tabla 9.2 Variación mensual de la temperatura en °C Estación la Perla
- Tabla 9.3 Variación mensual de la humedad relativa en % Estación la Perla
 - Tabla 9.4 Variación mensual de la evaporación en mm Estación la Perla
 - Tabla 9.5 Variación del viento medio mensual en km/h estación la perla
- Tabla 9.6 Niveles máximos de ruido permisibles según el uso del suelo
- Tabla 9.7 Concentraciones de contaminantes comunes que definen los niveles de
- alerta, de alarma y de emergencia en calidad del aire
- Tabla 9.8 Actividades que realiza la población económicamente activa
- Tabla 9.9 Nivel de dependencia de la población económicamente activa
- Tabla 9.10 Nivel de instrucción más alto al que asiste o asistió
- Tabla 9.11 Tipo de vivienda

- Tabla 9.12 Listado de acciones durante la etapa de construcción
- Tabla 9.13 Listado de acciones durante la etapa de operación y mantenimiento
- Tabla 9.14 Listado de acciones durante la etapa de cierre y abandono
- Tabla 9.15 Tabla para la calificación de la magnitud
- Tabla 9.16 Tabla para la calificación de la importancia
- Tabla 9.17 Valoración de los impactos ambientales durante la etapa de construcción
- Tabla 9.18 Valoración de los impactos ambientales durante la etapa de operación y mantenimiento
- Tabla 9.19 Valoración de los impactos ambientales durante la etapa de operación y mantenimiento
- Tabla 9.20 Resultados de la evaluación de impactos ambientales
- Tabla 9.21 Resultados de significancia de los factores ambientales
- Tabla 9.22 Impactos ambientales de mayor importancia

CAPÍTULO X COSTOS

- Tabla 9.1 Excavación y relleno para alcantarillas
- Tabla 9.2 Volumen de hormigón en muros de ala
- Tabla 9.3 Resumen de volumen de hormigón en muros de ala
- Tabla 9.4 Longitudes de tubería
- Tabla 9.5 Resumen de longitudes de tubería
- Tabla 9.6 Flujo económico del proyecto
- Tabla 9.7. Cálculo de Costos Indirectos
- Tabla 9.8. Determinación de beneficio por mejora de carretera en transporte
- Tabla 9.9. Beneficio de la zona turística por mejoramiento de la carretera
- Tabla 9.10. Ingresos generados por sectores

- Tabla 9.11. Flujo de caja económico
- Tabla 9.12. Amortización del Préstamo Anual
- Tabla 9.13. Flujo de caja Financiero.

LISTADO DE FIGURAS

CAPITULO I

GENERALIDADES:

- Figura 1.1 Puente de la Unión Nacional (Guayaquil)
- Figura 1.2 Puentes con vigas de hormigón presforzado antes de aplicar la
- fuerza de presfuerzo
- Figura 1.3 Puentes con vigas de hormigón presforzado después de aplicar la
- fuerza de presfuerzo
- Figura 1.4 Puentes con vigas de hormigón presforzado pretensado masivo en
- tierra de vigas para el puente Bahía de Caráquez San Vicente (Manabí)
- Figura 1.5 Puente sobre el río Guayllabamba

CAPITULO III

ESTUDIO Y DISEÑO GEOMÉTRICO

- Figura 3.1 Sección típica de una vía
- Figura 3.2 Sección típica existente
- Figura 3.3 Sección transversal típica adoptada

CAPITULO IV

DISEÑO Y DIBUJO DEL PROYECTO HORIZONTAL Y VERTICAL

- Figura 4.1 Elementos de una curva circular simple
- Figura 4.2 Transición del peralte
- Figura 4.3 Transición del sobre ancho en las curvas

- Figura 4.4 Tangente intermedia mínima
- Figura 4.5 Elementos de una curva vertical

CAPITULO V

DISEÑO DE DRENAJE VIAL

- Figura 5.1 Sección tipo de una cuneta
- Figura 5.2 Sección adoptada de cuneta para el proyecto
- Figura 5.3 Alcantarillas tipo I
- Figura 5.4 Alcantarillas tipo II

CAPITULO VI

ESTUDIOS DE MECÁNICA DE SUELOS Y DISEÑO DE PAVIMENTOS

- Figura 6.1 Distribución de esfuerzos en el pavimento
- Figura 6.2 Factor de equivalencia de cargas respecto al eje de 8.2 t
- Figura 6.3 Obtención del numero acumulado de ejes equivalentes

CAPITULO VII

SEÑALIZACIÓN Y SEGURIDAD VIAL

- Figura 7.1 Señalización durante la etapa de construcción
- Figura 7.2 Señalización preventiva durante la etapa de construcción
- Figura 7.3 Señalización preventiva durante la etapa de construcción transite con precaución
- Figura 7.4 Señalización preventiva durante la etapa de construcción Hombres y maquinaria trabajando

CAPÍTULO VIII

ANÁLISIS – EVALUACIÓN Y REFORZAMIENTO ESTRUCTURAL DE LOS PUENTES

- Figura 8.1 Presfuerzo longitudinal
- Figura 8.2 Presfuerzo transversal

- Figura 8.3 Diagrama de deformaciones unitarias
- Figura 8.4 Diagrama de fuerza de compresión
- Figura 8.5. Posición más crítica sobre el puente Palupe para momentos (cargas en toneladas y longitudes en metros)
- Figura 8.6. Posición más crítica sobre el puente Palupe para cortante (cargas en toneladas y longitudes en metros)
- Figura 8.7. Posición más crítica sobre el puente Pillipe para momentos (cargas en toneladas y longitudes en metros)
- Figura 8.8. Posición más crítica sobre el puente Pillipe para cortante (cargas en toneladas y longitudes en metros)
- Figura 8.9. Presentación del programa FRP
- Figura 8.10. Ingreso de datos en el programa viga 1 puente sobre el río Palupe
- Figura 8.11. Resultados obtenidos viga 1 puente sobre el río Palupe
- Figura 8.12. Distribución de las láminas de FRP viga 1 puente sobre el río Palupe
- Figura 8.13 Ingreso de datos en el programa viga 2 puente sobre el río Palupe
- Figura 8.14 Resultados obtenidos viga 2 puente sobre el río Palupe
- Figura 8.15 Distribución de las láminas de FRP viga 1 puente sobre el río Palupe

CAPÍTULO IX

IMPACTO AMBIENTAL

- Figura 9.1 Sismicidad histórica
- Figura 9.2 Amenaza sísmica y de tsunami en el Ecuador
- Figura 9.3 Nivel de amenaza sísmica por cantón en el Ecuador
- Figura 9.4 Nivel de amenaza volcánica por cantón en el Ecuador
- Figura 9.5 Nivel de amenaza por inundación por cantón en el Ecuador

Figura 9.6 Auto identificación étnica
Figura 9.7 Disponibilidad de teléfono convencional
Figura 9.8 Disponibilidad de teléfono celular
Figura 9.9 Disponibilidad de computadora
Figura 9.10 Disponibilidad de internet
Figura 9.11 Disponibilidad de TV por cable
Figura 9.12 Disponibilidad de servicio higiénico
Figura 9.13 Procedencia del agua para consumo humano en Nanegal
Figura 9.14 Procedencia del agua para consumo humano en Nanegalito
Figura 9.15 Principal combustible o energía para cocinar
Figura 9.16 Tipo de vía de acceso principal a vivienda Nanegal
Figura 9.17 Tipo de vía de acceso principal a vivienda Nanegalito
Figura 9.18 Material de paredes exteriores de vivienda Nanegal
Figura 9.19 Material de paredes exteriores de vivienda Nanegalito
Figura 9.20 Material de techo de vivienda Nanegal
Figura 9.21 Material de techo de vivienda Nanegalito
Figura 9.22 Porcentaje de personas que sabe leer y escribir
Figura 9.23 Nivel de instrucción más alto al que asiste o asistió
Figura 9.24 Tipo de vivienda

Figura 9.25 Ubicación de las parroquias Nanegalito y Nanegal

CAPÍTULO X

COSTOS

Figura 9.1 corte transversal y vista en planta de una alcantarilla Figura 9.2 corte transversal de la sección típica de cuneta Figura 9.3. Gráfica De Flujo De Caja Económico Del Proyecto

LISTADO DE ANEXOS

CAPITULO II

ESTUDIOS GEOLÓGICOS Y TALUDES

Anexo A Mapa geológico geotécnico general

CAPITULO V

DISEÑO DE DRENAJE VIAL

Anexo B Zonificación de intensidades de precipitación

Anexo C Isolíneas de precipitación TR = 25 años

Anexo D Carta topográfica replanteo de eje vial y cuenca hidrográfica

CAPITULO VII

SEÑALIZACIÓN Y SEGURIDAD VIAL

Anexo E Dimensiones de señalización vertical

Anexo F Señales preventivas

Anexo G Señales regulatorias

CAPITULO X

COSTOS

Anexo H Cotizaciones

CAPÍTULO I

1. GENERALIDADES

1.1. INTRODUCCIÓN

1.1.1. Antecedentes

Hidroequinoccio se encuentra realizando los estudios de ingeniería que permitan la construcción de varios proyectos hidroeléctricos que aprovechan el caudal del río Guayllabamba, uno de éstos, en la cuenca media alta del río es el proyecto Chespi.

Siendo necesario el dotar de un acceso adecuado a la casa de máquinas del Proyecto Hidroeléctrico, especialmente de equipo pesado de transporte, maquinaria y en general de los implementos que se requieren en esta clase de obras, se ha solicitado el diseño de la ampliación de la vía Nanegalito – Nanegal.

En este contexto la Facultad de Ingeniería Civil de la Escuela Politécnica del Ejército con el ánimo de contribuir de una manera desinteresada a al desarrollo de este importante proyecto para el país, asignó a los estudiantes Andrés Benavides y Guillermo Lugmaña para que realicen su tesis como una contribución cívica para Hidroequinoccio E.P.

En la etapa de construcción del proyecto hidroeléctrico, que tendría una duración de 2 años, se prevé un tráfico intenso de camiones pesados. Además que por el tipo de camino, los camiones circulan por el mismo carril, tanto cargados (cuando ingresan), como vacíos (cuando salen del proyecto), por lo cual se necesita realizar la ampliación de la vía existente Nanegalito –

Nanegal para evitar la obstaculización del trafico y el realizar el reforzamiento de los puentes para permitir el paso de vehículos extra pesados.

1.1.2. Área de influencia

Los habitantes tanto de Nanegalito como de Nanegal requieren movilizarse para realizar sus actividades propias lo cual genera una demanda de tráfico consecuentemente el tráfico por lo que el proyecto beneficiará directamente a las poblaciones antes mencionadas ya que mejorará el nivel de servicio que presenta la vía.

La cuenca media y alta del proyecto hidroeléctrico Guayllabamba, en el mismo que están los proyectos Chontal y Chespi, serán también beneficiados ya que el proyecto facilitará el traslado de los equipos de construcción y electromecánicos.

1.1.3. Objetivo general del estudio

Realizar la ampliación de la vía existente Nanegalito – Nanegal y el reforzamiento de los puentes sobre los ríos Palupe, Pillipe y Llullupe para permitir el tránsito de equipo pesado de transporte y evitar una saturación en la vía, disminuyendo también el tiempo de recorrido entre las parroquias Nanegalito – Nanegal

1.1.4. Objetivos específicos del estudio

- a) Determinar el estado actual de la vía Nanegal Nanegalito
- b) Realizar un estudio de cargas, para definir el diseño del pavimento y el refuerzo de los puentes sobre los ríos Palupe, Pillipe y Llullupe
- c) Definir los aspectos geológicos hidrológicos hidráulicos, que

caracterizan tanto a la vía Nanegalito - Nanegal, como a los puentes Palupe, Pillipe y Llullupe

- d) Definir la señalización necesaria en la vía Nanegalito Nanegal para que todos los dispositivos de control vehicular cumplan con las normas y especificaciones tanto en dimensiones, colores, forma, composición, ubica con y visibilidad; para que llame apropiadamente la atención del conductor y el mensaje sea transmitido de forma clara y legible
- e) Realizar el diseño de la ampliación de la vía Nanegalito Nanegal
- f) Realizar la evaluación estructural de los puentes sobre los ríos Palupe, Pillipe y Llullupe

1.1.5. Justificación del proyecto

La Matriz Energética (ME) es un sistema actualizado de información que muestra la situación energética del Ecuador, que resulta de las acciones e inacciones sobre el sector. Cuantifica la existencia, oferta y demanda de los recursos energéticos del país, revelando su potencial exportador y el grado de dependencia energética.

La matriz energética del Ecuador no hace sino reafirmar la característica de nuestro país como exportador de bienes primarios de bajo valor agregado e importador de bienes industrializados. En efecto, la contabilidad energética muestra que la producción nacional, que constituye el 90% de la oferta energética total, está concentrada en un 86% en petróleo crudo y gas natural, quedando las energías renovables (hidroelectricidad y biomasa) relegadas a un 4% de la producción nacional. En contrapartida, el segundo componente de la oferta energética, las importaciones —que son el 10% restante de la oferta—, corresponden en más del 90% a derivados de

petróleo (GLP, diesel, nafta de alto octano y otros), además, dependiendo de las circunstancias se importa electricidad y otros productos no energéticos (lubricantes, etc.).

El cambio de la matriz energética tiene varios componentes:

- a) La participación de las energías renovables debe incrementarse en la producción nacional. Para el cumplimiento de este objetivo, los proyectos hidroeléctricos del Plan Maestro de Electrificación deben ejecutarse sin dilación; y, adicionalmente, debe impulsarse los proyectos de utilización de otras energías renovables: geotermia, biomasa, eólica y solar
- b) Las importaciones de derivados de petróleo deben reducirse al mínimo posible, lo que se puede lograr sólo a través de la construcción de la Refinería del Pacífico, que permitirá garantizar la provisión de productos derivados de petróleo para el consumo doméstico y generar excedentes
- c) El petróleo crudo es, de acuerdo a varios tipos de análisis, es Con bien de bajo valor agregado, por lo que una alternativa a la actual exportación es la utilización del crudo como un insumo en la nueva refinería, lo que permitirá cambiar el perfil actual a exportaciones de derivados de petróleo, a productos de valor agregado más alto

El cambio de la matriz energética es un esfuerzo de largo plazo. La actual matriz responde a una situación estructural que para ser modificada requiere: por una parte la construcción de la infraestructura necesaria para posibilitar el cambio, a través de proyectos estratégicos cuyo estudio, diseño y construcción requieren de plazos de varios años; por otra parte, presupone el cambio estructural de la economía, la transformación del modelo de especialización, el pasar de una economía primario exportadora a una

economía productora de bienes industriales de alto valor agregado y una economía pos petrolera. Adicionalmente, las inversiones necesarias para cambiar la matriz energética requieren de cuantiosos recursos, sin embargo, la dilación en las inversiones solo traen aparejadas enormes pérdidas económicas e impactos ambientales altamente negativos que se prolongan mientras éstas no se realicen.

Para llevar el cambio de matriz energética a cabo se requiere el estudio de varios proyectos y es así como se procedió al estudio para los proyectos Hidroeléctricos Chespi y Chontal; en las subcuentas del Río Guayllabamba.

El proyecto hidroeléctrico Chespi tiene una potencia instalada de 460MW (4 turbinas Paltón – 115MW cada turbina), y tendrá una generación de energía de 3000GW-h/año.

El proyecto hidroeléctrico Chontal, tiene una potencia instalada de 184MW (4 turbinas Francis – 92MW cada turbina), y tendrá una generación de energía de 1034.4 GW-h/año.

Para tener más claro el panorama acerca de la producción de energía que tendrán los proyectos tanto Chontal como Chespi, tengamos presente la siguiente relación:

- Potencia de un foco = 60 watts
- Tiempo que el foco permanece encendido = 8 horas/día
- Potencia total usada en un mes (Ptu)

$$Ptu = 60 \text{ W} * 8 \frac{\text{h}}{\text{dia}} * 365 \frac{\text{días}}{\text{año}} * 1 \frac{16\text{W}}{1.000.000.000 \text{ W}}$$

Ptu = 0,0001752 GW-hora /año

Pt usada por 13'000.000 de focos = 0,0001752 GW $-\frac{\text{hora}}{\text{año}} * 13'000.000$ focos

Pt usada por 13'000.000 de focos = 2277,60 GW
$$-\frac{\text{hora}}{\text{año}}$$

■ Generación de energía del proyecto Chespi:

3000 GW-h/año

"Si damos un foco a cada ecuatoriano y lo mantenemos encendido durante 8 horas al día, lo podremos tener encendido durante 16 meses sin que exista deficiencia de energía del proyecto Chespi."

Generación de energía del proyecto Chontal:

1034.40 GW-h/año

"Si damos un foco a cada ecuatoriano y lo mantenemos encendido durante 8 horas al día, lo podremos tener encendido durante 6 meses sin que exista deficiencia de energía del proyecto Chontal."

Para la construcción de estos Proyectos, se requiere realizar la ampliación de vías existentes, que permitan transitar el equipo pesado, maquinaria y en general los implementos que se requieren en esta clase de obras.

Este acceso posibilitará beneficiar a sectores que se encuentren ubicados a lo largo de la vía, entre los cuales están las poblaciones Nanegalito, Palupe, La Playa, San Miguel De Pagchal, Corumfo, Cartagena, Mira Cruz y Nanegal.

Las características geométricas actuales de la vía Nanegalito – Nanegal y la capacidad de carga de los distintos puentes que conforman la vía, aparentemente no cumplen las solicitaciones adecuadas para el tipo de cargas a las cuales estos van a estar expuestos, por lo que es necesario la ampliación de la vías y refuerzo de los puentes.

1.2. GENERALIDADES

1.2.1. Definición de vías

Una carretera es una infraestructura de transporte especialmente acondicionada dentro de una faja topográfica de terreno denominada derecho de vía, con el propósito de permitir la circulación de vehículos de manera continua en el espacio y en el tiempo, con niveles adecuados de seguridad y comodidad.

Una vía debe ser compatible con el medio ambiente, adoptando en lo posible a la topografía natural, a los usos del suelo y al valor de la tierra y procurar mitigar o minimizar los impactos ambientales.¹

1.2.2. Importancia de las vías

En la época previa a la conquista española, los Incas poseían un eficiente sistema de caminos, los cuales estaban conectando a todo el imperio; el sistema también estaba constituido por puentes de cuerdas los cuales unían puntos de las montañas, para realizar el traslado de la mercancía en el menor tiempo posible.

En la actualidad en casi la totalidad de países latinoamericanos cuentan con sistemas viales aceptables. Los países que lideran la lista con mayor

7

¹ Grisales, J. C. (2005). *Diseño Geométrico de Carreteras*. Bogota: ECOE.

cantidad de kilómetros de vías mejoradas y asfaltadas son Argentina, Brasil y México.

En 1928, se llegó un acuerdo entre los países del sector, el cual tiene objeto construir una carretera Panamericana que uniera el continente Americano a todo largo, teniendo como origen Alaska (EUA) y como punto final la Tierra de Fuego (Argentina).

En vista de los antecedentes mencionados se puede decir que, el sistema vial de una nación es un aspecto fundamental para el desarrollo económico, ya que promueve:

- a) El comercio
- b) Turismo
- c) Movimiento de personas o bienes
- d) Movimiento comercial de personas transporte público
- e) Comunicación adecuada entre diferentes comunidades

1.2.3. Clasificación de las vías

El diseño de una carretera o de un tramo de la misma debe basarse entre otras informaciones en los datos sobre tráfico, con el objeto de compararlo con la capacidad o sea con el volumen máximo de vehículos que una carretera puede absorber. El tráfico, en consecuencia, afecta directamente a las características del diseño geométrico.

La información sobre tráfico debe comprender la determinación del tráfico actual (volúmenes y tipos de vehículos), en base a estudios de tráfico futuro utilizando pronósticos.

En los proyectos viales, cuando se trata de mejoramiento de carreteras

existentes (rectificación de trazado, ensanchamiento, pavimentación, etc.) o de construcción de carreteras alternas entre puntos ya conectados por vías de comunicación, es relativamente fácil cuantificar el tráfico actual y pronosticar la demanda futura. En cambio, cuando se trata de zonas menos desarrolladas o actualmente inexplotadas, la estimación del tráfico se hace difícil e incierta. Este caso se presenta con frecuencia en nuestro país, que cuenta con extensas regiones de su territorio total o parcialmente inexplotadas. ²

El Ministerio de Transporte y Obras Públicas ha determinado la siguiente clasificación para las vías en función del Transito Promedio Diario Anual (TPDA), de acuerdo a la Tabla 1.1 que se adjunta:

Tabla 1.1 Especificaciones MTOP – Clases de carreteras

Clase de carretera	TPDA
R-I o R-II	más de 8000
I – orden	de 3000 – 8000
II – orden	de 3000 – 8000
III – orden	de 1000 – 3000
IV – orden	de 100 – 300
V – orden	menos de 100

El TPDA indicado es el volumen de tráfico promedio diario anual proyectado a 15 o 20 años. Cuando el pronóstico del tráfico para el año 10 sobrepasa los 7000 vehículos debe investigarse la capacidad de una carretera, cuando se efectúa el diseño definitivo, debe usarse el trafico en vehículos equivalentes

Fuente: MOP. (2003). Normas de Diseño Geometrico.

_

² MOP. (2003). *Normas de Diseño Geometrico*. Quito.

En La Tabla 1.2 se indica las clases de caminos vecinales de acuerdo al Ministerio de Transporte y Obras Públicas

Tabla 1.2 Especificaciones Caminos vecinales

Clase de	VPD (vehículo		Esti	ructura	
camin o vecinal	promedio diario)	Secció n	Sub-base	Base	Capa de rodadura
VII	más de 250	6m	Material seleccionado	Granular	D.T.S.B.
VI	de 150 – 250	6m	Material seleccionado	Granular	D.T.S.B.
V	Hasta 150	6m	Material seleccionado	Granular	D.T.S.B.
V-e	Hasta 150	6m		Granular	Empedrada
IV	Hasta 100	4m			Capa granular de rodadura sin revestimiento
IV-e	Hasta 100	4m			Empedrada

Fuente: MOP. (1985). Manual de diseño de caminos vecinales.

1.2.4. Velocidad de diseño

Es la velocidad máxima a la cual los vehículos pueden circular con seguridad sobre un camino cuando las condiciones atmosféricas y del tránsito son favorables. Esta velocidad se elige en función de las condiciones físicas y topográficas del terreno, de la importancia del camino, los volúmenes del tránsito y uso de la tierra, tratando de que su valor sea el máximo compatible con la seguridad, eficiencia, desplazamiento y movilidad de los vehículos. Con esta velocidad se calculan los elementos geométricos de la vía para su alineamiento horizontal y vertical.

Teniendo presente que es deseable mantener una velocidad constante para

el diseño de cada tramo de carretera la selección de una velocidad de diseño conveniente es fundamental. Los cambios en la topografía pueden obligar hacer cambios en la velocidad de diseño en determinados tramos. Cuando esto sucede, la introducción de una velocidad de diseño mayor o menor no se debe efectuar repentinamente, sino sobre una distancia suficiente para permitir al conductor cambiar su velocidad gradualmente, antes de llegar al tramo del camino con distinta velocidad de proyecto. La diferencia entre las velocidades de dos tramos contiguos no será mayor a 20 km/h. Debe procederse a efectuar en el lugar una adecuada señalización progresiva, con indicación de velocidad creciente o decreciente.³

1.2.4.1. Aspectos básicos para la elección de la velocidad de diseño

a) Naturaleza del terreno

Es comprensible que un camino ubicado en una zona llana o poco ondulada ha de tener una velocidad mayor que un similar de una zona muy ondulada o montañosa, o que uno que atraviesa una zona rural respecto del que pasa por una zona urbana.

b) La modalidad de los Conductores

Un conductor no ajusta la velocidad de su vehículo a la importancia que reviste un camino en el proyecto, sino a las limitaciones que le imponen las características del lugar o del tránsito y a sus propias necesidades o urgencias. Circula a una velocidad baja cuando existen motivos evidentes de tal necesidad. Como consecuencia de lo anterior existe una tendencia a

³ MOP. (2003). *Normas de Diseño Geometrico*.

viajar a una velocidad elegida instintivamente, la que puede ser alta para el camino. Este punto debe de estudiarse en detalle, dado que al proyectar ha de preferirse un valor que corresponda al deseo de la mayoría de los usuarios.

c) El factor económico

Las consideraciones económicas deben dirigirse hacia el estudio del costo de operación de los vehículos a velocidades elevadas, así como el alto costo de las obras destinadas a servir un tránsito de alta velocidad. 4

El MTOP ha determinado valores de velocidades recomendadas para las clases de carreteras, en función del tipo de terreno.

Tabla 1.3 Velocidades Recomendadas en Km/h

		Tipo de terreno											
Clase de carretera	Llano	Ondulado	Montañoso										
R-I o R-II	120	110	90										
1 - orden	110	100	80										
2 - orden	110	100	80										
3 - orden	100	80	60										
4 - orden	90	70	60										
5 - orden	70	60	50										

Fuente: MOP. (2003). Normas de Diseño Geometrico.

٠

⁴ MOP. (2003). *Normas de Diseño Geometrico.* Quito.

Tabla 1.4 Velocidades Recomendadas Para Caminos Vecinales en Km/h

		Tipo de ter	reno				
Clase de carretera	Llano	Ondulado	Montañoso				
VII	60	50	40				
VI	60	50	40				
V	50	35	25				
Ve	50	35	25				
IV	50	35	25				
IVe	50	35	25				

Fuente: MOP. (1985). Manual de diseño de caminos vecinales.

1.2.5. Definición de puentes

Los puentes son estructuras que proporcionan una vía de paso sobre el agua, una carretera, ó una vía férrea, pero también pueden transportar tuberías líneas de distribución de energía, y tienen que contar por lo menos, con un carril para circulación del tráfico u otras cargas rodantes y que tenga un claro, medido a lo largo del centro de la vía, que exceda de 6.00 metros entre los apoyos en los estribos ó entre arranques de los arcos, ó los extremos de las aberturas exteriores en cajas múltiples. ⁵

1.2.6. Clasificación de los puentes

Puentes de mampostería de piedra en arco

_

⁵ Jáenz, P. M. (s.f.). *scribd*. Recuperado el 9 de agosto de 2011, de http://es.scribd.com/doc/37271541/Monografia-Puentes-Aashto-Lrfd-2007-Ing-Salvador-y-Pedro

Son los puentes de mayor antigüedad en el mundo. En Europa se pueden encontrar puentes de mampostería de piedra en arco (como parte de acueductos romanos), construidos hace más de 2000 años.

Aprovechan las características beneficiosas de la geometría en arco (trabajan fundamentalmente a compresión y limitan o eliminan totalmente el efecto de la flexión). Algunas de las vías más antiguas del país, cuyo trazado todavía se mantiene como alterno, aún conservan viejos puentes de piedra en arco. Prácticamente ya no se construyen más puentes de este tipo pues no existe la mano de obra calificada para este tipo de obras.

Puentes de madera

Los puentes de madera se han utilizado eficientemente. La gran ventaja de este tipo de puentes es la reducción de costos al utilizar materiales y mano de obra de la misma zona.

La mayor parte de puentes de madera construidos en el país son pequeñas estructuras rústicas en caminos de segundo, tercer orden y vecinales. El principal problema de los puentes de madera es la necesidad de proporcionarles un adecuado mantenimiento para tener un tiempo de vida aceptable, caso contrario, en lugar de constituir una solución se convierten en un riesgo.

Puentes de concreto reforzado

Los puentes de concreto reforzado, en carreteras de primero y segundo orden, han tenido éxito en el Ecuador con luces de hasta 25 m. Luces superiores son inconvenientes para este tipo de puentes por el incremento desmedido de su peso y de su costo. La gran experiencia que se tiene con el

manejo del concreto reforzado, que se traduce en mano de obra y dirección técnica calificadas, y también en disponibilidad de los materiales, ha permitido su construcción en todas las regiones del país.

El principal problema constructivo constituyen los encofrados que, en su configuración tradicional, solamente pueden ser utilizados en cauces de ríos poco profundos y poco caudalosos. En ríos de cauces profundos se suele construir un encofrado tipo arco para no provocar un incremento excesivo de costos de construcción (se construye un puente provisional de madera que sirve de encofrado para el puente definitivo de concreto).

Figura 1.1 Puente de la Unión Nacional (Guayaquil)

Puentes de concreto Presforzado:

Generalmente se han utilizado dos variantes constructivas de esta tecnología consistentes en la fundición y tensado (tesado) in situ, o la fundición y tensado previo, y el lanzamiento posterior de las vigas.

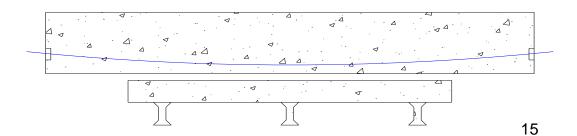


Figura 1.2 Puentes con vigas de hormigón presforzado - antes de aplicar la fuerza de presfuerzo

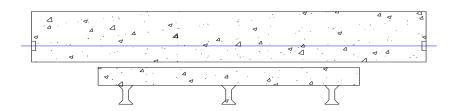


Figura 1.3 Puentes con vigas de hormigón presforzado – después de aplicar la fuerza de presfuerzo

Figura 1.4 Puentes con vigas de hormigón presforzado – pretensado masivo en tierra de vigas para el puente Bahía de Caráquez – San Vicente (Manabí)

Puentes de acero

Los puentes de acero construidos en el país han permitido alcanzar luces importantes. Los puentes sobre vigas metálicas pueden vencer luces de hasta 45 m, mientras que con puentes metálicos en celosías se ha alcanzado los 80 m, y con puentes metálicos en arco se ha llegado hasta 100 m, constituyendo luces importantes.

Los puentes metálicos tienen dos tipos de limitantes: su costo por utilizar materiales importados, y la necesidad de un mantenimiento considerable.

Figura 1.5 Puente sobre el río Guayllabamba

1.2.7. Evaluación

1.2.7.1. Definición

En la evaluación del aspecto estructural se determina la capacidad real de carga, o bien, se define el margen de seguridad entre las acciones aplicadas y las resistencias de los elementos estructurales.

En el aspecto funcional, se determina las capacidades hidráulica y vial del puente y se comparan con las solicitaciones a la que está sometido el mismo.

1.2.7.2. Determinación de la capacidad resistente de un puente

Para conocer la capacidad resistente de un puente, es necesario realizar un modelo matemático del mismo de la manera más fiel posible.

La confección de este modelo tiene una parte fácil y otra difícil. La primera, la fácil, es la que se refiere a las características geométricas de vinculación y

de contorno, determinadas por la tipología del puente en estudio. La segunda, la difícil, es determinar cuáles son las propiedades resistentes del material que lo constituye. El área, la inercia, el módulo de elasticidad no son sino las manifestaciones más elementales de modelo de material que constituye un puente; Estas propiedades se pueden suponer cuando se trata de obra nueva, pero en un estado determinado de deterioración, es difícil suponer dichas propiedades.

Se deduce que la determinación de la capacidad resistente de un puente en un momento determinado no deja de ser una aproximación más o menos exacta y que sin embargo es imprescindible realizar para que la toma de decisión este lo más fundamentada posible.

1.2.7.3. Acciones a tomarse

- a) Acción 0.- No realizar ninguna acción, para mejorar el estado actual del puente
- b) Acciones normativas.- Colocación de señales, las cuales indiquen una limitación de uso (imposición de un peso máximo, reducción de velocidad, restricción de un solo carril, etc.)
- c) Acciones preventivas.- Realizar inspecciones más frecuentes, para monitorear las grietas, deformaciones y asentamientos.
- d) Acciones ejecutivas.- Se refiere a la realización de obras en el puente,
 entre las cuales se distinguen cinco niveles de atención:
 - ✓ Mantenimiento, Rehabilitación
 - ✓ Reparación, Modernización
 - ✓ Sustitución

Para el análisis económico de cada alternativa, debe determinarse:

- a) La extensión de la vida del puente, que se logra con las obras de conservación
- b) Costos y beneficios totales, en los costos está incluido el costo de construcción, conservación y operación, en cuanto a los beneficios a evaluar se analizara los beneficios inmediatos y futuros en función de la evolución prevista del tránsito adicionando el valor de rescate de la estructura al término de la vida económica.
- c) Obtención de la decisión económica calculando los Valores Actuales
 Netos.

1.2.8. Refuerzo de puentes

1.2.8.1. Definición

El reforzamiento de puente, se puede considerar que se lo realiza debido a una o varias de las siguientes razones, entre ellas:

- Aumento de capacidad debido a algún cambio en el uso (incremento de carga)
- Da
 ño de partes estructurales (envejecimiento, sismo, impacto)
- Mejoramiento de la capacidad de servicio (control de fisuras)
- Modificación del sistema estructural (nuevas aberturas en elementos)
- Errores de diseño o construcción (deficiencia de refuerzo)
- Actualización a nuevos códigos (aumento de resistencia sísmica)

1.2.8.2. Acciones y procedimientos más comunes

Fibra de carbono

La pega de platinas de acero ha sido una herramienta para la industria de reparación del concreto en los últimos treinta años. Sin embargo el alto costo de instalación de las platinas, usualmente pesadas, las dificultades con el traslapo de las platinas, y lo relacionado con la corrosión de las platinas de acero han limitado el uso de esta técnica. Debido a sus excelentes propiedades de resistencia-peso, a la reciente reducción en los costos de materiales, a la relativa ilimitada longitud del material, a la comparativamente simple instalación, y la inmunidad a la corrosión, hacen que el uso de FRP represente una solución ventajosa para el reforzamiento adherido externamente.

Las láminas FRP (Polímeros Reforzados con Fibras) son una combinación de fibras de carbono y una matriz de resina epóxica y tienen en dirección de la fibra una resistencia y una rigidez muy altas, así como un comportamiento excepcional a la fatiga, a demás su densidad es muy baja.

Las fibras están colocadas en dirección longitudinal correspondiendo a la dirección de la solicitación, de esta forma la lámina tiene una estructura unidireccional. Las características mecánicas en dirección longitudinal son determinadas por el tipo de fibra y por el contenido en volumen de fibras. La lámina FRP no solo causa un reforzamiento sino con el aumento al momento de inercia también produce una rigidización de la sección.

Esta rigidización conlleva a esfuerzos del acero más pequeños y a una reducción en las deformaciones, así como a ancho de fisuras menores. Esto es influenciado positivamente por las buenas características de adherencia de la lamina FRP al concreto.

Aplicación de la teoría de presfuerzo

Consiste en cables de acero de presfuerzo, con los cuales se obtiene una resultante normal a la superestructura del puente que ayuda a absorber los momentos y cortantes producidos por las cargas vivas actuales.

CAPÍTULO II

2. ESTUDIOS GEOLÓGICOS Y TALUDES

2.1. GENERALIDADES

La topografía de un lugar, es el resultado del equilibrio dinámico entre las fuerzas resistentes entre los materiales que constituyen el suelo y las solicitaciones exteriores. Cuando el hombre ingresa en este equilibrio mediante la creación de obras de ingeniería perturba este equilibrio, debido a que su intervención puede acelerar o renovar los procesos de geológicos.

Debido a la importancia que tiene las vías de comunicación, tales como caminos, ferrocarriles, obras como construcción de presas de tierra, etc.

Conllevada al diseño y construcción de taludes con una gran importancia para la ingeniería, debido a que su correcto diseño mejorara la funcionabilidad y durabilidad de dichas obras de ingeniería.

2.2. DEFINICIÓN DE TALUD

Dependiendo de su origen, si es hecho por el hombre o por la naturaleza.

Si es hecho por el hombre se define como, la superficie inclinada con respecto a la horizontal, que adopta una estructura de tierra permanentemente. Si se produce de forma natural, de la define como ladera.

2.3. IMPORTANCIA DE LA ESTABILIDAD DE TALUDES

Un buen cálculo de estabilidad permitirá evitar deslizamientos que arriesguen los bienes y vidas de los pobladores adyacentes a los taludes, así

como también la funcionabilidad de una obra de ingeniería como es el caso de una vía.

2.4. FACTORES QUE INFLUYEN EN LA ESTABILIDAD DE UN TALUD

La disminución gradual de la resistencia al esfuerzo cortante y el incremento de fuerzas exteriores como sobrecarga o la acción de la gravedad puede resultar en un deslizamiento.

Existen otros factores que influyen en los deslizamientos, como son:

a) Geológicos.-

Las estructuras geológicas, inclinaciones de las diferentes capas del suelo influye en los deslizamientos, la constitución mineralogista y espesores de los materiales, influyen en mayor o menor grado al originarse un movimiento de suelo. Mediante mapas geológicos y topografía se puede predecir preliminarmente inestabilidad en los taludes.

b) Hidrológicos.-

Agua superficial.- El ingreso de agua en grietas produce presión hidrostática, también en los poros aumenta la presión; reduciendo la capacidad resistente a corte de los suelos, lo que conlleva a deslizamientos. En casos de suelos finos, el efector del agua que ingresa después de una larga sequia puede ser perjudicial, debido a la sequia los suelos se que grietan y el agua ingresa con mayor facilidad y recorrer fácilmente por estas grietas, reduciendo la capacidad resistente a corte del suelo, terminando en fallas progresivas en esta zona.

Aguas subterráneas.- Las aguas subterráneas conllevan el mismo riesgo que las superficiales debido a que ejercen presión sobre las partículas del suelo y reduce la capacidad resistente al corte de los suelos. En el caso de suelos finos las corrientes subterráneas de agua se llevan las partículas finas de los suelos dejando grietas y debilitando la estabilidad del talud.

c) Topográficos.-

La pendiente de las laderas es empinada como resultados de movimientos tectónicos, asentamientos o levantamientos de la corteza terrestre, el aumento de la pendiente por efecto natural o intervención del hombre produce cambios en los esfuerzos internos de la masa y equilibro, aumentando los esfuerzos cortantes del talud.

d) Vegetación.-

La deforestación causa inestabilidad en los taludes, debido a que la vegetación regula la incidencia del medio ambiente, evitando contracciones, cambios de humedad y temperatura en los suelos, las raíces de los arboles ayudan a estabilizar el talud actuando como anclaje y absorbiendo partes de agua subterráneas minimizando la reducción en los esfuerzos de cortante por efector del agua.

e) Meteorización

Alteraciones químicas de los suelos, como hidratación, cambios iónicos en arcillas, alteración de algunas rocas conllevan a originar deslizamientos.

f) Sobrecargas

El aumento del esfuerzo cortante en una ladera debido a sobrecargo proveniente de construcción de terraplén o colocación de desperdicios provoca el aumento del esfuerzo cortante y si este límite resistente del suelo es rebasado conlleva a un deslizamiento.

g) Impactos y Vibraciones

Las vibraciones producto de sismos, explosiones, etc. Si son de gran magnitud pueden afectar la estabilidad de taludes.

2.5. GEOLOGÍA REGIONAL

Litoestratigrafía

Parte de la estratigráfica es la Litoestratigrafía, la cual clasifica estratos según su carácter litológico para poder correlacionarlos. La Litoestratigrafía es un conjunto de estratos de rocas sedimentarias, ígneas, metamórficas o la asociación de dos o más de estos tipos de rocas, distinguibles o delimitables.

Como se puede observar en el mapa del Anexo A, Mapa Geológico General; el tramo en estudio atraviesa en su totalidad por depósitos superficiales: Formación Silante, Formación De San Tadeo Y Tonalita.

2.6. ASPECTOS GEOLÓGICO - GEOTÉCNICOS DEL TRAZADO

Procesos Geodinámicas

La estabilidad del terreno es consecuencia directa de la naturaleza geológica de los materiales que lo constituyen, de su comportamiento geomecánico,

exposición y del impacto de factores externos como saturación, sismos y factores antrópicos o lo que es lo mismo, que un terreno sea inestable cuando a las causas condicionantes se suman, causando el fenómeno de inestabilidad, así, una causa desencadenante pequeña puede ser suficiente para provocar una sensible aceleración de la inestabilidad.

En forma general, los fenómenos de inestabilidad se clasifican en: Deslizamientos, caídas de rocas y suelo, flujos de material y derrumbes o depósitos de pie de talud; los que se da una breve explicación.

- Deslizamientos: Este movimiento consiste en un desplazamiento de corte a lo largo de una o varias superficies, que pueden detectarse fácilmente o dentro de una zona relativamente delgada. El movimiento puede ser progresivo, o sea, que no se inicia simultáneamente a lo largo de toda, la que sería, la superficie de falla. Los deslizamientos pueden ser de una sola masa que se mueve o pueden comprender varias unidades o masas semiindependientes.
 - Deslizamientos rotacionales: generalmente la falla es cóncava y ocurren en depósitos de arcillas o lutitas uniformes.
 - Deslizamientos traslacionales: generalmente son fallas planas,
 en estratos de baja resistencia.
- Caída de rocas y suelo: Movimientos de material rocoso, que pierde estabilidad a lo largo del talud, se produce de forma rápida.
- Flujos de material: Movimientos rápidos y violentos, de una sección del talud, debido a la saturación de materiales inestables, dependiendo de su grado de saturación se clasifican e flujos de tierra o lodo. Los flujos secos provienen de las partes superficiales meteorizadas de las rocas que se

desprenden por efecto del agua y viento.

Derrumbes: Corresponden a caídas de masas de roca, movimientos rápidos y violentos resultantes de la acción de la gravedad y que afectan a materiales rígidos y fracturados. Los bloques pueden rodar y rebotar para luego estabilizarse en una zona llamada «de esparcimiento». Mientras los pequeños derrumbes son frecuentes en las vertientes de fuerte pendiente, los derrumbes en gran masa son mucho más raros pero siempre espectaculares.

En base a esta clasificación, podemos señalar que, el tipo de inestabilidades presentes en los taludes de las laderas naturales y taludes de corte por donde atraviesa el proyecto, es del tipo: Flujos de materiales secos y húmedos y caídos de rocas y suelo; que en la actualidad no son de magnitud sino más bien son puntuales. En general como se ha mencionado, la estabilidad de la vía tal como se presenta no tiene problemas de magnitud.

2.7. ESTUDIO GEOLÓGICO DE TALUDES

2.7.1. Taludes típicos para cortes

Para dar una estimación de los taludes de corte, se ha tomado como referencia las inclinaciones de taludes de corte construidos en la carretera existente del proyecto; así como también, se ha tratado de zonificar a las unidades litológicas presentes en el trazado de la vía en estudio que tienen similares condiciones geológico – geotécnicas para poder estimar secciones tipo para corte de acuerdo al tipo de material.

En base a esta consideración, se recomiendan las siguientes secciones para taludes de corte, como se indica en la Tabla 2.1

Tabla 2.1 Taludes De Corte Recomendados

Abscisa	Geológica	Tipo de material	Talud de corte recomendado
0+000.0 - 0+500.0	Formación San Tadeo	Conglomerados <i>g</i> , arcillas <i>ar</i>	0.75 (H) : 1 (v)
0+500.0 - 4+700.0	Formación Silante	Lutita roja <i>luv</i> , Conclomerado volcánico <i>gv</i> , arenisca volcánica <i>av</i> ,	0.75 (H) : 1 (v)
4+700 – 13+861.79	Tonalita	Tonalita td	0.75 (H) : 1 (v)

Se provee que no existan taludes con una altura mayor a 15 metros por lo que no es necesaria la construcción de bermas.

2.7.2. Taludes típicos para rellenos

Los rellenos se estima serán construidos con suelo granular o suelo fino, para lo cual se recomienda las siguientes pendientes.

Tabla 2.2 Taludes De Relleno Recomendados

Tipo de suelo	Talud de Relleno Recomendado
Suelo granular	1.5 (H) : 1 (V)

CAPÍTULO III

3. ESTUDIOS PRELIMINARES

3.1. CARACTERÍSTICAS ACTUALES DEL PROYECTO

3.1.1. Características del proyecto

Dadas las características geomorfológicas del corredor, se ha considerado tipo de terreno montañoso, de acuerdo con las definiciones que se registran a continuación:

- a. Carreteras en terreno llano.- Se considera carreteras en terreno llano a
 las que tienen una pendiente transversal del terreno natural de 0 5%
- b. Carreteras en terreno Ondulado.- Tiene una pendiente transversal del terreno natural de 5 – 25 %. El movimiento de tierras es moderado, permite alineamientos más o menos rectos, sin mayores dificultades en el trazado y la construcción de la obra básica de la carretera.
- c. Se considera carreteras en terreno Montañoso a las que tienen una pendiente transversal del terreno natural de 25 – 75 %.

3.1.2. Clase de carretera

La vía existente de acuerdo a las secciones típicas que tiene vigentes el Ministerio de Obras Publicas en las Normas de Diseño geométrico de

carreteras de 2003, corresponde a un Camino vecinal tipo V, de 1 calzada y 2 carriles sin espaldones.

3.1.3. Sección de la vía

La sección de la vía es un corte transversal al eje longitudinal de la vía, el cual permite definir la disposición y dimensiones de los elementos que forman la vía, tales como derecho de vía, el ancho de la explanación, el ancho de la plataforma, la calzada, los carriles, los espaldones, las cunetas, los taludes laterales y otras elementos complementarios.

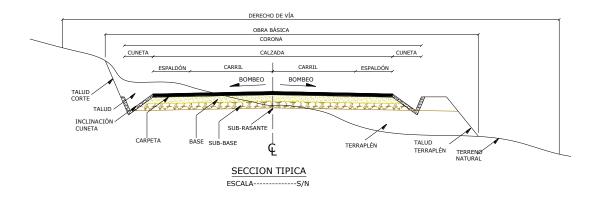


Figura 3.1 Sección típica de una vía

Obra básica.- Es la infraestructura del camino, es decir que está compuesta por los cortes y terraplenes que origina el movimiento de tierra, las obras de drenaje transversales y longitudinales.

Derecho de vía.- Es el área, de propiedad privada, destinada para futuras ampliaciones de la vía si la demanda de tráfico así lo determina.

Obra básica.- Distancia horizontal medida desde el eje hacia el borde exterior de la cuneta.

Corona.- Esta conformada por la calzada y espaldones.

La calzada.- Sección destinada para la circulación vehicular, conformada por un o mas carriles, cada carril permitirá la circulación de una fila de vehículo. Se suministrara el ancho de la calzada acorde al tipo de vía, velocidad de diseño y tipo de terreno.

Los espaldones.- Sirven como confinamiento para la capa de rodadura, controlan la humedad y erosiones, sirve como parada provisional en caso de emergencia. Se selecciona un ancho adecuado en función de tipo de vía, velocidad de diseño y tipo de terreno.

Bombeo.- Es la pendiente transversal de la calzada que va desde el eje hacia los bordes, que tiene como función el facilitar el escurrimiento de las aguas hacia las cunetas.

Las cunetas.- Son zanjas, cuya función es canalizar y drenar las aguas superficiales de la carretera. Sus dimensiones depende del análisis hidráulico del lugar en donde se encuentra la vía, su forma varia pero la mas típica es triangular, además, estás pueden ser revestidas o no.

Los taludes.- Superficie lateral inclinada que se le dan al terreno, cuyas inclinaciones de determinan median estudios geológicos y geotécnicos.

Rasante.- Es la superficie de la capa de rodadura.

Sub Rasante.- Es la superficie, sobre el cual se coloca las diferentes capa de la estructura del pavimento.

3.1.3.1. Sección típica existente

El ancho promedio de la vía es 8 m, capa de rodadura de 6 m la carretera tiene dos carriles de circulación (uno en cada sentido), y cunetas de 1.00 *

0.30 m (sección triangular), bombeo del 2% y la estructura del pavimento es la siguiente:

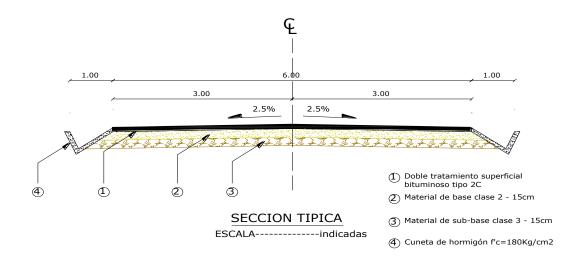


Figura 3.2 Sección típica existente

3.2. ESTUDIOS DE TRÁFICO VEHICULAR

3.2.1. Generalidades

La carretera es una infraestructura de transporte cuyo fin es permitir la circulación de vehículos, con niveles adecuados de seguridad y comodidad.

Puede estar constituida por una o varias calzadas, uno o varios sentidos de circulación, de acuerdo con las exigencias de la demanda de transito y la clasificación funcional de la misma.

Por lo tanto el estudio de tráfico, es uno de los factores más importantes que deben ser considerados en el diseño, debido a que una vez proyectada, la vía debe tener la capacidad estructural suficiente para absorber las cargas impuestos por los vehículos que la transitan a largo plazo.

Esta información debe comprender el tráfico actual y el tráfico proyectado a futuro mediante métodos de proyecciones estadísticas.

3.2.2. Aforos de tráfico

Es el método de conteo de vehículos, que tiene por objetivo determinar los volúmenes de tráfico real.

La información del tráfico existente en el proyecto fue determinado en el estudio realizado por Hidroequinoccio, cuyos resultados para el año 2010 son:

Tabla 3.1. Conteo de Vehículo

Tipo de vehículos	Sentido	Núm. vehículos	%
Livianos	2 Sentidos	125	72.67
Buses	2 Sentidos	15	8.72
Camiones 2 ejes	2 Sentidos	14	8.14
Camiones 3 ejes	2 Sentidos	18	10.47

Fuente: Hidroequinoccio P.E.

3.2.3. Pronóstico del tráfico

El pronóstico del tráfico está en función de la tasa de crecimiento poblacional de la región, situación económica, social y política del sector donde se desarrolla la vía.

Los diseños se realizan para una vida útil de 20 años, el mismo que está en relación con tres tipos de tráfico que son:

a) Tráfico Proyectado.- Es la cantidad de vehículos esperada en un determinado tiempo de vida útil, es calculado con el siguiente método exponencial.

$$Tp = Ta (1 + i)^n$$

Siendo:

Tp: tráfico proyectado

Ta: Tráfico actual (transformado a vehículo de diseño)

I: tasa de crecimiento vehicular

N: periodo de proyección en años

b) Tráfico generado.- Es el tráfico que se origina debido al mejoramiento de la carretera existente, se estima que este tráfico se produce en un tiempo de 2 a 3 años y que corresponde a 25% del tráfico proyectado.

$$Tg = Tp \times 0.25$$

c) Tráfico desviado.- Es el tráfico es atraído por diferentes factores como puede ser el ahorro de tiempo, combustible, etc.

$$Td = Tp \times 0.20$$

Para la determinación de la tasa de crecimiento "i" se debe de tener en cuenta el crecimiento de la población.

3.2.4. Vehículo de diseño

Está sometido a una transformación de carga promedio, cuyos factores son los siguientes:

- 4 livianos = 1 vehículo de diseño
- 1 pesado = 1 vehículo de diseño
- Camión de 2 ejes = 1.5 vehículos de diseño
- Camión de 3 ejes = 2.5 vehículos de diseño

Tabla 3.2. Cálculo de Vehículo de Diseño

Tipo de vehículos	Sentido	Núm. Veh.	%	Factor de conversión	Vehículo de diseño
Livianos	2 Sentidos	125	72.67	0,25	31.25
Buses	2 Sentidos	15	8.72	0,1	15

Camiones 2 ejes	2 Sentidos	14	8.14	1,5	21
Camiones 3 ejes	2 Sentidos	18	10.47	2,5	20
				TOTAL	87.25

Tráfico proyectado (Tp)

$$Tp = Ta (1 + i)^n$$

$$Tp = 87.25 * (1 + 0.02)^{20}$$

Tp = 129.64 vehículos/día

Tráfico desviado (Td)

$$Td = Tp x 0.20$$

$$Td = 129.64 \times 0.20$$

Td = 25.93 vehículos/día

Tráfico generado (Tg)

$$Tg = Tp \times 0.25$$

$$Tg = 129.64 \times 0.25$$

Tg = 32.41 vehículos/día

TPDA proyectado

$$TPDA_{provectado} = Tp + Td + Tg$$

$$TPDA_{proyectado} = 129.64 + 25.93 + 32.41$$

$$TPDA_{proyectado} = 187.99 \approx 188 \text{ vehículos/día}$$

TPDA_{adoptado} = 200 vehículos/ día

3.3. CLASIFICACIÓN DE LA VÍA SEGÚN EL MTOP

El Ministerio de Transporte y Obras Públicas ha establecido la siguiente clasificación para las vías de acuerdo al TPDA

Tabla 3.3 Clases de carreteras de acuerdo al TPDA

Clase de carretera	TPDA
R-I o R-II	más de 8000
I – orden	de 3000 - 8000
II – orden	de 1000 - 8000
III – orden	de 3000 - 1000
<u>IV – orden</u>	<u>de 100 - 300</u>
V – orden	menos de 100

Fuente: MOP. (2003). Normas de Diseño Geométrico.

Acorde a la clasificación del MTOP, se ubica en clase IV, con un TPDA de 100 a 300 vehículos.

3.4. NORMAS DE DISEÑO

Se utilizaron las Normas de Diseño Geométrico de Carreteras – 2003, adoptadas por el Ministerio de Obras Públicas del Ecuador, el Manual de Diseño MOP-001-E y el Manual de Caminos Vecinales MTOP-1984. Estos manuales sirvieron para determinar los parámetros de diseño.

Se han utilizado valores límites en aquellos sectores en que las condiciones topográficas lo exigieron. En la tabla 3.2, se indican los valores normativos de diseño.

Tabla 3.4 Valores límites de diseño adoptados

Tipo de terreno	Velocidad de diseño (Km/h)	Pendiente Máxima (%)	Radio mínimo (m)				
Llano	60	6	110				
Ondulado	35	8	30				
Montañoso	25	12	20				

Fuente: MOP. (2003). Normas de Diseño Geométrico.

3.4.1. Velocidad de diseño

La velocidad de diseño es la velocidad seleccionada para fines del diseño vial y que condiciona las principales características de la carretera, tales como: curvatura, peralte y distancia de visibilidad, de las cuales depende la operación segura y cómoda de los vehículos. Es la mayor velocidad a la que puede recorrerse con seguridad un tramo vial, incluso con pavimento mojado, cuando el vehículo estuviere sometido apenas a las limitaciones impuestas por las características geométricas.

De acuerdo a las características geométricas existentes en la vía, y respetando las Normas vigentes, se estableció la velocidad de diseño mínima, equivalente a 25 Km/h, para montañoso.

3.4.2. Radio mínimo de curvas horizontales

Las curvas horizontales son secciones de circunferencia que une dos tangentes o alineaciones consecutivas y se caracterizan por tener un solo radio.

Las curvas horizontales deben garantizar una transición suave al pasar de alineamientos rectos a curvas circulares o viceversa, también entre dos curvas circulares de curvatura diferente.

La planta de una vía está compuesta, en primera instancia, de una serie de rectas enlazadas por curvas. Este conjunto de rectas y curvas es lo que se llama el alineamiento horizontal. Los tramos de una vía en recta se llaman tramos rectos o en tangente, mientras que los en curva, tramos en curva. Se hace necesario colocar curvas, con lo cual se modifica el largo de la vía y se acerca o se aleja este del rumbo general que se requiere para unir el punto inicial con el final, con seis fines generales:

- a) Topográfico.- Con el fin de acomodar el alineamiento la topografía y evitar excesos de corte o relleno.
- b) Construcciones existentes.- Se deben evitar obstáculos existentes en el trazado de la vía, como pueden ser áreas protegidas, edificaciones, etc.
- c) Hidráulico.- Tiene como fin cruzar una corriente de agua mediante una estructura (puente)
- d) Vial.- Con el fin de evitar conflictos en los cruces con otras vías existentes.
- e) Técnico.- Cuando existen problemas de tipo geológico o geotécnico, los cuales hay que evadir ya que su solución es demasiado costosa o compleja.
- f) Geométrico.- Se debe evitar tangentes demasiado largas las cuales puedan ocasionar inseguridad, estas preferiblemente deben ser remplazadas por curvas amplias de grandes radios.

El Ministerio de Transporte y Obras Públicas recomienda radios mínimos, los mismos que están en función de la clase de carretera y tipo de terreno que presenta la vía. El radio de las curvas horizontales será de: 20 m y el peralte máximo se fijó en 8%.

3.4.3. Gradiente longitudinal máxima y mínima

Las gradientes longitudinales dependen directamente de la topografía del terreno, en lo posible la gradiente debe tener valores bajos para mejorar la operación y circulación de los vehículos, sin dejar a un lado el drenaje de la vía; por esta razón se ha establecido una gradiente mínima de 0.5% para garantizar el drenaje adecuado.

Tabla 3.5 Gradientes longitudinales

		Tipo de Teri	reno				
Clase de vía	Llano	Ondulado	Montañoso				
I	3	5	7				
II	4	6	8				
III	6	7	9				
IV	6	8	12				
V	6	8	14				

Fuente: MOP. (2003). Normas de Diseño Geométrico.

La pendiente longitudinal corresponde a 12% para terreno montañoso, pudiendo en longitudes cortas menores a 750 metros aumentar la gradiente en 1% en terrenos ondulados.

NORMAS		3.000	CLA:	SE I 00 TP	DA	(1)	CLASE II 1.000 - 3.000 TPDA ⁽¹⁾					CLASE III 300 - 1.000 TPDA ⁽¹⁾						CLASE IV 100 - 300 TPDA ⁽¹⁾						CLASE V MENOS DE 100 TPDA ⁽¹⁾					(1)	
	RECOMENDABLE ABSOLUTA RE		RECO	RECOMENDABLE ABS			BSOLUT		RECOMENDABLE		ABSOLUTA		_	RECOMENDABLE			ABSOLUTA			RECOMENDABLE			Al	BSOLUT	_					
	LL	0	М	LL	0	М	LL	0	М	LL	0	М	LL	0	М	LL	0	М	LL	0	M	LL	0	M	LL	0	M	LL	0	М
Velocidad de diseño (k.p.h)	110	100	80	100	80	60	100	90	70	90	80	50	90	80	60	80	60	40	80	60	50	60	35	25 ⁽⁹⁾	60	50	40	50	35	25 ⁽⁹⁾
Radio mínimo de curvas horizontales (m)	430	350	210	350	210	110	350	275	160	275	210	75	275	210	110	210	110	42	210	110	75	110	30	20	110	75	42	75	30	20 ⁽⁹⁾
Distancia de visibilidad para parada (m)	180	160	110	160	110	70	160	135	90	135	110	55	135	110	70	110	70	40	110	70	55	70	35	25	70	55	40	55	35	25
Distancia de visibilidad para rebasamiento (m)	830	690	565	690	565	415	690	640	490	640	565	345	640	565	415	565	415	270	480	290	210	290	150	110	290	210	150	210	150	110
Peralte								MAX	XIMO	= 10	%									10 %	6 (Par	ra V	> 50 l	KPH)	8 %	(Para	٧ <	50 K	PH)	
Coeficiente "K" para: 2																														
Curvas verticales convexas (m)	80	60	28	60	28	12	60	43	19	43	28	7	43	28	12	28	12	4	28	12	7	12	3	2	12	7	4	7	3	2
Curvas verticales cóncavas (m)	43	38	24	38	24	13	38	31	19	31	24	10	31	24	13	24	13	6	24	13	10	13	5	3	13	10	6	10	5	3
Gradiente longitudinal 3 maxima (%)	3	4	6	3	5	7	3	4	7	4	6	8	4	6	7	6	7	9	5	6	8	6	8	12	5	6	8	6	8	14
Gradiente longitudinal 4 mínima (%)		•													0.5	0%							•				•			
Ancho de pavimento (m)		7.30			7.30			7.00			6.70			6.70			6.00		6.00						4 ⁽⁸⁾					
Clase de pavimento	Car	peta a	sfáltic	ауНо	ormigá	n		Ca	rpeta :	asfálti	ca		Car	rpeta a	asfálti	ca o D).T.S.I	В	D.T.S.B Capa granular o Empedrado					Capa granular o Empedrado						
Ancho de espaldones ⁵ estables (m)	3.0	2.5	2.0	2.5	2.0	1.5	3.0	2.5	2.0	2.5	2.0	1.5	2.0	1.5	1.0	1.5	1.0	0.5		0.6 (C	C.V. T	Гіро 6	y 7)					-		
Gradiente transversal para pavimento (%)			ົ	.0					2	.0					2	.0				2.5 (0	C.V. T	ipo 6	y 7)				1	.0		
Gradiente transversar para pavimento (78)				.0						.0						.0			4	4.0 (C	.V. Ti	ро 5 у	/ 5E)				-	.0		
Gradiente transversal para espaldones (%)			2.0 (6	³⁾ - 4.0					2.0	- 4.0					2.0	- 4.0			4	4.0 (C	.V. Ti	ро 5 у	/ 5E)					-		
Curva de Transición											USE	NSE E	SPIRA	ALES	CUA	NDO S	SEA N	IECES	ARIO											
Carga de diseño												HS	- 20 ·	- 44;	HS -	MOP	; HS	3 - 25												
Puentes Ancho de la calzada (m)							S	ERA	LA DII	MENS	ION E	DE LA	CALZ	'ADA I	DE LA	AIV A	INCLU	JIDOS	LOS	ESP/	ALDO	NES								
Ancho de aceras (m) (7)													0.50) m m	ínimo	a ca	da lad	0												
Mínimo derecho de vía (m)							Se	gún e	l Art. 3	3º de	a Ley	de Ca	aminos	s y el A	Art. 4º	del F	Reglan	nento	aplicat	tivo d	e dich	na Ley	,							
		Según el Art. 3º de la Ley de Caminos y el Art. 4º del Reglamento aplicativo de dicha Ley LL = TERRENO PLANO O= TERRENO ONDULADO M = TERRENO MONTAÑOSO																												

¹⁾ El TPDA indicado es el volumen promedio anual de trafico proyectado a 15-20 años, cuando se proyecta un TPDA en exceso de 7.000 en 10 años debe investigarse la necesidad de construir una Autopista. Las Normas para esta serán parecidas a las de la Clase I, con velocidad de diseño de 10 KPH mas para clase de terreno. Para el diseño definitivo debe considerarse el numero de vehículos Equivalentes.

- 2) Longitud de las curvas verticales: L = KA, en donde K = coeficiente respectivo y A = diferencia algébrica de gradientes, expresado en tanto por ciento. Longitud mínima de curvas verticales. L = 0.60 V, en donde V es la velocidad de diseño expresada en kilómetros por hora.
- 3) En longitudes cortas menores a 500 m, se puede aumentar la gradiente en 1% en terrenos ondulados y 2% en terrenos montañosos, solamente para las carreteras de Clase I, II y III. Para Caminos Vecinales (Clase IV) se puede aumentar la gradiente en 1% en terrenos ondulados y 3% en terrenos montañosos, para longitudes menores a 500 m.
- 4) Se puede adoptar una gradiente longitudinal de 0% en rellenos de 1 m a 6 m de altura, previo análisis y justificación.
- 5) Espaldón pavimentado con el mismo material de la capa de rodadura de la vía. Se ensanchara la calzada 0.50 m mas cuando se prevé la instalación de guarda caminos
- 6) Cuando el espaldón esta pavimentado con el mismo material de la capa de rodadura de la vía.
- 7) En los casos en que haya bastante trafico de peatones, úsense dos aceras completas de 1.20 m de ancho
- 8) Para tramos largos con este ancho, debe ensancharse la calzada a intervalos para proveer refugios de encuentro vehicular
- 9) Para los caminos Clase IV y V, se podrá utilizar V D = 20 Km./h y R = 15 m, siempre y cuando se trate de aprovechar infraestructuras existentes y relieve difícil (escarpado).

NOTA: Las Normas anotadas "Recomendables" se emplearan cuando el TPDA es cerca al límite superior de las clases respectivas o cuando se puede implementar sin incurrir en costos de

Fuente: MOP. (2003). Normas de Diseño Geométrico.

3.5. SECCIÓN TÍPICA ADOPTADA

Acorde con los Términos de Referencia y con las Normas que tiene vigente el Ministerio de Transporte y Obras Publicas, se adopto para el diseño geométrico de este proyecto un tipo de sección que define los siguientes parámetros:

3.5.1. Ancho de las Calzadas y Pendiente Transversal

- Dos carriles de 3.00 metros de ancho por carril.
- La pendiente transversal adoptada es de 2.5%, con pendiente única hacia la parte externa de la calzada.
- En los tramos en curva, el giro de la sección, hasta alcanzar el peralte exigido por el diseño, se efectuará de acuerdo al ancho de las calzadas y de los espaldones; el punto de giro para el peralte será el eje de la calzada.

3.5.2. Ancho y Pendiente de los Espaldones

- El ancho de los espaldones externos de cada calzada se fijó en 0.60 metros tanto en corte como en relleno.
- La inclinación transversal adoptada para los espaldones externos es del 4%.

3.5.3. Elementos junto a los espaldones

Junto a los espaldones externos se tendrá:

 Junto a los carriles, se ha considerado cunetas de 0.825 metros de ancho libre. Las cunetas serán revestidas con hormigón de f'c= 210 kg/cm²

Tabla 3.6 Elementos de la sección transversal típica adoptada

CARACTERÍSTICAS	Km 0+000 – Km 13+861.79
Número de calzadas	1
Número de carriles	2
Ancho de calzada	6.00m
Ancho de carril	3.00m
Espaldones Externos (2)	0.60m
Pendiente transversal calzada (%)	2.50%
Pendiente transversal espaldón (%)	4.00%
TOTAL SECCIÓN MIXTA	7,2

En la figura 3.3 se presenta la sección típica utilizada tanto para el diseño geométrico como para el cálculo de cantidades de obra.

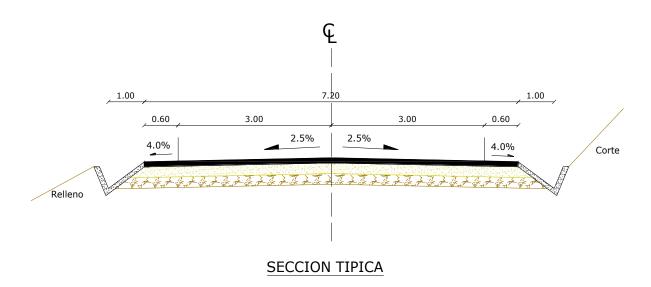


Figura 3.3 Sección transversal típica adoptada

3.6. ESTUDIOS TOPOGRÁFICOS

Se realizó el reconocimiento del terreno, para lo cual se organizo una comisión integrada por técnicos de Hidroequinoccio con la finalidad de establecer parámetros de trabajo que guíen el desarrollo del estudio especialmente en lo referente al trabajo de campo, en esta visita se dejó establecido el punto de partida para el proyecto, el mismo que se encuentra ubicado en Nanegalito. El

final del proyecto se ubico en la abscisa km 13+923 de la alineación actual, localizado en la población de Nanegal.

3.6.1. Modernización del catastro del Distrito Metropolitano de Quito

El Municipio del Distrito Metropolitano de Quito se encuentra ejecutando un proyecto de toma de fotografía aérea. Para tal propósito, cuenta con el financiamiento proveniente de un crédito concedido por el Banco Interamericano de Desarrollo, BID.

Este proyecto tiene por objeto contar con fotografía aérea digital, orto fotografía, orto imágenes satelitales y cartografía digital actualizada del Distrito Metropolitano de Quito y sus cabeceras parroquiales para ello se cuenta con un presupuesto de \$2'473.677.56.

El estado actual del proyecto es el siguiente:

- a) Fotografía aérea digital escala 1:5000, de 422.000 hectáreas, recibida por el Municipio del Distrito Metropolitano de Quito
- b) Cartografía a escala 1:1000 de 422.000 hectáreas del Distrito Metropolitano de Quito, en proceso de fiscalización
- c) Orto fotografía (fotografía corregida geométricamente que equivale a un mapa)
 escala 1:1000 de 422.000 hectáreas del Distrito Metropolitano de Quito, en proceso de fiscalización
- d) Fotografía digital estala 1:000 de 1891 hectáreas de las parroquias rurales del Distrito Metropolitano de Quito, recibida por el Municipio del Distrito Metropolitano de Quito
- e) Cartografía a escala 1:1000 de 1891 hectáreas de las parroquias rurales del Distrito Metropolitano de Quito, en proceso de fiscalización

Para nuestro proyecto se utilizó las orto fotografías correspondientes a la vía de nuestro interés, las cuales fueron facilitadas, a manera de préstamo, por el Municipio del Distrito Metropolitano de Quito para la obtención de la faja topográfica, con la ayuda y el asesoramiento de técnicos de Hidroequinoccio.

3.6.2. Fotogrametría

3.6.2.1. Definición

La fotogrametría es el conjunto de métodos y procedimientos mediantes los cuales podemos deducir de la fotografía de un objeto, la forma y las dimensiones del mismo; el levantamiento fotogramétrico es la aplicación de la fotogrametría a la topografía. La fotogrametría no es una ciencia nueva, ya que los principios matemáticos en que se basa son conocimientos desde hace más de un siglo sin embargo sus aplicaciones son mucho más recientes.

3.6.3. Procedimiento para obtener la faja topográfica

- a) Planeación del vuelo: Se realiza con base a cartografía existente y consiste en determinar el recorrido, altura de vuelo y numero de fotografías que se realizaran.
- b) Toma de fotografías: Es el momento exacto cuando el avión sobrevuela la zona previamente determinada y efectúa la toma de la fotografía, depende de condiciones climáticas.
- c) Condiciones técnicas de toma: Para la salida final a escala 1:1000, se producen fotografías a escala 1:5000. Para escalas más detalladas se realiza vuelos a alturas inferiores.
- d) Orientación de las fotografías: Se la realiza mediante un estereoscopio que es un instrumento binocular, que tiene por objetivo ofrecer una sensación de imagen única en relieve, de dos imágenes planas de un mismo objeto tomadas

desde diferentes puntos de vista.

El procedimiento para realizar la orientación mediante el estereoscopio es el siguiente:

- Se coloca una fotografía sobre la otra de manera que las aéreas que se sobreponen coincidan este proceso se llama traslapo.
- Se separan las dos fotografías en la dirección de la línea de vuelo hasta que las imágenes se conjuguen, esta distancia es la misma que la de la base instrumental.
- Se coloca el estereoscopio sobre el par de fotografías de tal forma que las líneas principales de los lentes o centros focales, estén paralelos con la dirección de vuelo.
- Se debe buscar que la visión estereoscópica sea confortable.
- e) Identificación de los puntos para aerotriangulación: Obtención de coordenadas geografías y cartesianas de los puntos que servirán de base para el proceso de aerotriangulación.
- f) Aerotriangulación y restitución planimétrica.
- g) Obtención de curvas de nivel.

CAPITULO IV

4. DISEÑO Y DIBUJO DEL PROYECTO HORIZONTAL Y VERTICAL

Con los datos de campo se procedió a realizar los respectivos cálculos, obteniéndose nuevos datos que sirvieron para realizar los respectivos dibujos tanto en planta como en perfil.

Para el diseño se procede a realizar el dibujo final, presentándose el proyecto horizontal en escala 1:1000 y el vertical en escalas, horizontal 1:1000 y vertical 1:100, indicándose además los datos de las curvas horizontales, datos de las referencias, datos de drenaje, las abscisas con su respectiva cota de terreno, proyecto, etc.

4.1. DISEÑO GEOMÉTRICO HORIZONTAL

Mediante el uso de la física, matemática y la geometría, se defines un trazado adecuado para las características de operación de los vehículos, generando de esta manera un sistema integrado de beneficios, satisfacción y seguridad para los usuarios.

Para el diseño geométrico horizontal de este proyecto consideraremos los siguientes puntos:

- ✓ Curvas horizontales
- ✓ Peralte
- ✓ Sobre ancho
- √ Tangente intermedia
- ✓ Distancia de visibilidad de parada
- ✓ Distancia de visibilidad de rebasamiento

4.1.1. Curva Horizontales

El diseño geométrico en planta de una vía está constituido por tramos rectos llamados tangentes y enlazados por curvas. (Grisales, 2005)

Las curvas horizontales tienen como fin, garantizar la confortabilidad al momento de realizar un cambio de alineación.

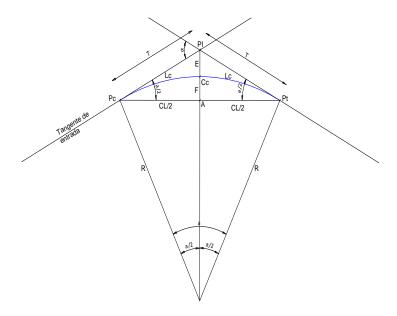


Figura 4.1 Elementos de una curva circular simple

Donde:

PI: Punto de intersección entre las 2 tangentes

α: Angulo de la curva, o sea, la deflexión entre las 2 tangentes

R: Radio de la curva

Pc: Punto común entre la tangente y la curva y se lo denomina "principio de la curva"

Pt: Punto común entre la tangente y la curva y se lo denomina "Punto de terminación de curva"

E: External de la curva, es decir el segmento PI – Cc

$$E = R * \left[Sec \frac{\alpha}{2} - 1 \right]$$

F: Es la flecha de la curva, es decir el segmento Cc - A

$$F = R * \left[1 - \cos \frac{\alpha}{2} \right]$$

T: Es la tangente o longitud de tangente de la curva entre Pc y PI y entre Pr y PI

$$T = R * Tg(\frac{\alpha}{2})$$

Lc: Es la longitud de curva, es decir el arco entre Pc y Pt

$$Lc = \frac{\pi * R * \alpha}{180}$$

CL: Es la cuerda larga que sustenta la longitud de la curva y corresponde a la recta Pc – Pt

$$E = 2R * Sen \frac{\alpha}{2}$$

Tabla 4.1. Resumen de curvas horizontales existentes

	DADIO						DEDALTE	SOBREANCHO				TIM	
PI	RADIO (m)	ANG	JLO	DE	DE	FLEXIÓN	PERALTE (%)	(m)	ABSCISA PI	ABSCISA Pc	ABSCISA Pt	(m)	Long. curva (Lc)
PI 1	25	66	0	50	'	37,44	8	0,9	0+016,71	0+000,21	0+029,38	16,5	29,17
PI 2	35	39	0	29	'	59,48	' 8	0,9	0+079,26	0+066,69	0+090,82	12,57	24,13
PI 3	100	11	0	40	'	0,01	' 4	0,7	0+137,76	0+127,55	0+147,91	10,22	20,36
PI 4	17	84	0	59	'	58,89	' 8	0,9	0+211,52	0+195,94	0+221,16	15,58	25,22
PI 5	20	98	0	49	'	59,96	' 8	0,9	0+247,12	0+223,77	0+258,27	23,35	34,5
PI 6	50	32	0	40	'	1,63	' 8	0,9	0+329,43	0+314,77	0+343,28	14,65	28,51
PI 7	20	99	0	20	'	0,19	' 8	0,9	0+386,22	0+362,66	0+397,34	23,56	34,67
PI 8	70	18	0	59	'	59,11	5	0,9	0+439,67	0+427,95	0+451,17	11,71	23,21
PI 9	30	38	0	30	'	0,98	' 8	0,9	0+550,36	0+539,88	0+560,04	10,48	20,16
PI 10	30	115	0	40	•	0,1	8	0,9	0+624,23	0+576,53	0+637,09	47,7	60,56
PI 11	60	21	0	0	'	2,16	5	0,9	0+706,72	0+695,60	0+717,59	11,12	21,99
PI 12	45	91	0	0	'	0,2	' 8	0,9	0+823,16	0+777,37	0+848,84	45,79	71,47
PI 13	100	29	0	40	•	0,28	4	0,7	0+908,42	0+881,93	0+933,71	26,48	51,78
PI 14	30	37	0	59	•	58,46	' 8	0,9	0+965,66	0+955,33	0+975,22	10,33	19,9
PI 15	50	34	0	59	'	58,13	' 8	0,9	1+014,45	0+998,69	1+029,23	15,77	30,54
PI 16	25	83	0	29	'	59,45	' 8	0,9	1+080,61	1+058,30	1+094,73	22,31	36,43
PI 17	51,42	50	0	59	'	59,68	8	0,9	1+119,53	1+095,00	1+140,77	24,53	45,77
PI 18	35	55	0	0	'	1,25	' 8	0,9	1+181,16	1+162,94	1+196,54	18,22	33,6
PI 19	50	32	0	50	'	1,37	8	0,9	1+242,16	1+227,43	1+256,08	14,73	28,65

PI	RADIO (m)	ANGULO DE D	EFLEXIÓN	PERALTE (%)	SOBRE ANCHO (m)	ABSCISA PI	ABSCISA Pc	ABSCISA Pt	Tangente (m)	Long. curva (Lc)
PI 20	50	50 ° 30 '	0,37 "	8,0	0,9	1+317,06	1+293,48	1+337,55	23,58	44,07
PI 21	70	40 ° 30 '	0,19 "	6,0	0,9	1+403,30	1+377,48	1+426,96	25,82	49,48
PI 22	70	17 ° 19 '	59,24 "	6,0	0,9	1+486,88	1+476,21	1+497,38	10,67	21,18
PI 23	100	26 ° 30 '	1,29 "	4,0	0,7	1+626,82	1+603,27	1+649,52	23,55	46,25
PI 24	500	4 ° 19 '	59,68 "	0,0	0,7	1+734,12	1+715,21	1+753,02	18,92	37,82
PI 25	400	8 ° 19 '	59,72 "	0,0	0,7	1+834,63	1+805,49	1+863,67	29,14	58,18
PI 26	27	147 ° 29 '	59,89 "	8,0	0,9	2+053,15	1+960,51	2+030,02	92,63	69,51
PI 27	30	82 ° 29 '	59,92 "	8,0	0,9	2+119,34	2+093,03	2+136,23	26,31	43,20
PI 28	40	36 ° 59 '	57,77 "	8,0	0,9	2+270,97	2+257,58	2+283,41	13,38	25,83
PI 29	30	69 ° 29 '	59,74 "	8,0	0,9	2+377,88	2+357,07	2+393,46	20,81	36,39
PI 30	30	69 ° 30 '	0,74 "	8,0	0,9	2+414,71	2+393,47	2+430,61	21,24	37,14
PI 31	260	7 ° 0 '	1,54 "	0,0	0,9	2+468,63	2+452,73	2+484,50	15,90	31,77
PI 32	45	33 ° 29 '	59,43 "	8,0	0,9	2+540,73	2+527,19	2+553,50	13,54	26,31
PI 33	40	73 ° 40 '	0,42 "	8,0	0,9	2+594,42	2+564,46	2+615,89	29,96	51,43
PI 34	25	109 ° 59 '	59,94 "	8,0	0,9	2+767,59	2+731,88	2+779,88	35,70	48,00
PI 35	25	85 ° 0 '	0,33 "	8,0	0,9	2+842,32	2+819,41	2+856,50	22,91	37,09
PI 36	90	23 ° 20 '	1,78 "	0,0	0,7	2+960,36	2+941,77	2+978,43	18,58	36,65
PI 37	50	36 ° 29 '	59,40 "	8,0	0,9	3+035,85	3+019,36	3+051,21	16,49	31,85
PI 38	25	123 ° 29 '	59,84 "	8,0	0,9	3+145,61	3+099,09	3+152,97	46,53	53,89
PI 39	100	11 ° 39 '	58,76 "	4,0	0,7	3+309,48	3+299,27	3+319,63	10,22	20,36

PI	RADIO (m)	ANGULO DE DEFLEXIÓN	PERALTE (%)	SOBRE ANCHO (m)	ABSCISA PI	ABSCISA Pc	ABSCISA Pt	Tangente (m)	Long. curva (Lc)
PI 40	40	46 ° 19 ' 59,53 "	8,0	0,9	3+411,04	3+393,92	3+426,27	17,12	32,35
PI 41	20	64 ° 40 ' 0,17 "	8,0	0,9	3+555,04	3+542,38	3+564,96	12,66	22,57
PI 42	20	67 ° 0 ' 0,49 "	8,0	0,9	3+587,41	3+574,17	3+597,55	13,24	23,39
PI 43	60	34 ° 29 ' 59,38 "	5,0	0,9	3+647,49	3+628,86	3+664,99	18,63	36,13
PI 44	50	63 ° 49 ' 59,92 "	8,0	0,9	3+753,54	3+722,39	3+778,10	31,14	55,71
PI 45	70	63 ° 50 ' 0,00 "	5,0	0,9	3+855,85	3+812,25	3+890,24	43,60	77,99
PI 46	60	28 ° 0 ' 1,92 "	6,0	0,9	4+145,08	4+130,12	4+159,44	14,96	29,32
PI 47	40	54 ° 0 ' 0,25 "	8,0	0,9	4+188,29	4+167,91	4+205,61	20,38	37,70
PI 48	150	8 ° 59 ' 56,49 "	4,0	0,5	4+242,36	4+230,55	4+254,11	11,80	23,56
PI 49	60	36 ° 59 ' 59,58 "	6,0	0,9	4+354,93	4+334,85	4+373,60	20,08	38,75
PI 50	120	11 ° 0 ' 0,47 "	4,0	0,6	4+429,66	4+418,11	4+441,15	11,56	23,04
PI 51	70	18 ° 30 ' 0,29 "	5,0	0,9	4+467,56	4+456,16	4+478,77	11,40	22,60
PI 52	100	12 ° 40 ' 0,33 "	4,0	0,7	4+507,32	4+496,22	4+518,32	11,10	22,11
PI 53	80	18 ° 0 ' 1,42 "	5,0	0,8	4+594,42	4+581,75	4+606,89	12,67	25,13
PI 54	30	50 ° 29 ' 59,94 "	8,0	0,9	4+649,87	4+635,72	4+662,16	14,15	26,44
PI 55	40	47 ° 0 ' 0,07 "	0,0	0,9	4+723,79	4+706,40	4+739,21	17,39	32,81
PI 56	50	23 ° 59 ' 59,20 "	8,0	0,9	4+814,19	4+803,56	4+824,50	10,63	20,94
PI 57	35	44 ° 59 ' 57,65 "	8,0	0,9	4+965,79	4+951,30	4+978,79	14,50	27,49
PI 58	50	50 ° 30 ' 0,53 "	8,0	0,9	5+036,53	5+012,94	5+057,01	23,58	44,07
PI 59	60	20 ° 0 ' 0,63 "	6,0	0,9	5+189,70	5+179,12	5+200,07	10,58	20,94

PI	RADIO (m)	ANGULO DE DEFLEXIÓN	PERALTE (%)	SOBRE ANCHO (m)	ABSCISA PI	ABSCISA Pc	ABSCISA Pt	Tangente (m)	Long. curva (Lc)
PI 60	400	4 ° 30 ' 0,46 "	0,0	0,9	5+251,33	5+235,61	5+267,03	15,72	31,42
PI 61	100	20 ° 0 ' 0,16 "	4,0	0,7	5+423,64	5+406,01	5+440,92	17,63	34,91
PI 62	150	8 ° 19 ' 59,57 "	4,0	0,7	5+514,40	5+503,48	5+525,29	10,93	21,82
PI 63	50	33 ° 59 ' 59,23 "	8,0	0,9	5+604,29	5+589,00	5+618,67	15,29	29,67
PI 64	40	41 ° 59 ' 59,49 "	8,0	0,9	5+665,99	5+650,64	5+679,96	15,36	29,32
PI 65	80	24 ° 20 ' 0,40 "	4,0	0,8	5+727,70	5+710,46	5+744,43	17,25	33,98
PI 66	100	13 ° 0 ' 1,45 "	4,0	0,7	5+885,19	5+873,80	5+896,49	11,39	22,69
PI 67	40	35 ° 59 ' 58,44 "	8,0	0,9	5+928,79	5+915,79	5+940,92	13,00	25,13
PI 68	28	143 ° 0 ' 0,01 "	8,0	0,9	6+202,10	6+118,42	6+188,30	83,68	69,88
PI 69	25	63 ° 59 ' 59,79 "	8,0	0,9	6+367,19	6+351,57	6+379,50	15,62	27,93
PI 70	74,81	28 ° 30 ' 0,82 "	5,0	0,9	6+398,50	6+379,50	6+416,71	19,00	37,21
PI 71	35	116 ° 0 ' 0,00 "	8,0	0,9	6+549,35	6+493,34	6+564,20	56,01	70,86
PI 72	40	99 ° 10 ' 0,18 "	8,0	0,9	6+663,94	6+616,97	6+686,20	46,97	69,23
PI 73	40	54 ° 39 ' 59,39 "	8,0	0,9	6+852,63	6+831,95	6+870,11	20,68	38,16
PI 74	70	18 ° 59 ' 59,93 "	5,0	0,9	6+967,40	6+955,69	6+978,90	11,71	23,21
PI 75	40	57 ° 50 ' 0,24 "	8,0	0,9	7+043,15	7+021,06	7+061,43	22,10	40,38
PI 76	70	27 ° 59 ' 58,99 "	5,0	0,9	7+129,47	7+112,02	7+146,23	17,45	34,21
PI 77	70	30 ° 0 ' 0,00 "	5,0	0,9	7+204,63	7+185,87	7+222,52	18,76	36,65
PI 78	80	17 ° 29 ' 58,89 "	4,0	0,8	7+257,98	7+245,67	7+270,10	12,31	24,43
PI 79	40	55 ° 29 ' 59,56 "	8,0	0,9	7+315,99	7+294,95	7+333,69	21,05	38,75

PI	RADIO (m)	ANGULO DE DEFLEXIÓN	PERALTE (%)	SOBRE ANCHO (m)	ABSCISA PI	ABSCISA Pc	ABSCISA Pt	Tangente (m)	Long. curva (Lc)
PI 80	40	31 ° 10 ' 29,10 "	8,0	0,9	7+407,06	7+395,90	7+417,67	11,16	21,76
PI 81	30	48 ° 30 ' 0,54 "	8,0	0,9	7+467,94	7+454,43	7+479,82	13,51	25,40
PI 82	40	33 ° 38 ' 1,07 "	8,0	0,9	7+529,37	7+517,28	7+540,76	12,09	23,48
PI 83	60	41 ° 0 ' 0,00 "	7,0	0,9	7+615,93	7+593,50	7+636,43	22,43	42,94
PI 84	40	43 ° 20 ' 0,00 "	8,0	0,9	7+719,33	7+703,44	7+733,70	15,89	30,25
PI 85	300	5 ° 0 ' 0,00 "	0,0	0,9	7+797,97	7+784,88	7+811,06	13,10	26,18
PI 86	120	22 ° 30 ' 0,00 "	4,0	0,9	7+952,81	7+928,94	7+976,06	23,87	47,12
PI 87	600	3 ° 30 ' 0,00 "	0,0	0,9	8+110,33	8+092,00	8+128,65	18,33	36,65
PI 88	150	10 ° 0 ' 0,00 "	4,0	0,9	8+176,41	8+163,29	8+189,47	13,12	26,18
PI 89	80	42 ° 20 ' 0,00 "	4,0	0,8	8+376,44	8+345,46	8+404,57	30,98	59,11
PI 90	120	10 ° 30 ' 0,00 "	4,0	0,6	8+440,18	8+429,16	8+451,15	11,03	21,99
PI 91	60	34 ° 0 ' 0,00 "	5,0	0,9	8+518,54	8+500,20	8+535,80	18,34	35,61
PI 92	60	36 ° 0 ' 0,00 "	5,0	0,9	8+589,43	8+569,94	8+607,64	19,50	37,70
PI 93	160	11 ° 30 ' 0,00 "	2,0	0,5	8+721,47	8+705,36	8+737,47	16,11	32,11
PI 94	100	16 ° 30 ' 0,00 "	4,0	0,7	8+766,52	8+752,02	8+780,82	14,50	28,80
PI 95	70	26 ° 0 ' 0,00 "	5,0	0,9	8+845,77	8+829,61	8+861,37	16,16	31,77
PI 96	100	16 ° 20 ' 0,00 "	4,0	0,7	8+908,97	8+894,62	8+923,13	14,35	28,51
PI 97	40	55 ° 20 ' 0,00 "	8,0	0,9	9+042,17	9+021,20	9+059,83	20,97	38,63
PI 98	100	21 ° 20 ' 0,00 "	4,0	0,7	9+122,17	9+103,33	9+140,57	18,84	37,23
PI 99	60	56 ° 20 ' 0,00 "	7,0	0,9	9+274,99	9+242,86	9+301,86	32,13	58,99

PI	RADIO (m)	ANGULO DE DEFLEXIÓN	PERALTE (%)	SOBRE ANCHO (m)	ABSCISA PI	ABSCISA Pc	ABSCISA Pt	Tangente (m)	Long. curva (Lc)
PI 100	150	18 ° 29 ' 59,35 "	2,0	0,9	9+480,54	9+456,11	9+504,54	24,43	48,43
PI 101	130	16 ° 30 ' 0,00 "	4,0	0,9	9+569,69	9+550,84	9+588,28	18,85	37,44
PI 102	40	35 ° 30 ' 0,00 "	8,0	0,9	9+613,98	9+601,18	9+625,96	12,80	24,78
PI 103	25	89 ° 30 ' 0,00 "	8,0	0,9	9+700,74	9+675,95	9+715,00	24,78	39,05
PI 104	25	63 ° 0 ' 0,00 "	8,0	0,9	9+780,78	9+765,46	9+792,95	15,32	27,49
PI 105	20	90 ° 29 ' 59,71 "	8,0	0,9	9+834,35	9+814,18	9+845,77	20,18	31,59
PI 106	20	128 ° 33 ' 15,23 "	8,0	0,9	9+923,15	9+881,63	9+926,51	41,51	44,87
PI 107	30	44 ° 33 ' 15,42 "	8,0	0,9	9+980,84	9+968,55	9+991,87	12,29	23,33
PI 108	30	57 ° 0 ' 0,00 "	8,0	0,9	10+055,17	10+038,88	10+068,73	16,29	29,85
PI 109	60	39 ° 0 ' 0,00 "	7,0	0,9	10+145,65	10+124,40	10+165,24	21,25	40,84
PI 110	40	44 ° 30 ' 0,00 "	8,0	0,9	10+202,84	10+186,48	10+217,55	16,36	31,07
PI 111	70	32 ° 0 ' 0,00 "	5,0	0,9	10+251,24	10+231,17	10+270,26	20,07	39,10
PI 112	100	21 ° 0 ' 0,00 "	4,0	0,7	10+318,04	10+299,51	10+336,16	18,53	36,65
PI 113	120	12 ° 0 ' 0,87 "	4,0	0,6	10+355,64	10+343,03	10+368,16	12,61	25,13
PI 114	20	58 ° 0 ' 0,00 "	8,0	0,9	10+387,25	10+376,16	10+396,41	11,09	20,25
PI 115	24,46	72 ° 0 ' 0,00 "	8,0	0,9	10+414,18	10+396,41	10+427,14	17,77	30,74
PI 116	20	77 ° 0 ' 0,00 "	8,0	0,9	10+465,72	10+449,81	10+476,69	15,91	26,88
PI 117	55	35 ° 0 ' 0,00 "	7,0	0,9	10+540,50	10+523,16	10+556,76	17,34	33,60
PI 118	51,3	38 ° 0 ' 0,00 "	8,0	0,9	10+574,42	10+556,76	10+590,78	17,66	34,02
PI 119	20	86 ° 0 ' 0,00 "	8,0	0,9	10+632,27	10+613,62	10+643,64	18,65	30,02

PI	RADIO (m)	ANGULO DE DEFLEXIÓN	PERALTE (%)	SOBRE ANCHO (m)	ABSCISA PI	ABSCISA Pc	ABSCISA Pt	Tangente (m)	Long. curva (Lc)
PI 120	25	67 ° 0 ' 0,00 "	8,0	0,9	10+670,72	10+654,17	10+683,41	16,55	29,23
PI 121	60	18 ° 0 ' 0,00 "	7,0	0,9	10+713,61	10+704,11	10+722,96	9,50	18,85
PI 122	100	10 ° 30 ' 0,00 "	4,0	0,7	10+771,36	10+762,17	10+780,49	9,19	18,33
PI 123	25	55 ° 0 ' 0,00 "	8,0	0,9	10+818,54	10+805,53	10+829,53	13,01	24,00
PI 124	35	63 ° 0 ' 0,00 "	8,0	0,9	10+875,50	10+854,05	10+892,53	21,45	38,49
PI 125	40	47 ° 0 ' 0,00 "	8,0	0,9	10+917,59	10+900,20	10+933,01	17,39	32,81
PI 126	30	54 ° 0 ' 0,00 "	8,0	0,9	10+964,86	10+949,58	10+977,85	15,29	28,27
PI 127	200	12 ° 0 ' 0,00 "	0,0	0,9	11+036,22	11+015,20	11+057,09	21,02	41,89
PI 128	100	19 ° 0 ' 0,00 "	4,0	0,7	11+223,94	11+207,21	11+240,37	16,73	33,16
PI 129	54,1	43 ° 0 ' 0,00 "	8,0	0,9	11+261,67	11+240,36	11+280,96	21,31	40,60
PI 130	30	82 ° 0 ' 0,00 "	8,0	0,9	11+337,54	11+311,46	11+354,40	26,08	42,94
PI 131	140	16 ° 0 ' 0,00 "	3,0	0,5	11+399,52	11+379,84	11+418,94	19,68	39,10
PI 132	23	101 ° 0 ' 0,00 "	8,0	0,9	11+487,16	11+459,26	11+499,80	27,90	40,54
PI 133	20	116 ° 0 ' 0,00 "	8,0	0,9	11+575,53	11+543,53	11+584,02	32,01	40,49
PI 134	50	39 ° 0 ' 0,00 "	8,0	0,9	11+634,67	11+616,96	11+651,00	17,71	34,03
PI 135	25	55 ° 0 ' 0,00 "	8,0	0,9	11+668,85	11+655,84	11+679,83	13,01	24,00
PI 136	23,75	60 ° 0 ' 0,00 "	8,0	0,9	11+693,54	11+679,83	11+704,70	13,71	24,87
PI 137	20	84 ° 0 ' 0,00 "	8,0	0,9	11+833,09	11+815,08	11+844,41	18,01	29,32
PI 138	40	34 ° 0 ' 0,00 "	8,0	0,9	11+881,34	11+869,11	11+892,85	12,23	23,74

PI	RADIO (m)	ANGULO DE DEFLEXIÓN	PERALTE (%)	SOBRE ANCHO (m)	ABSCISA PI	ABSCISA Pc	ABSCISA Pt	Tangente (m)	Long. curva (Lc)
PI 139	400	8 ° 30 ' 1,00 "	0,0	0,9	11+937,71	11+907,98	11+967,32	29,73	59,34
PI 140	30	65 ° 0 ' 0,00 "	8,0	0,9	12+101,21	12+082,09	12+116,13	19,11	34,03
PI 141	50	35 ° 28 ' 0,00 "	8,0	0,9	12+132,12	12+116,13	12+147,08	15,99	30,95
PI 142	25	47 ° 0 ' 0,00 "	8,0	0,9	12+339,77	12+328,90	12+349,41	10,87	20,51
PI 143	50	37 ° 0 ' 0,61 "	8,0	0,9	12+375,64	12+358,91	12+391,20	16,73	32,29
PI 144	25	62 ° 0 ' 0,00 "	8,0	0,9	12+470,00	12+454,98	12+482,03	15,02	27,05
PI 145	27	56 ° 0 ' 0,00 "	8,0	0,9	12+496,39	12+482,03	12+508,42	14,36	26,39
PI 146	100	21 ° 30 ' 0,00 "	4,0	0,7	12+543,54	12+524,56	12+562,08	18,99	37,53
PI 147	50	33 ° 0 ' 2,35 "	8,0	0,9	12+605,23	12+590,42	12+619,22	14,81	28,80
PI 148	150	12 ° 0 ' 0,00 "	4,0	0,9	12+755,87	12+740,10	12+771,52	15,77	31,42
PI 149	70	28 ° 30 ' 0,00 "	5,0	0,9	12+814,02	12+796,24	12+831,06	17,78	34,82
PI 150	20	72 ° 0 ' 0,00 "	8,0	0,9	12+945,72	12+931,19	12+956,32	14,53	25,13
PI 151	40	84 ° 0 ' 0,00 "	8,0	0,9	13+073,53	13+037,51	13+096,16	36,02	58,64
PI 152	25	85 ° 30 ' 0,00 "	8,0	0,9	13+144,52	13+121,41	13+158,72	23,11	37,31
PI 153	25	66 ° 30 ' 0,00 "	8,0	0,9	13+206,98	13+190,58	13+219,60	16,39	29,02
PI 154	50	47 ° 0 ' 0,21 "	8,0	0,9	13+359,71	13+337,97	13+378,98	21,74	41,02
PI 155	50	44 ° 17 ' 0,62 "	8,0	0,9	13+470,10	13+449,76	13+488,40	20,35	38,65
PI 156	200	23 ° 0 ' 0,32 "	8,0	0,9	13+561,44	13+520,75	13+601,04	40,69	80,29
PI 157	500	3 ° 30 ' 0,41 "	8,0	0,9	13+731,13	13+715,85	13+746,40	15,28	30,54
PI 158	25	79 ° 0 ' 0,00 "	8,0	0,9	13+968,36	13+947,75	13+982,22	20,61	34,47
PI 159	30	53 ° 0 ' 0,00 "	8,0	0,9	14+012,70	13+997,74	14+025,49	14,96	27,75
PI 160	100	20 ° 0 ' 0,00 "	4,0	0,7	14+057,57	14+039,94	14+074,85	17,63	34,91
PI 161	300	16 ° 44 ' 10 "	8	0,9	14+143,85	14+099,72	14+187,35	44,13	87,63

4.1.2. Peralte

Es la inclinación transversal que se le da a la calzada en las curvas para permitir la circulación segura de los vehículos sin peligro a deslizamientos, tanto hacia fuera de la curva como hacia su interior, producida por la fuerza centrifuga.

La acción de la fuerza centrifuga, es contrarrestada también por la fricción que existe entre las ruedas y el pavimento.

La expresión que define al peralte es la siguiente:

$$e = \frac{V^2}{127 * R} - f$$

Donde:

e = Peralte de la curva (m/m).

V = Velocidad de diseño, (km/h).

R = Radio de la curva, (m).

f = Máximo coeficiente de fricción lateral.

El coeficiente de fricción f para el cual es anule el deslizamiento, depende de cierto número de factores, siendo los más importantes la velocidad del vehículo, el tipo y condición de la superficie de calzada y el tipo y condición de las llantas. De acuerdo con el AASHO, se ha encontrado que los coeficientes de fricción disminuyen con el incremento de la velocidad.

Como resultado de varias pruebas realizadas se ha llegado a adoptar coeficientes que ofrecen un margen de seguridad y su variación obedece a una función lineal expresada por la siguiente ecuación:

$$f = 0.19 - 0.000626$$

Tabla 4.2. Coeficientes de fricción lateral

Velocidad de diseño (Km/h)	"f " máximo
20	0.177
<u>25</u>	<u>0.174</u>
30	0.171
35	0.168
40	0.165

Para nuestro diseño se toma el valor de fricción (f=0.174),

Magnitud del peralte

El valor del peralte no debe exceder ciertos valores máximos, ya que este puede provocar el deslizamiento del vehículo hacia el interior de la curva cuando este circula a baja velocidad.

En vías de dos carriles el MTOP recomienda:

- Para velocidades mayores a los 50Km/h, el peralte máximo es del 10%
- Para velocidades menores a los 50Km/h, el peralte máximo es del 8%

Transición del peralte

Transición es la distancia en la cual se lleva a cabo el cambio, de la sección transversal de la recta a la sección con peralte en la curva.

Para llevar a cabo el cambio de la sección de una recta, cuya inclinación se denomina bombeo, a la sección transversal de una curva con un peralte requerido, se requiere diseñar una transición.

En curvas circulares, la longitud del peraltado se distribuye de la siguiente manera:

- 2/3 en la recta
- 1/3 en la curva

Para realizar el cálculo de la transición del peralte, se utiliza las siguientes expresiones:

$$Lt = \frac{e * a}{2 * i}$$

Donde:

- Lt: Longitud de transición del peralte
- a: Ancho de la vía (m)
- e: (%) peralte
- i: Gradiente longitudinal

$$x = \frac{b * a}{2 * i}$$

Donde:

- x: Longitud dentro de la tangente para realizar el giro del plano del carril exterior hasta dejarlo a nivel horizontal
- i: Gradiente longitudinal
- a: Ancho de la vía (m)
- b: Pendiente transversal de la vía (%)
- a: Ancho de vía (m)

Tabla 4.3. Coeficientes de fricción lateral

Velocidad de diseño (Km/h)	Valor de i %
20	0,800
<u>25</u>	<u>0,775</u>
30	0,750
35	0,725
40	0,700
50	0,650
60	0,600
70	0,550
80	0,500
90	0,470
100	0,430
110	0,400

Fuente: MOP. (2003). Normas de Diseño Geométrico. Quito.

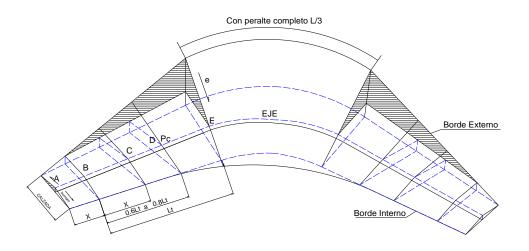


Figura 4.2. Transición del peralte

Donde:

e = Peralte necesario para la curva circular

Lt = Longitud de transición

N = Longitud de aplanamiento

L= Longitud de la curva

4.1.3. Sobre Ancho

Cuando un vehículo circula por una curva horizontal, ocupa un ancho de calzada mayor que en una recta. Esto es debido a que la rigidez y las dimensiones del vehículo, sus ruedas traseras siguen una trayectoria distinta a las ruedas delanteras, ocasionando dificultad a los conductores para mantener su vehículo en el eje del carril de circulación correspondiente.

En estas circunstancias y con el propósito de que las condiciones de operación de los vehículos en las curvas sean muy similares a las de en recta, la calzada en las curvas debe ensancharse. Este aumento se denomina sobre ancho "S" de la curva.

Para pasar del ancho de la calzada en recta al ancho de la calzada en curva se aprovecha la longitud de transición requerida para desarrollar el peralte.

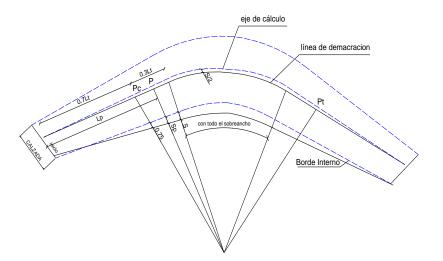


Figura 4.3. Transición del Sobre ancho en las curvas

$$S = n(R - \sqrt{R^2 - L^2}) + \frac{V}{10\sqrt{R}}$$

Donde:

■ S = Sobre ancho metros

- n = número de carriles (n=2)
- R = radio de la curva horizontal en metros
- L = distancia entre el eje anterior y el eje posterior, (L= 6.10m)
- V = velocidad de diseño en Km/h

Para determinar el peralte y sobre ancho de cada curva, se ha utilizado la tabla que el libro de Diseño Geométrico del MOP-2003, que con una de diseño de 25 Km/h y ancho de carril de 6,00 metros. ver en la Tabla 4.4.

Tabla 4.4. Tabla de Peralte y Sobre ancho

Velocidad ((Kph)	de Diseño	25	Gradiente Lo	ngitudinal	0.75
	e la vía (m)	6,00	Pendiente de Peralte máx	la vía (%)	4,00 8,00
		Sobre ancho	Longitud X	Longitud	de transición L (m)
Radio (m)	Peralte (%)	(m)	(m)	Mínima	Máxima
30	8,0	1,8	16	32	51
40	8,0	1,6	16	32	49
50	8,0	1,4	16	32	47
60	6,4	1,2	16	26	36
70	5,3	1,05	16	21	29
80	4,5	0,95	16	18	24
90	4,1	0,85	16	16	21
100	4,0	0,8	16	16	20
125	4,0	0,68	16	16	20
150	4,0	0,58	16	16	19
175	4,0	0,53	16	16	19
200	S.N.				
S.N.=	Sección Norm	nal	C.P.:	= Curva Co	n Peralte

Fuente: MOP. (2003). Normas de Diseño Geométrico.

Tabla 4.5. Valores de Peralte y Sobre ancho Adoptados

Curva	Radio	Peralte asumido	Sobre ancho asumido	Curva	Radio	Peralte asumido	Sobre ancho asumido
	(m)	(%)	(m)		(m)	(%)	(m)
1	25	8	2.35	30	30	8	2,00
2	35	8	1,80	31	40	8	1,60
3	100	4	0,80	32	70	5,3	1,05
4	17	8	3.25	33	70	5,3	1,05
5	20	8	2.85	34	60	6,4	1,20
6	30	8	2,00	35	200	S,N	0,0
7	30	8	2,00	36	40	8	1,60
8	30	8	2,00	37	40	8	1,60
9	30	8	2,00	38	80	4,5	0,95
10	30	8	2,00	39	40	8	1,60
11	30	8	2,00	40	40	8	1,60
12	30	8	2,00	41	40	8	1,60
13	30	8	2,00	42	100	4	0,80
14	30	8	2,00	43	50	8	1,40
15	80	4,5	0,95	44	40	8	1,60
16	80	4,5	0,95	45	40	8	1,60
17	159	4	0,60	46	150	4	0,60
18	500	S,N	0	47	25	8	2,35
19	28	8	2.15	48	40	8	1,60
20	30	8	2,00	49	40	8	1,60
21	70	5,3	1,05	50	40	8	1,60
22	30	8	2,00	51	50	8	1,40
23	40	8	1,60	52	90	4,1	0,85
24	30	8	2,00	53	40	8	1,60
25	30	8	2,00	54	60	6,4	1,20
26	30	8	2,00	55	60	6,4	1,20
27	80	4,5	0,95	56	60	6,4	1,20
28	20	8	2,85	57	40	8	1,60
29	20	8	2,85	58	120	4	0,80

Curva	Radio	Peralte asumido	Sobreancho asumido	Curva	Radio	Peralte asumido	Sobreancho asumido
	(m)	(%)	(m)		(m)	(%)	(m)
59	600	S,N	0	88	50	8	1,45
60	150	4	0,60	89	30	8	2
61	40	8	1,60	90	30	8	2
62	40	8	1,60	91	30	8	2
63	60	6,4	1,20	92	50	8	1,40
64	60	6,4	1,20	93	25	8	2.35
65	60	6,4	1,20	94	23	8	2.5
66	40	8	1,60	95	30	8	2
67	40	8	1,60	96	40	8	1.6
68	60	6,4	1,20	97	50	8	1,40
69	120	4	0,80	98	20	8	2.85
70	60	6,4	1,20	99	20	8	2.85
71	40	8	1,60	100	30	8	2
72	30	8	2	101	70	5,3	1,05
73	20	8	2,85	102	30	8	2
74	30	8	2	103	30	8	2
75	30	8	2	104	30	8	2
76	30	8	2	105	30	8	2
77	60	6,4	1,20	106	50	8	1,40
78	30	8	2	107	50	8	1,40
79	30	8	2	108	200	S,N	0
80	30	8	2	109	500	S,N	0
81	30	8	2	110	25	8	2.35
82	30	8	2	111	30	8	2
83	50	8	1,40	112	100	4	0,80
84	30	8	2	113	300	S,N	0
85	45	8	1,45				
86	30	8	2				
87	100	4	0,80				

4.1.4. Cálculo De La Tangente Intermedia

La solución para unir dos curvas consecutivas es establecer una tangente intermedia mínima que permita el desarrollo del peralte en de las dos curvas. La longitud de la tangente intermedia mínima está definida por dos parámetros los cuales son:

- Longitud de transición (L).- Tiene como función principal efectuar un cambio de pendientes transversales de la vía, entre la sección típica y la sección peraltada.
- Longitud tangencial (x).- Es la longitud que se requiere para realizar la inclinación de la calzada a partir del punto donde termina la curva.

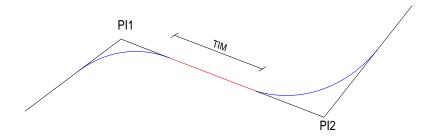


Figura 4.4. - Tangente Intermedia Mínima

La TIM es calculada con las siguientes expresiones:

✓ En el caso de dos curvas circulares consecutivas.

$$TIM = \frac{4}{3} * L + 2X$$

✓ En el caso de dos curvas espirales consecutivas

$$TIM = 4X$$

✓ Curvas mixtas (espiral – circular; circular – espiral)

$$TIM = \frac{2}{3} * L + 3$$

Tabla 4.6. – Parámetros para el cálculo de la Tangente intermedia mínima

Velocidad	х ((m)	L (m)				
(km/h)	Mínimo	Máximo	Mínimo	Máximo			
hasta 59	10	10	22	35			
60 - 79	10	13	34	45			
80 - 100	16	16	45	50			

Fuente: MOP. (2003). Normas de Diseño Geometrico.

Para nuestro caso tenemos TIM, entre curvas circulares para lo cual tenemos

$$TIMmin = \frac{4}{3} * L + 2x$$

Para velocidad = 25Km/h

$$TIMmin = \frac{4}{3} * 22 + 2 * 10$$

$$TIMmin = 49.33m$$

Los valores que se obtuvieron el rediseño se encuentra expresados en la tabla 4.7., en la columna (longitud de la curva / TIM)

4.1.5. REDISEÑO DE CURVAS HORIZONTALES

Teniendo en cuenta las especificaciones geométricas para el tipo de vía establecido se procedió a cambiar la alineación original y a aumentar el radio de curvatura en las curvas que no cumplen con las especificaciones técnicas del MOP, obteniendo como resultado las siguientes curvas y así garantizar un nivel de seguridad y confortabilidad al conductor.

Tabla 4.7. Resumen de curvas horizontales de la nueva alineación, peralte y sobre ancho

Observación	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT		ngulo (eflexió		Peralte asumido	Sobre ancho asumido
	(m)	(m)				0	0 '		(%)	(m)
Inicio.	0,11			0+000,00	0+000,11					
C. Circular 1	29,66	25	0+016,93	0+000,11	0+029,73	67,0	52,0	25,7	8	2,35
Tang. Inter. 1	36,95			0+029,73	0+066,71					
C. Circular 2	24,28	35	0+079,32	0+066,71	0+090,92	39,0	37,0	46,6	8	1,80
Tang. Inter. 2	37,97			0+090,92	0+128,89					
C. Circular 3	20,34	100	0+139,09	0+128,89	0+149,23	11,0	39,0	13,7	4	0,80
Tang. Inter. 3	48,04			0+149,23	0+197,28					
C. Circular 4	25,22	17	0+212,85	0+197,28	0+222,50	85,0	0,0	0,0	8	3.25
Tang. Inter. 4	2,44			0+222,50	0+224,94					
C. Circular 5	34,63	20	0+248,45	0+224,94	0+259,57	99,0	13,0	37,2	8	2.85
Tang. Inter. 5	61,10			0+259,57	0+320,68					
C. Circular 6	16,88	30	0+329,35	0+320,68	0+337,57	32,0	15,0	18,0	8	2
Tang. Inter. 6	19,71			0+337,57	0+357,28					

Observación	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT		gulo d flexió		Peralte asumido	Sobre ancho asumido
	(m)	(m)				0	•	"	(%)	(m)
C. Circular 7	59,78	30	0+403,63	0+357,28	0+417,06	114,0	10,0	54,8	8	2
Tang. Inter. 7	109,22			0+417,06	0+526,29					
C. Circular 8	16,92	30	0+534,99	0+526,29	0+543,22	32,0	19,0	22,8	8	2
Tang. Inter. 8	40,45			0+543,22	0+583,67					
C. Circular 9	49,92	30	0+616,60	0+583,67	0+633,59	95,0	20,0	51,4	8	2
Tang. Inter. 9	143,3			0+633,59	0+776,89					
C. Circular 10	46,11	30	0+805,90	0+776,89	0+823,01	88,0	4,0	50,2	8	2
Tang. Inter. 10	137,58			0+823,01	0+960,59					
C. Circular 11	11,95	30	0+966,65	0+960,59	0+972,54	22,0	49,0	34,0	8	2
Tang. Inter. 11	33,74			0+972,54	1+006,28					
C. Circular 12	18,96	30	1+016,10	1+006,28	1+025,25	36,0	13,0	7,3	8	2
Tang. Inter. 12	32,47			1+025,25	1+057,72					
C. Circular 13	68,01	30	1+121,92	1+057,72	1+125,74	129,0	54,0	27,4	8	2
Tang. Inter. 13	54,85			1+125,74	1+180,59					
C. Circular 14	15,96	30	1+188,77	1+180,59	1+196,56	30,0	29,0	2,0	8	2
Tang. Inter. 14	100,33			1+196,56	1+296,89					
C. Circular 15	41,12	80	1+317,92	1+296,89	1+338,02	29,0	27,0	20,5	4,5	0,95
Tang. Inter. 15	68,09			1+338,02	1+406,11					

Observació	n	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT	Angulo	o de de	flexión	Peralte asumido	Sobreancho asumido
		(m)	(m)				0			(%)	(m)
C. Circular	16	71,27	80	1+444,31	1+406,11	1+477,38	51,0	2,0	42,7	4,5	0,95
Tang. Inter.	16	116,85			1+477,38	1+594,24					
C. Circular	17	69,19	159	1+629,39	1+594,24	1+663,43	24,0	55,0	59,2	4	0,60
Tang. Inter.	17	124,27			1+663,43	1+787,71					
C. Circular	18	90,97	500	1+833,32	1+787,71	1+878,68	10,0	25,0	30,7	S,N	0
Tang. Inter.	18	80,55			1+878,68	1+959,24					
C. Circular	19	72,17	28	2+055,88	1+959,24	2+031,41	147,0	40,0	58,1	8	2.15
Tang. Inter.	19	54,08			2+031,41	2+085,50					
C. Circular	20	43,14	30	2+111,76	2+085,50	2+128,64	82,0	24,0	18,4	8	2
Tang. Inter.	20	113,16			2+128,64	2+241,84					
C. Circular	21	47,08	70	2+266,31	2+241,84	2+288,92	38,0	32,0	13,2	5,3	1,05
Tang. Inter.	21	60,48			2+288,92	2+349,41					
C. Circular	22	72,88	30	2+430,06	2+349,41	2+422,29	139,0	11,0	26,9	8	2
Tang. Inter.	22	105,92			2+422,29	2+528,21					
C. Circular	23	78,42	40	2+587,89	2+528,21	2+606,63	112,0	19,0	50,5	8	1,60
Tang. Inter.	23	124,11			2+606,63	2+730,75					

Observación	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT	Angulo	o de de	flexión	Peralte asumido	Sobreancho asumido
	(m)	(m)				0	•	=	(%)	(m)
C. Circular 24	59,90	30	2+777,30	2+730,75	2+790,65	114,0	24,0	0,7	8	2
Tang. Inter. 24	25,48			2+790,65	2+816,13					
C. Circular 25	50,60	30	2+849,84	2+816,13	2+866,74	96,0	39,0	9,4	8	2
Tang. Inter. 25	216,44			2+866,74	3+083,18					
C. Circular 26	73,95	30	3+168,45	3+083,18	3+157,13	141,0	14,0	1,3	8	2
Tang. Inter. 26	154,99			3+157,13	3+312,13					
C. Circular 27	77,27	80	3+354,08	3+312,13	3+389,40	55,0	20,0	35,9	4,5	0,95
Tang. Inter. 27	110,36			3+389,40	3+499,77					
C. Circular 28	22,78	20	3+512,58	3+499,77	3+522,56	65,0	17,0	4,6	8	2.85
Tang. Inter. 28	9,77			3+522,56	3+532,33					
C. Circular 29	22,38	20	3+544,86	3+532,33	3+554,71	64,0	6,0	54,4	8	2.85
Tang. Inter. 29	55,50			3+554,71	3+610,22					
C. Circular 30	19,07	30	3+620,09	3+610,22	3+629,29	36,0	26,0	8,9	8	2
Tang. Inter. 30	58,27			3+629,29	3+687,56					
C. Circular 31	29,98	40	3+703,30	3+687,56	3+717,55	42,0	56,0	48,5	8	1,60
Tang. Inter. 31	55,69			3+717,55	3+773,24					

Observació	n	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT	Angu	lo de d	eflexión	Peralte asumido	Sobreancho asumido
		(m)	(m)				0	•	=	(%)	(m)
C. Circular	32	73,93	70	3+814,08	3+773,24	3+847,18	60,0	31,0	11,3	5,3	1,05
Tang. Inter.	32	227,00			3+847,18	4+074,18					
C. Circular	33	98,79	70	4+133,83	4+074,18	4+172,98	80,0	51,0	55,4	5,3	1,05
Tang. Inter.	33	85,41			4+172,98	4+258,40					
C. Circular	34	44,53	60	4+281,74	4+258,40	4+302,93	42,0	31,0	32,5	6,4	1,20
Tang. Inter.	34	113,22			4+302,93	4+416,15					
C. Circular	35	43,20	200	4+437,84	4+416,15	4+459,36	12,0	22,0	38,6	S,N	0
Tang. Inter.	35	100,13			4+459,36	4+559,49					
C. Circular	36	27,87	40	4+574,02	4+559,49	4+587,36	39,0	55,0	20,3	8	1,60
Tang. Inter.	36	50,28			4+587,36	4+637,65					
C. Circular	37	33,69	40	4+655,57	4+637,65	4+671,35	48,0	16,0	12,4	8	1,60
Tang. Inter.	37	64,10			4+671,35	4+735,46					
C. Circular	38	34,38	80	4+752,92	4+735,46	4+769,84	24,0	37,0	40,8	4,5	0,95
Tang. Inter.	38	101,57			4+769,84	4+871,42					
C. Circular	39	26,36	40	4+885,10	4+871,42	4+897,78	37,0	46,0	1,2	8	1,60
Tang. Inter.	39	58,04		_	4+897,78	4+955,83					

Observación	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT		gulo d eflexió		Peralte asumido	Sobreancho asumido
	(m)	(m)						=	(%)	(m)
C. Circular 40	30,01	40	4+971,58	4+955,83	4+985,84	42,0	59,0	46,3	8	1,60
Tang. Inter. 40	75,67			4+985,84	5+061,52					
C. Circular 41	16,77	40	5+070,03	5+061,52	5+078,29	24,0	1,0	36,1	8	1,60
Tang. Inter. 41	211,02			5+078,29	5+289,31					
C. Circular 42	25,08	100	5+301,92	5+289,31	5+314,40	14,0	22,0	28,6	4	0,80
Tang. Inter. 42	142,35			5+314,40	5+456,76					
C. Circular 43	23,61	50	5+468,79	5+456,76	5+480,37	27,0	3,0	41,0	8	1,40
Tang. Inter. 43	50,47			5+480,37	5+530,84					
C. Circular 44	26,53	40	5+544,62	5+530,84	5+557,37	38,0	0,0	11,5	8	1,60
Tang. Inter. 44	45,99			5+557,37	5+603,36					
C. Circular 45	19,00	40	5+613,05	5+603,36	5+622,37	27,0	13,0	41,2	8	1,60
Tang. Inter. 45	151,01			5+622,37	5+773,39					
C. Circular 46	69,20	150	5+808,62	5+773,39	5+842,60	26,0	26,0	6,4	4	0,60
Tang. Inter. 46	162,86			5+842,60	6+005,46				•	
C. Circular 47	62,88	25	6+082,66	6+005,46	6+068,34	144,0	6,0	36,7	8	2.35
Tang. Inter. 47	31,35			6+068,34	6+099,69					

Observaci	ón	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT	Angul	o de def	lexión	Peralte asumido	Sobreancho asumido
		(m)	(m)				0 ' "			(%)	(m)
C. Circular	48	66,43	40	6+143,47	6+099,69	6+166,13	95,0	9,0	37,8	8	1,60
Tang. Inter.	48	81,28		,	6+166,13	6+247,41	,	,	,		,
C. Circular	49	80,63	40	6+310,81	6+247,41	6+328,05	115,0	30,0	18,4	8	1,60
Tang. Inter.	49	50,29			6+328,05	6+378,35					
C. Circular	50	73,08	40	6+430,19	6+378,35	6+451,44	104,0	41,0	32,6	8	1,60
Tang. Inter.	50	134,11			6+451,44	6+585,55					
C. Circular	51	59,08	50	6+619,09	6+585,55	6+644,63	67,0	42,0	0,7	8	1,40
Tang. Inter.	51	131,49			6+644,63	6+776,13					
C. Circular	52	57,82	90	6+806,08	6+776,13	6+833,96	36,0	48,0	48,6	4,1	0,85
Tang. Inter.	52	194,90			6+833,96	7+063.39					
C. Circular	53	41,50	40	7+086.23	7+063.39	7+104.89	33,0	5,0	51,4	8	1,60
Tang. Inter.	53	55,88			7+104.89	7+160.78					
C. Circular	54	20,58	60	7+171.17	7+160.78	7+181.36	25,0	5,0	51,4	6,4	1,20
Tang. Inter.	54	109,35			7+181.36	7+290.72					
C. Circular	55	6,85	60	7+294.16	7+290.72	7+297.58	26,0	0,0	0,0	6,4	1,20
Tang. Inter.	55	61,25			7+297.58	7+358.84					

Observació	n	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT		ngulo d eflexió		Peralte asumido	Sobreancho asumido
		(m)	(m)				0 ' "		"	(%)	(m)
C. Circular	56	42,93	60	7+381.27	7+358.84	7+401.77	16	19	59.9	6.4	1.2
Tang. Inter.	56	87,68			7+401.77	7+489.46					
C. Circular	57	32,55	40	7+506.70	7+489.46	7+522.01	41	28	44.8	8	1.6
Tang. Inter.	57	195,59			7+522.01	7+717.60					
C. Circular	58	43,49	120	7+739.59	7+717.60	7+761.10	40	37	36.1	4	0.8
Tang. Inter.	58	117.39			7+761.10	7+878.49					
C. Circular	59	37,64	600	7+897.32	7+878.49	7+916.13	50	28	25.7	S.N	0
Tang. Inter.	59	33.99			7+916.13	7+950.12					
C. Circular	60	26,35	150	7+963.33	7+950.12	7+976.48	77	42	5	4	0.6
Tang. Inter.	60	117,66			7+976.48	8+094.09					
C. Circular	61	29,55	40	8+109.58	8+094.09	8+123.65	63	12	57.6	8	1.6
Tang. Inter.	61	47,42			8+123.65	8+171.07					
C. Circular	62	7.33	40	8+174.75	8+171.07	8+178.40	90	17	29	8	1.6
Tang. Inter.	62	56,40			8+178.40	8+234.80					
C. Circular	63	35,60	60	8+253.15	8+234.80	8+270.41	128	30	26.6	6.4	1.6
Tang. Inter.	63	35,80			8+270.41	8+306.22					

Observació	n	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT		Angulo deflexi		Peralte asumido	Sobreancho asumido
		(m)	(m)				0 ' "		(%)	(m)	
C. Circular	64	34.66	60	8+324.04	8+306.22	8+340.88	44	30	0	6.4	1.2
Tang. Inter.	64	146,62			8+340.88	8+487.50					
C. Circular	65	26,28	60	8+500.86	8+487.50	8+513.79	42	56	48.1	6.4	1.2
Tang. Inter.	65	56.86			8+513.79	8+570.65					
C. Circular	66	18,15	40	8+579.88	8+570.65	8+588.80	1	13	0.5	8	1.6
Tang. Inter.	66	48,78			8+588.80	8+637.58					
C. Circular	67	11,40	40	8+643.32	8+637.58	8+648.99	111	40	42.6	8	1.6
Tang. Inter.	67	104.93			8+648.99	8+753.92					
C. Circular	68	43,43	60	8+776.63	8+753.92	8+797.35	43	43	15.2	6.4	1.2
Tang. Inter.	68	165.70			8+797.35	8+963.05					
C. Circular	69	85,08	120	9+007.47	8+963.05	9+048.14	62	32	2.4	4	0.8
Tang. Inter.	69	125,92			9+048.14	9+174.06					
C. Circular	70	52,85	60	9+202.34	9+174.06	9+226.92	86	0	0	6.4	1.2
Tang. Inter.	70	66,02			9+226.92	9+292.94					
C. Circular	71	54,24	40	9+325.16	9+292.94	9+347.19	57	1	59.9	8	1.6
Tang. Inter.	71	39,87			9+347.19	9+387.07					

Observació	n	Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT		ngulo deflexi		Peralte asumido	Sobreancho asumido
		(m)	(m)				0	•	"	(%)	(m)
C. Circular	72	33.10	30	9+405.53	9+387.07	9+420.17	18	31	59.9	8	2
Tang. Inter.	72	14,62			9+420.17	9+434.79					
C. Circular	73	31,51	20	9+454.90	9+434.79	9+466.31	56	52	43.3	8	2.85
Tang. Inter.	73	15,06			9+466.31	9+481.37					
C. Circular	74	67,28	30	9+543.58	9+481.37	9+548.66	118	18	47.2	8	2
Tang. Inter.	74	21.29			9+548.66	9+569.95					
C. Circular	75	23.30	30	9+582.22	9+569.95	9+593.25	60	26	3.8	8	2
Tang. Inter.	75	51,49			9+593.25	9+644.74					
C. Circular	76	22,48	30	9+656.55	9+644.74	9+667.23	12	0	0	8	2
Tang. Inter.	76	244,89			9+667.23	9+912.06					
C. Circular	77	1,27	60	9+912.70	9+912.06	9+913.33	48	12	40.3	6.4	1.2
Tang. Inter.	77	55,42			9+913.33	9+968.76					
C. Circular	78	58,47	30	10+012.9	9+968.76	10+027.23	59	21	49.7	8	2
Tang. Inter.	78	14,64			10+027.23	10+041.87					
C. Circular	79	22,89	30	10+053.9	10+041.87	10+064.77	108	9	9.4	8	2
Tang. Inter.	79	79,91	· ·		10+064.77	10+144.68					

Observación		Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT	Angulo de deflexión			Peralte asumido	Sobreancho asumido
		(m)	(m)				0	•	:	(%)	(m)
C. Circular	80	32,74	30	10+162.9	10+144.68	10+177.43	116	0	0.4	8	2
Tang. Inter.	80	12,95			10+177.43	10+190.39					
C. Circular	81	45,02	30	10+218.3	10+190.39	10+235.42	39	0	0.4	8	2
Tang. Inter.	81	1,45			10+235.42	10+236.87					
C. Circular	82	29,86	30	10+253.1	10+236.87	10+266.73	54	59	59.3	8	2
Tang. Inter.	82	78,91			10+266.73	10+345.65					
C. Circular	83	16,17	50	10+353.8	10+345.65	10+361.82	60	0	0.4	8	1.4
Tang. Inter.	83	22,83			10+361.82	10+384.66					
C. Circular	84	29,78	30	10+400.9	10+384.66	10+414.44	107	15	53.6	8	2
Tang. Inter.	84	17,09			10+414.44	10+431.53					
C. Circular	85	92,92	45	10+506.8	10+431.53	10+524.46	97	37	12	8	1.45
Tang. Inter.	85	9,10			10+524.46	10+533.56					
C. Circular	86	31,64	30	10+551.0	10+533.56	10+565.20	22	14	40.2	8	2
Tang. Inter.	86	45,67			10+565.20	10+610.88					
C. Circular	87	20,94	100	10+621.3	10+610.88	10+631.82	49	6	37.4	4	0.8
Tang. Inter.	87	184,53			10+631.82	10+816.38					

Observación		Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT	Angulo de deflexión			Peralte asumido	Sobreancho asumido
		(m)	(m)				0	•	=	(%)	(m)
C. Circular	88	42,07	50	10+838.75	10+816.38	10+858.45	67	58	58.8	8	1.4
Tang. Inter.	88	69,37			10+858.45	10+927.82					
C. Circular	89	31,08	30	10+944.92	10+927.82	10+958.91	26	48	32	8	2
Tang. Inter.	89	99,02			10+958.91	11+057.93					
C. Circular	90	56,62	30	11+099.34	11+057.93	11+114.56	19	49	34.3	8	2
Tang. Inter.	90	14,21			11+114.56	11+128.77					
C. Circular	91	60,73	30	11+176.78	11+128.77	11+189.51	72	0	0	8	2
Tang. Inter.	91	16,94			11+189.51	11+206.45					
C. Circular	92	34,03	50	11+224.16	11+206.45	11+240.49	84	0	0	8	1.4
Tang. Inter.	92	4.84			11+240.49	11+245.33					
C. Circular	93	23,99	25	11+258.34	11+245.33	11+269.33	85	30	0	8	2.35
Tang. Inter.	93	0.45			11+269.33	11+269.78					
C. Circular	94	24,08	23	11+283.06	11+269.78	11+293.87	66	30	0	8	2.5
Tang. Inter.	94	51,54			11+293.87	11+345.41					
C. Circular	95	56,16	30	11+386.15	11+345.41	11+401.57	47	0	0	8	2
Tang. Inter.	95	202,14			11+401.57	11+603.68					

Observación		Longitud de la curva / TIM	Radio	Abscisa Pl	Abscisa PC	Abscisas PT	Angulo de deflexión			Peralte asumido	Sobreancho asumido
		(m)	(m)				0	•	=	(%)	(m)
C. Circular	96	68,15	40	11+649.38	11+603.68	11+671.83	52	0	0	8	1.6
Tang. Inter.	96	189,03			11+671.83	11+860.87					
C. Circular	97	19,41	50	11+870.70	11+860.87	11+880.28	19	0	0	8	1.4
Tang. Inter.	97	81,12			11+880.28	11+961.40					
C. Circular	98	17,14	20	11+970.54	11+961.40	11+978.54	3	30	0	8	2.85
Tang. Inter.	98	6,75			11+978.54	11+985.30					
C. Circular	99	23,73	20	11+998.79	11+985.30	12+009.03	79	0	0.4	8	2.85
Tang. Inter.	99	89,04			12+009.03	12+098.07					
C. Circular	100	14,03	30	12+105.22	12+098.07	12+112.11	52	59	59.6	8	2
Tang. Inter.	100	189,42			12+112.11	12+301.54					
C. Circular	101	24,22	70	12+313.77	12+301.54	12+325.76	20	0	0	5.3	1.05
Tang. Inter.	101	98.41			12+325.76	12+424.17					
C. Circular	102	37,69	30	12+445.96	12+424.17	12+461.87	10	59	46	8	2
Tang. Inter.	102	82,93			12+461.87	12+544.80					
C. Circular	103	43,98	30	12+571.81	12+544.80	12+588.78	84	0	0	8	2
Tang. Inter.	103	29,63			12+588.78	12+618.42					
C. Circular	104	44,76	30	12+646.15	12+618.42	12+663.18	85	30	0	8	2
Tang. Inter.	104	23,96			12+663.18	12+687.15					
C. Circular	105	34,81	30	12+706.82	12+687.15	12+721.97	66	30	0	8	2
Tang. Inter.	105	115,12			12+721.97	12+837.11					

Observación		Longitud de la curva / TIM	Radio	Abscisa PI	Abscisa PC	Abscisas PT	Angulo de deflexión			Peralte asumido	Sobreancho asumido
		(m)	(m)				0	•	"	(%)	(m)
C. Circular	106	41,01	50	12+858.85	12+837.11	12+878.12	47	0	0	8	1.4
Tang. Inter.	106	95,25			12+878.12	12+973.37					
C. Circular	107	45,37	50	12+997.76	12+973.37	13+018.75	52	0	0	8	1.4
Tang. Inter.	107	18,20			13+018.75	13+036.96					
C. Circular	108	66,32	200	13+070.43	13+036.96	13+103.28	19	0	0	S.N	0
Tang. Inter.	108	108,10			13+103.28	13+211.38					
C. Circular	109	30,54	500	13+226.66	13+211.38	13+241.93	3	30	0	S.N	0
Tang. Inter.	109	215,87			13+241.93	13+457.80					
C. Circular	110	34.47	25	13+478.41	13+457.80	13+492.27	79	0	0.4	8	2.35
Tang. Inter.	110	15,52			13+492.27	13+507.80					
C. Circular	111	27,75	30	13+522.75	13+507.80	13+535.55	52	59	59.6	8	2
Tang. Inter.	111	14.44			13+535.55	13+549.99					
C. Circular	112	34,90	100	13+567.62	13+549.99	13+584.89	20	0	0	4	0.8
Tang. Inter.	112	49,88			13+584.89	13+634.78					
C. Circular	113	57,57	300	13+663.65	13+634.78	13+692.35	10	59	46	S.N	0
Tang. Inter.	113	169,49			13+692.35	13+861.80					

4.1.6. Distancia De Visibilidad De Parada

Se la define como al distancia mínima en al cual un conductor requiere ver un objeto en su trayectoria para así lograr detener el vehículo antes de llegar al objeto antes divisado.

La distancia de visibilidad de parada (d) puede ser calculada mediante la siguiente expresión:

$$d = d1 + d2$$

Donde:

d1 = Es la distancia que el vehículo recorre desde que el conductor divisa el objeto hasta que empieza a frenar; en otros términos, es la distancia recorrida durante el tiempo de percepción más reacción, expresada en metros. Para calcularla se utiliza la siguiente expresión:

$$d1 = 0.7 * Vc$$

Siendo Vc la velocidad de circulación expresada en km/h

d2 = Es la distancia de frenado del vehículo, es decir la necesaria para que el vehículo se detenga por completo. Se calcula con la siguiente expresión:

$$d2 = \frac{Vc^2}{254 * f}$$

Siendo Vc la velocidad de circulación expresada en km/h; y

f = Coeficiente de fricción

$$f = \frac{1.15}{Vc^{0.3}}$$

Tabla 4.8. Distancia de visibilidad mínima de parada

DISTAI	DISTANCIA DE VISIBILIDAD MÍNIMA DE PARADA SOBRE PAVIMENTO MOJADO											
Velocidad	Velocid ad de		epción + acción	Coeficient	Distancia de	Distancia de visibilidad (m)						
de diseño (km/h)	circula ción (km/h)	Tiemp o (seg)	Distancia recorrida (m)	e de fricción (f)	frenado gradiente cero (m)	Cal.	Reco m.					
25	27	2,5	18,90	0,438	5,62	24,52	22					
30	31	2,5	21,70	0,415	8,55	30,25	27					
35	37	2,5	25,90	0,396	12,18	38,08	35					
40	39	2,5	27,30	0,380	16,57	43,87	40					
50	47	2,5	32,90	0,356	27,68	60,58	55					
60	55	2,5	38,50	0,337	42,09	80,59	73					
70	63	2,5	44,10	0,321	60,01	104,1 1	91					
80	71	2,5	49,70	0,309	81,58	131,2 8	111					
90	79	2,5	55,30	0,298	106,96	162,2 6	134					
100	87	2,5	60,90	0,289	136,29	197,1 9	159					
110	95	2,5	66,50	0,281	169,70	236,2	187					

Fuente: MOP. (2003). Normas de Diseño Geométrico. Quito.

4.1.7. Distancia De Visibilidad De Rebasamiento

Es la longitud necesaria en la vía para efectuar la maniobra de rebasamiento bajo condiciones de seguridad. La maniobra de rebasamiento en una vía de dos carriles necesariamente implica el uso del carril izquierdo, es decir el uso del carril de sentido contrario.

La distancia de visibilidad de rebasamiento está constituida por 4 distancias:

d1= Es la distancia recorrida por el vehículo que rebasa en el tiempo de percepción-reacción y durante la aceleración inicial hasta alcanzar el carril izquierdo de la vía.

- d2= Es la distancia que recorre el vehículo que rebasa durante el tiempo que ocupa el carril izquierdo de la vía.
- d3 = Es la distancia recorrida por el vehículo opuesto durante 2/3 del tiempo que el vehículo rebasante ocupa el carril izquierdo, es decir 2/3 de d2.
- d4 = Distancia entre el vehículo que rebasa y el vehículo que viene en sentido opuesto, al final de la maniobra.

La distancia de visibilidad de rebasamiento es:

$$dr = d1 + d2 + d3 + d4$$

Tabla 4.9. Distancia de visibilidad mínima de rebasamiento

Distancia de visibilidad mínima de rebasamiento sobre pavimento mojado									
	Velocidad	Velocidad de	Distancia de visibilidad (m)						
Velocidad de diseño (km/h)	de circulación (km/h)	circulación del vehículo rebasante (km/h)	Calculada	Recomendada					
25	27	43	187.45	187					
30	31	47	225.61	226					
35	37	53	263.77	264					
40	39	55	301.93	302					
50	47	63	378.25	378					
60	55	71	454.57	455					
70	63	79	530.89	531					
80	71	87	607.21	607					
90	79	95	683.53	684					
100	87	103	759.85	760					
110	95	111	836.17	836					

Fuente: MOP. (2003). Normas de Diseño Geométrico.

4.2. DISEÑO GEOMÉTRICO VERTICAL

Es la proyección del eje real de una vía sobre la superficie vertical, existiendo un paralelismo, dicha proyección muestra la longitud real del eje de la vía.

4.2.1. Curvas Verticales

Una curva vertical es aquel elemento del diseño en perfil que permite el enlace de dos tangentes verticales consecutivas, tal que a lo largo de su longitud se efectúa el cambio gradual de la pendiente de la tangente de entrada a la pendiente de la tangente de salida, de tal forma que facilite una operación vehicular segura y confortable, que sea de apariencia agradable y que permita un drenaje adecuado.

Elementos

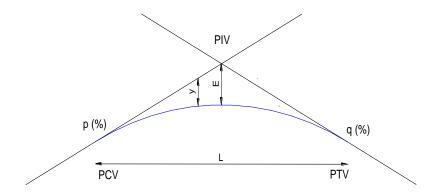


Figura 4.5 Elementos de una curva vertical

Donde:

PCV: Principio de la curva vertical

PIV: Punto de intersección vertical

PTV: Principio de tangente vertical. Final de curva vertical

E: External. Distancia vertical entre el PIV y la curva

L: Longitud de la curva vertical

- p(%): Pendiente inicial o de llegada expresada en porcentaje
- q(%) Pendiente final o de salida expresada en porcentaje
- y: Corrección vertical
- A: Diferencia algebraica de pendientes expresada en porcentaje = q p

4.2.1.1. Curvas verticales convexas

Su longitud se determina en base a la velocidad de diseño y a la distancia de visibilidad de parada de un vehículo, teniendo en cuenta que la altura del ojo del conductor esta a 1.15 metros y el objeto que divisa en la carretera esta a 0.15 cm De acuerdo a las Normas de Diseño geométrico – 2003 del MOP, el cálculo de las curvas verticales convexas, está sustentado en las siguientes expresiones:

$$L = \frac{A * S^2}{426}$$

$$k = \frac{S^2}{426}$$

$$L = K * A$$

Donde:

- L: Longitud de la curva vertical en metros
- S: distancia de visibilidad de parada en metros
- A: Diferencia algebraica de las gradientes (%)
- K: Relación de la longitud de la curva en metros por cada tanto por ciento de la diferencia algebraica de las gradientes

Tabla 4.10. Coeficiente k para curvas verticales convexas

	e visibilidad m bre pavimento	Curvas Verticales Convexas		
Velocidad de diseño (Km/h)	Velocidad de circulación	Distancia de Visibilidad (s)	$K = \frac{S^2}{426}$	
		Recomendada	Calc	ulada
25	27	22	1.14	1
30	31	27	1.71	2
35	37	35	2.88	3
40	39	40	3.76	4
50	47	55	7.10	7
60	55	73	12.51	13
70	63	91	19.44	19
80	71	111	28.92	29
90	79	134	42.15	42
100	87	159	59.35	59
110	95	187	82.09	82

Fuente: MOP. (2003). Normas de Diseño Geometrico.

4.2.1.2. Curvas Verticales Cóncavas

Su longitud se determina en base a la distancia de visibilidad de parada de un vehículo, considerando que el objeto que se observa está a 0.60 metros del faro del vehículo.

De acuerdo a las Normas de Diseño geométrico – 2003 del MTOP, el cálculo de las curvas verticales cóncavas, está sustentado en las siguientes expresiones:

$$L = \frac{A * S^2}{122 + 3.5 * S} \qquad K = \frac{S^2}{122 + 3.5 * S}$$

$$L = K * A$$

Donde:

- L: Longitud de la curva vertical en metros
- S: Distancia de visibilidad para parada de un vehículo en metros
- A: Diferencia algebraica de las gradientes (%)
- K: Relación de la longitud de la curva en metros por cada tanto por ciento de la diferencia algebraica de las gradientes

Tabla 4.11. Coeficiente k para curvas verticales cóncavas

		ad mínima de ento mojado	Curvas Verticales Cóncava			
Velocidad de diseño (Km/h)	velocidad de circulación	Distancia de Visibilidad (s)	$K = \frac{S^2}{122 + 3.5 * S}$			
		Recomendada	Calc	ulada		
25	27	22	2.43	2		
30	31	27	3.37	3		
35	37	35	5.01	5		
40	39	40	6.11	6		
50	47	55	9.62	7		
60	55	73	14.12	14		
70	63	91	18.80	19		
80	71	111	24.14	24		
90	79	134	30.38	30		
100	87	159	37.26	37		
110	95	187	45.03	45		

Fuente: MOP. (2003). Normas de Diseño Geometrico.

4.2.1.3. Longitud Mínima De Curvas Verticales Cóncavas Y Convexas

Para la longitud mínima de la curva cóncava, se determina con la siguiente expresión:

$$L_{min} = 0.6 *$$

Donde

L min: Es la longitud mínima que debe tener la curva cóncava y/o convexa, en metros.

V: Velocidad de diseño, del proyecto en kilómetros por hora.

Para nuestro proyecto la velocidad de diseño es de 35 km/h, aplicando la ecuación de longitud mínima, tenemos:

$$L_{min} = 0.6 * 25 [km/h]$$

 $L_{min} = 15 m$

Tabla 4.12. Resumen de curvas verticales existentes

Abscisa PVI	Elevación PVI	Gradiente de entrada	Gradiente de salida	Diferencia de gradientes	Longitud de la curva	Tipo de curva vertical
0+015.09 m	1604.15 m	-5.59%	-9.20%	3.61%	20.00 m	Convexa
0+095.33 m	1596.77 m	-9.20%	-4.30%	4.90%	60.00 m	Cóncava
0+197.40 m	1592.38 m	-4.30%	-7.70%	3.40%	60.00 m	Convexa
0+280.33 m	1585.99 m	-7.70%	-5.30%	2.40%	60.00 m	Cóncava
0+369.33 m	1581.28 m	-5.30%	-7.70%	2.40%	60.00 m	Convexa
0+524.33 m	1569.34 m	-7.70%	-6.20%	1.50%	50.00 m	Cóncava
0+577.99 m	1566.02 m	-6.20%	-10.45%	4.25%	40.00 m	Convexa
0+609.85 m	1562.68 m	-10.45%	-6.74%	3.71%	20.00 m	Cóncava
0+739.50 m	1553.94 m	-6.74%	-8.28%	1.53%	60.00 m	Convexa

Abscisa PVI	Elevación PVI	Gradiente de entrada	Gradiente de salida	Diferencia de gradientes	Longitud de la curva	Tipo de curva vertical
0+830.33m	1546.426m	-8.28%	-1.60%	6.68%	60.00 m	Cóncava
0+910.33m	1545.146m	-1.60%	-5.50%	3.90%	60.00 m	Convexa
1+000.33m	1540.196m	-5.50%	-6.88%	1.38%	60.00 m	Convexa
1+095.33m	1533.658m	-6.88%	-10.19%	3.31%	30.00 m	Convexa
1+142.61m	1528.839m	-10.19%	-6.72%	3.48%	10.00 m	Cóncava
1+226.85m	1523.180m	-6.72%	-10.00%	3.28%	40.00 m	Convexa
1+336.97m	1512.168m	-10.00%	-6.50%	3.50%	60.00 m	Cóncava
1+439.58m	1505.498m	-6.50%	-7.00%	0.50%	60.00 m	Convexa
1+509.58m	1500.598m	-7.00%	0.80%	7.80%	60.00 m	Cóncava
1+659.58m	1501.798m	0.80%	-3.60%	4.40%	100.00 m	Convexa
1+832.58m	1495.570m	-3.60%	-7.70%	4.10%	60.00 m	Convexa
1+949.58m	1486.561m	-7.70%	-12.50%	4.80%	80.00 m	Convexa
2+019.78m	1477.787m	-12.50%	-11.30%	1.20%	60.00 m	Cóncava
2+139.58m	1464.251m	-11.30%	-9.80%	1.50%	60.00 m	Cóncava
2+219.58m	1456.411m	-9.80%	-9.30%	0.50%	60.00 m	Cóncava
2+299.58m	1448.971m	-9.30%	-7.80%	1.50%	60.00 m	Cóncava
2+369.51m	1443.517m	-7.80%	-8.70%	0.90%	60.00 m	Convexa
2+579.58m	1425.241m	-8.70%	-8.50%	0.20%	60.00 m	Cóncava
2+689.58m	1415.891m	-8.50%	-12.10%	3.60%	60.00 m	Convexa
2+749.58m	1408.631m	-12.10%	-9.30%	2.80%	50.00 m	Cóncava
2+813.67m	1402.670m	-9.30%	-7.20%	2.10%	50.00 m	Cóncava
2+969.58m	1391.443m	-7.20%	-8.51%	1.31%	60.00 m	Convexa
3+029.58m	1386.339m	-8.51%	-8.20%	0.31%	40.00 m	Cóncava
3+119.58m	1378.959m	-8.20%	-10.60%	2.40%	40.00 m	Cóncava
3+159.58m	1374.719m	-10.60%	-8.40%	2.20%	38.00 m	Cóncava
3+219.58m	1369.679m	-8.40%	-9.70%	1.30%	40.00 m	Convexa
3+279.58m	1363.859m	-9.70%	-9.40%	0.30%	40.00 m	Cóncava
3+319.58m	1360.099m	-9.40%	-11.71%	2.31%	38.00 m	Convexa
3+341.96m	1357.478m	-11.71%	0.00%	11.71%	2.00 m	Cóncava
3+351.96m	1357.477m	0.00%	-11.71%	11.71%	2.00 m	Convexa
3+399.58m	1351.899m	-11.71%	-11.16%	0.55%	40.00 m	Cóncava
3+511.58m	1339.395m	-11.16%	0.00%	11.16%	15.00 m	Cóncava
3+554.58m	1339.395m	0.00%	4.20%	4.20%	20.00 m	Cóncava
3+623.02m	1342.272m	4.20%	-0.61%	4.81%	60.00 m	Convexa

Abscisa PVI	Elevación PVI	Gradiente de entrada	Gradiente de salida	Diferencia de gradientes	Longitud de la curva	Tipo de curva vertical
3+712.58m	1341.726m	-0.61%	-9.00%	8.39%	24.000m	Convexa
3+866.58m	1327.865m	-9.00%	2.90%	11.90%	260.000m	Cóncava
4+083.58m	1334.158m	2.90%	-7.90%	10.80%	70.000m	Convexa
4+172.58m	1327.127m	-7.90%	-2.20%	5.70%	40.000m	Cóncava
4+259.58m	1325.213m	-2.20%	-2.70%	0.50%	40.000m	Convexa
4+392.58m	1321.622m	-2.70%	-6.30%	3.60%	40.000m	Convexa
4+460.28m	1317.357m	-6.30%	-8.51%	2.21%	30.000m	Convexa
4+499.58m	1314.012m	-8.51%	-5.10%	3.41%	30.000m	Cóncava
4+577.95m	1310.015m	-5.10%	-4.51%	0.59%	60.000m	Cóncava
4+677.58m	1305.522m	-4.51%	-6.10%	1.59%	40.000m	Convexa
4+719.58m	1302.960m	-6.10%	-4.10%	2.00%	30.000m	Cóncava
4+767.35m	1301.002m	-4.10%	-5.50%	1.40%	40.000m	Convexa
4+839.59m	1297.031m	-5.50%	-5.80%	0.31%	40.000m	Convexa
4+942.57m	1291.056m	-5.80%	-1.50%	4.30%	60.000m	Cóncava
5+019.58m	1289.901m	-1.50%	-2.70%	1.20%	40.000m	Convexa
5+079.58m	1288.281m	-2.70%	-1.50%	1.20%	40.000m	Cóncava
5+149.01m	1287.239m	-1.50%	-0.30%	1.20%	40.000m	Cóncava
5+262.58m	1286.898m	-0.30%	-1.20%	0.90%	60.000m	Convexa
5+359.58m	1285.734m	-1.20%	-0.90%	0.30%	60.000m	Cóncava
5+514.58m	1284.339m	-0.90%	-3.80%	2.90%	40.000m	Convexa
5+564.03m	1282.460m	-3.80%	-2.10%	1.70%	40.000m	Cóncava
5+623.85m	1281.204m	-2.10%	-4.20%	2.10%	30.000m	Convexa
5+723.58m	1277.015m	-4.20%	2.80%	7.00%	160.000m	Cóncava
5+854.21m	1280.673m	2.80%	3.40%	0.60%	40.000m	Cóncava
5+999.58m	1285.616m	3.40%	1.80%	1.60%	40.000m	Convexa
6+054.58m	1286.606m	1.80%	-5.01%	6.81%	60.000m	Convexa
6+145.01m	1282.073m	-5.01%	-1.32%	3.69%	50.000m	Cóncava
6+272.59m	1280.383m	-1.32%	9.10%	10.42%	80.000m	Cóncava
6+427.59m	1294.488m	9.10%	-2.00%	11.10%	90.000m	Convexa
6+547.59m	1292.088m	-2.00%	-4.90%	2.90%	40.000m	Convexa
6+627.60m	1288.168m	-4.90%	-4.20%	0.70%	40.000m	Cóncava
6+697.59m	1285.228m	-4.20%	-4.80%	0.60%	40.000m	Convexa
6+792.59m	1280.668m	-4.80%	-7.20%	2.40%	40.000m	Convexa

Abscisa PVI	Elevación PVI	Gradiente de entrada	Gradiente de salida	Diferencia de gradientes	Longitud de la curva	Tipo de curva vertical
6+837.59m	1277.428m	-7.20%	-7.75%	0.55%	40.000m	Convexa
6+930.84m	1270.204m	-7.75%	-8.91%	1.16%	40.000m	Convexa
6+997.59m	1264.255m	-8.91%	-4.73%	4.18%	79.824m	Cóncava
7+137.93m	1255.566m	-4.73%	-4.90%	0.17%	40.000m	Cóncava
7+199.89m	1252.530m	-4.90%	-4.00%	0.90%	40.000m	Cóncava
7+243.31m	1250.793m	-4.00%	-7.10%	3.10%	40.000m	Convexa
7+303.31m	1246.533m	-7.10%	-11.89%	4.79%	30.000m	Convexa
7+333.51m	1242.942m	-11.89%	-10.00%	1.89%	30.000m	Cóncava
7+383.31m	1237.963m	-10.00%	-9.98%	0.02%	60.000m	Cóncava
7+441.31m	1232.172m	-9.98%	0.00%	9.98%	15.000m	Cóncava
7+468.31m	1232.172m	0.00%	-7.57%	7.57%	15.000m	Convexa
7+539.78m	1226.759m	-7.57%	-3.20%	4.37%	40.000m	Cóncava
7+603.31m	1224.726m	-3.20%	-5.60%	2.40%	30.000m	Convexa
7+673.31m	1220.806m	-5.60%	-9.00%	3.40%	40.000m	Convexa
7+763.31m	1212.705m	-9.00%	-2.20%	6.80%	60.000m	Cóncava
7+843.31m	1210.945m	-2.20%	0.33%	2.53%	40.000m	Cóncava
7+959.50m	1211.326m	0.33%	-3.00%	3.33%	50.000m	Convexa
8+029.50m	1209.226m	-3.00%	2.30%	5.30%	40.000m	Cóncava
8+109.50m	1211.066m	2.30%	8.40%	6.10%	40.000m	Cóncava
8+194.50m	1218.206m	8.40%	1.50%	6.90%	50.000m	Convexa
8+284.50m	1219.556m	1.50%	-6.80%	8.30%	50.000m	Convexa
8+379.50m	1213.096m	-6.80%	-3.35%	3.45%	60.000m	Cóncava
8+434.68m	1211.246m	-3.35%	5.34%	8.69%	50.000m	Cóncava
8+545.40m	1217.159m	5.34%	9.20%	3.86%	60.000m	Cóncava
8+616.40m	1223.691m	9.20%	7.50%	1.70%	60.000m	Convexa
8+728.40m	1232.091m	7.50%	3.40%	4.10%	60.000m	Convexa
8+840.40m	1235.899m	3.40%	7.27%	3.87%	60.000m	Cóncava
8+925.78m	1242.106m	7.27%	4.91%	2.36%	20.000m	Convexa
8+980.40m	1244.789m	4.91%	10.98%	6.07%	80.000m	Cóncava
9+133.40m	1261.589m	10.98%	5.91%	5.07%	60.000m	Convexa
9+192.60m	1265.089m	5.91%	4.67%	1.24%	40.000m	Convexa
9+295.40m	1269.889m	4.67%	6.38%	1.71%	60.000m	Cóncava
9+397.32m	1276.389m	6.38%	3.14%	3.24%	60.000m	Convexa
9+475.40m	1278.839m	3.14%	7.08%	3.94%	60.000m	Cóncava
9+583.40m	1286.489m	7.08%	-2.64%	9.72%	60.000m	Convexa
9+655.40m	1284.589m	-2.64%	-5.97%	3.33%	60.000m	Convexa

Abscisa PVI	Elevación PVI	Gradiente de entrada	Gradiente de salida	Diferencia de gradientes	Longitud de la curva	Tipo de curva vertical
9+706.52m	1281.538m	-5.97%	-8.05%	2.08%	40.000m	Convexa
9+780.40m	1275.589m	-8.05%	-4.81%	3.24%	60.000m	Cóncava
9+925.40m	1268.607m	-4.81%	-4.59%	0.22%	60.000m	Cóncava
9+985.53m	1265.844m	-4.59%	-6.05%	1.46%	60.000m	Convexa
10+072.40m	1260.589m	-6.05%	-1.38%	4.67%	60.000m	Cóncava
10+181.40m	1259.089m	-1.38%	2.53%	3.91%	60.000m	Cóncava
10+260.40m	1261.089m	2.53%	-2.85%	5.38%	60.000m	Convexa
10+383.40m	1257.589m	-2.85%	-9.09%	6.24%	60.000m	Cóncava
10+449.40m	1251.589m	-9.09%	-4.46%	4.63%	60.000m	Cóncava
10+505.40m	1249.089m	-4.46%	-7.24%	2.78%	40.000m	Convexa
10+581.40m	1243.589m	-7.24%	-9.01%	1.77%	40.000m	Convexa
10+667.40m	1235.839m	-9.01%	-8.64%	0.37%	60.000m	Cóncava
10+743.89m	1229.227m	-8.64%	-9.17%	0.53%	60.000m	Convexa
10+805.15m	1223.610m	-9.17%	-8.33%	0.84%	60.000m	Cóncava
10+865.40m	1218.589m	-8.33%	-6.67%	1.66%	60.000m	Cóncava
10+926.33m	1214.527m	-6.67%	-8.36%	1.69%	60.000m	Convexa
10+986.49m	1209.498m	-8.36%	-6.48%	1.88%	60.000m	Cóncava
11+085.40m	1203.089m	-6.48%	-9.29%	2.81%	60.000m	Convexa
11+155.40m	1196.589m	-9.29%	-10.77%	1.48%	60.000m	Convexa
11+220.40m	1189.589m	-10.77%	-3.66%	7.11%	60.000m	Cóncava
11+302.40m	1186.589m	-3.66%	-11.23%	7.57%	60.000m	Convexa
11+440.40m	1171.089m	-11.23%	5.28%	16.51%	140.000m	Cóncava
11+563.40m	1177.589m	5.28%	4.84%	0.44%	40.000m	Convexa
11+625.40m	1180.589m	4.84%	2.16%	2.68%	40.000m	Convexa
11+741.40m	1183.089m	2.16%	-4.17%	6.33%	70.000m	Convexa
11+825.49m	1179.585m	-4.17%	-3.88%	0.29%	60.000m	Cóncava
11+925.40m	1175.714m	-3.88%	-4.23%	0.35%	40.000m	Convexa
12+005.40m	1172.326m	-4.23%	-7.97%	3.74%	40.000m	Convexa
12+075.71m	1166.720m	-7.97%	4.15%	12.12%	100.000m	Cóncava
12+196.40m	1171.726m	4.15%	3.51%	0.64%	60.000m	Convexa
12+362.40m	1177.546m	3.51%	-3.90%	7.41%	60.000m	Convexa
12+460.40m	1173.726m	-3.90%	-4.76%	0.86%	60.000m	Convexa
12+565.40m	1168.726m	-4.76%	-4.62%	0.14%	60.000m	Cóncava
12+695.40m	1162.726m	-4.62%	-3.26%	1.36%	60.000m	Cóncava
12+885.40m	1156.526m	-3.26%	-7.80%	4.54%	60.000m	Convexa
12+985.40m	1148.726m	-7.80%	-2.92%	4.88%	60.000m	Cóncava

Abscisa PVI	Elevación PVI	Gradiente de entrada	Gradiente de salida	Diferencia de gradientes	Longitud de la curva	Tipo de curva vertical
13+105.40m	1145.226m	-2.92%	-6.35%	3.43%	60.000m	Convexa
13+168.40m	1141.226m	-6.35%	-8.25%	1.90%	60.000m	Convexa
13+225.40m	1136.526m	-8.25%	-4.18%	4.07%	50.000m	Cóncava
13+280.46m	1134.224m	-4.18%	-3.17%	1.01%	50.000m	Cóncava
13+385.40m	1130.896m	-3.17%	-0.77%	2.40%	60.000m	Cóncava
13+485.40m	1130.126m	-0.77%	0.47%	1.24%	40.000m	Cóncava
13+555.40m	1130.456m	0.47%	0.00%	0.47%	40.000m	Convexa
13+675.40m	1130.456m	0.00%	6.32%	6.32%	100.000m	Cóncava
13+790.40m	1137.726m	6.32%	3.89%	2.43%	40.000m	Convexa
13+925.40m	1142.976m	3.89%	1.05%	2.84%	40.000m	Convexa

4.2.1.4. REDISEÑO DE CURVAS VERTICALES

Debido a que se realizo variaciones en la alineación original para garantizar el confort del conductor y cumplir con los conceptos de diseño geométrico cumpliendo con las normas del MTOP, el diseño vertical sufrió variaciones.

Para el rediseño vertical se tuvo en consideración que exista la menor cantidad de movimiento de tierra posible, ya que dicho rubro encarece la obra en grandes proporciones.

Tabla 4.13. Resumen de curvas verticales de la nueva alineación

ABSCISA PVI	ELEVACIÓ N PVI	GRAD. DE ENTRAD A (%)	GRAD. DE SALIDA (%)	DIFERE NCIA DE GRADIE NTES (A)	TIPO DE CURVA VERTICAL	ĸ	L CALCULAD A (m)	ASUMID A (m)
0+014,76	1604,180	-5,55	-9,22	3,67	Cóncava	5	18,35	25,00
0+095,00	1596,779	-9,22	-4,34	4,88	Convexa	3	14,64	60,00
0+199,82	1592,227	-4,34	-7,77	3,43	Cóncava	5	17,15	70,00
0+279,99	1585,998	-7,77	-5,32	2,45	Convexa	3	7,35	60,00
0+370,00	1581,207	-5,32	-7,93	2,61	Cóncava	5	13,05	50,00
0+520,00	1569,319	-7,93	-8,27	0,34	Cóncava	5	1,70	60,00

ABSCISA PVI	ELEVACIÓN PVI	GRAD. DE ENTRADA (%)	GRAD. DE SALIDA (%)	DIFERE NCIA DE GRADI ENTES (A)	TIPO DE CURVA VERTICAL	К	L CALCULAD A (m)	ASUMIDA (m)
0+750,00	1550,305	-8,27	-4,09	4,18	Convexa	3	12,54	60,00
1+010,00	1539,683	-4,09	-8,01	3,92	Cóncava	5	19,60	60,00
1+500,20	1500,414	-8,01	0,79	8,80	Convexa	3	26,40	100,00
1+659,98	1501,679	0,79	-3,58	4,37	Cóncava	5	21,85	80,00
1+839,98	1495,230	-3,58	-7,98	4,40	Cóncava	5	22,00	80,00
1+955,00	1486,052	-7,98	-13,26	5,28	Cóncava	5	26,40	60,00
2+069,99	1470,803	-13,26	-9,84	3,42	Convexa	3	10,26	100,00
2+295,00	1448,654	-9,84	-8,05	1,79	Convexa	3	5,37	60,00
2+690,00	1416,864	-8,05	-8,90	0,85	Cóncava	5	4,25	60,00
3+325,00	1360,336	-8,90	-10,74	1,84	Cóncava	5	9,20	60,00
3+520,00	1339,391	-10,74	0,00	10,74	Convexa	3	32,22	25,00
3+565,01	1339,390	0,00	4,43	4,43	Convexa	3	13,29	25,00
3+629,98	1342,268	4,43	-1,02	5,45	Cóncava	5	27,25	60,00
3+720,00	1341,354	-1,02	-7,56	6,54	Cóncava	5	32,70	80,00
3+880,00	1329,252	-7,56	1,73	9,29	Convexa	3	27,87	200,00
4+108,15	1333,191	1,73	-8,09	9,82	Cóncava	5	49,10	60,00
4+187,80	1326,744	-8,09	-2,23	5,86	Convexa	3	17,58	60,00
4+399,99	1322,014	-2,23	-6,14	3,91	Cóncava	5	19,55	80,00
4+613,63	1308,896	-6,14	-5,11	1,03	Convexa	3	3,09	60,00
5+003,26	1288,996	-5,11	-0,90	4,21	Convexa	3	12,63	80,00
5+516,03	1284,389	-0,90	-3,21	2,31	Cóncava	5	11,55	60,00
5+715,65	1277,980	-3,21	2,20	5,41	Convexa	3	16,23	60,00
6+080,08	1286,011	2,20	-3,29	5,49	Cóncava	5	27,45	60,00
6+276,32	1279,562	-3,29	7,64	10,93	Convexa	3	32,79	60,00
6+480,00	1295,132	7,64	-4,11	11,75	Cóncava	5	58,75	120,00
6+819,97	1281,161	-4,11	-7,97	3,86	Cóncava	5	19,30	100,00
7+086,45	1260,185	-7,97	-2,76	5,21	Convexa	3	15,63	60,00
7+220,21	1256,491	-2,76	-9,70	6,94	Cóncava	5	34,70	60,00
7+471,14	1232,157	-9,70	0,00	9,70	Convexa	3	29,10	25,00
7+498,27	1232,157	0,00	-7,84	7,84	Cóncava	5	39,20	25,00
7+580,00	1225,752	-7,84	-2,77	5,07	Convexa	3	15,21	60,00
7+659,98	1223,537	-2,77	-7,65	4,88	Cóncava	5	24,40	60,00

ABSCISA PVI	ELEVACIÓ N PVI	GRAD. DE ENTRAD A (%)	GRAD. DE SALID A (%)	DIFERENCI A DE GRADIENT ES (A)	TIPO DE CURVA VERTICAL	K	L CALCULAD A (m)	L Asumid a (m)
7+820,00	1211,299	-7,65	-0,79	6,86	Convexa	3	20,58	60
8+100,00	1209,08	-0,79	5,8	6,59	Convexa	3	19,77	80
8+300,00	1220,676	5,8	-7,05	12,85	Cóncava	5	64,25	80
8+460,00	1209,393	-7,05	7,58	14,63	Convexa	3	43,89	100
8+760,03	1232,132	7,58	2,35	5,23	Cóncava	5	26,15	60
8+880,00	1234,949	2,35	8,11	5,76	Convexa	3	17,28	80
9+200,00	1260,908	8,11	6,6	1,51	Cóncava	5	7,55	100
9+600,00	1287,323	6,6	-6,16	12,76	Cóncava	5	63,8	100
10+040,0	1260,234	-6,16	-0,56	5,6	Convexa	3	16,8	100
10+314,1	1258,712	-0,56	-6,99	6,43	Cóncava	5	32,15	120
10+540,00	1242,916	-6,99	-8,85	1,86	Cóncava	5	9,3	120
10+840,00	1216,354	-8,85	-8,33	0,52	Convexa	3	1,56	120
11+380,00	1171,374	-8,33	5,46	13,79	Convexa	3	41,37	100
11+620,00	1184,475	5,46	-4,62	10,08	Cóncava	5	50,4	180
12+000,00	1166,902	-4,62	4,36	8,98	Convexa	3	26,94	100
12+260,00	1178,238	4,36	-4,76	9,12	Cóncava	5	45,6	80
12+560,00	1163,947	-4,76	-3,22	1,54	Convexa	3	4,62	60
12+780,00	1156,853	-3,22	-7,87	4,65	Cóncava	5	23,25	60
12+880,00	1148,984	-7,87	-3,08	4,79	Convexa	3	14,37	60
13+020,00	1144,675	-3,08	-6,99	3,91	Cóncava	5	19,55	60
13+160,00	1134,889	-6,99	-3,23	3,76	Convexa	3	11,28	60
13+280,00	1131,013	-3,23	-0,93	2,3	Convexa	3	6,9	60
13+360,65	1130,265	-0,93	0,09	1,02	Convexa	3	3,06	60
13+455,48	1130,349	0,09	0	0,09	Cóncava	5	0,45	40
13+575,35	1130,352	0	5,61	5,61	Convexa	3	16,83	100
13+780,00	1141,827	5,61	1,88	3,73	Cóncava	5	18,65	120

CAPITULO V

5. DISEÑO DE DRENAJE VIAL

5.1. INTRODUCCIÓN

La conservación de la vía es primordial para su buen funcionamiento, la principal causa para el deterioro de la vía son las acciones que tiene el agua, ya que esta puede dañar la estructura del pavimento y además puede ocasionar el desprendimiento de sesiones de las mismas. Durante varios años la importancia del drenaje en las obras viales ha sido dejada en segundo plano, ocasionando deterioro a corto plazo y mal funcionamiento.

5.2. FUNCIONES DEL DRENAJE VIAL.

- a) Desalojar rápidamente el agua de lluvia que cae sobre la calzada.
- b) Controlar el nivel freático.
- c) Interceptar al agua que superficial o subterráneamente escurre hacia la carretera.
- d) Y conducir de forma controlada el agua que cruza la vía.

5.3. DISEÑO DE DRENAJE VIAL

5.3.1. Cuneta Laterales

Son canales construidos entre los espaldones y el talud de corte o de relleno, con la finalidad de recoger aguas provenientes de la calzada, talud de corte y áreas adyacentes, desalojando el agua rápidamente de la zona de la carretera hacia drenajes naturales o artificiales⁶.

5.3.1.1. Cálculo Del Caudal Probable

Para el cálculo del caudal se procedo mediante el Método Racional, para lo cual se obtenido los siguientes datos:

-

⁶ DISEÑO GEOMETRICO 2003

a) Área

El área de contribución para la cuneta se determina mediante al área del talud y el área de calzada que descargan sobre la sección de cuneta.

b) Pendiente

Es obtenida del diseño vertical de la vía. Y su valor está limitado por la velocidad que pueda obtener el agua durante su transición hacia el punto de descarga.

c) Tiempo de concentración

Se aplica la expresión de Rowe, y se calcula para cada una de las cuencas hidrográficas. La expresión de Rowe, es;

$$t_c = 0.0195 \left(\frac{L^3}{H}\right)^{0.385}$$

Donde:

t_C = El tiempo de concentración (min).

L = El longitud de la cuneta, en (metros).

H = El desnivel entre el extremo de la cuneta y el punto de descarga, en (metros).

d) Intensidad de Precipitación

Mediante los gráficos de "Estudio de Lluvias Intensas", investigación efectuada por el INAMHI para todo el país, misma que consta en las normas del MTOP, para todos los aspectos de diseño hidráulico en obras de arte menor y mayor, de la infraestructura vial.

Se determina el área del proyecto se ubica en la Zona 22 (ANEXO B), según la sectorización propuesta en dicho estudio y las ecuaciones pluviométricas correspondientes son:

Zona 22, para duraciones de la lluvia de 5 min < t < 60 min:

$$I_{Tr} = 48.772 \ t^{-0.3533} \ I_{d;Tr}$$

Para duraciones de la lluvia de 60 min < t < 1440 min:

$$I_{Tr} = 266.64 t^{-0.7687} I_{d;Tr}$$

En donde:

t: Duración de la lluvia o el tiempo de concentración (minutos)

 $I_{d;Tr}$: Intensidad máxima diaria (mm/h).

Tr: Período de retorno (años): 25 años, para obras de arte menor.

Para un periodo de retorno de 25 años, en el ANEXO C, mediante la ubicación geográfica, se escogió las isolíneas más cercanas, dando un valor de:

$$Id;_{Tr} = 5.10 \text{ mm/h}.$$

e) Coeficiente es escurrimiento

Para el proyecto se encuentra con una pendiente de terreno alta con presencia de hierba, grama, vegetación ligera y un tipo de suelo permeable se toma de la Tabla 5.1,

$$C = 0.25$$
.

Tabla 5.1 Coeficiente de Escorrentía "C"

		COEFICIENTE D	E ESC	ORRENT	ÍA C	
		PENDIENTE	DEL T	ERRENC)	
COBERTURA VEGETAL	TIPO SUELO	PRONUNCIADA	ALTA	MEDIA	SUAVE	DESPRECIABLE
		50%	20%	5%	1%	
CIN	IMPERMEABLE	0.8	0.75	0.7	0.65	0.6
SIN VEGETACIÓN	SEMIPERMEABLE	0.7	0.65	0.6	0.55	0.5
	PERMEABLE	0.5	0.45	0.4	0.35	0.3
	IMPERMEABLE	0.7	0.65	0.6	0.55	0.5
CULTIVOS	SEMIPERMEABLE	0.6	0.55	0.5	0.45	0.4
	PERMEABLE	0.4	0.35	0.3	0.25	0.2
PASTOS	IMPERMEABLE	0.65	0.6	0.55	0.5	0.45
VEGETACIÓN	SEMIPERMEABLE	0.55	0.5	0.45	0.4	0.35
LIGERA	PERMEABLE	0.35	0.3	0.25	0.2	0.15
	IMPERMEABLE	0.6	0.55	0.5	0.45	0.4
HIERBA, GRAMA	SEMIPERMEABLE	0.5	0.45	0.4	0.35	0.3
	PERMEABLE	0.3	0.25	0.2	0.15	0.1
BOSQUES	IMPERMEABLE	0.55	0.5	0.45	0.4	0.35
DENSA	SEMIPERMEABLE	0.45	0.4	0.35	0.3	0.25
VEGETACIÓN	PERMEABLE	0.25	0.2	0.15	0.1	0.05

Fuente: MOP. (2003). Normas de Diseño Geométrico. Quito.

f) Caudal de diseño máximo "Método Racional"

El método se basa en las siguientes consideraciones: si una lluvia de intensidad uniforme (I) cae sobre la totalidad de una cuenca y dura el tiempo necesario para que todas sus partes contribuyan al derrame en el punto de descarga, el caudal resultante será directamente proporcional a la intensidad de precipitación menos las pérdidas por infiltración y evaporación estimadas a través del coeficiente de escurrimiento (C).

$$Q = \frac{C * I * A}{360}$$

Donde:

Q: Caudal calculado en m³/s

C: Coeficiente de escorrentía

I: Intensidad de precipitación en mm/h

A: Área de aportación en Ha

La Tabla 5.2 se muestra los cálculos de caudal para cada una de las cunetas utilizando el Método Racional.

Tabla 5.2 Cálculo Caudal Probable.

Abscisa De	Abs	cisa	Calza	ıda	Tal	ud	Áre	ea				Тс	:	Тс		Caudal
Ubicación Descarga	Inicio	final	Longitud	Ancho	Long.	ancho	Calzada	Talud	Área total	Pendiente	Altura	Calzada	Talud	total	Intensidad	Probable
(km)	(km)	(km)	(m)	(m)	(m)	(m)	(m²)	(m²)	(Ha)	(%)	(m)	(min)	(min)	(min)	(mm/seg)	(m ³ /s)
0+210,00	0+000,00	0+210,00	210	4,425	210	8,0	929,3	1680,0	0,26	9,22	19,36	3,00	0,07	3,07	167,43	0,030
0+440,00	0+210,00	0+440,00	230	4,425	230	9,0	1017,8	2070,0	0,31	7,93	18,24	3,41	0,08	3,49	159,98	0,034
0+660,00	0+440,00	0+660,00	220	4,425	220	9,0	973,5	1980,0	0,30	8,27	18,19	3,24	0,08	3,32	162,79	0,033
1+220,00	0+660,00	1+220,00	560	4,425	560	9,0	2478,0	5040,0	0,75	8,01	44,86	6,73	0,06	6,79	126,42	0,066
1+340,00	1+220,00	1+340,00	120	4,425	120	6,0	531,0	720,0	0,13	8,01	9,61	2,06	0,06	2,12	190,71	0,017
1+540.00	1+340,00	1+540,00	200	4,425	200	4,0	885,0	800,0	0,17	8,01	16,02	3,05	0,03	3,08	167,15	0,020
7+540,00	1+540,00	1+646,00	106	4,425	106	5,0	469,1	530,0	0,10	0,79	0,84	4,56	0,13	4,69	144,04	0,010
1+910,00	1+646,00	1+910,00	264	4,425	264	6,0	1168,2	1584,0	0,28	7,98	21,07	3,78	0,05	3,83	154,82	0,030
2+035,00	1+910,00	2+035,00	125	4,425	125	5,0	553,1	625,0	0,12	13,26	16,58	1,75	0,04	1,79	202,48	0,017
2+140,00	2+035,00	2+140,00	105	4,425	105	8,0	464,6	840,0	0,13	9,84	10,33	1,71	0,09	1,80	202,02	0,018
2+220,00	2+140,00	2+220,00	80	4,425	80	9,0	354,0	720,0	0,11	9,84	7,87	1,39	0,11	1,50	215,45	0,016
2+435,00	2+220,00	2+435,00	215	4,425	215	7,0	951,4	1505,0	0,25	8,05	17,31	3,22	0,06	3,28	163,53	0,028
2+480,00	2+435,00	2+480,00	45	4,425	45	6,0	199,1	270,0	0,05	8,05	3,62	0,96	0,09	1,06	243,79	0,008
2+620,00	2+480,00	2+620,00	140	4,425	140	8,0	619,5	1120,0	0,17	8,05	11,27	2,31	0,08	2,40	182,67	0,022
2+700,00	2+620,00	2+700,00	80	4,425	80	6,0	354,0	480,0	0,08	8,05	6,44	1,50	0,08	1,58	211,74	0,012
2+820,00	2+700,00	2+820,00	120	4,425	120	8,0	531,0	960,0	0,15	8,90	10,68	1,97	0,09	2,06	192,65	0,020
2+920,00	2+820,00	2+920,00	100	4,425	100	9,0	442,5	900,0	0,13	8,90	8,90	1,72	0,11	1,82	201,21	0,019
3+160,00	2+920,00	3+160,00	240	4,425	240	5,0	1062,0	1200,0	0,23	8,90	21,36	3,37	0,04	3,41	161,33	0,025
3+280,00	3+160,00	3+280,00	120	4,425	120	6,0	531,0	720,0	0,13	8,90	10,68	1,97	0,06	2,04	193,46	0,017
3+400,00	3+280,00	3+400,00	120	4,425	120	7,0	531,0	840,0	0,14	10,74	12,89	1,84	0,07	1,91	198,06	0,019
3+520,00	3+400,00	3+520,00	120	4,425	120	6,0	531,0	720,0	0,13	10,91	13,09	1,83	0,06	1,88	198,90	0,017

Abscisa De	Abs	cisa	Calza	ıda	Tal	ud	Áre	ea				Тс	;	Тс		Caudal
Ubicación Descarga	Inicio	final	Longitud	Ancho	Long.	ancho	Calzada	Talud	Area total	Pendiente	Altura	Calzada	Talud	total	Intensidad	Probable
(km)	(km)	(km)	(m)	(m)	(m)	(m)	(m²)	(m²)	(Ha)	(%)	(m)	(min)	(min)	(min)	(mm/seg)	(m³/s)
3+532,33	3+532,33	3+648,00	115,67	4,425	115,67	4,0	511,8	462,7	0,10	4,73	5,47	2,45	0,05	2,50	179,98	0,012
3+765,00	3+648,00	3+765,00	117	4,425	117	3,0	517,7	351,0	0,09	1,03	1,21	4,44	0,06	4,51	146,13	0,009
3+860,00	3+765,00	3+860,00	95	4,425	95	5,0	420,4	475,0	0,09	7,41	7,04	1,77	0,06	1,83	200,95	0,012
3+945.00	3+860,00	3+945,00	85	4,425	85	3,0	376,1	255,0	0,06	7,41	6,30	1,62	0,03	1,66	208,00	0,009
3+945,00	3+945,00	4+060,00	115	4,425	115	2,0	508,9	230,0	0,07	1,92	2,21	3,45	0,03	3,48	160,09	0,008
4+108,00	4+060,00	4+108,00	48	4,425	48	3,0	212,4	144,0	0,04	8,09	3,88	1,01	0,04	1,05	244,26	0,006
4+330,00	4+108,00	4+330,00	222	4,425	222	4,0	982,4	888,0	0,19	2,18	4,84	5,45	0,05	5,50	136,17	0,018
4+480,00	4+330,00	4+480,00	150	4,425	150	4,0	663,8	600,0	0,13	6,15	9,23	2,70	0,04	2,74	174,11	0,015
4+740,00	4+480,00	4+740,00	260	4,425	260	5,0	1150,5	1300,0	0,25	5,11	13,29	4,43	0,05	4,48	146,43	0,025
4+870,00	4+740,00	4+870,00	130	4,425	130	5,0	575,3	650,0	0,12	5,11	6,64	2,60	0,06	2,66	176,03	0,015
5+270,00	4+870,00	5+270,00	400	4,425	400	6,0	1770,0	2400,0	0,42	0,90	3,60	12,06	0,09	12,15	102,93	0,030
5+520,00	5+270,00	5+520,00	250	4,425	250	5,0	1106,3	1250,0	0,24	0,90	2,25	8,40	0,09	8,49	116,84	0,019
F. 700 00	5+520,00	5+720,00	200	4,425	200	6,0	885,0	1200,0	0,21	3,21	6,42	4,33	0,08	4,41	147,27	0,021
5+720,00	5+720,00	6+005,00	285	4,425	285	4,0	1261,1	1140,0	0,24	2,14	6,10	6,65	0,05	6,70	127,01	0,021
6+089,00	6+005,00	6+089,00	84	4,425	84	3,0	371,7	252,0	0,06	2,14	1,80	2,60	0,06	2,65	176,22	0,008
6.240.00	6+089,00	6+270,00	181	4,425	181	5,0	800,9	905,0	0,17	3,40	6,15	3,92	0,06	3,99	152,59	0,018
6+240,00	6+270,00	6+497,00	227	4,425	227	4,0	1004,5	908,0	0,19	7,53	17,09	3,44	0,03	3,47	160,22	0,021
6+540,00	6+497,00	6+540,00	43	4,425	43	4,0	190,3	172,0	0,04	4,25	1,83	1,19	0,08	1,27	228,75	0,006
7+064,00	6+540,00	7+064,00	524	4,425	524	3,0	2318,7	1572,0	0,39	8,01	41,97	6,40	0,02	6,41	129,00	0,035

Abscisa De Ubicación	Abs	cisa	Calza	ıda	Tal	lud	Áre	a	Ávez tetel	Dondiente	Altura	Тс	:	Тс	Intensidad	Caudal
Descarga	Inicio	final	Longitud	Ancho	Long.	ancho	Calzada	Talud	Area total	Pendiente	Altura	Calzada	Talud	total	intensidad	Probable
(km)	(km)	(km)	(m)	(m)	(m)	(m)	(m²)	(m²)	(Ha)	(%)	(m)	(min)	(min)	(min)	(mm/seg)	(m³/s)
7+478,64	7+064,00	7+482,00	418	4,425	418	4,0	1849,7	1672,0	0,35	9,38	39,21	5,06	0,02	5,08	140,05	0,034
7+934,00	7+482,00	7+934,00	452	4,425	452	0,0	2000,1	0,0	0,20	0,79	3,57	13,93	0,00	13,93	98,08	0,014
0.075.00	7+934,00	8+075,00	141	4,425	141	2,0	623,9	282,0	0,09	0,79	1,11	5,68	0,04	5,72	134,31	0,008
8+075,00	8+075,00	8+209,00	134	4,425	134	2,0	593,0	268,0	0,09	5,80	7,77	2,54	0,02	2,55	178,58	0,011
8+287,00	8+209,00	8+287,62	78,62	4,425	78,62	2,0	347,9	157,2	0,05	6,43	5,06	1,62	0,02	1,64	208,89	0,007
8+389,00	8+287,62	8+389,00	101,38	4,425	101,38	5,0	448,6	506,9	0,10	7,05	7,15	1,90	0,06	1,96	196,26	0,013
8+460.00	8+209,00	8+460,00	251	4,425	251	3,0	1110,7	753,0	0,19	7,05	17,70	3,81	0,02	3,84	154,69	0,020
0+400,00	8+460,00	8+562,00	102	4,425	102	4,0	451,4	408,0	0,09	7,58	7,73	1,85	0,04	1,90	198,36	0,012
8+562,00	8+562,00	8+614,00	52	4,425	52	4,0	230,1	208,0	0,04	7,58	3,94	1,10	0,06	1,16	236,01	0,007
8+614,00	8+614,00	8+774,00	160	4,425	160	3,0	708,0	480,0	0,12	7,58	12,13	2,62	0,03	2,65	176,33	0,015
8+774,00	8+774,00	9+084,00	310	4,425	310	4,0	1371,8	1240,0	0,26	2,35	7,29	6,85	0,05	6,89	125,76	0,023
9+084,00	9+084,00	9+390,00	306	4,425	306	3,0	1354,1	918,0	0,23	6,11	18,70	4,69	0,02	4,72	143,81	0,023
9+390,00	9+390,00	9+590,00	200	4,425	200	5,0	885,0	1000,0	0,19	6,60	13,20	3,28	0,05	3,33	162,62	0,021
9+794,00	9+590,00	9+794,00	204	4,425	204	6,0	902,7	1224,0	0,21	6,16	12,57	3,42	0,06	3,48	160,08	0,024
10+234,00	9+794,00	10+234,00	440	4,425	440	2,0	1947,0	880,0	0,28	0,56	2,46	15,58	0,03	15,61	94,22	0,018
10+384,00	10+234,00	10+384,00	150	4,425	150	3,0	663,8	450,0	0,11	6,99	10,49	2,57	0,03	2,60	177,44	0,014
10+574,00	10+384,00	10+574,00	190	4,425	190	2,0	840,8	380,0	0,12	8,85	16,82	2,82	0,01	2,83	172,16	0,015
10+749,00	10+574,00	10+749,00	175	4,425	175	2,0	774,4	350,0	0,11	8,85	15,49	2,65	0,02	2,66	176,02	0,014
10+949,00	10+749,00	10+949,00	200	4,425	200	3,0	885,0	600,0	0,15	8,33	16,66	3,00	0,02	3,03	168,22	0,017

Abscisa De	Abs	cisa	Calza	ıda	Tal	lud	Áre	ea				Тс	:	Tc		Caudal
Ubicación Descarga	Inicio	final	Longitud	Ancho	Long.	ancho	Calzada	Talud	Area total	Pendiente	Altura	Calzada	Talud	total	Intensidad	Probable
(km)	(km)	(km)	(m)	(m)	(m)	(m)	(m²)	(m²)	(Ha)	(%)	(m)	(min)	(min)	(min)	(mm/seg)	(m³/s)
11+154,00	10+949,00	11+154,00	205	4,425	205	4,0	907,1	820,0	0,17	8,33	17,08	3,06	0,03	3,09	166,94	0,020
11+375.00	11+154,00	11+375,00	221	4,425	221	4,0	977,9	884,0	0,19	8,33	18,41	3,24	0,03	3,27	163,61	0,021
11+375,00	11+375,00	11+679,00	304	4,425	304	3,0	1345,2	912,0	0,23	5,46	16,60	4,88	0,02	4,90	141,88	0,022
11+859,00	11+679,00	11+859,00	180	4,425	180	4,0	796,5	720,0	0,15	4,62	8,32	3,47	0,04	3,52	159,53	0,017
12+002.00	11+859,00	11+990,00	131	4,425	131	2,0	579,7	262,0	0,08	4,62	6,05	2,72	0,02	2,74	174,19	0,010
12+002,00	11+990,00	12+154,00	164	4,425	164	3,0	725,7	492,0	0,12	4,36	7,15	3,31	0,03	3,34	162,47	0,014
12+154,00	12+154,00	12+254,00	100	4,425	100	3,0	442,5	300,0	0,07	4,36	4,36	2,26	0,04	2,30	185,39	0,010
12+660,00	12+254,00	12+660,00	406	4,425	406	3,0	1796,6	1218,0	0,30	3,22	13,07	7,47	0,03	7,49	122,11	0,026
13+089,00	12+660,00	13+089,00	429	4,425	429	2,0	1898,3	858,0	0,28	6,99	29,99	5,78	0,01	5,79	133,74	0,026
13+492,74	13+089,00	13+492,74	403,74	4,425	403,74	4,0	1786,5	1615,0	0,34	3,22	13,00	7,43	0,04	7,47	122,24	0,029
13+508,00	13+508,00	13+860,00	352	4,425	352	3,0	1557,6	1056,0	0,26	5,61	19,75	5,40	0,02	5,42	136,87	0,025

5.3.1.2. Cálculo Del Caudal De Diseño

Para el diseño de las cunetas laterales se utiliza la el principio de flujo con movimiento uniforme, basándose en este criterio se asume una sección tipo de la cuneta.

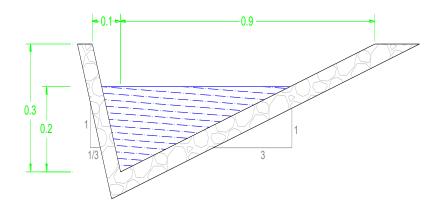


Figura 5.1: Sección tipo de cuenta

Los datos utilizados para el diseño de la cuneta son los siguientes:

Los datos utilizados para el cálculo son los de la figura 5.1. y considerando que la altura entre el agua y el borde superior de la cuneta es de 10 cm (d=20 cm), y un valor de n= 0.013 (Coeficiente de rugosidad del hormigón)

$$B3 = \left(\frac{1}{3}\right) d = 0.067 m$$

$$B4 = 3 * d = 0,60$$
m

a) Área mojada (Am):

$$Am = B3\left(\frac{d}{2}\right) + B4\left(\frac{d}{2}\right)$$

$$Am = 0,067 \left(\frac{0,2}{2}\right) + 0,60 \left(\frac{0,2}{2}\right)$$

$$Am = 0.0667m^2$$

b) Perímetro Mojado (Pm):

$$Pm = (B3^{2} + d^{2})^{0.5} + (B4^{2} + d^{2})^{0.5}$$

$$Pm = (0.067^{2} + 0.2^{2})^{0.5} + (0.60^{2} + 0.2^{2})^{0.5}$$

$$Pm = 0.843$$
m

c) Radio Hidráulico (R):

$$R = \left(\frac{A}{P}\right)$$

$$R = \frac{0,0667m^2}{0,843m}$$

$$R = 0,0791m$$

Para el cálculo de la velocidad se utilizamos el coeficiente de rugosidad (n=0,013 para revestimiento con hormigón) y la gradiente de la vía, la cual es obtenida del perfil longitudinal de la vía, ver Tabla 5.3

d) Velocidad de Flujo:

$$V = \frac{1}{n} \left(R^{\frac{2}{3}} \right) \left(I^{\frac{1}{2}} \right)$$

$$V = \frac{1}{0.013} \left(0.0791^{\frac{2}{3}} \right) \left(0.0922^{\frac{1}{2}} \right)$$

$$V = 4.30 \text{ m/seg}$$

Lo cual indica que esta bajo el rango máximo de velocidad, para evitar la erosión del material de revestimiento (4,5-7,5) m/seg.

e) Caudal de la cuneta:

$$Q = A * V$$

$$Q = 0.0667 m^2 * 4.30 \text{ m/seg}$$

$$Q = 0.2868 m^3/\text{seg}$$

Tabla 5.3: Velocidades del agua con que se erosionan diferentes materiales.

MATERIAL	VELOCIDAD (m/seg)	MATERIAL	VELOCIDAD (m/seg)
Arena Fina	0.45	Pizarra Suave	2
Arcilla arenosa	0.5	Grava Gruesa	3.5
Arcilla Ordinaria	0.85	Zampeado	3.4 - 4.5
Arcilla Firme	1.25	Roca Sana	4.5 - 7.5
Grava Fina	2	Hormigón	4.5 - 7.5

Fuente: MOP. (2003). Normas de Diseño Geométrico.

5.3.1.3. Diseño de cuneta y sección tipo

La Tabla 5.4. Muestra el cálculo de la cuneta adoptada, como se adopta una sola sección de cuneta para todo proyecto, la variación del caudal de diseño depende del valor de la pendiente:

La Tabla 5.4. Caudal de la Sección Adoptada

Abs	cisa	Pendiente	Velocidad	Caudal De Diseño
Inicio	final	(%)	(m/s)	(m³/s)
0+000,00	0+210,00	9,22	4,30	0,29
0+210,00	0+440,00	7,93	3,99	0,27
0+440,00	0+660,00	8,27	4,07	0,27
0+660,00	1+220,00	8,01	4,01	0,27
1+220,00	1+340,00	8,01	4,01	0,27
1+340,00	1+540,00	8,01	4,01	0,27
1+540,00	1+646,00	0,79	1,26	0,08
1+646,00	1+910,00	7,98	4,00	0,27
1+910,00	2+035,00	13,26	5,16	0,34

Abs	cisa	Pendiente	Velocidad	Caudal De Diseño
Inicio	final	(%)	(m/s)	(m³/s)
2+035,00	2+140,00	9,84	4,44	0,30
2+140,00	2+220,00	9,84	4,44	0,30
2+220,00	2+435,00	8,05	4,02	0,27
2+435,00	2+480,00	8,05	4,02	0,27
2+480,00	2+620,00	8,05	4,02	0,27
2+620,00	2+700,00	8,05	4,02	0,27
2+700,00	2+820,00	8,90	4,23	0,28
2+820,00	2+920,00	8,90	4,23	0,28
2+920,00	3+160,00	8,90	4,23	0,28
3+160,00	3+280,00	8,90	4,23	0,28
3+280,00	3+400,00	10,74	4,64	0,31
3+400,00	3+520,00	10,91	4,68	0,31
3+532,33	3+648,00	4,73	3,08	0,21
3+648,00	3+765,00	1,03	1,44	0,10
3+765,00	3+860,00	7,41	3,86	0,26
3+860,00	3+945,00	7,41	3,86	0,26
3+945,00	4+060,00	1,92	1,96	0,13
4+060,00	4+108,00	8,09	4,03	0,27
4+108,00	4+330,00	2,18	2,09	0,14
4+330,00	4+480,00	6,15	3,51	0,23
4+480,00	4+740,00	5,11	3,20	0,21
4+740,00	4+870,00	5,11	3,20	0,21
4+870,00	5+270,00	0,90	1,34	0,09
5+270,00	5+520,00	0,90	1,34	0,09
5+520,00	5+720,00	3,21	2,54	0,17
5+720,00	6+005,00	2,14	2,07	0,14
6+005,00	6+089,00	2,14	2,07	0,14
6+089,00	6+270,00	3,40	2,61	0,17
6+270,00	6+497,00	7,53	3,89	0,26
6+497,00	6+540,00	4,25	2,92	0,19
6+540,00	7+064,00	8,01	4,01	0,27
7+064,00	7+482,00	9,38	4,34	0,29
7+482,00	7+934,00	0,79	1,26	0,08
7+934,00	8+075,00	0,79	1,26	0,08
8+075,00	8+209,00	5,80	3,41	0,23
8+209,00	8+287,62	6,43	3,59	0,24

Abs	cisa	Pendiente	Velocidad	Caudal De Diseño
Inicio	final	(%)	(m/s)	(m³/s)
8+287,62	8+389,00	7,05	3,76	0,25
8+209,00	8+460,00	7,05	3,76	0,25
8+460,00	8+562,00	7,58	3,90	0,26
8+562,00	8+614,00	7,58	3,90	0,26
8+614,00	8+774,00	7,58	3,90	0,26
8+774,00	9+084,00	2,35	2,17	0,14
9+084,00	9+390,00	6,11	3,50	0,23
9+390,00	9+590,00	6,60	3,64	0,24
9+590,00	9+794,00	6,16	3,52	0,23
9+794,00	10+234,00	0,56	1,06	0,07
10+234,00	10+384,00	6,99	3,75	0,25
10+384,00	10+574,00	8,85	4,22	0,28
10+574,00	10+749,00	8,85	4,22	0,28
10+749,00	10+949,00	8,33	4,09	0,27
10+949,00	11+154,00	8,33	4,09	0,27
11+154,00	11+375,00	8,33	4,09	0,27
11+375,00	11+679,00	5,46	3,31	0,22
11+679,00	11+859,00	4,62	3,05	0,20
11+859,00	11+990,00	4,62	3,05	0,20
11+990,00	12+154,00	4,36	2,96	0,20
12+154,00	12+254,00	4,36	2,96	0,20
12+254,00	12+660,00	3,22	2,54	0,17
12+660,00	13+089,00	6,99	3,75	0,25
13+089,00	13+492,74	3,22	2,54	0,17
13+508,00	13+860,00	5,61	3,36	0,22

Como se ve en la Tabla 5.4 tenemos pendientes que varían entre el 0.8% y 13.2% obteniéndose una velocidad máxima de 5.16 m/s, en este contexto la velocidad máxima esta dentro del margen de trabajabilidad del hormigón para que no exista erosión por lo cual se recomienda colocar un hormigón con resistencia de 210 kg/cm².

Por lo que se adopta la siguiente sección:

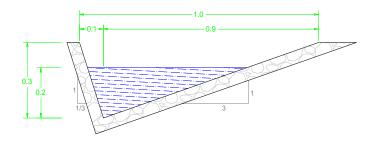


Figura 5.2. Sección adoptada de cuneta para el proyecto

5.3.2. Alcantarillas

Las alcantarillas son conductos cerrados, de forma diversa, que se instalan o construyen transversales y por debajo del nivel de subrasante de una carretera, con el objeto de conducir, hacia cauces naturales, el agua de lluvia proveniente de pequeñas cuencas hidrográficas, arroyos ó esteros, canales de riego, cunetas y/o del escurrimiento superficial de la carretera⁷

5.3.2.1. Cálculo del Caudal probable

Para el cálculo del caudal se procedo mediante el Método Racional, para lo cual se obtenido los siguientes datos:

a) Área de la Cuenca Hidrográfica

El área de la cuenca se lo determina mediante cartas topográfica 1:25000, como se estipula en el Manual del Diseño Geométrico 2003. En el ANEXO 5.3, se puede observar las cuencas hidrográficas, provenientes de las cartas Gualea y Nanegalito.

b) Pendiente de la Cuenca Hidrográfica

Se determina la cota más alta de la cuenca (H max.) y la del punto de control o cota más baja (H min), además de la longitud del cauce con lo cual se determina

.

⁷ Diseño Geométrico 2003

la pendiente de la cuenca, dividiendo la diferencia de nivel y la longitud del cauce de cada una de las cuencas.

c) Tiempo de concentración

Se aplica la expresión de Rowe, y se calcula para cada uno de las cuencas hidrográficas. La expresión de Rowe, es;

$$t_c = 0.0195 \left(\frac{L^3}{H}\right)^{0.385}$$

d) Intensidad de Precipitación

Al igual que el diseño de cunetas se considera que el proyecto se encuentra en la Zona 22, ANEXO 5.1, para el cual se tiene:

Para duraciones de la lluvia de 5 min < t < 60 min:

$$I_{Tr} = 48.772 t^{-0.3533} I_{d;Tr}$$

Para duraciones de la lluvia de 60 min < t < 1440 min:

$$I_{Tr} = 266.64 t^{-0.7687} I_{d;Tr}$$

Para un periodo de retorno de 25 años, en el ANEXO 5.2, mediante la ubicación geográfica, se *escogió las* isolíneas más cercanas, dando un valor de:

$$Id_{Tr} = 5.10 \text{ mm/h}.$$

e) Coeficiente es escurrimiento

Se toma de la Tabla 5.1, el valor de cómo se explica anteriormente, C= 0,25.

f) Caudal de diseño máximo "Método Racional", descrito anteriormente en el literal 5.3.1.1.

$$Q = \frac{C * I * A}{3.6}$$

.Tabla 5.5 Caudal de Cuencas Hidrográficas

N°	Área Calculada (km²)	Área Asumida (km²)	Cota max (m)	Cota min (m)	Diferencias de cota (m)	Longitud cauce (km)	Pendiente (m/m)	Pendiente (%)	Tc Calculado (min)	Tc asumido (min)	ld (mm/h)	Intensidad	С	Q diseño (m³/s)
A1	0,0261	0,1200	1578	1570	8,0	0,04	0,2	20	0,62	5,00	5,1	140,862	0,25	1,174
A2	0,0054	0,1200	1465	1430	35	0,07	0,5	50	0,67	5,00	5,1	140,862	0,25	1,174
A3	0,0488	0,1200	1505	1395	110	0,461	0,238	23,86	3,81	5,00	5,1	140,862	0,25	1,174
A4	0,2321	0,2321	1744	1327	417	1,106	0,377	37,7	6,26	6,26	5,1	130,110	0,25	2,097
A5	0,0661	0,1200	1500	1320	180	0,29	0,620	62,07	1,84	5,00	5,1	140,862	0,25	1,174
A6	0,2270	0,2270	1744	1330	414	1,2252	0,337	33,79	7,07	7,07	5,1	124,635	0,25	1,965
Α7	0,3051	0,3051	1480	1308	172	0,307	0,560	56,03	2,0	5,00	5,1	140,862	0,25	2,985
A8	0,0507	0,1200	1680	1295	385	0,868	0,443	44,35	4,88	5,00	5,1	140,862	0,25	1,174
A9	0,273	0,2730	1640	1305	335	0,525	0,638	63,81	2,88	5,00	5,1	140,862	0,25	2,671
A10	0,0532	0,1200	1480	1290	190	0,2561	0,741	74,19	1,56	5,00	5,1	140,862	0,25	1,174
A11	0,0429	0,1200	1440	1290	150	0,2899	0,517	51,74	1,98	5,00	5,1	140,862	0,25	1,174
A12	0,2266	0,2266	1640	1270	370	1,0748	0,344	34,43	6,35	6,35	5,1	129,456	0,25	2,037
A13	0,0225	0,12	1445	1275	170	0,2384	0,713	71,31	1,5	5,00	5,1	140,862	0,25	1,174
A14	0,0160	0,1200	1340	1280	60	0,1234	0,486	48,62	1,05	5,00	5,1	140,862	0,25	1,174
A15	1,0975	1,0975	1841	1270	571	2,512	0,227	22,73	14,31	14,31	5,1	97,152	0,25	7,404
A16	0,0256	0,1200	1320	1285	35	0,1477	0,237	23,7	1,59	5,00	5,1	140,862	0,25	1,174

N°	Área Calculada (km²)	Área Asumida (km²)	Cota max (m)	Cota min (m)	Diferencias de cota (m)	Longitud cauce (km)	Pendiente (m/m)	Pendiente (%)	Tc Calculado (min)	Tc asumido (min)	ld (mm/h)	Intensidad	С	Q diseño (m³/s)
A17	0,2213	0,2213	1620	1190	430	0,586	0,7338	73,38	1,59	5,00	5,1	140,862	0,25	2,165
A18	0,0544	0,1200	1320	1195	125	0,131	0,9542	95,42	0,85	5,00	5,1	140,862	0,25	1,174
A19	0,3568	0,3568	1804	1110	694	1,31	0,5298	52,98	6,26	6,26	5,1	130,110	0,25	3,224
A20	0,0756	0,1200	1400	1090	310	0,5776	0,5367	53,67	3,32	5,00	5,1	140,862	0,25	1,174
A21	0,8249	0,8249	1804	1090	714	2,193	0,3256	32,56	11,23	11,23	5,1	105,838	0,25	6,063
A22	0,0041	0,1200	1118	1105	13	0,091	0,1429	14,29	1,33	5,00	5,1	140,862	0,25	1,174
A23	0,0156	0,1200	1160	1115	45	0,2142	0,2101	21,01	2,22	5,00	5,1	140,862	0,25	1,174
A24	0,0579	0,1200	1400	1260	140	0,1684	0,8314	83,14	1,08	5,00	5,1	140,862	0,25	1,174
A25	0,0412	0,1200	1440	1280	160	0,2501	0,6397	63,97	1,63	5,00	5,1	140,862	0,25	1,174
A26	0,2125	0,2125	1600	1250	350	0,7847	0,446	44,6	4,51	5,00	5,1	140,862	0,25	2,079
A27	0,0298	0,1200	1360	1240	120	0,2573	0,4664	46,64	1,88	5,00	5,1	140,862	0,25	1,174
A28	0,0275	0,1200	1380	1235	145	0,2069	0,7008	70,08	1,36	5,00	5,1	140,862	0,25	1,174
A29	0,0162	0,1200	1240	1170	70	0,1793	0,3904	39,04	1,52	5,00	5,1	140,862	0,25	1,174
A30	0,5114	0,5114	1660	1165	495	1,844	0,2684	26,84	10,58	10,58	5,1	108,091	0,25	3,839
A31	0,1978	0,1978	1440	1150	290	0,6891	0,4208	42,08	4,17	5,00	5,1	140,862	0,25	1,935
A32	0,0233	0,1200	1220	1155	65	0,1748	0,3719	37,19	1,52	5,00	5,1	140,862	0,25	1,174

5.3.2.2. Diseño De Alcantarillas Y Sección Tipo

Para el diseño de las alcantarillas se considera que trabajara a sección parcialmente llena y de metal (n=0,021), para lo cual se aplica las siguientes formulas hidráulicas:

$$Q = (1,42544) \left(D^{\frac{5}{2}} \right)$$

Conocido el caudal de aportación a las alcantarillas se puede obtener el diámetro, una vez obtenido el diámetro se adopta el diámetro existente en el mercado, como se muestra a continuación:

$$1,21 = (1,42544) \left(D^{\frac{5}{2}}\right)$$

D = 0.94 m se asume D = 1.20 m

a) El caudal a sección completa es:

$$Q = (1,42544) \left(D^{\frac{5}{2}} \right)$$

$$Q = (1,42544) \left(1,2^{\frac{5}{2}}\right)$$

$$Q=2,25m^3/{\rm seg}$$

b) Perímetro:

$$P = (1,957)(D)$$

$$P = (1,957)(1,2m)$$

$$P = 2,34m$$

c) Área:

$$A = (0.5768)(D)^2$$

$$A = (0.5768)(1.2m)^2$$

$$A = 0.830m^2$$

d) Radio Hidráulico:

$$R = \frac{A}{P}$$

$$R = \frac{0,83}{2.34}$$

$$R = 0.35m$$

e) Velocidad:

$$V = (2,4713)(D)^{\frac{1}{2}}$$

$$V = (2,4713)(1,20m)^{\frac{1}{2}}$$

$$V = 2,707 \, m/seg$$

La velocidad es adecuada ya que el valor máximo permitido es de 6.0 m/seg y si se supera este valor, tendremos erosión en la superficie.

f) Pendiente necesaria:

$$S = \frac{(V^2 n^2)}{R^4 / 3}$$

$$S = \frac{((2,707)^2)((0,021)^2)}{(0,7070)^{4/3}}$$

$$S = 0.013$$

$$S = 1,30\%$$

La pendiente es adecuada debido a que es mayor que el mínimo valor permitido es 0,5%.

Tabla 5.6, Diseño de Alcantarilla

Abscisa	Caudal de	D	D	Q	Р	Α	R	V	S	S	
Ubicación	alcantarilla (m³/s)	calculado (m)	asumido (m)	(m³/seg)	(m)	(m²)	(m)	(m/seg)	(m/m)	(%)	Tipo
0+210,00	0,29	0,53	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
0+440,00	1,44	1,00	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
0+660,00	0,27	0,52	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
1+220,00	0,27	0,51	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
1+340,00	0,27	0,51	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
1+910,00	0,27	0,51	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
2+035,00	0,34	0,57	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
2+140,00	0,30	0,53	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
2+220,00	0,30	0,53	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
2+435,00	1,44	1,00	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
2+480,00	0,27	0,51	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
2+620,00	0,27	0,51	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
2+700,00	0,27	0,51	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
2+820,00	1,46	1,01	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
2+920,00	0,28	0,52	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
3+160,00	0,28	0,52	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
3+280,00	0,28	0,52	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
3+400,00	0,31	0,54	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
3+630,00	2,10	1,17	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
3+765,00	1,27	0,95	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
3+860,00	0,26	0,50	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
3+945,00	2,22	1,19	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II

Tabla 5.6, Diseño de Alcantarilla Continuación

Abscisa Ubicación	Caudal de	D calculado	D asumido	Q	Р	Α	R	V	S	S	+:
Obicación	alcantarilla (m³/s)	(m)	(m)	(m³/seg)	(m)	(m²)	(m)	(m/seg)	(m/m)	(%)	Tipo
4+108,00	0,27	0,51	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
4+330,00	3,12	1,37	1,50	3,93	2,94	1,30	0,44	3,03	0,01	1,20	TIPO II
4+480,00	1,41	1,00	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
4+740,00	2,88	1,33	1,50	3,93	2,94	1,30	0,44	3,03	0,01	1,20	TIPO II
4+870,00	1,39	0,99	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
5+270,00	1,26	0,95	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
5+520,00	2,13	1,17	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
5+720,00	1,34	0,98	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
6+089,00	1,31	0,97	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
6+240,00	7,58	1,95	2,00	8,06	3,92	2,31	0,59	3,49	0,01	1,09	TIPO II
6+540,00	1,37	0,98	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
7+064,00	0,27	0,51	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
7+934,00	2,25	1,20	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
8+075,00	0,08	0,32	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
8+287,00	3,46	1,43	1,50	3,93	2,94	1,30	0,44	3,03	0,01	1,20	TIPO II
8+389,00	1,42	1,00	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
8+460,00	6,06	1,78	1,80	6,20	3,52	1,87	0,53	3,32	0,01	1,13	TIPO II
8+562,00	1,43	1,00	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
8+614,00	1,43	1,00	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
8+774,00	0,14	0,40	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
9+084,00	1,41	0,99	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
9+390,00	0,24	0,49	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I

Tabla 5.6, Diseño de Alcantarilla Continuación

Abscisa Ubicación	Caudal de alcantarilla	D calculado	D asumido	Q	Р	А	R	V	S	S	Tipo
	(m³/s)	(m)	(m)	(m³/seg)	(m)	(m²)	(m)	(m/seg)	(m/m)	(%)	
9+794,00	1,41	1,00	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
10+234,00	2,15	1,18	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
10+384,00	1,42	1,00	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
10+574,00	1,45	1,01	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
10+749,00	0,28	0,52	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
10+949,00	0,27	0,52	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
11+154,00	1,45	1,01	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
11+375,00	0,27	0,52	0,60	0,40	1,17	0,21	0,18	1,91	0,02	1,63	TIPO I
11+859,00	4,04	1,52	1,50	3,93	2,94	1,30	0,44	3,03	0,01	1,20	TIPO II
12+002,00	2,14	1,18	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
12+154,00	0,20	0,45	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I
12+660,00	1,34	0,98	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO II
13+089,00	0,25	0,50	1,20	2,25	2,35	0,83	0,35	2,71	0,01	1,29	TIPO I

g) Sección tipo

Las alcantarillas son de tipo circular del diámetro indicado en la tabla 5.6,

- ✓ Para alcantarillas que no tengan que conducir el caudal de una cuenca, colocará una Entrada Tipo E2, y una salida Tipo S1. Ver plano de detalle constructivo de alcantarilla.
- ✓ Para alcantarillas que tengan que conducir el caudal de una cuenca, se colocará una entrada Tipo E1 y una salida Tipo S1. Ver plano de detalle constructivo de alcantarilla.

5.3.2.3. Muro de ala

Constituyen elementos complementarios del drenaje, actualmente considerados de gran importancia, especialmente donde un cruce de agua artificial puede actuar como agente destructor de la carretera.

La entrada dirige la corriente de agua hacia la alcantarilla y su forma debe permitir la disminución de la pérdida de carga por entrada y facilitando el trabajo de la alcantarilla a máxima capacidad. El muro de ala a la salida, en cambio, deberá disipar la energía cinética de la corriente de agua, evitando la socavación aguas abajo y consecuentemente la erosión retrospectiva y pérdida de la mesa de la vía. Tal como se muestra en plano de detalle constructivo de alcantarilla.

CAPITULO VI

6. ESTUDIOS DE MECÁNICA DE SUELOS Y DISEÑO DE PAVIMENTOS

6.1. Diseño de pavimento

6.1.1. Introducción

Para el diseño de pavimento se tiene que considerar la diferencia de cargas de tráfico en las etapas de construcción y de operación. La primera implica un intenso tráfico de vehículos pesados a fin de transportar los materiales de construcción a la obra, en tanto que en la segunda, el tráfico disminuye sensiblemente.

6.1.1.1. Definición de pavimento

Son pavimentos construidos por un conjunto de capas de material seleccionado que reciben en forma directa las cargas de tránsito y que las transmiten a los estratos inferiores en forma disipada, proporcionando una superficie de rodamiento, la cual debe funcionar eficientemente. Las condiciones necesarias para un adecuado funcionamiento son las siguientes:

- Ancho
- Trazado horizontal y vertical
- Resistencia adecuada a las cargas
- Adecuada adherencia entre el vehículo y la capa de rodadura

Deberá presentar una resistencia adecuada a los esfuerzos destructivos del tránsito, de la intemperie y del agua, debe tener una adecuada visibilidad y contar común paisaje agradable para no provocar fatigas.

Puesto que los esfuerzos de un pavimento decrecen con la profundidad, se deberán colocar los materiales de mayor capacidad de carga en las capas

superiores siendo de menor calidad los que se colocan en las capas inferiores además que son los materiales que más comúnmente se encuentran en la naturaleza, y por consecuencia resultan más económicos.

La división en capas que se hace en un pavimento flexible obedece a un factor económico, ya que cuando determinamos el espesor de una capa, el objetivo es darle el espesor mínimo que reduzca los esfuerzos sobre la capa inmediata inferior. La resistencia de las diferentes capas no solo dependerá del material que la constituye, también resulta de gran influencia en el procedimiento constructivo; siendo dos factores importantes la compactación y la humedad, ya que un material que no se acomoda adecuadamente se consolida por efecto de las cargas y es entonces cuando se producen las deformaciones permanentes.

Se denomina pavimentos flexibles, a aquellos que tienen la capacidad de adaptarse a pequeños asentamientos diferenciales de la explanación sin que se produzcan agrietamientos y manteniendo su integridad estructural capacidad de transmisión de cargas. El clásico firme flexible, de acuerdo con la definición anterior, es una capa de piedra triturada de graduación densa pero esta no soporta la acción directa del tránsito y permite el paso del agua hacia la subrasante, por lo que se cubre con una capa de hormigón asfaltico.

6.1.1.2. Nomenclatura y función de las diferentes capas de pavimento

La calidad de estas capas es decreciente con la profundidad, de acuerdo con la distribución normal de las tensiones a través de la estructura del pavimento flexible. La capacidad estructural de un pavimento flexible depende de la capacidad de distribución de las cargas por cada una de las capas y de la capacidad portante de la superficie.

En medida que es mayor la rigidez de cada capa, la presión recibida en su superficie en un área determinada, es transmitida a la superficie de la capa inferior en un área cada vez mayor y con un valor de presión cada vez menor, con lo cual se logra una distribución vertical de tensiones que se atenúan más rápido con la profundidad.

Así en la medida que se aumente la calidad de las capas estructurales del pavimento, el espesor total de este se reduce ya que la magnitud de la presión vertical limite que soporta la subrasante, dependerá de las características de las capas superiores de la explanación. (Figura 6.1)

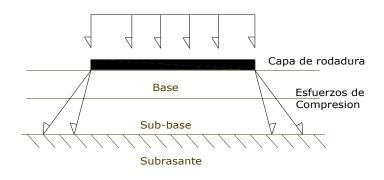


Figura 6.1 Distribución de esfuerzos en el pavimento

Fuente: Ing. Milton Torres Espinoza, Escuela Politécnica del Ejército, Quito

A. Subrasante

Aquel que sirve de cimentación al pavimento que queda después de haber terminado el movimiento de tierra, tiene las secciones transversales y pendientes especificadas en el proyecto geométrico.

- Si el terreno de cimentación es pésimo (material orgánico) debe desecharse y sustituirse por otro de mejor calidad.
- Si el terreno de fundación es malo y se halla formado por un suelo fino

limoso o arcilloso, susceptible de saturación, debe colocarse material de mejoramiento, una sub-base granular de material seleccionado antes de poner la base y capa de rodadura.

- Si el terreno de fundación es regular o bueno o sea que está formado por un suelo bien graduado que no ofrece peligro de saturación o por un material de granulometría gruesa posiblemente no se requerirá el material de sub-base.
- Si el terreno de fundación es excelente es decir que tiene un valor de soporte elevado y no existe además la posibilidad de saturación se deberá colocar una base granular de regularización antes de colocar la capa de rodadura.

B. Sub-base

Es la capa de material seleccionado que se coloca encima de la subrasante y tiene por objeto:

- Servir de capa de drenaje al pavimento.
- Controlar o eliminar en lo posible los cambios de volumen, elasticidad y plasticidad perjudiciales del material de subrasante.
- Controlar la capilaridad del agua proveniente de las capas o niveles freáticos cercanos protegiendo al pavimento de los hinchamientos.

Los materiales a emplearse deberán tener un coeficiente de desgaste máximo del 50%, de acuerdo con el ensayo de Abrasión de los Ángeles y la porción que pase el tamiz Nº 40 deberá tener un índice de plasticidad menor que 6 y un límite liquido de 25. La capacidad de soporte corresponderá a un CBR igual o mayor del 30%.

Las normas del Ministerio de Transporte y Obras Públicas (MTOP), las sub-bases se clasifican en tres clases, de acuerdo al tipo de material a emplearse, estos son:

- a) Sub-base Clase 1: Son sub-bases construidas con agregados obtenidos por trituración de roca o grava, de acuerdo con los requerimientos de las Especificaciones Generales para la construcción de Caminos y Puentes del MTOP, y graduados uniformemente dentro de los limites indicados para la granulometría Clase 1, de la Tabla 6.1. Por lo menos el 30% del agregado preparado deberá obtenerse por proceso de trituración.
- b) Sub-base Clase 2: Son sub-bases construidas con agregados obtenidos mediante trituración o cribado en yacimientos de piedras fragmentadas naturalmente o de gravas, de acuerdo con los requerimientos establecidos en las Especificaciones Generales para la Construcción de Caminos y Puentes del MTOP y graduados uniformemente dentro de los límites de la Tabla6.1.
- c) Sub-base Clase 3: Son sub-bases construidas con agregados naturales y procesados que cumplan con los requisitos establecidos en las Especificaciones Generales para la Construcción de Caminos y Puentes del MTOP y graduados uniformemente dentro de los límites de la Tabla 6.1.

Tabla 6.1 – Clases de Sub-bases según Granulometrías

Tamiz	Porcentaje en peso que pasa a través de los tamices de malla cuadrada			
	CLASE 1 CLASE 2 CLASE 3			
3" (76,2mm)			100	
2" (50,4mm)		100		
11/2" (38,1mm)	100	70 - 100	100	
Nº4 (4,75mm)	30 - 70	31 - 70	30 - 70	
Nº40 (0,425mm)	10 - 35	15 - 40		
Nº200 (0,075)	0 - 15	0 - 20	1 - 20	

Fuente :MOP. (2003). Especificaciones Generales para la Construcción de Caminos y Puentes. Quito.

C. Base

Es la capa que tiene por finalidad absorber los esfuerzos transmitidos por las cargas de los vehículos y además repartir uniformemente estos esfuerzos a la sub-base y al terreno de fundación.

Las bases pueden ser granulares o bien estar formadas por mezclas bituminosas o mezclas estabilizadas con cemento u otro material ligante. El material que se utilice en la construcción debe llenar los siguientes requisitos establecidos en las especificaciones técnicas, en todo caso el límite líquido del pasante por el tamiz Nº 40 deberá ser menor de 25 y el índice de plasticidad menor de 6, el porcentaje de desgaste por abrasión de los agregados será menor del 40% y el valor de soporte de CBR deberá ser igual o mayor al 80%.

Los agregados serán elementos limpios, sólidos y resistentes, extintos de polvo y suciedad, arcilla u otros materiales extraños.

De acuerdo con las normas del Ministerio de Transporte y Obras Públicas (MTOP), las bases se clasifican en tres clases, estas son:

a) Base Clase 1: Son bases constituidas por agregados gruesos y finos, triturados en un 100% de acuerdo con lo establecido en las Especificaciones Generales para la construcción de Caminos y Puentes del MTOP, y graduados uniformemente dentro de los limites granulométricos indicados para los tipos A y B en la Tabla 6.2

Tabla 6.2 – Base tipo A y B según granulometrías

Tamiz	Porcentaje en peso que pasa a través de los tamices de ma cuadrada		
	TIPO A	TIPO B	
2" (50,4mm)	100		
11/2" (38,1mm)	70 - 100	100	
1" (25,4mm)	55 - 85	70 - 100	
3/4" (19,0mm)	50 - 80	60 - 90	
3/8" (9,75mm)	35 - 60	45 - 75	
Nº4 (4,75mm)	25 - 50	30 - 60	
Nº10 (2,00mm)	20 - 40	20 - 50	
Nº40 (0,425mm)	10 - 25	11 - 25	
Nº200 (0,075)	2 - 12	3 - 12	

Fuente :MOP. (2003). Especificaciones Generales para la Construcción de Caminos y Puentes. Quito.

b) Base Clase 2: Son bases constituidas por fragmentos de roca o grava triturada, cuya fracción de agregado grueso será triturada al menos el 50% en peso, y que cumplirán los requisitos establecidos de las Especificaciones Generales para la construcción de Caminos y Puentes del MTOP. Estas bases deberán hallarse graduadas uniformemente dentro de los limites granulométricos indicados en la Tabla 6.3

Tabla 6.3 – Base Clase 2 según granulometría

Tamiz	Porcentaje en peso que pasa a través de los tamices de malla cuadrada
1" (25,4mm)	100
3/4" (19,0mm)	70 - 100
3/8" (9,75mm)	50 - 80
Nº4 (4,75mm)	35 - 65
Nº10 (2,00mm)	25 - 50
Nº40 (0,425mm)	15 - 30
Nº200 (0,075)	3 - 15

Fuente :MOP. (2003). Especificaciones Generales para la Construcción de Caminos y Puentes. Quito.

c) Base Clase 3: Son bases constituidas por fragmentos de roca o grava triturada, cuya fracción de agregado grueso será triturada al menos el 25% en peso, y que cumplirán los requisitos establecidos en las Especificaciones Generales para la construcción de Caminos y Puentes del MTOP. Estas bases deberán hallarse graduadas uniformemente dentro de los limites granulométricos indicados en la Tabla 6.4

Tabla 6.4 – Base Clase 3 según granulometría

Tamiz	Porcentaje en peso que pasa a través de los tamices de malla cuadrada
3/4" (19,0mm)	100
Nº4 (4,75mm)	45 - 80
Nº10 (2,00mm)	30 - 60
Nº40 (0,425mm)	20 - 35

Fuente :MOP. (2003). Especificaciones Generales para la Construcción de Caminos y Puentes. Quito.

d) Base Clase 4: Son bases constituidas por agregados obtenidos por trituración o cribado de piedras fragmentadas naturalmente o de gravas, de conformidad con lo establecido en las Especificaciones Generales para la construcción de Caminos y Puentes del MTOP, y graduados uniformemente dentro de los límites de la granulometría de la Tabla 6.5

Tabla 6.5 – Base Clase 4 según granulometría

Tamiz	Porcentaje en peso que pasa a través de los tamices de malla cuadrada
2" (50,4mm)	100
1" (25,4mm)	60 - 90
Nº4 (4,75mm)	20 - 50
Nº200 (0,075)	0 - 15

Fuente :MOP. (2003). Especificaciones Generales para la Construcción de Caminos y Puentes. Quito.

D. Capa de rodadura

Es la parte superior y la capa más rígida del pavimento flexible, es comparativamente más fina que el resto de las capas, pero la de mayor resistencia y calidad. Debe ser resistente a las presiones verticales y horizontales impuestas por la acción directa de los neumáticos de los vehículos, resistente a la abrasión, impermeable y a la vez de elevado coeficiente de fricción en su

superficie, así como soportar sin degradarse por la acción directa y destructiva de los agentes atmosféricos.

Normalmente la superficie es la parte más costosa de los pavimentos flexibles y, por lo tanto, en el diseño debe contemplarse la utilización del espesor mínimo permisible. Debido a la uniformidad de su superficie y a su alto coeficiente de fricción, proporciona condiciones de rodabilidad adecuadas para brindar un servicio cómodo, eficiente y seguro a las exigencias del tránsito vehicular.

6.1.2. Metodología empleada para el diseño 8

6.1.2.1. Generalidades

Se usa la metodología convencional, es decir se calcula el número estructural necesario para soportar la carga de tráfico esperada, y se establecen las diferentes capas de materiales que se propone emplear para alcanzar este número estructural.

El diseño del pavimento sigue el procedimiento y metodología recomendado por la AASHTO en su Guía de Diseño de Pavimentos, edición 1993.

El procedimiento de diseño recomendado por la AASHTO (American Association of State Highway and Transportation Officials) está basado en los resultados de los extensivos ensayos de carretera AASHO llevados a cabo en Ottawa, Illinois a finales de los 50's y a comienzos de los 60's. El comité de Diseño de la AASHO publico primero una guía de diseño provisional e. 1961.

Fue revisado en 1972 y 1081. En 1984-85, el subcomité de diseño de pavimento y el equipo de consultores revisaron y expandieron la guía bajo el proyecto NCHRP 20-7/24 y publicaron la guía actual en 1986. Las ecuaciones de desempeño empírico obtenidas del ensayo de carreteras AASHO son todavía usadas como

-

^{8 (2009).} En M. I. Acurio, *Ingenieria de Pavimentos*. Lima: ICG. – pagina 90

modelos básicos en la actual guía pero fueron modificadas y extendidas para hacerlas aplicables a otras regiones.

Se debe tener en cuenta que las ecuaciones originales fueron desarrolladas bajo determinados escenarios climáticos y con un conjunto especifico de materiales de pavimento y suelos de subrasante.

Cabe señalar que el clima en el sitio del proyecto es templado con un promedio anual de precipitación de 864 mm. La profundidad promedio de congelamiento es aproximadamente 711 mm. Los suelos. Los suelos de subrasante consisten en suelos mal drenados con valores de CBR en un rango de 2 a 4.

6.1.2.2. Factores técnicos que intervienen en el método AASHTO

a) Tráfico (T)

Las cargas que soportan los pavimentos provienen de los diferentes tipos de vehículos que circulan por su superficie durante su vida en servicio, por lo que es necesario realizar un adecuado estudio de tránsito y sus variables de crecimiento que dependen del desarrollo económico de la zona o región a la cual la vía prestará el servicio.

- Determinación del TPDA
- Se define como la intensidad máxima promedio para una duración de vida.
- Determinación del Factor de equivalencia de caras (FE)

Como se indica en el pavimento circulan diferentes tipos de vehículos que transmiten diversos tipos de carga, por lo que para su diseño, es necesario transformarlos a un solo tipo denominado eje estándar.

Su transformación se realiza en función de su correlación con el daño que provocaría comparándola con la del eje estándar para lo cual es necesario establecer un factor de equivalencia de carga.

Los factores de equivalencia (FE), dependen de varios factores siendo los más importantes el tipo de eje, su peso total y el número estructural, pudiéndose utilizar para su determinación la siguiente expresión:

$$FE = \left[\frac{P}{A}\right]^{4.3}$$

Donde:

FE = Factor de equivalencia de carga

P = Carga por eje de cada vehículo analizado en toneladas

A = Carga por eje de los ejes estándares

Los valores de A se han establecido que pueden valer:

- Si A = 8.20 t, entonces es un eje simple
- Si A = 15.20 t, entonces es un eje tándem
- Si A = 20.00 t, entonces es un eje tridem

Cuyos resultados se pueden observar en la figura 6.2 adjunta:

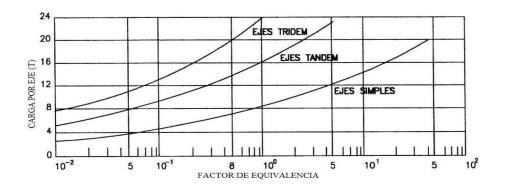
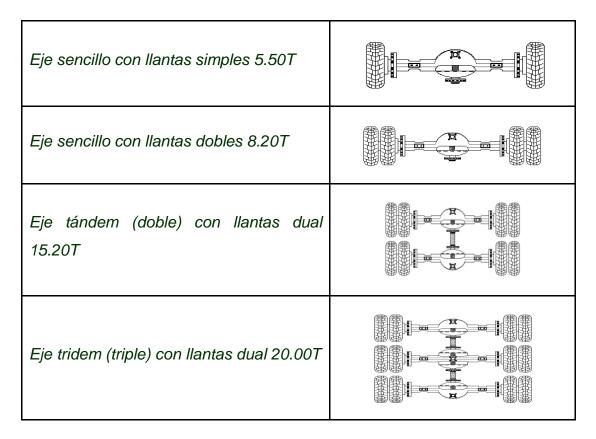



Figura 6.2 Factor de equivalencia de cargas respecto al eje de 8.2T

Fuente: Ing. Milton Torres Espinoza, Escuela Politécnica del Ejército, Quito

Tabla 6.6 Clasificación de los ejes vehiculares

Fuente: Ing. Milton Torres Espinoza, Escuela Politécnica del Ejército, Quito

Obtención del número acumulado de ejes equivalentes de 8.20T

La obtención del número de ejes equivalentes parte de la integral de la curva de la forma elemental ordinaria de ejes equivalentes en función del periodo en años. Figura 6.3

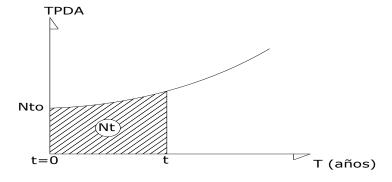


Figura 6.3 Obtención del número acumulados de ejes equivalentes Fuente: Ing. Milton Torres Espinoza, Escuela politécnica del ejército, Quito

Entonces:

$$Nt_0 = 365 * FE * TPDA_0$$

Donde:

FE = Factor de equivalencia de carga

TPDA₀ = Tráfico promedio diario anual inicial

Nto = Número de ejes equivalentes inicial

El Nt al final del periodo de diseño será:

$$Nt = \int_0^t Nt_0 (1+r)^x dx$$

$$Nt = Nt_0 \int_0^t (1+r)^x dx$$

$$Nt = 365 * FE * TPDA_0 * \frac{(1+r)^t - 1}{Ln(1+r)}$$

Donde:

FE = Factor de equivalencia de carga

TPDA₀ = Tráfico promedio diario anual inicial

r = Tasa de crecimiento vehicular general o por tipo de vehículo

t = Periodo de diseño

b) Valor de soporte del suelo C.B.R.

El CBR es una medida indirecta de la resistencia al esfuerzo cortante de un suelo bajo dadas condiciones de humedad y densidad, se expresa como la relación porcentual entre el esfuerzo requerido para penetrar un pistón de 2 pulgadas dentro de una probeta de 6 pulgadas de diámetro y 7 pulgadas de altura, y el

esfuerzo requerido para introducir el mismo pistón hasta la misma profundidad de una muestra patrón de grava partida.

Este método fue desarrollado en el departamento de carreteras de California, por lo que se denomina Índice de Soporte de California C.B.R.

Para su determinación se requiere realizar en términos generales los siguientes ensayos:

- Ensayo de compactación
- Ensayo de esponjamiento
- Ensayo de penetración

Para el cálculo del CBR se utiliza la siguiente expresión:

$$\text{CBR (0.1 o 0.2)} = \frac{\text{Esfuerzo que produce una deformacion de 0.1 o 0.2en el suelo ensayado}}{\text{Esfuerzo que produce una deformacion de 0.1 o 0.2en la muestra patrón}} * 100$$

Presión estándar para 0.1" = 70.3 Kg/cm²

Presión estándar para 0.2" = 105.5 Kg/cm²

El criterio más difundido para la determinación del valor de resistencia de diseño es el propuesto por el Instituto del Asfalto, el cual recomienda tomar un valor total, que el 60 el 75 o el 87.5% de los valores individuales sea igual o mayor que él, de acuerdo con el transito que se espera que circule sobre el pavimento, como se muestra en la Tabla 6.7

Tabla 6.7 Valor de la Resistencia de diseño

Número de ejes de 8.2 toneladas en el carril de diseño (Nt)	Porcentaje a seleccionar para hallar la resistencia
< 10 ⁴	60
10 ⁴ - 10 ⁶	75
> 10 ⁶	87.5

Fuente: AASHTO. (1993). Diseño de Estructuras de Pavimentos.

c) Módulo de resilencia

En el método de diseño de la AASHTO, se introduce el concepto de módulo de resilencia M_R para caracterizar la capacidad de carga de la subrasante, materiales de base, sub-base y su determinación se lo realiza mediante las siguientes fórmulas que correlacionan el C.B.R.(%) con el módulo de resilencia M_R (Psi):

• Si CBR <10%
$$\rightarrow$$
 M_R = 1500 (CBR)

• Si 10% < CBR < 20%
$$\rightarrow$$
 M_R = 3000 (CBR)^{0.65}

d) Nivel de confiabilidad R

El nivel de confiabilidad, se puede determinar en base a las recomendaciones de la AASHTO expresadas en las tablas 6.8 y tabla 6.9

Tabla 6.8 Niveles de confiabilidad sugeridos por la AASHTO

Función de la carretera	Urbanos	Rurales
Corredores arteriales (malla esencial)	85-99	80-99
Colectores (RI – RII, Clase I – II)	80-99	75-95
Otros	50-80	50-80

Fuente: AASHTO. (1993). Diseño de Estructuras de Pavimentos.

Tabla 6.9 Relación nivel de confiabilidad y desviación estándar Z_R

Nivel de confiabilidad R (%)	Z _R
50	0
60	0.253
70	0.524
75	0.674
80	0.841
85	1.037
90	1.282
91	1.34
92	1.405
93	1.476
94	1.555
95	1.645

Nivel de confiabilidad R (%)	\mathbf{Z}_{R}
96	1.751
97	1.881
98	2.054
99	2.327
99.9	3.09
99.99	3.75

Fuente: AASHTO. (1993). Diseño de Estructuras de Pavimentos.

e) Índice de servicio (Pt)

El índice de servicio de un pavimento se define como la capacidad de servir al tipo de transito para el cual ha sido diseñado. Se tiene un índice de servicio presente PSI mediante el cual se califica al pavimento entre 0 ((pésimas condiciones) y 5 (perfecto)

En el diseño del pavimento se deben elegir el índice de servicio inicial y final.

La inicial PSI₀ es función del diseño del pavimento y de la calidad de construcción, y a la final o terminal PSI_t es función de la categoría o importancia de la vía.

Los valores recomendados se indican en la siguiente tabla 6.10

Tabla 6.10 Índices de servicio recomendables

Función de la carretera	PSI ₀	PSI _t	ΔPSI
Corredores arteriales (malla esencial)	4.5	2.5	2.0
Colectores (RI – RII, clase I – II)	4.5	2.0	2.5
Otros	4.2	2.0	2.2

Fuente: AASHTO. (1993). Diseño de Estructuras de Pavimentos.

f) Número estructural SN

La solución del procedimiento de diseño de la AASHTO está en términos de un número estructural, el mismo que expresa la resistencia estructural necesaria que debe tener un pavimento para una combinación del valor soporte del suelo de la carga total equivalente a un eje simple de 8.2 T.

Para el cálculo del número estructural se desarrolla la siguiente ecuación:

$$Log_{10}(W_{18}) = Z_R(So) + 9.36 * Log_{10}(SN + 1) - 0.20 \frac{Log_{10} \left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32Log_{10}(M_R) - 8.07$$

Donde:

- W₁₈ = Número de aplicaciones de carga de un eje equivalente a 8.2T
- Z_R = Valor de "Z" correspondiente a la curva estandarizada
- S_o = Error estándar de la predicción de tráfico y ejecución
- ΔPSI = Diferencia entre el índice de servicio inicial PSI_o y PSI_t
- M_R = Módulo de resilencia (psi)
- SN = Número estructural indicativo del espesor total de pavimento requerido

En función del número estructural, se determinan los distintos espesores de los estratos que conforman la estructura del pavimento. La expresión que integra estos estratos es la siguiente:

$$SN = a1 * D1 + a2 * D2 * m2 + a3 * D3 * m3 + \cdots$$

Donde:

- a1 a2, a3 = coeficientes estructurales de cada uno de los estratos
- m2, m3 = Coeficientes de drenaje
- D1, D2, D3 = Los espesores, en cm

Los coeficientes estructurales de los estratos se ajustan con los factores mi, que representan la calidad del drenaje y el tiempo en que cada estrato está sometido a niveles de humedad próximas a la saturación. Para el efecto se recomienda utilizar los valores de mi que se indican en la Tabla 6.11

Tabla 6.11 Valores recomendados de coeficientes mi por capa estructural del estrato de base y sub-base de materiales en Pavimentos Flexibles

Porcentaje de tiempo en la estructura del pavimento expuesto a los niveles de humedad hasta llegar a saturarse				
Calidad de				
drenaje	1%	1 - 5%	5 - 25%	Mayor al 25%
		1,35 -	1,30 -	
Excelente	1,40 - 1,35	1,30	1,20	1,20
		1,25 -	1,15 -	
Buena	1,35 - 1,25	1,15	1,00	1,00
		1,15 -	1,00 -	
Regular	1,25 - 1,15	1,05	0,80	0,80
		1,05 -	0,80 -	
Mala	1,15 - 1,05	0,80	0,60	0,60
		0,95 -	0,75 -	
Muy Mala	1,05 - 0,95	0,75	0,40	0,40

Fuente: AASHTO. (1993). Diseño de Estructuras de Pavimentos.

Se considera que un valor de mi = 0.8, es recomendable para los diferentes diseños en el país.

Los valores de a1, a2... an, son coeficientes que están relacionados con los parámetros resistentes de bases granulares, sub-bases, bases tratadas con asfalto, con cemento, y son necesarios para proceder al diseño estructural del pavimento.

Una vez definido el numero estructural SN, es necesario identificar los espesores de cada estrato que adecuadamente combinados provean de la capacidad de carga deseada.

El espesor de una capa de tratamiento superficial contribuye en un porcentaje poco significativo en lo que se refiere al número estructural SN; aunque se reconoce su contribución al reducir la entrada de agua hacia las capas inferiores.

Para combinaciones de carpetas asfálticas y bases granulares, la tabla 6.12 muestra valores de espesores mínimos sugeridos en función del tránsito.

Tabla 6.12 Espesores mínimos sugeridos (cm)

Número de ESAL's	Carpeta Asfáltica	Base Granular
< 150 000	5.0	10.0
< 500 000	6.5	10.0
< 2 000 000	7.5	15.0
< 7 000 000	9.0	15.0
> 7 000 000	10.0	15.0

Fuente: AASHTO. (1993). Diseño de Estructuras de Pavimentos.

g) Análisis del diseño por capas

Siendo el pavimento un sistema multicapa la distribución de los espesores debe hacerse de acuerdo con los principios que muestra la figura 6.4

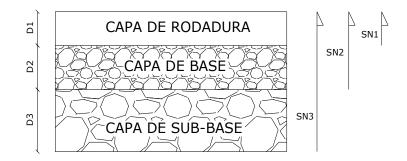


Figura 6.4 Determinación de los espesores de las capas medias mediante aproximaciones

6.1.3. Diseño del pavimento

Cálculo del factor de equivalencia de carga FE – para una vida útil de 20 años

Tipo de vehículos	Carga del eje (T)	Clasificación MTOP	Sentido	Núm. vehículos	%
Livianos			2 Sentidos	145	72.67
Buses	7		2 Sentidos	17	8.72
Camiones 2 ejes	10	2DA	2 Sentidos	16	8.14
Camiones 3 ejes	20	3A	2 Sentidos	22	10.47

Total vehículos = 200

Total vehículos pesados (buses y camiones) = 55

$$FE = \frac{\Sigma \left[\frac{\text{Pbuses}}{8.20}\right]^{4.3} + \Sigma \left[\frac{\text{Peje sencillo}}{8.20}\right]^{4.3} + \Sigma \left[\frac{\text{Peje doble}}{15.20}\right]^{4.3}}{\text{número de camiones}}$$

$$FE = \frac{17 \left[\frac{7}{8.20} \right]^{4.3} + 16 \left[\frac{10}{8.20} \right]^{4.3} + 22 \left[\frac{20}{15.20} \right]^{4.3}}{55}$$

$$FE = 2,51$$

 a) Cálculo del número de ejes equivalentes total de la vía para una vida útil de 20 años

$$Nt = 365 * FE * TPDA_0 * \frac{(1+r)^t - 1}{Ln(1+r)}$$

$$Nt = 365 * 2.51 * 55 * \frac{(1+0.02)^{20} - 1}{Ln(1+0.02)}$$

$$Nt = 101.614,04$$

 b) Cálculo del factor de equivalencia de carga FE para un tráfico generado por la construcción

Tipo de vehículos	Carga del eje (T)	Clasificación MTOP	Sentido	Núm. vehículos
Livianos			2 Sentidos	145
Buses	7		2 Sentidos	17
Camiones 2 ejes	10	2DA	2 Sentidos	35
Camiones 3 ejes	20	3A	2 Sentidos	40
Carriones 3 ejes	50	3S3	2 Sentidos	15

- Total vehículos = 252
- Total vehículos pesados (buses y camiones) = 107

$$\mathrm{FE} = \frac{\varSigma \left[\frac{\mathrm{Pbuses}}{8.20}\right]^{4.3} + \varSigma \left[\frac{\mathrm{Peje \ sencillo}}{8.20}\right]^{4.3} + \varSigma \left[\frac{\mathrm{Peje \ doble}}{15.20}\right]^{4.3} + \varSigma \left[\frac{\mathrm{Peje \ triple}}{20.00}\right]^{4.3}}{\mathrm{n\'umero \ de \ camiones}}$$

$$FE = \frac{17\left[\frac{7}{8.20}\right]^{4.3} + 35\left[\frac{10}{8.20}\right]^{4.3} + 40\left[\frac{20}{15.20}\right]^{4.3} + 15\left[\frac{50}{20}\right]^{4.3}}{107}$$

$$FE = 5,53$$

c) Cálculo del número de ejes equivalentes total de la vía para la etapa de construcción hacer lo mismo del punto a) en este punto

Nt = 365 * FE * TPDA₀ *
$$\frac{(1+r)^t - 1}{Ln(1+r)}$$

Nt =
$$365 * 5,53 * 107 * \frac{(1+0.01)^2 - 1}{\text{Ln}(1+0.01)}$$

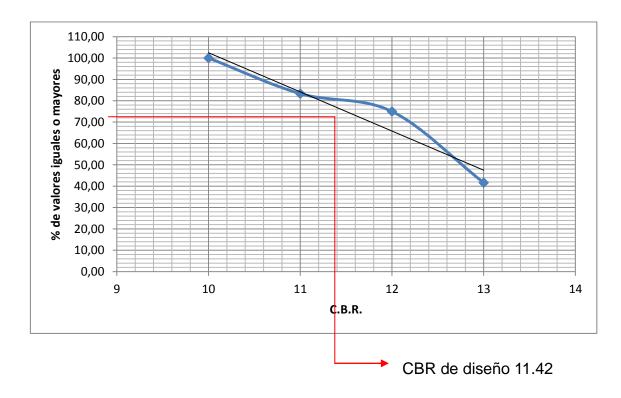
$$Nt = 436.352,30$$

Al ser mayor el número de ejes equivalentes en la etapa de construcción, al número de ejes equivalentes para un periodo de diseño de 20 años, se asume como más critico para el diseño del pavimento.

Debido a la similitud de los CBR's, se dividió a la vía misma en dos tramos.

El Tramo I comprende las abscisas desde la 0+000 hasta la 11+000 y el Tramo II va desde la abscisa 11+000 hasta la 13+860.

6.1.3.1. TRAMO I desde la abscisa 0+000 hasta la 11+000


a) Determinación del C.B.R. de diseño

Abscisa	CBR	Número de valores iguales o mayores
6+000	10	12
7+000	10	
0+500	11	10
2+000	12	9
5+000	12	
8+000	12	
9+000	12	
1+000	13	5
3+000	13	
4+000	13	
10+000	13	
11+000	13	

C.B.R.	Número de valores iguales o mayores	% de valores iguales o mayores
10.00	12	100.00
11.00	10	83.33
12.00	9	75.00
13.00	5	41.67

Número de ejes de 8.2	Porcentaje a seleccionar para
toneladas (Nt)	hallar la resistencia
< 10 ⁴	60
10 ⁴ - 10 ⁶	75
> 10 ⁶	87.5

 $NT = 10^4 > 887134.33 > 10^6 \rightarrow \%$ para seleccionar el CBR de diseño = 75%

A efectos de abarcar todo el espectro de CBR, se adopta 10 como CBR de diseño

b) Módulo de Resilencia (M_R)

10 % < CBR < 20%
$$\rightarrow$$
 M_R = 3000 (CBR)^{0.65}

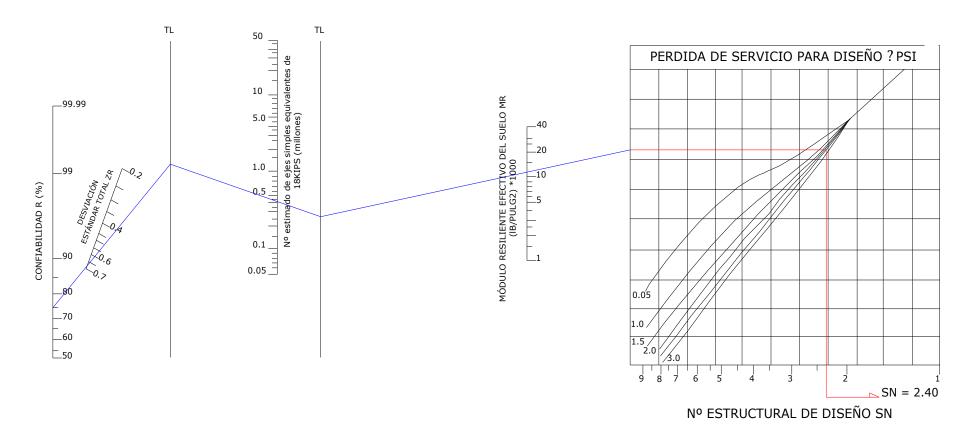
$$M_R = 3000 (10)^{0.65} = 13.400,50$$
psi

c) Nivel de Confiabilidad (R)

Función de la carretera	Urbanos	Rurales
Corredores arteriales (malla esencial)	85-99	80-99
Colectores (RI – RII, clase I – II)	80-99	75-95
Otros	50-80	50-80

$$R = 75$$

Nivel de confiabilidad R (%)	Z _R
50	0.000
60	0.253
70	0.524
75	0.674
80	0.841
85	1.037
90	1.282
91	1.340
92	1.405
93	1.476
94	1.555
95	1.645
96	1.751
97	1.881
98	2.054
99	2.327
99.9	3.090
99.99	3.750


$$Z_R=\ 0.674$$

d) Índice de servicio (Pt)

Función de la carretera		PSI _t	∆PSI
Corredores arteriales (malla esencial)	4.5	2.5	2.0
Colectores (RI – RII, clase I – II)	4.5	2.0	2.5
Otros	4.2	2.0	2.2

$$\Delta PSI = 2.2$$

e) Número Estructural del Pavimento (SN)

R = 75% $Z_R = 0.674$ Nt = 436.352,30 $M_R = 13.400,50 = 13.40 \text{Ksi}$ $\Delta PSI = 2.2$

El número estructural SN, de la capa i, esta dado por la siguiente ecuación:

$$SNi = ai x mi x hi, donde$$

a = coeficiente estructural de la capa i

h = altura de la capa i en pulgadas

mi = coeficiente de drenaje de la capa i (0.80 MTOP)

- f) Número estructural de la Sub-Base
- Para un CBR = $40\% \Rightarrow a3 = 0.043 \text{ cm}^{-1} = 0.1092 \text{ pulg}^{-1}$
- m3 = 0.80
- h sub base = 20"

$$SN_{sub-base} = a_{sub-base} x m_{sub-base} x h_{sub-base}$$

$$SN_{sub-base} = 0.1092 \times 0.80 \times 20 = 1.747$$

- g) Número estructural de la Base
- Para un CBR = $80\% \Rightarrow a2 = 0.051 \text{ cm}^{-1} = 0.129 \text{ pulg}^{-1}$
- m3 = 0.80
- h base = 10"

$$SN_{base} = a_{base} x m_{base} x h_{-base}$$

$$SN_{base} = 0.129 \times 0.80 \times 10 = 1.032$$

h) SN_{Real}

$$SN_{Real} = SN_{sub-base} + SN_{base}$$

$$SN_{Real} = 1.747 + 1.032 = 2.78 > 2.40 SN calculado OK$$

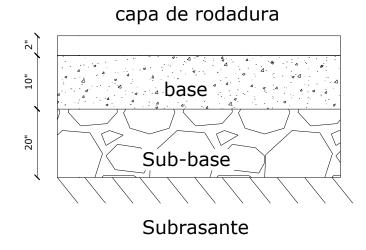
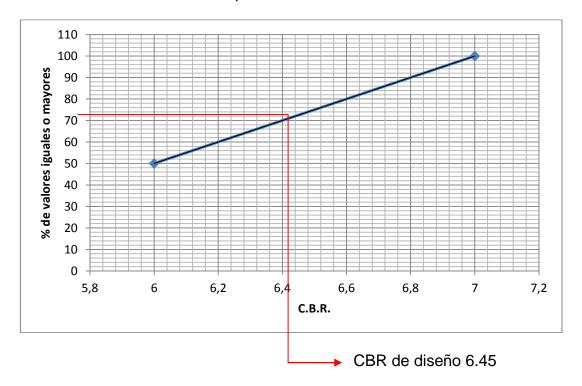


Figura 6.5 Corte Típico de la sección transversal del pavimento – Tramo I

6.1.3.2. TRAMO II desde la abscisa 12+000 hasta la 13+860


a) Determinación del C.B.R. de diseño

Abscisa	CBR	Número de valores iguales o mayores
12+000	7	
13+500	7	2
13+000	6	1

C.B.R.	% de valores iguales o mayores
7	100.00
6	50.00

Número de ejes de 8.2 toneladas (Nt)	Porcentaje a seleccionar para hallar la resistencia
< 10 ⁴	60
10 ⁴ - 10 ⁶	75
> 10 ⁶	87.5

 $NT = 10^4 > 887134.33 > 10^6 \rightarrow \%$ para seleccionar el CBR de diseño = 75%

A efectos de abarcar todo el espectro de CBR, se adopta 6 como CBR de diseño

b) Módulo de Resilencia (M_R)

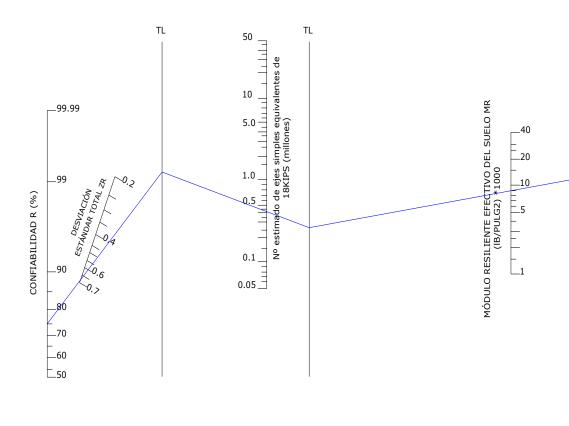
CBR < 20%
$$\rightarrow$$
 M_R = 1500 (CBR)
M_R = 1500 (6.00) = 9000psi

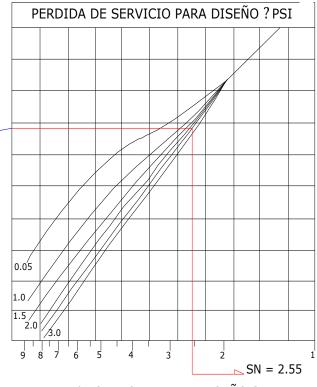
c) Nivel de Confiabilidad (R)

Función de la carretera	Urbanos	Rurales
Corredores arteriales (malla esencial)	85-99	80-99
Colectores (RI – RII, clase I – II)	80-99	75-95
Otros	50-80	50-80

$$R = 75$$

Nivel de confiabilidad R (%)	Z _R
50	0.000
60	0.253
70	0.524
75	0.674
80	0.841
85	1.037
90	1.282
91	1.340
92	1.405
93	1.476
94	1.555
95	1.645
96	1.751
97	1.881
98	2.054
99	2.327
99.9	3.090
99.99	3.750


$$Z_R=\ 0.674$$


d) Índice de servicio (Pt)

Función de la carretera	PSI ₀	PSI _t	∆PSI
Corredores arteriales (malla esencial)	4.5	2.5	2.0
Colectores (RI – RII, clase I – II)	4.5	2.0	2.5
Otros	4.2	2.0	2.2

$$\Delta$$
PSI = 2.2

e) Número Estructural del Pavimento (SN)

Nº ESTRUCTURAL DE DISEÑO SN

R = 75% $Z_R = 0.674$ Nt = 436.352,30 $M_R = 9000 = 9.00 \text{Ksi}$ $\Delta PSI = 2.2$

El número estructural SN, de la capa i, esta dado por la siguiente ecuación:

$$SNi = ai \times mi \times hi$$
, donde

a = coeficiente estructural de la capa i

h = altura de la capa i en pulgadas

mi = coeficiente de drenaje de la capa i (0.80 MTOP)

- f) Número estructural de la Sub-Base
- Para un CBR = $40\% \Rightarrow a3 = 0.043 \text{ cm}^{-1} = 0.1092 \text{ pulg}^{-1}$
- m3 = 0.80
- h sub base = 25"

$$SN_{sub-base} = a_{sub-base} x m_{sub-base} x h_{sub-base} / 2.54$$

$$SN_{sub-base} = 0.1092 \times 0.80 \times 25 = 2.184$$

- g) Número estructural de la Base
- Para un CBR = 80% \Rightarrow a2 = 0.051 cm⁻¹ = 0.129 pulg⁻¹
- m3 = 0.80
- h base = 10"

$$SN_{base} = a_{base} x m_{base} x h_{-base}$$

$$SN_{base} = 0.129 \times 0.80 \times 15 = 1.032$$

h) SN_{Real}

$$SN_{Real} = SN_{sub-base} + SN_{base}$$

$$SN_{Real} = 2.184 + 1.032 = 3.22 > 2.55 \text{ SN calculado OK}$$

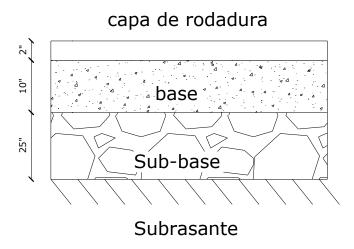


Figura 6.6 Corte Típico de la sección transversal del pavimento – Tramo II

CAPITULO VII

7. SEÑALIZACIÓN Y SEGURIDAD VIAL

7.1. Introducción

El estudio de señalización tiene como principal objetivo la seguridad vial y de conseguir una circulación segura. El diseño está dirigido a la implantación de una variedad de dispositivos de control de tránsito vehicular, mediante el establecimiento de normas pertinentes para la prevención, regulación del tránsito y sobre todo de información al usuario de la vía, con la finalidad de proteger su seguridad y prevenir riesgos y posibles accidentes.

Los dispositivos de control del tránsito vehicular, serán efectivos, cumpliendo características de localización del dispositivo tiene un rol importante para su cumplimiento, puesto que de dicha localización depende que el conductor pueda percatarse de su presencia y así tomar la acción necesaria como respuesta inmediata al dispositivo, otra característica es el diseño y la uniformidad del dispositivo, de manera que la combinación de sus dimensiones, colores, forma, composición y visibilidad, llamen apropiadamente la atención del conductor, de manera que reciba el mensaje en forma clara y legible, también los dispositivos tienen que cumplir características de acuerdo a los requerimientos que el tránsito vehicular y cumplir lo solicitado en las Normas y Reglamentos de transito de nuestro país.

7.2. Metodología

El estudio de señalización se ha centrado en los factores que generan accidentes de tránsito a fin de mitigarlos y lo que es más importante introducir en el usuario la

observación de estas señales que tienden a reducir el porcentaje de accidentes que se producirán en esta carretera.

Al iniciar se procedió a la recopilación de información disponible, como:

Planos geométricos definitivos de la ampliación de la vía

El estudio considera los procedimientos, especificaciones y técnicas que se presentan en los documentos:

- "Reglamento técnico de Señalización Vial Parte 1".- Descripción y Uso de Dispositivos elementales de Control de Transito RTE INEN 2004,
- "Reglamento técnico de Señalización Vial Parte 2".- Señalización Horizontal RTE
 INEN 2004, la Ley de Transito
- El Manual de Señalización vial del MTOP

7.3. Señalización vial

7.3.1. Generalidades de los dispositivos de regulación de tránsito

7.3.1.1. Función

La función primordial de los dispositivos, es el indicar a los conductores las precauciones que deben conocer sobre la vía, las limitaciones y características del tramo de circulación, según las condiciones específicas de la misma. Éstas deben ser de fácil interpretación, suministrando a los conductores y peatones los mensajes claros.

7.3.1.2. Visibilidad

Para garantizar la visibilidad de los dispositivos deben ser elaborados con material reflectivo con el objetivo de reflejar la luz de los vehículos, sin deslumbrar al

conductor, o estar correctamente iluminado. Para garantizar su visibilidad clara tanto en el día como en la noche.

7.3.1.3. Uso

El establecer el mejor uso de las señales acompañada de una buena ubicación, mejora la facilidad de compresión de las señales de tránsito y su acatamiento. Para evitar inconvenientes las señales no debe ir acompañada de publicidad ya que resta importancia a la señal y aumenta el riesgo de accidentes.

7.3.1.4. Conservación

Todas las señales debe mantenerse en un buen estado, ubicación correcta, legibles su contenido y limpias durante el tiempo de operación de la vía. La conservación de las señales incluirá el retiro y colocación de señales en los lugares necesarios y el correspondiente mantenimiento.

7.3.1.5. Tamaño de las señales

Los tamaños se indican en los planos de señalización vial, Anexo E basados en el manual de señalización y a la velocidad de diseño.

7.3.1.5.1. Ubicación lateral

Considerando el sentido de circulación vehicular se colocara al lado derecho de la vía y el plano frontal de la señal debe formar un ángulo entre 85° y 90°, con la finalidad de ser visible. Con el fin de evitar colisiones entre los vehículos y las señales, en las carreteras el borde de la señal debe estar de 2.0 a 4.0 metros del borde del pavimento.

7.3.1.5.2. Ubicación longitudinal

Si las condiciones no son óptimas se podrá ubicar dos señales verticales individuales y separadas en un mismo poste.

7.3.1.5.3. Ubicación de las señales a lo largo de la vía

Acorde al tipo de zona las distancias de los dispositivos de control de tipo preventivo son:

- En zona urbana de 60 m a 80 m
- En zona rural de acuerdo a la velocidad de operación del proyecto de la siguiente manera TABLA 7.1

Tabla 7.1 ubicación de las señales a lo largo de la vía en zona rural

Velocidad de Diseño (km/h)	Distancia mínima (m)		
Menor o igual que 40	45		
50	60		
60	75		
Mayor o igual que 70	90		

Fuente: MOP. (2003). Normas de Diseño Geometrico. Quito.

Para el caso de este trazado ya que la velocidad de diseño es de 35 km para se recomienda la colocación del dispositivo de señalización a 45 m de la irregularidad que se quiere informar.

Las señales reglamentarias se colocan en el sitio mismo donde se presente el riesgo, o para cumplir con la reglamentación estipulada en la señal.

Las señales informativas de ruta se colocaran después de una intersección, a una distancia mayor a 20m antes del PC y PT, ET (punto de cambio de espiral a tangente) y TE (punto de cambio de tangente a espiral).

Las señales de información general se colocarán antes del servicio indicado en ellas o frente a él, según las condiciones de la vía y el servicio estipulado.

7.3.2. Señalización vertical y horizontal

7.3.2.1. Señalización vertical

Debido a las característica de la topografía de la vía tiene varias curvas y contra curvas que desfavorecen el flujo rápido de vehículos y también el adelantamiento; no obstante con un diseño adecuado de señalización la vía y su correspondiente acatamiento por parte del usuario permitirá la una circulación segura por parte del usuario.

7.3.2.1.1. Señales Preventivas

Esta señal tiene como objetivo el indicar peligro en la proximidad al usuario, su forma es de un rombo cuadrado y sus colores característicos son de fondo amarillo con figuras y borde negros. Sus dimensiones se muestran en el Anexo F

7.3.2.1.2. Señales Regulatorias

Notifican sobre limitaciones, restricciones y prohibiciones que existen en la carretera pudiendo ser prohibitivas u obligatorias, su forma es circular y sus colores característicos son de fondo blanco con figuras y borde rojo, con excepción de la señal "PARE" que es octogonal con fondo rojo y letras blancas y la de "CEDA EL PASO" que será triangular y de borde rojo Anexo G. Sus dimensiones se muestran en el Anexo E

7.3.2.1.3. Señales Informativas

Este tipo de señales tiene por objetivo notificar al usuario sobre rutas, lugares y servicios que tiene a los lados de la vía. La mayoría de las señales informativas son rectangulares.

Las señales de localización son de forma rectangular, tiene fondo verde con leyenda y símbolos blancos, se ubican antes de las poblaciones.

Las señales de kilometraje tienen la forma y dimensiones establecidas en el plano de detalles. Sus dimensiones se muestran en el Anexo G

7.3.2.2. Señalización horizontal

La señalización horizontal representada por líneas, símbolos y letras sobre el pavimento, entre sus principales funciones se encuentra el delimitar la calzada, separar sentidos de circulación, delimitar carriles, anunciar, guiar y orientar a los usuarios, a demás de proporcionar complementar la información vertical o prevenir al conductor sobre la presencia de obstáculos tanto en el día como en la noche.

7.3.2.2.1. Diseño de la señalización horizontal

Las marcas viales son líneas o figuras geométricas aplicadas sobre el pavimento o en el bordillo de la vía, con el objeto de satisfacer las siguientes funciones:

- Delimitar carriles de circulación
- Separar sentidos de circulación
- Indicar el borde de la calzada
- Delimitar zonas excluidas a la circulación regular de los vehículos
- Reglamentar la circulación, especialmente el rebasamiento y el estacionamiento.

- Completar o precisar el significado de señales verticales.
- Recordar una señal vertical.
- Anunciar, guiar y orientar a los usuarios.
- Proporcionar información o prevenir al conductor

En consecuencia el objeto de las marcas viales es aumentar la seguridad, eficacia y comodidad de la circulación.

Las señales horizontales propuestas son de dos tipos:

7.3.2.2.1.1. Líneas centrales

Se utilizara una línea segmentada para separar el trafico viajando en sentidos opuestos, que tiene un ancho de 15 cm., de longitud 450 cm., y espaciamiento de 750 cm.,

Se empleará las líneas amarillas continuas en el eje, para indicarle al usuario que en éstos tramos no puede efectuar el rebasamiento, debido a que no se cumple con la distancia de visibilidad mínima, considerando además la utilización de líneas continuas en las proximidades de los centros poblados para controlar el flujo de tránsito. Además se emplearan este tipo de líneas en las cercanías de las poblaciones para controlar el tránsito vehicular y reducir accidentes.

7.3.2.2.1.2. Líneas de espaldón

Línea color blanco, ancho 10cm., ubicada a 3.00 m., a cada lado del eje de la vía, permite la visualización de la zona de circulación y el espaldón, el cual se utiliza en casos de emergencia para estacionamiento provisional de vehículo en caso de desperfectos mecánicos, consiguiéndose de esta manera que no exista obstáculos y

obstrucción de la vía facilitando la circulación vehicular.

7.3.3. Señalización durante la etapa de construcción

La señalización durante la etapa de construcción tiene como objetivo principal evitar la restricción de los flujos vehicular y peatonal.

Se instalaran señales que indiquen las nuevas condiciones de tránsito a los vehículos que transitan por el área de influencia de la obra y a los peatones.

7.3.3.1. Señales reglamentarias durante la etapa de construcción

Se instalarán señales reglamentarias tales como velocidad máxima que se verá afectada por las condiciones de la vía.

Figura 7.1 Señalización durante la etapa de construcción

7.3.3.2. Señales preventivas durante la etapa de construcción

Se instalarán señales preventivas las cuales deberán ser implementadas indicando el inicio y el final de la obra.

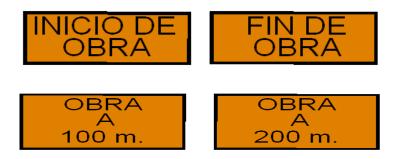


Figura 7.2 Señalización preventiva durante la etapa de construcción

En todo el corredor de la obra se deberán instalar señales indicando al tráfico vehicular que se debe transitar con precaución.

Figura 7.3 Señalización preventiva durante la etapa de construcción – Transite con precaución

Se deberá informar también a lo largo de todo el corredor de la obra la presencia de maquinaria y trabajadores.

Figura 7.4 Señalización preventiva durante la etapa de construcción – Hombres y maquinaria trabajando

CAPITULO VIII

8. ANÁLISIS – EVALUACIÓN Y REFORZAMIENTO ESTRUCTURAL DE LOS PUENTES

8.1. REFORZAMIENTO DE PUENTES

Definición

El reforzamiento de puente, se puede considerar que se lo realiza debido a una o varias de las siguientes razones, entre ellas:

- Aumento de capacidad debido a algún cambio en el uso (incremento de carga)
- Daño de partes estructurales (envejecimiento, sismo, impacto)
- Mejoramiento de la capacidad de servicio (control de fisuras)
- Modificación del sistema estructural (nuevas aberturas en elementos)
- Errores de diseño o construcción (deficiencia de refuerzo)
- Actualización a nuevos códigos (aumento de resistencia sísmica)

La pega de platinas de acero ha sido una herramienta para la industria de reparación del concreto en los últimos treinta años. Sin embargo el alto costo de instalación de las platinas, usualmente pesadas, las dificultades con el traslapo de las platinas, y lo relacionado con la corrosión de las platinas de acero han limitado el uso de esta técnica. Debido a sus excelentes propiedades de resistencia-peso, a la reciente reducción en los costos de materiales, a la relativa ilimitada longitud del material, a la comparativamente simple instalación, y la inmunidad a la corrosión, hacen que el uso de FRP (polímeros reforzados con fibras) represente una solución ventajosa para el reforzamiento adherido externamente.

Tal es el caso del puente de La Asunción ubicado en la ciudad de Cuenca, el cual fue reforzado en el año 2006 mediante la utilización de polímeros reforzados con fibras.

8.2. ACCIONES Y PROCEDIMIENTOS MÁS COMUNES

8.2.1. Refuerzo con FRP (Polímeros Reforzados con Fibras)

Las láminas FRP (Polímeros Reforzados con Fibras) son una combinación de fibras de carbono y una matriz de resina epóxica y tienen en dirección de la fibra una resistencia y una rigidez muy altas, así como un comportamiento excepcional a la fatiga, a demás su densidad es muy baja. Las fibras están colocadas en dirección longitudinal correspondiendo a la dirección de la solicitación, de esta forma la lámina tiene una estructura unidireccional.

Las características mecánicas en dirección longitudinal son determinadas por el tipo de fibra y por el contenido en volumen de fibras.

La lamina FRP no solo causa un reforzamiento sino con el aumento al momento de inercia también produce una rigidización de la sección.

Esta rigidización conlleva a esfuerzos del acero más pequeños y a una reducción en las deformaciones, así como a ancho de fisuras menores. Esto es influenciado positivamente por las buenas características de adherencia de la lamina FRP al concreto.

El Instituto Americano del Concreto (ACI) Comité 440 publicó el documento ACI 440.2R, el cual es la "Guía para el diseño y construcción con sistemas FRP adheridos externamente para el reforzamiento de estructuras de concreto", en el cual se establece las recomendaciones de diseño y las técnicas de construcción para el uso de FRP en el reforzamiento del concreto.

Los criterios que la filosofía de diseño con FRP debe considerar son:

- Criterio de refuerzo mínimo requerido antes del reforzamiento para prevenir un colapso si el FRP es comprometido a eventos incontrolables (fuego, vandalismo, impacto, etc.)
- Límites en el mejoramiento de la resistencia, para mantener el comportamiento dúctil.

La calidad del adhesivo utilizado para unir los compuestos del FRP con el elemento estructural es crítica porque es el responsable de la transferencia de varios esfuerzos entre los elementos unidos. Existen en el mercado empresas que distribuyen adhesivos epóxicos recomendables para el reforzamiento de elementos estructurales como los puentes.

Con respecto a la seguridad se debe tener en cuenta varios riesgos o combinaciones de riesgo.

Para una estructura con reforzamiento a continuación se presenta una lista de los riesgos más importantes:

- Procedimientos que se salen de control durante las etapas de construcción y uso
- Incidencia de agentes climáticos
- Efectos negativos en el transcurso del tiempo y de las cargas

De lo mencionado se deduce que durante el uso de la estructura con reforzamiento puede fallar por diversas causas. Por lo tanto se debe garantizar, sea cual fuere el motivo de la falla de la lámina FRP, que las consecuencias puedan ser estimadas y que no existe ningún riesgo de seguridad.

Una estructura con reforzamiento debe tener un factor de seguridad total contra la

falla $\gamma > 1.2$.

La platina CFRP no tiene deformación plástica de reserva. Por lo tanto la máxima resistencia a la flexión de la sección con reforzamiento es alcanzada cuando la falla ocurre durante la fluencia del acero y antes de la falla del concreto. Se debe evitar que fisuras de cortante que aparezcan, conduzcan a un brinco o desplazamiento relativo en la superficie reforzada y por consiguiente a un corte o un desplazamiento de la platina.

Modo de empleo

Preparación de la superficie

La superficie debe estar sana, limpia, seca, libre de partes sueltas, contaminación de grasa, aceite, polvo, residuos de curadores, lechadas cementosas y otras materias extrañas.

Para limpiar la superficie se debe utilizar un chorro de arena pulidora.

Preparación del producto: SikaDur30

Se debe agitar separadamente los dos componentes y verter completamente el componente B sobre el componente A y mezclar mínimo 3 minutos con taladro de bajas revoluciones (máximo 500 rpm) para evitar al máximo la inclusión de aire, hasta obtener una masa homogénea.

Aplicación

Si existen cavidades en la superficie del concreto, estas primero se deben rellenar con una mezcla de Sikadur 30 y arena de cuarzo Sikadur 501 a una relación de mezcla de 1:1.

Una vez mezclado correctamente el adhesivo Sikadur 30, se debe aplicar cuidadosamente, sobre la superficie debidamente preparada con una espátula en un

espesor de aproximadamente 1 mm.

Antes de colocar la Platina Sika CarboDur se la debe limpiar muy bien.

Con la ayuda de una espátula con labrado en forma de cubierta a dos aguas, se debe de aplicar el adhesivo Sikadur 30 sobre la platina Sika CarboDur en un espesor de 1 a 2 mm.

Se coloca la Platina Sika CarboDur sobre la superficie de concreto recubierta con adhesivo epóxico. Con el uso de un rodillo, la platina se presiona sobre la masa del adhesivo epóxico hasta que el adhesivo sea forzado a salir a ambos lados de la Platina.

Se procede a remover el excedente de adhesivo epóxico. 9

8.2.2. Aplicación del la teoría de presfuerzo

Consiste en cables de acero de presfuerzo, con los cuales se obtiene una resultante normal a la superestructura del puente que ayuda a absorber los momentos y cortantes producidos por las cargas vivas actuales.

Una vez que se ha determinado que el puente requiere reforzarse, el procedimiento constructivo a seguir es el siguiente:

- 1.- Realizar perforaciones en nervaduras para dar paso al presfuerzo transversal para colocar los bloques desviadores.
- 2.- Escarificar nervaduras en la zona donde se colocarán los bloques desviadores.
- 3.- Armar y colar los bloques desviadores.
- 4.- Alrededor de los tubos desviadores sellar con mortero SIka Grout.
- 5.- Fabricar los bloques metálicos de anclaje.

-

⁹ Fuente: Hoja Técnica de SIKA CarboDur® –y Sikadur® 30.

- 6.- Colocar el señalamiento respectivo y cerrar parcialmente la circulación para retirar carpeta asfáltica existente y demoler losa para colocar los bloques de anclaje.
- 7.- Una vez que los bloques hayan alcanzado su resistencia de diseño, se insertarán las barras de presfuerzo y se tensarán al 50% de su fuerza de servicio para estabilizar los asentamientos del bloque desviador.
- 8.- Ya asentados los bloques, se procederá a tensar las barras transversales de presfuerzo al 100% de su fuerza de tensado.
- 9.- Montar los bloques de anclaje, colocando mortero Grout para asegurar un adecuado contacto entre superficies.
- 10.- Cuando se haya aplicado todo el presfuerzo en todos los bloques desviadores y los bloques de anclaje hayan sido colocados se procederá a introducir y posteriormente tensar el acero de presfuerzo longitudinal, el tensado de estos cables deberá ser por un extremo y simultáneo.
- 11.- Colar la zona donde se colocó el dispositivo metálico de anclaje, dejando la reservación para la colocación de la junta de dilatación.
- 12.- Colocar la carpeta asfáltica en la calzada y en los accesos.
- 13.- Realizar limpieza general y restituir la circulación normal del puente.

Los cables de presfuerzo que van por fuera de la estructura no necesitan mantenimiento por ir dentro de un poliducto que los protege contra los agentes del interperismo.

Existen dos tipos del presfuerzo exterior:

El presfuerzo longitudinal.

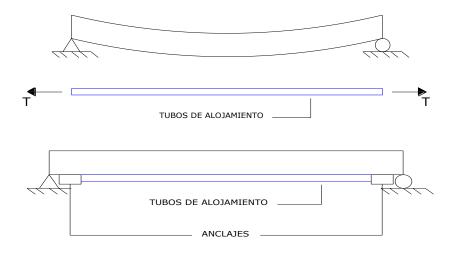


Figura 8.1. Presfuerzo Longitudinal Exterior

El presfuerzo transversal

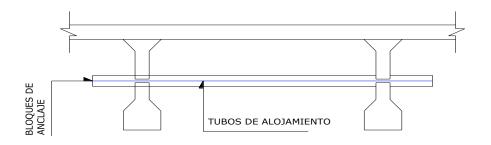


Figura 8.2. Presfuerzo Transversal Exterior

8.3. PARÁMETROS HIDROLÓGICOS

Se determina los paramentaros hidrológicos siguiendo el procedimiento del Capítulo 5, de este proyecto de tesis, en la parte de diseño de alcantarillas.

Para determinar el caudal probable de cada unos de los puentes se lo realiza con el Método Racional puesto que se tienes aéreas de las cuencas menores a 10 km².

La Tabla 8.1 Características hidrológicas de los ríos

Puente	Área [km²]	Perímetro [km]	Long. Río [km]	h _{max} [msnm]	h _{min} [msnm]	P [m/m]		tc
Palupe	5,01	8,22	24,26	1746	1330	0,17	15 ′	32.3"
Pillipe	2,607	7,45	32,45	1841	1215	0,19	18 ′	34,2"
Llullupe	5,293	11.04	39,48	1820	1110	0,17	22'	11,4"

La Tabla 8.2 Cálculo del caudal.

Puente	área [km²]	área [Ha]	I _{d;Tr} [mm/h]	l [mm/h]	С	Q prol	bable
Palupe	5,01	501,30	5,1	94,36	0,25	32,85	[m ³ /s]
Pillipe	2,607	260,79	5,1	88,60	0,25	16,04	[m ³ /s]
Llullupe	5,293	529,37	5,1	83,20	0,25	30,58	[m ³ /s]

8.3.1. Cota de máxima crecida

Para determinar la cota de máxima crecida (C.M.C), se aplica las siguientes ecuaciones, como un canal de sección rectangular, para lo cual tenemos:

$$A = b * h$$

$$P = b + 2h$$

$$R = A/P$$

$$Q = \frac{1}{n} * A * R^{2/3} * I^{1/2}$$

Como ejemplo práctico se determinara la cota máxima de crecida de puente sobre el río Palupe, tenemos, el cual tiene una luz (b) de 7,0 metros y las características del río son:

Q=32,85 m³/seg

I=17,142 % (Pendiente)

n=0,0225 (coeficiente de rugosidad del suelo)

$$A = 7 * h$$

$$P = 7 + 2h$$

$$R = \frac{7 * h}{7 + 2h}$$

$$Q = \frac{1}{n} * A * R^{2/3} * I^{1/2}$$

$$32,85 = \frac{1}{0,0225} * (7 * h) * \left(\frac{7 * h}{7 + 2h}\right)^{2/3} * (0,017)^{1/2}$$

$$h = 0,98 m$$

Tabla 8.3, Resumen de cota máxima de crecida y gálibo

Q [m³/s]	b [m]	[‰]	n	h [m]	Altura puente [m]	Gálibo [m]
32,85	7,0	17,142	0,0225	0,98	4,80	3,82
16,05	3,0	19,291	0,0225	1,15	2.40	1,25
30,59	7,0	17,982	0,0225	0,91	3,99	2,99

8.4. CARACTERÍSTICAS GEOMÉTRICAS:

8.4.1. Puente sobre el Río Palupe

Se encuentra detallado en la lámina VIII-02 correspondiente al puente que cruza el Río Palupe

8.4.2. Puente sobre el Río Pillipe

Se encuentra detallado en la lámina VIII-01 correspondiente al puente que cruza el Río Pillipe

8.4.3. Puente sobre el Río Llullupe

Se encuentra detallado en la lámina VIII-03 correspondiente al puente que cruza el Río Llullupe

8.5. DETERMINACIÓN DE LA CAPACIDAD RESISTENTE

Para conocer la capacidad resistente de un puente, es necesario realizar un modelo matemático del mismo de la manera más fiel posible. Una vez determinada la sección de hormigón de la viga y el acero, se realiza el diagrama de deformaciones unitarias, y el diagrama de esfuerzos y fuerzas que tiene la viga.

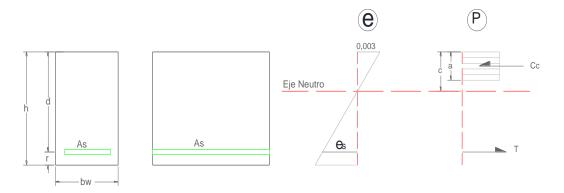


Figura 8.3. Diagrama de deformaciones unitarias

Se puede suponer que el acero ha alcanzado un nivel igual al de la fluencia, por lo que suponemos:

$$\varepsilon s > \varepsilon y \rightarrow Fs = Fy$$

La fuerza de T (tracción) es:

Donde:

As: es la sección de acero utilizada en la viga

Fy: Esfuerzo de fluencia del acero de refuerzo

Por equilibrio de fuerzas horizontales la resultante de la compresión en el hormigón (Cc), es igual en fuerza a la de tracción de acero.

$$Cc = T$$

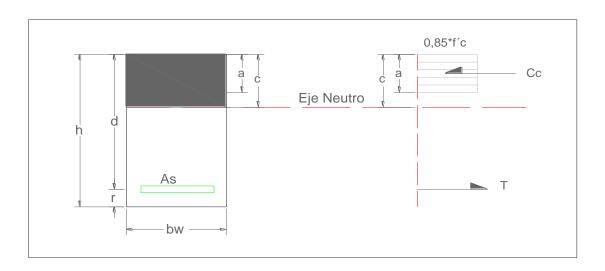


Figura 8.4. Diagrama fuerza de compresión

Cc=0,85*f'c*bw*a

Donde:

Cc: Compresión del hormigón

f'c: Es la sección de acero utilizada en la viga

bw: Es la base de la viga

a: Sección del área de compresión de la viga

De donde se obtiene (a):

$$a = \frac{T}{0.85 * fc * bw}$$
$$a = \beta_1 * c$$

Donde el valor de β_1 , se estima de la siguiente tabla [ACI 10.2.3]:

Tabla 8.4 Valores de coeficiente β₁

f'c (kg/cm²)	β1
210	0,85
280	0,85
350	0,80
420	0,75
490	0,70
≥ 560	0,65

Entonces:

$$c = \frac{a}{\beta 1}$$

Donde

c: distancia al eje neutro hacia la fibra más comprimida

El momento flector nominal es de igual magnitud que la resultante de compresión multiplicado por el brazo de palanca, desde el acero hasta el centro de bloque de compresión.

$$Mn = T * \left(d - \frac{a}{2}\right)$$

El momento flector resistente último se obtiene al multiplicar el factor de reducción de capacidad por el momento nominal ($\Phi = 0.9$)

$$Mu = \Phi * Mn$$

Una vez determinado el momento flector último, se determina la capacidad última a corte que tiene la viga, mediante el siguiente condición:

$$Vu = \Phi * (Vc + Vs)$$

$$\Phi = 0.85$$

Del cual utilizamos para determinar la capacidad resistente al corte de hormigón la siguiente expresión:

$$Vc = vc * bw * d$$

$$vc = 0.53 * \sqrt{f'c}$$

Donde:

Vc: capacidad resistente a corte del hormigón simple

vc: esfuerzo resistente del hormigón

bw: ancho del alma resistente al cortante

d: altura efectiva de la viga

Para determinar la fuerza absorbida por los estribos, se utiliza la siguiente expresión:

$$Vs = \frac{d}{s} * (Av * Fy)$$

Donde:

Vs: Fuerza cortante absorbida por los estribos

Av: Sección transversal de acero de cada estribo que cruza la fisura

Fy: Esfuerzo de fluencia del acero de refuerzo

d: Altura efectiva de la viga

s: Espaciamiento longitudinal de los estribos

8.5.1. Resistencia Última Soportante De Las Vigas Puente Palupe.

Como se pude ver en el plano de detalle VIII-01, que existen dos tipos de vigas en este puente, clasificados así por tener igual geometría y armado tanto longitudinal como transversal, para lo cual se aplica los criterios antes mencionados y se obtiene el momento flector resistente ultimo y cortante ultimo resistente

Análisis de momento flector resistente de la Viga 1:

De acuerdo al plano VIII-01, se tiene una sección de 30 x 80 cm, con una armadura de 9Φ18mm, equivalente a una área de acero As=22,90 cm²

$$T = As * Fy$$

$$T == (22,90 \text{ cm}^2) * (4200 \text{ kg/cm}^2)$$

$$T = 96180 \text{ kg}$$

$$Cc = T$$

$$Cc = 0,85 * fc * bw * a$$

$$a = \frac{T}{0,85 * fc * bw}$$

$$a = \frac{96180 \text{ kg}}{0,85 * 240 30} = 15,72$$

$$c = \frac{a}{\beta 1}$$

$$c = \frac{15,72}{0,85} = 18,49 \text{ cm}$$

$$Mn = T * \left(d - \frac{a}{2}\right)$$

$$Mn = 96180 * \left(74 - \frac{15,72}{2}\right) = 6361345,20 \text{ kg. cm}$$

$$Mu = \Phi * Mn$$

$$Mu = 0.90 * 6361345,20 = 572510,68 \text{ kg. cm} = 57,25 \text{ t. m}$$

El mismo tipo de análisis se utiliza en las vigas tipo 2 que se diferencia por la cantidad de acero que tiene para resistir el momento flector.

Tabla 8.5 Momentos Flector Último vigas del puente Palupe

N° VIGA	As	Geoi	metría o Viga	de la	а	С	Mn	Mu
N VIGA	[cm ²]	bw [cm]	h [cm]	d [cm]	[cm]	[cm]	[t-m]	[t-m]
VIGA 1	22,9	30	80	74	15,72	18,49	63,61	57,25
VIGA 2	22,9	30	80	74	15,72	18,49	63,61	57,25
VIGA 3	18,1	30	80	74	12,42	14,61	51,53	46,38
VIGA 4	18,1	30	80	74	12,42	14,61	51,53	46,38
VIGA 5	18,1	30	80	74	12,42	14,61	51,53	46,38

Análisis de cortante resistente de la viga 1:

De acuerdo al plano VIII-01, se tiene una sección de 30 x 80 cm, con una armadura del estribo de 1Φ10 mm @15 cm, la cual tiene una resistencia de:

$$Vc = 0.53 * \sqrt{f'c} * bw * d$$

$$Vc = 0.53 * \sqrt{240} * 30 * 74 = 18227.81 kg$$

$$Vs = \frac{d}{s} * (Av * Fy)$$

$$Vs = \frac{74}{15} * (2 * 0.79 * 4200) = 32737,60 \ kg$$

$$Vu = \mathbf{\Phi} * (Vc + Vs)$$

$$Vu = 0.85 * (18227.81 + 32737.60) = 43320.59 \ kg$$

$$Vu = 43.32 \ t$$

Tabla 8.6. Cortante Último Resistente De Las Vigas Del Puente Palupe

N°	As	Geomet	Geometría de la viga		Vc	Vs	Vu
VIGA	[cm ²]	bw [cm]	h [cm]	d [cm]	[kg]	[kg]	[t]
VIGA 1	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 2	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 3	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 4	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 5	0,79	30	80	74	18227,81	32737,6	43,32

8.5.2. Resistencia Última Soportante De La Losa Del Puente Sobre el Rio Pillipe

De acuerdo al plano VIII-01, se tiene asume una sección de 100 x 30 cm, con una armadura de 7Φ18 mm, equivalente a una área de acero As=17,81 cm²

$$T = As * Fy$$
 $T = (17.81 \text{ cm}^2) * (4200 \text{ kg/cm}^2)$
 $T = 74802 \text{ kg}$
 $Cc = T$
 $Cc = 0.85 * fc * bw * a$

$$a = \frac{T}{0,85 * fc * bw}$$

$$a = \frac{74802 \text{ kg}}{0,85 * 240 * 100} = 3,67 \text{ cm}$$

$$c = \frac{a}{\beta 1}$$

$$c = \frac{3,67}{0,85} = 4,32 \text{ cm}$$

$$Mn = T * \left(d - \frac{a}{2}\right)$$

$$Mn = 96180 * \left(24 - \frac{4,32}{2}\right) = 1657986,33 \text{ kg. cm}$$

$$Mu = \Phi * Mn$$

$$Mu = 0.90 * 1657986,33 = 1492187,70 \text{ kg. cm} = 14,92 \text{ t.}$$

Análisis a cortante:

De acuerdo al plano VIII-01, se tiene una sección de 30 x 80 cm, con una armadura del estribo de 1Φ10 mm @15 cm, la cual tiene una resistencia de:

$$Vc = 0.53 * \sqrt{f'c} * bw * d$$

$$Vc = 0.53 * \sqrt{240} * 100 * 24 = 18227.81 kg$$

$$Vs = \frac{d}{s} * (Av * Fy) \qquad Vu = \mathbf{\Phi} * (Vc + Vs)$$

$$Vu = 0.85 * (18227.81 + 0) = 15493.63 kg$$

$$Vu = 15.49 t$$

8.5.3. Resistencia última soportante de las vigas puente Llullupe

Se procede con el procedimiento de análisis del Ítem 8.6.1. y los datos de las secciones ya armado se tiene en el plano VIII-03, para lo cual tenemos las siguientes tablas de resumen.

Tabla 8.7 Momentos Flector Ultimo Vigas Del Puente Llullupe

		Geometría de la viga			Т	Mn	Mu
N° VIGA	As [cm²]	bw [cm]	H [cm]	d [cm]	[kg]	[t-m]	[t-m]
VIGA 1	22,9	30	80	74	96180	63,61	57,25
VIGA 2	22,9	30	80	74	96180	63,61	57,25
VIGA 3	22,9	30	80	74	96180	63,61	57,25
VIGA 4	18,1	30	80	74	76020	51,53	46,38
VIGA 5	18,1	30	80	74	76020	51,53	46,38
VIGA 6	18,1	30	80	74	76020	51,53	46,38
VIGA 7	18,1	30	80	74	76020	51,53	46,38

Tabla 8.8 Cortante Último Resistente De Las Vigas Del Puente Llullupe

N° VIGA		Geon	netría o viga	de la	Vc	Vs	Vu
N VIGA	As [cm ²]	bw [cm]	H [cm]	d [cm]	[kg]	[kg]	[t]
VIGA 1	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 2	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 3	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 4	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 5	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 6	0,79	30	80	74	18227,81	32737,6	43,32
VIGA 7	0,79	30	80	74	18227,81	32737,6	43,32

8.6. DETERMINACIÓN DE NUEVAS SOLICITACIONES.

8.6.1. Puente sobre el Río Palupe

Análisis de carga muerta para viga exterior

$$P_{losa} = A * t * r_h = 1,61 * 0,2 * 2,4 = 0,772 t/m$$

$$P_{proteccion} = 0,105 * A = 0,243 * 1,61 = 0,391 t/m$$

$$P_{carpeta} = A' * e * r_{Asf} = 1.36 * 0,05 * 2,2 = 0,152 t/m$$

$$P_{viga} = b * t' * r_h = 0,3 * 0,6 * 2,4 = 0,432 t/m$$

$$P_{muerto} = W_{CD} = 1,668 t/m$$

$$M_{CD} = \frac{w * L^2}{8} = 10,16 t * m$$

$$V_{CD} = \frac{w * L}{2} = 5,838 t$$

Análisis de carga muerta para viga interior

$$P_{losa} = A * t * r_h = 1,60 * 0,2 * 2,4 = 0,768 t/m$$
 $P_{proteccion} = 0,105 * A = 0,243 * 1,60 = 0,558 t/m$
 $P_{carpeta} = A * e * r_{Asf} = 1.60 * 0,05 * 2,2 = 0,176 t/m$
 $P_{viga} = b * t' * r_h = 0,3 * 0,6 * 2,4 = 0,432 t/m$
 $P_{muerto} = W_{CD} = 1,934 t/m$
 $M_{CD} = \frac{w * L^2}{8} = 11,84 t * m$
 $V_{CD} = \frac{w * L}{2} = 6,769 t$

Cálculo de carga viva (camión transportador de transformadores)

Después de analizar las diferentes posiciones que tendría el vehículo dentro de la sección de puente se identifico como las más critica Figura 8.1

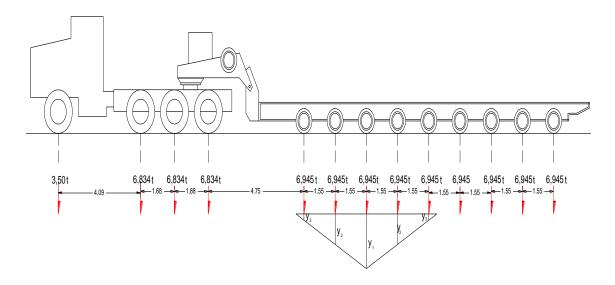


Figura 8.5. Posición más crítica sobre el puente Palupe para momentos (cargas en toneladas y longitudes en metros)

Para el caso expuesto se considera la siguiente expresión para el cálculo del momento de carga de servicio o viva, en base a la línea de fluencia cuyo valor más alto es de $(Y_1=luz/4)$.

$$M_{cv} = P_1 * Y_1 + P_2 * Y_2 + P_3 * Y_3 + P_4 * Y_4 + P_5 * Y_5$$

 $M_{cv} = 6,945 * (0,2 + 0,975 + 1,75 + 0,975 + 0,2)$
 $M_{cv} = 28,472 t * m$

Cálculo de cortante por carga viva (camión transportador de transformadores)

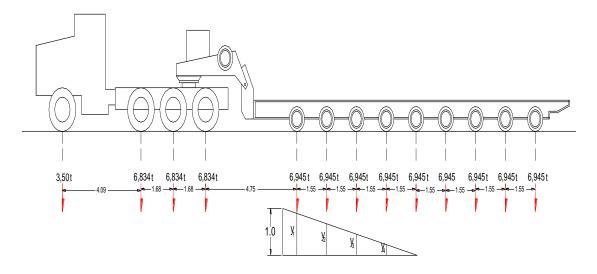


Figura 8.6. Posición más crítica sobre el puente Palupe para cortante (cargas en toneladas y longitudes en metros)

Para el caso expuesto se considera la siguiente expresión para el cálculo del cortante de carga de servicio, en base a la línea de fluencia cuyo valor más alto es de 1.

$$V_{cv} = P_1 * Y_1 + P_2 * Y_2 + P_3 * Y_3 + P_4 * Y_4$$

 $V_{cV} = 6,945 * (0,894 + 0,673 + 0,451 + 0,230 + 0,09)$
 $V_{cV} = 15,67$

Tabla 8.9. Cargas de nuevas solicitaciones del Puente Palupe

VIGA	Mcm (t*m)	Vcm (t)	Mcv (t*m)	Vcv (t)
Viga 1	10,167	4,583	28,473	15,675
Viga 2	11,850	4,583	28,473	15,675
Viga 3	11,850	4,583	28,473	15,675
Viga 4	11,850	4,583	28,473	15,675
Viga 5	10,167	4,583	28,473	15,675

8.6.2. Puente sobre el Río Pillipe

Análisis de carga muerta para viga exterior

$$P_{losa} = t * b * r_h = 0.3 * 1.0 * 2.4 = 0.11 t/m$$

$$P_{proteccion} = 0.105 t/m$$

$$P_{carpeta} = A' * e * r_{Asf} = 1.0 * 0.05 * 2.2 = 0.11 t/m$$

$$P_{muerto} = W_{CD} = 0.935 t/m$$

$$M_{CD} = \frac{w * L^2}{8} = 1.603 t * m$$

$$V_{CD} = \frac{w * L}{2} = 1.73 t$$

Cálculo de carga viva (camión transportador de transformadores)

Después de analizar las diferentes posiciones que tendría el vehículo dentro de la sección de puente se identifico como las más critica Figura 8.3

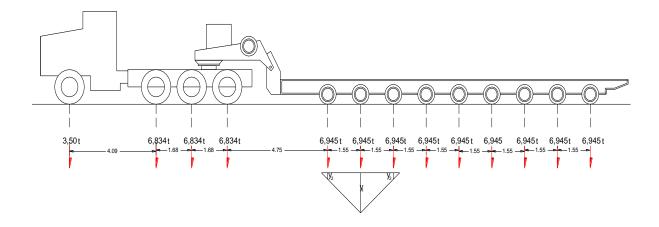


Figura 8.7. Posición más crítica sobre el puente Pillipe para momentos (cargas en toneladas y longitudes en metros)

Para el caso expuesto se considera la siguiente expresión para el cálculo del momento de carga de servicio o viva, en base a la línea de fluencia cuyo valor más alto es de $(Y_1=luz/4)$.

.

$$M = P_1 * Y_1 + P_2 * Y_2 + P_3 * Y_3$$

$$M = 6,945 * (0,925 + 0,15 + 0,15)$$

$$M = 8,507 t * m$$

Ancho de la faja

$$E = 1,21 + 0,06 * L$$

$$E = 1,21 + 0,06 * 3,4$$

$$E = 1,432$$

$$M_{cv} = 8,507/1,432$$

$$M_{cv} = 5,94 t * m$$

Cálculo de cortante por carga viva (camión transportador de transformadores)

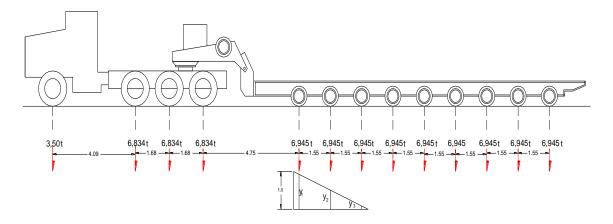


Figura 8.8. Posición más crítica sobre el puente Pillipe para cortante (cargas en toneladas y longitudes en metros)

Para el caso expuesto se considera la siguiente expresión para el cálculo del cortante de carga de servicio, en base a la línea de fluencia cuyo valor más alto es de 1.

$$V = P_1 * Y_1 + P_2 * Y_2 + P_3 * Y_3$$

$$V = 6,945 * (0,925 + 0,506 + 0,087)$$

$$V = 10,558 t$$

$$V_{cv} = 10,558/1,432$$

$$V_{cv} = 7,37 t$$

Tabla 8.10. Cargas de nuevas solicitaciones del Puente Pillipe

	Mcm (t*m)	Vcm (t)	Mcv (t*m)	Vcv (t)
Losa	1,603	1,73	5,94	7,37

8.6.3. Puente sobre el Río Llullupe

Para el cálculo de carga muerta que soporta cada una de las vigas se procede de la misma forma que en el literal 8.4.1., para lo cual tenemos:

Tabla 8.11. Resumen de carga muerta puente Llullupe

VIGA	Wpp (t/m)	Mcm (t*m)	Vcm (t)
Viga 1	1,67	10,20	5,83
Viga 2	2,35	14,38	8,22
Viga 3	1,98	12,11	6,92
Viga 4	1,71	10,46	5,98
Viga 5	1,79	10,96	6,26
Viga 6	1,64	10,05	5,74
Viga 7	1,52	9,30	5,31

La diferencia existente entre las cargas distribuidas para cada una de las vigas se debe a la existencia de varias separación entre vigas existente en el puente actual.

Tabla 8.12. Resumen de carga viva puente Llullupe

VIGA	Mcv (t*m)	Vcv (t)
Viga 1	28,473	15,675
Viga 2	28,473	15,675
Viga 3	28,473	15,675
Viga 4	28,473	15,675
Viga 5	28,473	15,675
Viga 6	28,473	15,675
Viga 7	28,473	15,675

8.7. REFORZAMIENTO CON POLÍMEROS REFORZADOS CON FIBRAS DE CARBONO (FRP)

Programa FRP-Analysis desarrollado por la Universidad de Patras en Grecia.

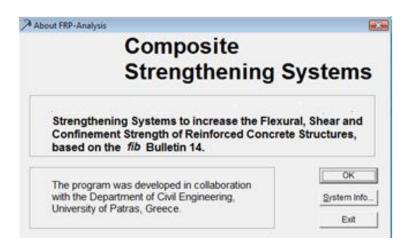


Figura 8.9. Presentación del programa FRP

8.7.1. Puente sobre el Río Palupe

8.7.1.1. A flexión

VIGA 1.- Para realizar el diseño a flexión el programa nos pide ingresar propiedades geométricas de la sección existente y de los materiales que la conforman y por último nos pide especificar la cantidad de acero de refuerzo colocado.

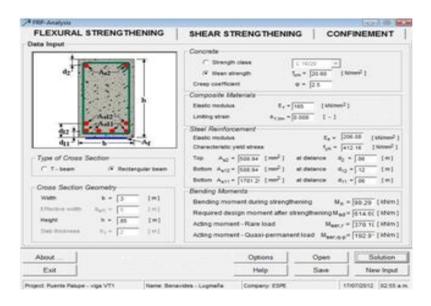


Figura 8.10. Ingreso de datos en el programa – viga 1 puente sobre el río Palupe En cuanto a los momentos que ingresamos, el Mo es el momento a flexión durante el reforzamiento, Ms,d es el momento de reforzamiento requerido de diseño, Mser,r es la combinación de carga muerta más de carga viva servicio y el momento Mser,q-p es la suma de la carga muerta de más 1/3 de la carga viva de servicio.

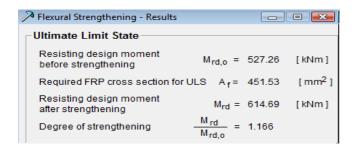


Figura 8.11. Resultados obtenidos – viga 1 puente sobre el río Palupe

Los resultados que nos da el programa es la sección requerida de FRP (Af), como se puede observar en el análisis de la viga 1 del puente sobre el río Palupe se requiere un refuerzo de 451 mm² para alcanzar el objetivo de que la viga resista un momento de 614.69 KN-m

Para la selección del producto a utilizar debemos de tomar en cuenta el ancho b de nuestra viga para conseguir una correcta distribución del refuerzo.

Tabla 8.13. Dimensiones de las láminas de FRP disponibles en el mercado

SUMMARY OF PROPERTIES

Mainly Flexural Strengthening Products (Plates)

Product name	$\begin{array}{c} Width \\ b_f (mm) \end{array}$	Thickness t _f (mm)
Carbodur S512	50	1.2
Carbodur S612	60	1.2
Carbodur S812	80	1.2
Carbodur S1012	100	1.2
Carbodur \$1212	120	1.2
Carbodur S1512	150	1.2
Carbodur S614	60	1.4
Carbodur S914	90	1.4

En este caso hemos elegido el producto Carbodur S1012, La distribución del refuerzo es de la manera como se muestra en la figura 8.12

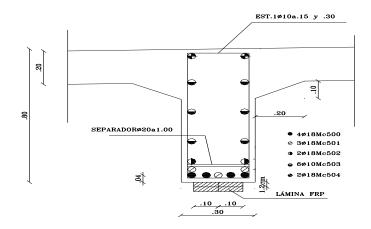


Figura 8.12. Distribución de las láminas de FRP - viga 1 puente sobre el río Palupe

Se ha colocado 4 láminas de FRP Carbodur S1012, lo que equivale a un área transversal de 480 mm² la cual supera en 28.47 mm² al área requerida lo que equivale al 5.93%.

VIGA 2.- Se procede a ingresar los datos requeridos por el programa FRP – Analysis

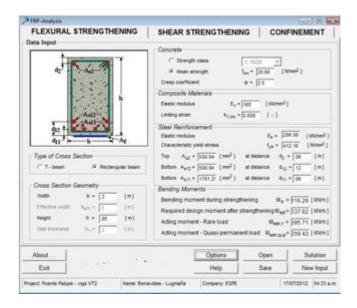


Figura 8.13 Ingreso de datos en el programa – viga 2 puente sobre el río Palupe

Los resultados obtenidos mediante la ayuda del programa reflejan que se requiere un

área de refuerzo de 748.71 mm².

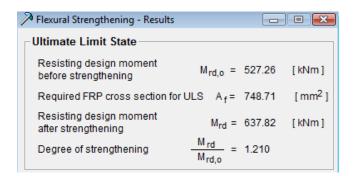


Figura 8.14 Resultados obtenidos – viga 2 puente sobre el río Palupe
Se eligió una combinación de productos entre el Carbodur S1212 y el Carbodur
S1012 para conseguir el área de refuerzo requerida.

Tabla 8.14 Dimensiones de las láminas de FRP disponibles en el mercado

SUMMARY OF PROPERTIES Mainly Flexural Strengthening Products (Plates)

Product name	$\begin{array}{c} Width \\ b_f (mm) \end{array}$	Thickness t _f (mm)
Carbodur S512	50	1.2
Carbodur S612	60	1.2
Carbodur S812	80	1.2
Carbodur S1012	100	1.2
Carbodur S1212	120	1.2
Carbodur S1512	150	1.2
Carbodur S614	60	1.4
Carbodur S914	90	1.4

La distribución del refuerzo en la sección transversal de la viga V2 del puente sobre el río Palupe es de la manera como se muestra en la figura 8.15

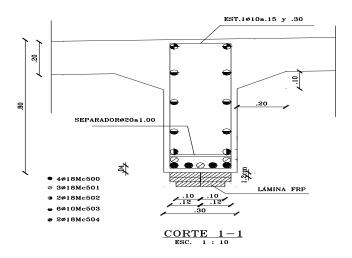


Figura 8.15 Distribución de las láminas de FRP - viga 1 puente sobre el río Palupe

Se ha colocado 4 láminas de FRP Carbodur S1212 y 2 láminas de FRP Carbodur 1012, equivalente a área total de 816 mm² cual supera en 67.29 mm² al área requerida lo que equivale al 8.24%.

8.7.1.2. A Corte

Para la obtener la carga última, se considera (Vu=1,4*Vcm + 1,7*Vcv), de la tabla Tabla 8.9, al igual que en los momentos.

Tabla 8.15. Tabla de cortante actual y cortante para camión transportador Puente Palupe

VIGA	CORTANTE ACTUAL SOPORTANTE	CORTANTE ÚLTIMO PARA CAMIÓN TRANSP.
Viga 1	43,32	34,81
Viga 2	43,32	38,16
Viga 3	43,32	36,34
Viga 4	43,32	35,02
Viga 5	43,32	35,41
Viga 6	43,32	34,68
Viga 7	43,32	34,08

Con lo cual podemos determinar que a corte las vigas actualmente construidas no requieren reforzamiento.

8.7.2. Puente sobre el Río Llullupe

8.7.2.1. A flexión

Tabla 8.13. Resumen de refuerzo a flexión para puente Llullupe

		Mome	ntos en t	*m		Momento	s en KN	l-m	Diseño	o del refuerzo con lámina	is FRP
Viga	Мо	Ms,d	Mser,r	Mser,q-p	Мо	Ms,d	Mser,r	Mser,q-p	Área de FRP requerida en mm²	Láminas de FRP elegidas	Área equivalente de láminas elegidas en mm²
1	10.20	62.68	38.67	19.69	100.10	615.15	379.52	193.24	388.50	2 láminas de Carbodur S1212 + 2 láminas de Carbodur S1012	432.00
2	14.38	68.54	42.85	23.87	141.12	672.58	420.54	234.26	399.32	2 láminas de Carbodur S1212 + 2 láminas de Carbodur S1012	432.00
3	12.11	65.36	40.58	21.60	118.84	641.39	398.26	211.98	395.25	2 láminas de Carbodur S1212 + 2 láminas de Carbodur S1012	432.00
4	10.46	63.05	38.93	19.95	102.65	618.73	382.07	195.79	391.89	2 láminas de Carbodur S1212 + 2 láminas de Carbodur S1012	432.00
5	10.96	63.75	39.43	20.45	107.56	625.59	386.98	200.70	393.76	2 láminas de Carbodur S1212 + 2 láminas de Carbodur S1012	432.00
6	10.05	62.47	38.52	19.54	98.63	613.09	378.05	191.77	385.18	2 láminas de Carbodur S1212 + 2 láminas de Carbodur S1012	432.00
7	9.30	61.42	37.77	18.79	91.27	602.79	370.69	184.41	378.31	2 láminas de Carbodur S1212 + 2 láminas de Carbodur S1012	432.00

8.7.2.2. A Corte

Para la obtener la carga última, se considera (Vu=1,4*Vcm + 1,7*Vcv), de la tabla Tabla 8.11 y tabla 8.12, al igual que en los momentos.

Tabla 8.16. Tabla de cortante actual y cortante para camión transportador Puente Llullupe

VIGA	CORTANTE ACTUAL SOPORTANTE	CORTANTE ULTIMO PARA CAMIÓN TRANSPORTADOR.
Viga 1	43,32	34,81
Viga 2	43,32	38,16
Viga 3	43,32	36,34
Viga 4	43,32	35,02
Viga 5	43,32	35,41
Viga 6	43,32	34,68
Viga 7	43,32	34,08

Con lo cual podemos determinar que a corte las vigas actualmente construidas no requieren reforzamiento.

CAPITULO IX

9. IMPACTO AMBIENTAL

9.1. INTRODUCCIÓN

9.1.1. Antecedentes

Hidroequinoccio se encuentra realizando los estudios de ingeniería que permitan la construcción de varios proyectos hidroeléctricos que aprovechan el caudal del río Guayllabamba, uno de éstos proyecto en estudio se lo denomina el Proyecto Chespi, el cual está ubicado en la cuenca media alta del río Guayllabamba.

Siendo necesario el dotar de un acceso adecuado a la casa de máquinas del Proyecto Hidroeléctrico, especialmente de equipo pesado de transporte, maquinaria y en general de los implementos que se requieren en esta clase de obras, se ha solicitado el diseño de la ampliación de la vía Nanegalito – Nanegal.

En el presente capitulo tiene como objetivo la formulación del Estudio de Impacto Ambiental y Plan de Manejo Ambiental para el proyecto, y hace relación al Diagnóstico Ambiental ó Línea Base, la Identificación y Evaluación de Impactos Ambientales y la consecuente formulación del Plan de Manejo Ambiental.

9.1.2. Objetivo del Estudio

9.1.2.1. Objetivo General

El objetivo general del capítulo de impacto ambiental es determinar un plan de manejo y mitigación ambiental, cantidades, presupuesto referencial, que permitirá la implementación del plan de manejo ambiental.

9.1.2.2. Objetivos Específicos

- Determinar los componentes ambientales actuales, en el área de influencia del proyecto.
- Determinación del área de influencia en la cual se desarrolla el proyecto y pudiera presentar impacto socio-ambientales.
- Identificar, evaluar y analizar los impactos ambientales asociados con las actividades de construcción y cierre del proyecto.
- Estructurar un plan de manejo ambiental que permita la aplicación de las medidas de prevención, control, mitigación, compensación y rehabilitación de los posibles impactos ambientales a ser producidos en las fases de construcción y operación del proyecto

9.1.3. Diagnostico Ambiental

9.1.3.1. Características Climáticas.

Los parámetros meteorológicos utilizados para el proyecto son obtenidos de la estación meteorológica Nanegalito, obtenidas de la recopilación de información periodo 1990 a 2010, por parte del Instituto Nacional de Meteorología e Hidrología (INAMHI).

a. Precipitación

Como puede apreciarse en la tabla 9.1 en los Cuadros y Gráficos de Variación de la Precipitación Mensual y Anual, el total anual de precipitación es de 2445,9 mm, considerándose un régimen húmedo.

En el correspondiente gráfico, se puede establecer el carácter precipitación media. En la zona del Proyecto, los máximos se ubican entre enero y febrero (651.1mm). Los mínimos se presentan entre julio y agosto.

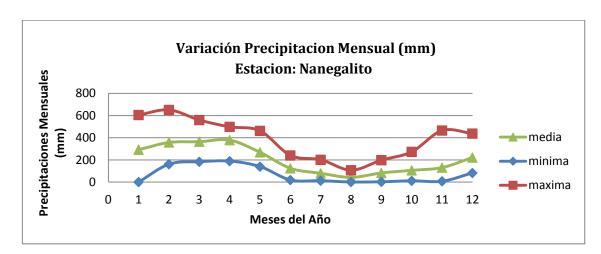


Tabla 9.1 Variación de la precipitación mensual en mm – Estación Nanegalito

	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	SUMA
media	292,2	357,5	364,4	378,7	268,3	123,9	78,8	42,1	81,9	105,5	130,7	221,4	2445,9
mínima	0,0	160,9	183,1	188,7	139,2	18,5	12,2	0,3	2,4	11,2	7,4	82,1	
máxima	605,2	651,1	559,8	498,4	462,2	240,2	201,1	107,1	197,8	272,9	465,3	437,8	

b. Temperatura

Del cuadro y gráficos, se observa que la temperatura media de la zona tiene poca variación en el transcurso del año, con una amplitud de 1.0° C. El valor medio de temperatura es de 19.5 ° C.

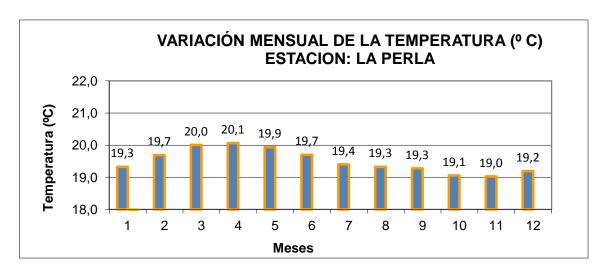


Tabla 9.2 Variación mensual de la temperatura en °C - Estación la Perla

MES	ES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
MED	ΙΑ	19,3	19,7	20,0	20,1	19,9	19,7	19,4	19,3	19,3	19,1	19,0	19,2	19,5

c. Humedad relativa

Como se puede ver en los cuadros y gráficos, la zona de ubicación de la vía, la humedad no es muy variable en el transcurso del año, con un valor medio de humedad de 90 %. Los valores de humedad fluctúan en íntima relación con los períodos lluviosos, Los extremos medios con variaciones mínimas y máximas medias entre 89 % y 92 %, respectivamente.

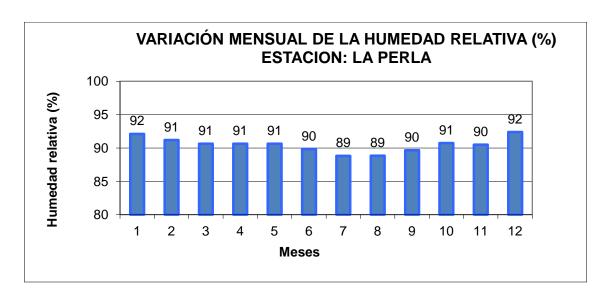


Tabla 9.3 Variación mensual de la humedad relativa en % - Estación la Perla

ı	MESES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ANUAL
Ī	MEDIA	92	91	91	91	91	90	89	89	90	91	90	92	90

d. Evaporación

A partir de la comparación entre la precipitación media y la Evapotranspiración Potencial se obtiene que, en la zona exista un marcado superávit hídrico durante todo el año, el valor total anual es de 1183,3 mm. Estas condiciones implican que no existe un reposo del ciclo vegetal y la característica principal de la vegetación es siempre verde.

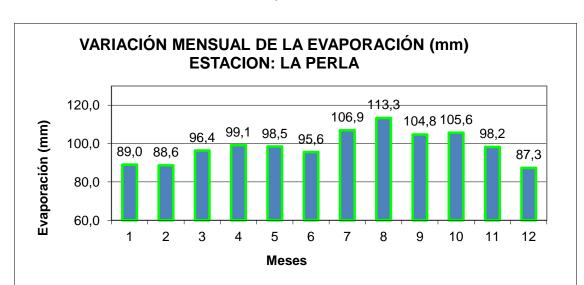


Tabla 9.4 Variación mensual de la evaporación en mm - Estación la Perla

M	ESES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ANUAL
M	EDIA	89,0	88,6	96,4	99,1	98,5	95,6	106,9	113,3	104,8	105,6	98,2	87,3	1183,3

e. Velocidad del Viento

La velocidad del viento, permite visualizar y entender como es el comportamiento del clima de la zona de estudio, en conjunto con el resto de parámetros, pero no tiene mayor influencia sobre la vía en sí; aun cuando, se presentarán ráfagas en septiembre.

Es el movimiento de las masas de aire con relación a la superficie terrestre, por lo general se entiende como la componente horizontal de este movimiento. En los cuadros y gráficos a continuación, se representan los valores multianuales de velocidad del viento registrados en la estación de referencia. El valor medio anual en la zona es de 8.8 km/h.

VARIACIÓN DEL VIENTO MEDIO MENSUAL (km/h) **ESTACION: LA PERLA** 12,0 Velocidad viento (km/h) 10,1 <u>9,</u>7 10,0 9,4 9,4 9,3 8,8 8,6 8,6 8,2 8,0 7,8 8,0 6,0 2 1 3 4 6 7 8 9 10 11 12 Meses

Tabla 9.5 Variación del viento medio mensual en km/h – estación la perla

MESES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ANUAL
MEDIA	8,2	7,8	7,7	8,0	8,6	8,8	9,4	9,7	10,1	9,3	9,4	8,6	8,8

9.1.3.2. Geología y Geomorfología

Litoestratigrafía

Parte de la estratigráfica es la Litoestratigrafía, la cual clasifica estratos según su carácter litológico para poder correlacionarlos. La Litoestratigrafía es un conjunto de estratos de rocas sedimentarias, ígneas, metamórficas o la asociación de dos o más de estos tipos de rocas, distinguibles o delimitables.

Como se puede observar en el mapa del Anexo: A, Mapa Geológico General; el tramo en estudio atraviesa en su totalidad por depósitos superficiales: Formación Silante, Formación De San Tadeo Y Tonalita

Las características geomorfológicas del corredor, se ha considerado tipo de terreno montañoso y ondulado, de acuerdo con las definiciones que se registran a continuación:

- d. Carreteras en terreno llano.- Se considera carreteras en terreno llano a las que tienen una pendiente transversal del terreno natural de 0 – 5%
- e. Carreteras en terreno Ondulado.- Tiene una pendiente transversal del terreno natural de 5 25 %. El movimiento de tierras es moderado, permite alineamientos más o menos rectos, sin mayores dificultades en el trazado y la construcción de la obra básica de la carretera.
- **f.** Se considera carreteras en terreno Montañoso a las que tienen una pendiente transversal del terreno natural de 25 75 %.

9.1.3.3. Hidrología

En la esta etapa se define las cuencas hidrográficas las cuales se encuentran delimitadas por la línea de las cumbres, también llamada línea de aguas y es de mucha importancia debido a que esta atraviesa el proyecto y esta se podría ver afectada por los trabajos que se realizan para la construcción del proyecto.

Las cuencas de los ríos Palupe Pillipe y Llullupe, son afluentes del río Alambí.

a) Cuenca Del Río Palupe

La cuenca del río Palupe tiene una cuenca de 5,013 km², desde la cota 1746 msnm, hasta 1330msnm. Donde es el punto de control con la vía del proyecto, luego desemboca en el río Alambí.

b) Cuenca Del Río Pillipe

La cuenca del río Pillipe tiene una cuenca de 2,600 km², desde la cota 1841 msnm, hasta 1215 msnm. Donde es el punto de control con la vía del proyecto, luego desemboca en el río Alambí

c) Cuenca Del Río Llullupe

La cuenca del río Llullupe, tiene una cuenca de 5,2937 km², desde la cota 1820 msnm, hasta 1110 msnm. Donde es el punto de control con la vía del proyecto, luego desemboca en el rio Alambí

9.1.3.4. **Riesgos**

a) Riesgo Sísmico

Para el análisis del riesgo sísmico en la zona de estudio se utilizan datos del Instituto Geofísico de la Politécnica Nacional, De acuerdo a la ubicación que tiene la vía del proyecto, la cual se encuentra entre las poblaciones de Nanegalito y Nanegal, en el Cantón de Quito, tiene un nivel de amenaza sísmico 3, como se puede observar en las siguientes graficas.

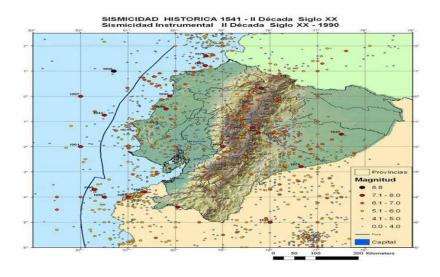


Figura 9.1 Sismicidad histórica

Fuente y Elaboración: Instituto Geofísico – Escuela Politécnica Nacional

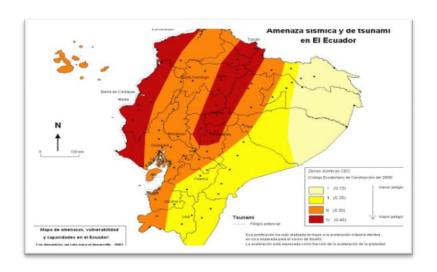


Figura 9.2 Amenaza sísmica y de tsunami en el Ecuador

Fuente y Elaboración: Instituto Geofísico – Escuela Politécnica Nacional

Nivel de amenaza sismica por cantón en el Ecuador

Politico

Polit

Figura 9.3 Nivel de amenaza sísmica por cantón en el Ecuador

Fuente y Elaboración: Instituto Geofísico – Escuela Politécnica Nacional

b) Vulcanismo

De acuerdo a la zonificación de peligro volcánico en base a los mapas realizados por Instituto Geofísico de la Politécnica Nacional, como son:

- El mapa "Amenaza volcánicas potenciales en el ecuador continental", realizado a partir de los mapa de IMFLOPAN elaboradas según la cartografía del Instituto Geofísico de la Politécnica Nacional, los volcanes considerados como los más peligrosos para el ser humano son el Cotopaxi, Tungurahua y Guagua Pichincha. Que categoriza a estas zonas expuestas con un valor máximo de grado 3, que corresponde a cantones con mayor amenaza volcánica.
- El mapa "Erupciones volcánicas históricas en el Ecuador", realizado en base a los registros históricos de actividad volcánica (Reventador, Sangay, Quilotoa, Antisana, Cayambe y La Cumbre en las Islas Galápagos). A los cantones en este riesgo se les da, grado 2, el cual corresponde a peligro volcánico relativamente alto.
- El mapa "Volcanes Continentales potencialmente activos en el Ecuador", realizado en base a volcanes con erupciones históricas y considerados potencialmente activos (Chimborazo, Sumaco, Pululahua, Imbabura y Cotacachi). A los cantones en este riesgo se les da, grado 1, el cual corresponde a peligro volcánico relativamente alto.
- Cantones con bajo peligro volcánico se los considera grado 0.

En base a estos mapas y criterios se forma el mapa de la Figura 9.4, el cual indica la peligrosidad volcánica por cantón en el Ecuador.

Para el proyecto se considera que tiene un riesgo volcánico de grado 3, el cual corresponde a una mayor amenaza volcánica.

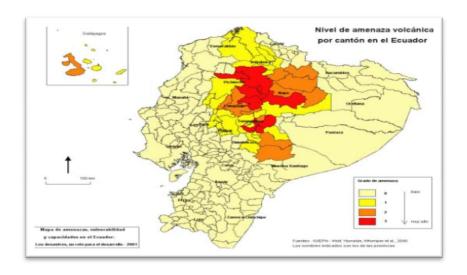


Figura 9.4 Nivel de amenaza volcánica por cantón en el Ecuador

Fuente y Elaboración: Instituto Geofísico – Escuela Politécnica Nacional

c) Riesgo de Inundaciones

En base a la figura 9.5, la cual nos indica que en la zona del proyecto, aunque se presenten altas precipitaciones, no existe riesgo de inundación.

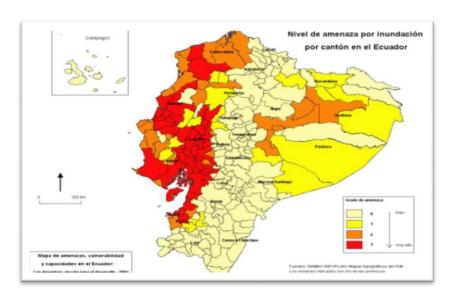


Figura 9.5 Nivel de amenaza por inundación por cantón en el Ecuador Fuente y Elaboración: Instituto Geofísico – Escuela Politécnica Nacional

d) Niveles de Ruido

Con referencia, a la norma local del Texto Unificado de Legislación Ambiental Secundaria (TULAS) del Ministerio del Ambiente, en el Libro VI Anexo 5 establece los siguientes niveles máximos de Ruido:

Tabla 9.6 Niveles máximos de ruido permisibles según el uso del suelo.

NIVELES MÁXIMOS DE RUIDO PERMISIBLES SEGÚN USO DEL SUELO

TIPO DE ZONA SEGÚN USO	NIVEL DE PRESIÓN SONORA EQUIVALENTE NPS eq [dB(A)]						
DE SUELO	DE 06H00 A 20H00 DE 20H00 A 06H						
Zona hospitalaria y educativa	45	35					
Zona Residencial	50	40					
Zona Residencial mixta	55	45					
Zona Comercial	60	50					
Zona Comercial mixta	65	55					
Zona Industrial	70	65					

Fuente y Elaboración: Texto Unificado de Legislación Ambiental Secundaria (TULAS) del Ministerio del Ambiente.

Pero al considerarse un periodo de construcción de dos años, se establece que no tiene mayor incidencia, debido a que el ruido por construcción de la obra será eventual y transitorio.

e) Calidad del Aire

En la zona de implementación de proyecto, no existirá fuentes fijas de emisión; tales emisiones no serán significativas. Cabe recalcar que en el Texto Unificado de la Legislación Ambiental Secundaria (TULAS) del Ministerio del Ambiente, en el libro VI Anexo 4, señala:

Tabla 9.7 Concentraciones de contaminantes comunes que definen los niveles de alerta, de alarma y de emergencia en calidad del aire.

Concentraciones de contaminantes comunes que definen los niveles de alerta, alarma y de emergencia en la calidad del aire (1)										
CONTAMINANTE Y PERIODO DE TIEMPO	ALERTA	ALARMA	EMERGENCIA							
Monóxido de Carbono (Concentración promedio en ocho horas)	15000	30000	40000							
Oxidantes fotoquímicos expresados como ozono (Concentración promedio en una hora)	300	600	800							
Óxidos de Nitrógeno, como NO2(Concentración promedio en una hora)	1200	2300	300							
Dióxido de Azufre (Concentración promedio en veinticuatro horas)	800	1600	2100							
Material Particulado PM 10 (Concentración en veinticuatro horas)	250	400	500							

(1) Todos los valores de concentración expresados en microgramos por metro cúbico de aire, a condiciones de 25°C y 760mm Hg

Fuente y elaboración: Texto Unificado de Legislación Ambiental Secundaria (TULAS) del Ministerio del Ambiente.

d) Calidad y Uso de Suelo

La calidad del suelo es relativamente buena, debido a que se las utiliza en una gran mayoría para la agricultura y ganadería, a pesar que el uso de fertilizantes y pesticidas químicos son muy comunes no se observa un gran repercusión en la producción de agrícola.

e) Flora

Esta información fue recopilada de la Reserva Maquicupuna, ubicada aproximadamente al 2 km de la población de Nanegalito, tanto para la flora y fauna. La zona donde se desarrolla el proyector tiene una gran variedad de flora, entre las más nombradas, y existente en la zona tenemos:

Guayaba (Psidium guajava), Arrayán (Eugenia sp.), Guarumo (Cecropia sp), Paja toquilla (Carludovica palmata), Papaya de monte (Carica microcarpa), Higuerón (Ficus sp.), Sangre de gallina (Vismia baccifera), Laurel (Cordia alliodora), Platanillo (Heliconia sp.), Canelo (Ocotea cernua), Pambil (Iriartea deltoidea), Cedro (Cedrela montana), Nogal (Juglans neotrópica), Ceibo (Ceiba pentandra).

f) Fauna

La zona del proyecto dispone de gran variedad de mamíferos, aves, reptiles y anfibios, a continuación presentamos un listado con las especies más representativas:

MAMIFEROS: Raposa (Didelphis albiventris), Oso andino (Tremarctos ornatus), Guanta (Agouti paca), Guatuza (Dasyprocta punctata), Ardilla (Sciurus granatensis). Venado (Mazama americana), Cusumbo (Potos flavus), Cuchucho (Nasua Iarica), Armadillo (Dasypus novencinctus), Conejo (Sylvilagus brasiliensis),

AVES: Águila adornada (Spizaetus ornatus), Águila andina (Oroaetus Isidoro), Pato torrentero (Merganetta armata), Hornero del pacífico (Furnarius cinnamoneus), Tirano tropical (Tyrannus melancholicus), Garza tigre (Tigrisoma fasciatum), Garceta grande (Ardea alba), Garceta bueyera (Bubulcus ibis), Gallinazo negro (Coragyps atratus), Gavilán barreteado (Leucopternis princeps),

Águila pechinegra (Geranoaetus melanoleucus), Gavilán caminero (Buteo magnirostris), Aguila adornada (Spizaetus ornatus), Quilico (Falco sparverius), Pava crestada (Penélope purpurascens), Tórtola (Zenaida auriculata), Orejivioleta ventriazul (Colibri coruscans), Estrella coliblanca (Urochroa bougueri), Rayito brillante (Aglaectis cupripennis), Colibrí jaspeado (Adelomyia melanogenys), Trogón enmascarado (Trogon personatus), Yumbo (Semnornis ramphastinus), Carpintero Dorsicarmesi (Piculus rivolii),

REPTILES Y ANFIBIOS: Chonta (Clelia clelia), Coral (Micrurus sp.), Sapo común (Bufo marinus), Sapo gigante (Bufo blombergi), Rana venenosa (Dendrobattes sp.), Rana arborícola (Hyla fasciata), Iguana (Iguana iguana), Boa matacaballo (Boa constrictor).

Son especies que por la introducción del ser humano a sus habitad han mudado de sus lugares habituales, pero que aún existen en la zona, aunque por su discreción y miedo a las personas no son muy comunes de observar.

9.1.4. Aspectos Socioeconómicos

a) Demografía

Los datos de la demografía de las poblaciones que intervienen en el proyecto, se los obtuvo del último censo de población y vivienda realizado en noviembre del 2010.

De acuerdo con el último censo de población y vivienda realizado en noviembre de 2010, el porcentaje de hombre y mujeres existentes en las poblaciones de Nanegalito y Nanegal, es el representado en la figura 9.6.

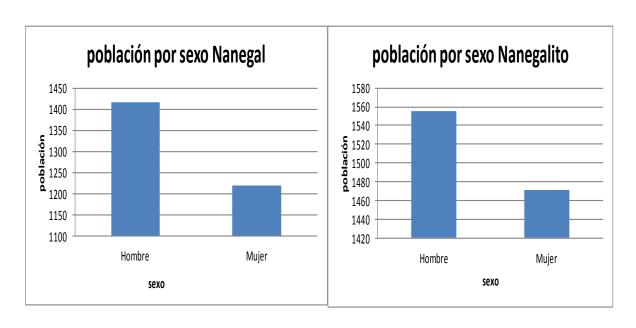
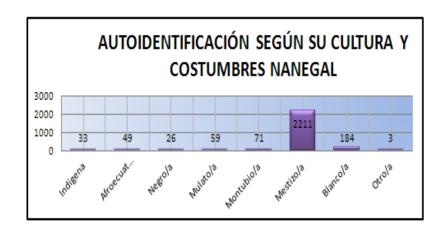



Figura 9.6 Porcentaje de hombres y mujeres existentes en las poblaciones de Nanegalito y Nanegal

Elaboración: Andrés G. Benavides y Guillermo J. Lugmaña

b) Composición, según su auto identificación étnica

De acuerdo a los datos del último censo de población y vivienda se obtiene que existe un mayor porcentaje de la población mestiza en estas zonas y seguidas por un pequeño grupo de población blanca, como se indica en la figura 9.6

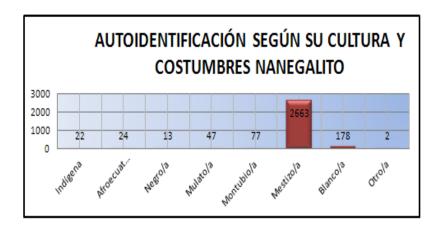


Figura 9.6 Auto identificación étnica

Elaboración: Andrés G. Benavides y Guillermo J. Lugmaña

c) Población económicamente activa

En este punto se considera la clasificación por Rama de actividad y por Categoría de ocupación, como se observa en la tabla 9.8

Tabla 9.8 Actividades que realiza la población económicamente activa

	NANE	GAL	NANEG	ALITO
Rama de actividad (Primer nivel)	Casos	%	Casos	%
Agricultura, ganadería, silvicultura y pesca	604	52	455	36
Explotación de minas y canteras	2	0	1	0
Industrias manufactureras	113	10	70	5
Suministro de electricidad, gas, vapor y aire				
acondicionado	2	0	8	1
Distribución de agua, alcantarillado y gestión				
de deshechos	4	0	5	0
Construcción	46	4	80	6
Comercio al por mayor y menor	82	7	146	11
Transporte y almacenamiento	17	1	35	3
Actividades de alojamiento y servicio de				
comidas	35	3	96	8
Información y comunicación	2	0	6	0
Actividades financieras y de seguros	6	1	4	0
Actividades inmobiliarias	0	0	1	0
Actividades profesionales, científicas y				
técnicas	3	0	17	1
Actividades de servicios administrativos y de				
ароуо	25	2	52	4
Administración pública y defensa	27	2	60	5
Enseñanza	40	3	31	2
Actividades de la atención de la salud				
humana	11	1	33	3
Artes, entretenimiento y recreación	3	0	8	1
Otras actividades de servicios	13	1	10	1
Actividades de los hogares como				
empleadores	44	4	50	4
No declarado	66	6	85	7
Trabajador nuevo	21	2	23	2
Total	1166	100%	1276	100%

Elaboración: Andrés G. Benavides y Guillermo J. Lugmaña

Tabla 9.9 Nivel de dependencia de la población económicamente activa

Categoría de ocupación	NANE	EGAL	NANEG	SALITO
	Casos	%	Casos	%
Empleado/a u obrero/a del Estado, Gobierno, Municipio, Consejo Provincial, Juntas Parroquiales	81	7	163	13
Empleado/a u obrero/a privado	196	17	334	27
Jornalero/a o peón	372	32	216	17
Patrono/a	25	2	44	4
Socio/a	20	2	11	1
Cuenta propia	325	28	339	27
Trabajador/a no remunerado	18	2	41	3
Empleado/a doméstico/a	57	5	68	5
Se ignora	51	4	37	3
Total	1145	100%	1253	100%

Elaboración: Andrés G. Benavides y Guillermo J. Lugmaña

d) Hogares y viviendas

En este punto consideraremos uso y alcances tanto a la tecnología y disponibilidad de servicios básicos.

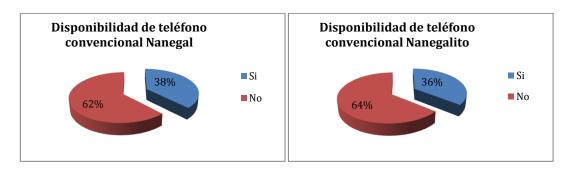
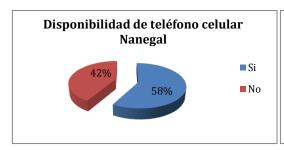



Figura 9.7 Disponibilidad de teléfono convencional

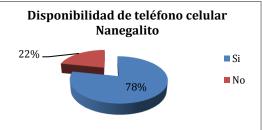


Figura 9.8 Disponibilidad de teléfono celular

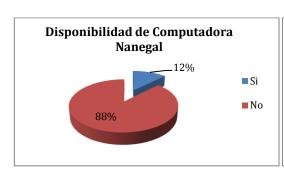
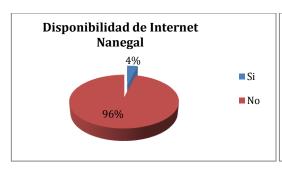



Figura 9.9 Disponibilidad de computadora

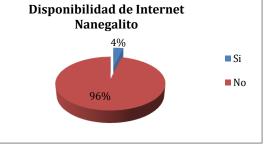
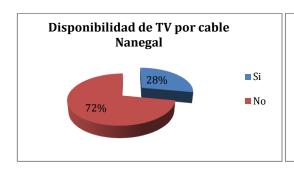



Figura 9.10 Disponibilidad de internet

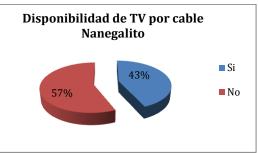


Figura 9.11 Disponibilidad de TV por cable

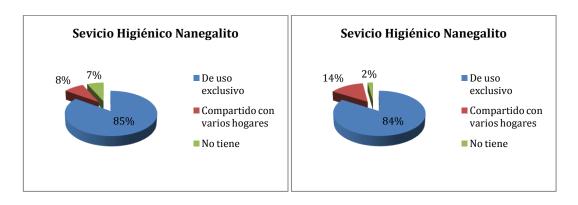


Figura 9.12 Disponibilidad de servicio higiénico

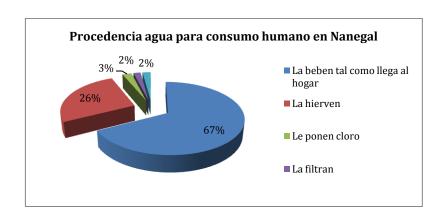


Figura 9.13 Procedencia del agua para consumo humano en Nanegal

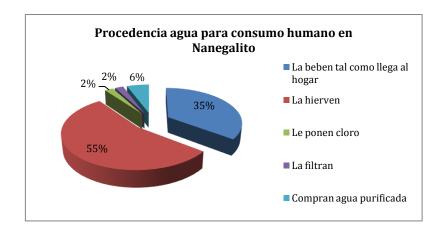


Figura 9.14 Procedencia del agua para consumo humano en Nanegalito

Figura 9.15 Principal combustible o energía para cocinar

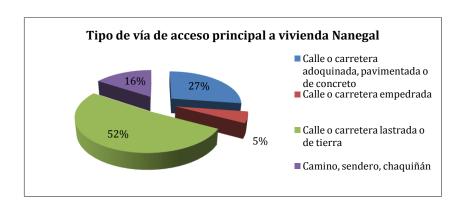


Figura 9.16 Tipo de vía de acceso principal a vivienda Nanegal

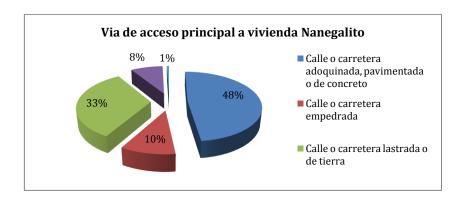


Figura 9.17 Tipo de vía de acceso principal a vivienda Nanegalito

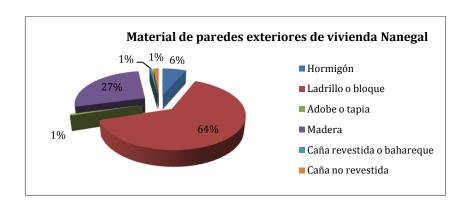


Figura 9.18 Material de paredes exteriores de vivienda Nanegal

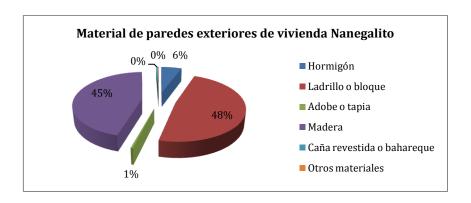


Figura 9.19 Material de paredes exteriores de vivienda Nanegalito

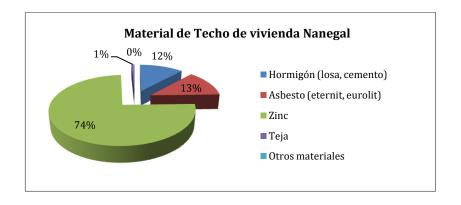


Figura 9.20 Material de techo de vivienda Nanegal

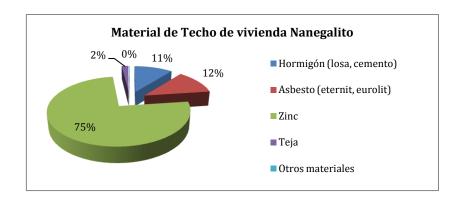


Figura 9.21 Material de techo de vivienda Nanegalito

Elaboración: Andrés G. Benavides y Guillermo J. Lugmaña

e) Educación

Los resultados de la pregunta la cual consistía en: "¿sabe leer y escribir?", indican que un porcentaje menor de personas no saben leer y escribir, de acuerdo al censo de población y vivienda del 2010.

Figura 9.22 Porcentaje de personas que sabe leer y escribir

Y en el caso de la pregunta, "¿Cuál fue o es el nivel más alto de educación al que asiste o asistió?", muestra que en un mayor porcentaje de la población a completado el nivel de primaria, seguido de la educación básica.

Tabla 9.10 Nivel de instrucción más alto al que asiste o asistió

Nivel de instrucción más alto	NANEG	AL	NANEGA	LITO
al que asiste o asistió	Casos	%	Casos	%
Ninguno	211	9	140	5
Centro de Alfabetización/(EBA)	22	1	29	1
Preescolar	39	2	45	2
Primario	1133	47	1032	38
Secundario	334	14	402	15
Educación Básica	375	16	572	21
Bachillerato - Educación Media	114	5	246	9
Ciclo Post bachillerato	16	1	23	1
Superior	93	4	174	6
Postgrado	9	0	13	0
Se ignora	71	3	36	1
Total	2417	100%	2712	100%

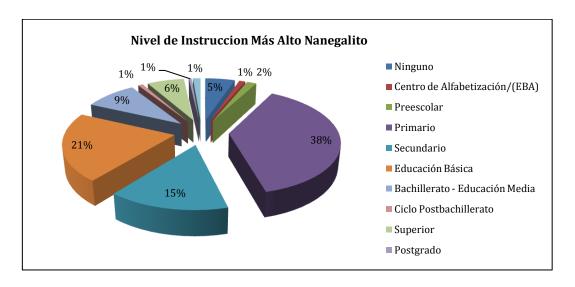
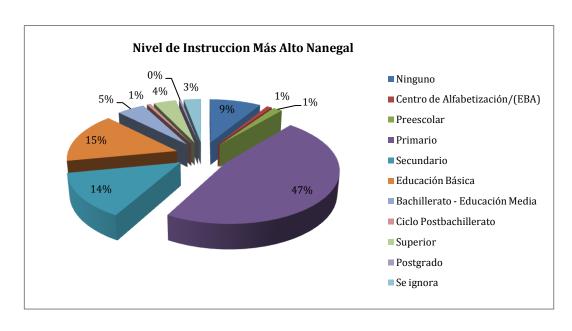
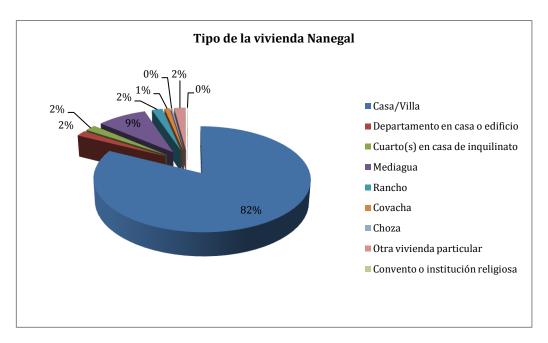


Figura 9.23 Nivel de instrucción más alto al que asiste o asistió




Figura 9.23 Nivel de instrucción más alto al que asiste o asistió

f) Infraestructura de viviendas

Los resultados de la pregunta de Tipo de vivienda, indican en gran mayoría las viviendas son de tipo casa o villa, de acuerdo al censo de población y vivienda del 2010, y con la observación de campo se determina que estas viviendas son de hormigón armado, y construcción en madera aunque en poco porcentaje.

Tabla 9.11 Tipo de vivienda

Tipo de la vivienda	NANEGAL		NANEGALITO	
Tipo de la vivienda	Casos	%	Casos	%
Casa/Villa	1067	82	1020	80
Departamento en casa o edificio	24	2	46	4
Cuarto(s) en casa de inquilinato	25	2	40	3
Mediagua	112	9	108	8
Rancho	24	2	47	4
Covacha	12	1	7	1
Choza	4	0	2	0
Otra vivienda particular	26	2	11	1
Convento o institución religiosa	1	0	1	0
Total	1295	100	1282	100

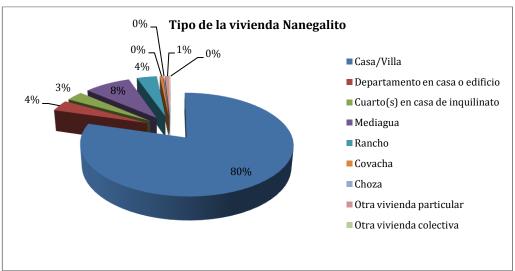


Figura 9.24 Tipo de vivienda

g) Transporte y turismo

La principal vía de acceso es la Vía Calacalí – La Independencia km 43, para llegar a la parroquia Nanegalito, posteriormente se toma la vía de este proyecto para llegar a la parroquia Nanegal a 14 km de distancia.

Figura 9.25 Ubicación de las parroquias Nanegalito y Nanegal

Fuente: Pagina web de Nanegal

Los lugares turísticos, de mayor acogida turística, que se pueden encontrar en la zona cercana al proyecto tenemos, la reserva del Rio Alambí a 8 km de distancia de Nanegalito, la reserva Bellavista que se encuentra en el kilometro 52 de la vía Calacalí – La Independencia, Rio Tulipe aproximadamente a 5 km. de Nanegalito. La cascada Piragua, a 15 minutos del parque de Nanegal, la reserva Maquipucuna, corresponde a 6000 hectáreas llenas de gran diversidad, más de 340 especies de aves, 250 especies de mariposas exóticas, 2000 especies de plantas y 50 especies de mamíferos. 8 senderos para caminatas y sitios para nadar. Tiene además servicio de restaurante y alojamiento, aunque esta reserva este fuera del área de la vía de proyecto de tesis se lo considera debido a que tiene como objetivo principal la conservación y concientización para la preservación de la flora y fauna del sector.

9.1.5. Determinación de las Áreas de Influencia

El área de influencia es la zona en donde se manifiestan los posibles impactos socio-ambientales, positivos o negativos, producto del desarrollo de un nuevo proyecto.

Con el objeto de determinar el área que será influenciada, se analizan tres criterios que tienen relación con el alcance geográfico, con la duración de una instalación y con la situación de los factores ambientales previo a iniciar las actividades.

Estos criterios se los conceptualiza de la siguiente manera:

- Límite de las operaciones.- Se determina por el tiempo, el espacio y alcance que comprenden las actividades en ejecución
 - Escala espacial: Viene a constituir el espacio físico donde se manifiestan los impactos ambientales.
 - Escala temporal: Está directamente vinculada con la duración que demandan las actividades operativas ya sea de ejecución de obra o ocupación de áreas por equipo o maquinaria.
- Límites ecológicos.- Los límites ecológicos están determinados por las escalas temporales y espaciales, ya que en función de éstas se pronosticarán los potenciales impactos o efectos sobre el entorno socio-ambiental.
- Límites administrativos.- Se refiere a los límites Político Administrativos a los que pertenece el área donde se emplaza el proyecto.

a) Área de influencia directa (AID)

Esta área comprende todo el sector donde existirán de forma directa e inmediata impactos ambientales, entre estas áreas están aquellas en donde se construirán

las distintas obras, instalación de campamentos, depósitos de materiales excedente, canteras, fuentes de agua, patio de equipos y maquinas, etc. Esta dada para este proyecto una franja de 50m a cada lado del eje de la vía, es decir una franja de 14 kilómetros de longitud y 100 metros de ancho.

b) Área de influencia Indirecta (AII)

Ha sido definida principalmente, en función de la alteración provocada en el paisaje (impacto visual) que está en función de la ubicación e implantación del proyecto, y que es evidente aún después del límite del AID definida; así como también por el incremento de niveles de Ruido. Esta área es mayor a la anterior y en ella se esperan la ocurrencia de impactos positiva, como es la de aumento de empleo para las poblaciones en este proyecto la Parroquia de Nanegalito y Nanegal, ubicada al inicio y final de la vía de análisis.

9.1.6. Identificación y Evaluación de Impactos

9.1.6.1. Metodología

Para la evaluación se utiliza la matriz tipo Leopold (Causa - Efecto), en dónde se interrelaciona las principales actividades del proyecto con los componentes de ambiente en donde se desarrolla.

Se establece una estimación del impacto del proyecto sobre el medio ambiente, es decir si es negativo (-) o positivo (+). Por último se establece la intensidad del impacto.

9.1.6.2. Identificación de los Impactos Ambientales

Se identifica las acciones y factores ambientales, ente las acciones puede estar las siguientes:

Tabla 9.12 Listado de acciones durante la etapa de construcción

ETAPA DE CONSTRUCCIÓN

Campamentos

- ✓ Implantación de bodegas
- ✓ Usos de equipos y maquinarias
- ✓ Movimientos de equipos y personal
- ✓ Acopio y utilización de materiales e insumos
- ✓ Generación de residuos tipo sólidos urbanos
- ✓ Generación de material particulado
- ✓ Generación de emisiones gaseosas
- ✓ Generación de ruidos y vibraciones
- ✓ Generación de residuos peligrosos

Transporte y provisión de material

- ✓ Abastecimiento de material de contracción
- ✓ Movimientos de vehículos y personal
- ✓ Derrames de hidrocarburos
- ✓ Generación de ruidos y vibraciones
- ✓ Generación de material particulado
- ✓ Generación de emisiones gaseosas
- ✓ Contratación de mano de obra local.

Obras de vialidad

- ✓ Colocación de sub-base, base, capa de rodadura, drenajes.
- ✓ Movimientos de vehículos y personal
- ✓ Generación de ruidos y vibraciones
 ✓ Generación de material particulado
- ✓ Generación de emisiones gaseosas
- ✓ Contratación de mano de obra local.

Excavaciones, Limpiezas

- ✓ Excavaciones, remoción de suelo y cobertura
- Uso de equipos y maquinaria
- ✓ Generación de ruidos y vibradores
- ✓ Contratación de mano de obra local

Desalojo de material

- ✓ Desalojo de tierras, materiales y escombros
- ✓ Movimientos de vehículos y personal
- ✓ Derrames de hidrocarburos
- ✓ Generación de ruidos y vibraciones
- ✓ Generación de material particulado
- ✓ Generación de emisiones gaseosas
- ✓ Contratación de mano de obra local

Disposiciones de aguas Iluvias y residuales

- Colectores, pozos, plantas compacta.
- Excavaciones, remociones del suelo y cobertura vegetal.
- ✓ Uso de vehículos y personal
- ✓ Generación de ruidos y vibraciones
- ✓ Generación de residuos tipo solido urbano
- Contratación de mano de obra local

Residuos y escombros

- ✓ Acumulación de residuos y escombros
- ✓ Usos de equipo y maquinaria.✓ Movimiento de personas
- ✓ Generación de ruidos y vibraciones
- ✓ Acumulación de material granular
- ✓ Contratación de mano de obra local

ETAPA DE OPERACIÓN Y MANTENIMIENTO

Utilización de los servicios

- Movimientos de personas y vehículos
- ✓ Generación de ruidos y vibraciones
- Generación de residuos tipo solido urbano
- ✓ Generación de emisiones gaseosas
- ✓ Generación de turismo
- ✓ Generación de comercio

Mantenimiento y limpieza

- ✓ Uso de equipos y maquinaria
- ✓ Generación de residuos tipo solido urbano
- ✓ Generación de material particulado
- ✓ Generación de residuos peligrosos
- ✓ Contratación de mano de obra local

Generación de residuos

- ✓ Movimiento de personas
- ✓ Uso de equipos y maquinaria
- ✓ Generación de residuos tipo solido urbano
- ✓ Generación de olores desagradables
- ✓ Generación de material particulado
- ✓ Generación de residuos peligrosos
- ✓ Contratación de mano de obra local

Tabla 9.14 Listado de acciones durante la etapa de cierre y abandono

ETAPA DE CIERRE Y ABANDONO

Desmantelamiento campamento

- ✓ Retiro de obras provisionales, cerramiento
- ✓ Retiro de bodegas y oficinas
- ✓ Remover instalaciones sanitarias
- Remoción de sistema de tratamiento.

Retiro de equipo y maquinaria

- ✓ Retiro de maquinaria y vehículos.
- ✓ Retiro de equipo utilizado para la etapa de construcción.

Reposición de suelos

- ✓ Restitución de capa orgánica removida
- ✓ Reemplazo de suelo contaminado o alterado
- ✓ Reacondicionamiento del área utilizada.

Limpieza general

- ✓ Limpieza general de la zona utilizada
- ✓ Remover material sobrante de la construcción
- ✓ Remover cables, escombros, etc.

Mientras que en los Factores Ambientales, se encuentran las categorías de físicos, bilógicos y socio – económico.

9.1.6.3. Calificación y Valoración de Impactos

La calificación viene dada por la afectación positiva o negativa que tenga las acciones del proyecto en el medio ambiente, basado en:

Magnitud.- Se determina mediante la intensidad y afectación, de carácter genérico, que es la expresión de juicio de valor que considera si el impacto es positivo (+) o negativo (-).

- a) Intensidad.- Relativa al tamaño o grandeza del impacto. Baja (B), Media (M), Alta(A), Muy Alta (MA).
- b) Afectación.- Corresponde al nivel o grado de afectación. Baja (B), Media (M), Alta(A), Muy Alta (MA).

Tabla 9.15 Tabla para la calificación de la Magnitud

MAGNITUD				
CALIFICACIÓN	INTENSIDAD	AFECTACIÓN		
1	Baja	Baja		
2	Baja	Media		
3	Baja	Alta		
4	Media	Baja		
5	Media	Media		
6	Media	Alta		
7	Alta	Baja		
8	Alta	Media		
9	Alta	Alta		
10	Muy Alta	Alta		

Importancia.- Se determina mediante la duración e influencia.

a) Duración.- Si se presenta durante la actividad que la provoca es Temporal
 (T). Si el impacto continúa en el tiempo aunque en forma intermitente, es

Permanente (P).

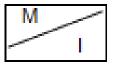

b) Influencia.- Puntual (P), Local (L), Regional (R).

Tabla 9.16 Tabla para la calificación de la importancia

II	MPORTANCIA	
CALIFICACIÓN	DURACIÓN	INFLUENCIA
1	Temporal	Puntual
2	Media	Puntual
3	Permanente	Puntual
4	Temporal	Local
5	Media	Local
6	Permanente	Local
7	Temporal	Regional
8	Media	Regional
9	Permanente	Regional
10	Permanente	Nacional

Valoración impactos ambientales

En base a la identificación y calificación de impactos se elaboran las Matrices C1 (durante la construcción del proyecto), C2 (durante la operación y mantenimiento) y C3 (durante el cierre y abandono).

 $S = M \times I$

- M.- Magnitud de Impacto
- I.- Importancia de Impacto
- S.- Significancia del Impacto

9.1.6.4. Jerarquización de Impactos

Para realizar la jerarquización de impactos se utiliza el criterio de significancia de impactos **S**, explicado anteriormente.

Con estos valores se elaboran las Matrices D1 (durante la construcción del proyecto), D2 (durante la operación y mantenimiento) y D3 (durante el cierre y abandono).

A partir de éstos resultados se pueden determinar las medidas de mitigación necesarias para el proyecto.

MATRIZ A1: INTERELACION: ACCION - FACTORES AMBIENTALES

		MINI KIL MI, IN I LKI				NENEGAL!	ITO - NANI	EGAL		
		ACCIONES					NSTRUCCI			
	ORES HENTALES		CAMPAMENTO EINSTALACIONES PROVISIONALES	TRAZADO Y REPLANTEO EJE DE LA VIA	MOVIMIENTOS DE TIERRA (CORTE Y RELLENO)	TENDIDO DE BASE, SUB-BASE Y CAPA DE RODADURA	RUIDOS, COMPACTACION DE SUB- RASANTE, BASE, SUB-BASEY CAP DE RODADURA	EQUIPO DE CONSTRUCCIÓN	LUBRICANTES	MANEJO DE RESIDUOS Y ESCOMBROS
CAT.	COMPONENTE	ELEMENTO	1	2	3	4	5	6	7	8
	Suelos	Capa Vegetal	Х	X	X	X	X	X	Х	X
		Procesos Erosivos	Х			X	X	X		
FISICO	Agua Superficial	Calidad A.Sup.	Х		Х	Х		X	X	X
FIS	Agua Subterránea	Calidad A.Sub.								
	Aire	Calidad Aire	Х		Х	X	X	X		Х
		Ruido - Vibración	X		Х		Х	X		X
0	Flora	Vegetación Natural	X	X	Х	Х		X	X	X
віотісо		Cultivos			Х					X
BIO	Fauna	Terrestre, Aves	X	X	Х	X	X	X	X	X
	Tuunu	Acuática								
	Estética	Paisaje	X	X	X	X	X	X	X	X
	2000	Recreación								X
00		Salud Pública	X		X	X	X	X	X	X
OMI		Accidentes	X		X	Х	Х	Х	X	X
NO		Tránsito Vehicular	Х		Х	Х		X		Х
SOCIO-ECONOMICO	Bienestar Social	Transito Peatonal	X		Х	X		X		Х
CIO	Dictics an Journal	Empleo	X		X	X		X		Х
SO		Servicios Públicos	Х		Х	X		X		Х
		Economía	Х		Х	X		X		Х
		Plusvalía	X		Х	X		X		X

X Se produce impacto (Positivo o Negativo)
No se produce impacto

MATRIZ B1: IDENTIFICACION DE IMPACTOS

				MATRIZ B1: IDENTIFICACION DE IMPACTOS VIA NENEGALITO - NANEGAL ETAPA DE CONSTRUCCION								S	so																		
		ACCIONES									ı	TAP	A DE	CON	ISTR	UCC	ON										POSITIVOS	VITV	4 CIA	SO	so
				1			2			3			4			5			6			7			8		SO	NEGATIV	CAN	Ž	VITA
FACTO	RES AMB.			INSTALACIONES			TRAZADO Y REPLANTEO EJE DE LA VIA			MOVIMIENTOS DE TIERRA (CORTE Y RELLENO)			ENDIDO DE BASE, SUB-BAS Y CAPA DE RODADURA			RUIDOS, COMPACTACION D SUB-RASANTE, BASE, SUB- BASE Y CAP DE RODADURA			EQUIPO DE CONSTRUCCIÓ			LUBRICANTES			MANEJO DE RESIDUOS Y ESCOMBROS		NUMERO IMPACTOS P	NUMERO IMPACTOS N	SUMATORIA SIGNIFICANCIA IMPACTOS	VALORACION POSITIVOS	VALORACION NEGATIVOS
CAT.	COMPONENTE	ELEMENTO		1							1		+														ž	Ž			
	Suelos	Capa Vegetal	B T	B P	1	B P	B P	-1 3	B P	A P	-3 3	M P	B L	-4 4	B M	M P	-2 2	B M	M P	-2 2	M	B P	-2 2	B M	M P	-2 2	0	8	-45	0	-45
		Procesos Erosivos	B T	B P	-1				B P	A P	-3 3	M P	B P	-3 3	B P	A P	-3 3	B M	M P	-2 2							0	5	-32	0	-32
0	Agua Superficial	Calidad A.Sup.	В	M	-2	В	В	-1	В	M	-2	В	В	-1			·	В	В	-1	В	A	-3	В	В	-1	0	7	-20	0	-20
FISICO		· ·	T	P	1	M	P	2	T	P	1	M	P	2				M	P	2	P	P	3	T	P	1	0	0	0		0
	Agua Subterránea	Calluau A.SuD.	В	M	-2				В	В	-1	В	M	-2	В	В	-1	В	A	-3				В	М	-2	U	U	U	0	U
	Aire	Calidad Aire	М	Р	2				T	Р	1	Р	P	3	T	Р	1	T	L	4				T	P	1	0	6	-26	0	-26
		Ruido - Vibración	M	B P	-4 2				B T	B P	1				M M	M P	-5 2	B T	A L	-3 4				B M	M P	-2 2	0	5	-35	0	-35
		Vegetación Natural	В	B P	-1	В	M P	-3 3	B M	M P	-2 2	В	B P	4				B M	M	-2 2	В	M P	-2 3	В	M	-2 3	0	7	-31	0	-31
00	Flora	Cultivos					1	J	В	В	-1		1					IVI	-	2			3	В	M	-2	0	2	-7	0	-7
вютсо		Terrestre, Aves	M	В	-4	M	В	-4	T B	P A	-3	В	М	-2	В	M	-2	В	M	-2	M	В	-4	P M	P B	3 -4	0	8	-47	0	-47
	Fauna		T	P	1	M	P	2	T	P	1	M	P	2	M	P	2	M	P	2	T	L	4	T	P	1					
		Acuática	В	M	-2	В	A	-3	В	В	-1	В	M	-2	В	M	-2	В	M	-2	M	A	-3	В	M	-2	0	0	0	0	0
	Estética	Paisaje	Ţ	P	1	M	P	2	M	P	2	M	P	2	M	Р	2	M	P	2	P	P	3	М	Р	2	0	8	-35	0	-35
		Recreación													B T	M P	-2 1							B M	M P	-2 2	0	2	-6	0	-6
		Salud Pública	B T	M P	-2 1				B T	B P	-1 1	M T	B P	-4 1	B T	M P	-2 1	B M	M P	-2 2	B M	B P	-1 2	M	B P	-4 2	0	7	-23	0	-23
00		Accidentes	M	B P	4				B M	M P	-2 2	M	M	-5 4	В	В	-1	M	В	-4 1	B M	В	-1 2	В	M	-2 1	0	7	-37	0	-37
NOMIC		Tránsito	В	В	-1				В	В	-1	В	М	-2		Г	-	В	М	-2	IVI	Г	2	В	M	-2	0	5	-14	0	-14
O-ECONOMICO		Vehicular Transito	T B	P B	-1				T B	P B	1	T B	L M	-2				T M	P M	1 -5				T B	P M	-2					
	Bienestar Social	Peatonal	T B	P M	1 2	В	В	1	T M	P B	1	M B	P M	2				M	P A	2				M	P B	2	0	5	-20	0	-20
Ö		Empleo	T	Р	1	T	P	1	T	L	4	T	L	4				T	L	4				T	L	4	6	0	67	67	0
		Servicios Públicos	B T	B P	1				B T	B P	1	B T	B P	1				B T	M P	-2 1				B T	M P	-2 1	0	5	-7	0	-7
		Economía	В	B	1	В	M P	2	M	B	4	A T	M	8				M	A	6				В	M	2	6	0	88	88	0
		Plusvalia	В	В	-1			_	В	В	-1	M	М	5										В	М	-2	1	3	10	15	-5
NUMER	O IMPACTOS POS	ITIVOS		P 2	1		2		M	P 2	2	P	P 3	3		0			2			0		T	P 2	1	13				<u> </u>
NUMER	O IMPACTOS NEG	ATIVOS		14			5			15			12			9			13			7			15			90			ļ
SUMAT (Suma	ORIA SIGNIFICAN	CIA IMPACTOS		-27			-23			-10			-24			-37			-20			-48			-31				-220	1	ļ
	ACION POSITIVOS			6			5			32			55			0			48			0			24					170	
VALOR	ACION NEGATIVOS	3		-33			-28			-42			-79			-37			-68			-48			-55						-390
			1	•	Ι.			1 - Inter				4 - Dı			•																

1	2	3
4	5	6

1,- Intensidad 2,- Afectación

ad 4,- Duración ión 5,- Influencia

3,- Magnitud

6,- Importancia

				MATRIZ C1	: VALORACIO	N DE IMPACT	OS (MATRIZ D	DE LEOPOLD)					
					1	VIA NENEGALI	TO - NANEGA	L			70S	vos	Y.
		ACCIONES				ETAPA DE CO	NSTRUCCION				SITIN	GATI	ANC
			1	2	3	4	5	6	7	8	S PO	SNE	NIFIC
FACTO	ORES AMBIENTALES		CAMPAMENTO E INSTALACIONES PROVISIONALES	TRAZADOY REPLANTEO EJE DE LA VIA	MOVIMIENTOS DE TIERRA (CORTE Y RELLENO)	TENDIDO DE BASE, SUB- BASE Y CAPA DE RODADURA	RUIDOS, COMPACTACION DE SUB-RASANTE, BASE, SUB-BASE Y CAP DE RODADURA	EQUIPO DE CONSTRUCCIÓN	LUBRICANTES	MAN EJO DE RESIDUOS Y ESCOMBROS	NUMERO IMPACTOS POSITIVOS	NUMERO IMPACTOS NEGATIVOS	SUMATORIA SIGNIFICANCIA IMPACTOS
CAT.	COMPONENTE	ELEMENTO	C	TRA5	Μ	TENI	RUID DESI SU	3		MAN	NUN	NON	ıs
	Cooler	Capa Vegetal	1	·1 3	- 3	4 4	2 2	2 2	2 2	2 2	1	8	-45
	Suelos	Procesos Erosivos	1		-3 3	-3 3	3	2			-	5	-32
001	Agua Superficial	Calidad A.Sup.	·2	1 2	·2 1	1 2		1 2	3 3	1		7	-20
FISICO	Agua Subterránea	Calidad A.Sub.									-		
	A:	Calidad Aire	2		1	3	1	-3 4		1		6	-26
	Aire	Ruido - Vibración	4 2		1		·5 2	3 4		2		5	-35
	Flora	Vegetación Natural	1	·3 3	-2 2	1		2	-2 3	·2 3		7	-31
вютісо	rioia	Cultivos			1					-2 3		2	-7
віол	Fauna	Terrestre, Aves	4	-4 ₂	3 1	2	2	2	4 4	4 1		8	-47
	rdulid	Acuática											
	Estética	Paisaje	1	·3 2	1 2	·2 2	2	2 2	- 3	2 2	-	8	-35
	Little	Recreación					·2			2 2	-	2	-6
		Salud Pública	1		1	4 1	1	2	1 2	4 2		7	-23
МІСО		Accidentes	4		2	-5 4	1	4 1	1 2	1		7	-37
		Tránsito Vehicular	1		1	-2 4		·2 1		·2	-	5	-14
SOCIO-ECONO	Diamagton Conial	Transito Peatonal	1		1	2		-5 2		2		5	-20
soc	Bienestar Social	Empleo	2 1	1 1	4 4	2 4		6 4		4 4	6		67
		Servicios Públicos	1		1	1		·2 1		1		5	-7
		Economía	1 4	2 2	4 4	8 4		6 4		2 4	6		88
		Plusvalía	1		1 2	5 3	\overline{Z}			1	1	3	10
	NUMERO IMPACTOS	POSITIVOS	2	2	2	3		2		2	13		
	NUMERO IMPACTOS	NEGATIVOS	14	5	15	12	9	13	7	15		90	
SUMAT	ORIA SIGNIFICANCIA x I)	IMPACTOS (Suma M	-27	-23	-10	-24	-37	-20	-48	-31	!		-220

M M.- Magnitud S.- Significancia
I.- Importancia $S = M \times I$

			MA	TRIZ D1: SIG	NIFICAN	CIA DE IN	MPACTOS	3			
					VIA	NENEGALI	ITO - NANE	GAL			
		ACCIONES			ETA	APA DE CO	NSTRUCCI	ON			CIA
FACTO	RES		1	2	3	4	5	6	7	8	TOR
AMBIEI	NTALES		CAMPAMENTO E INSTALACIONE S	TRAZADO Y REPLANTEO EJE DE LA VIA	MOVIMIENTOS DE TIERRA (CORTE Y	TENDIDO DE BASE, SUB- BASE Y CAPA	RUIDOS, COMPACTACIO N DE SUB- RASANTE,	EQUIPO DE CONSTRUCCIÓN	LUBRICANTES	MANEJO DE RESIDUOS Y ESCOMBROS	SUMATORIA SIGNIFICANCIA
CAT.	COMPONENTE	ELEMENTO	PROVISIONALE	LN VIN	RELLENO)	DE RODA DURA	BASE, SUB-			LOCONDITION	
	0 1	Capa Vegetal	-1	-3	-9	-16	-4	-4	-4	-4	-45
	Suelos	Procesos Erosivos	-1		-9	-9	-9	-4			-32
FISICO	Agua Superficial	Calidad A.Sup.	-2	-2	-2	-2		-2	-9	4	-20
Ē	Agua Subterránea	Calidad A.Sub.									
	Airo	Calidad Aire	-4		4	-6	-1	-12		-2	-26
	Aire	Ruido - Vibración	-8		-1		-10	-12		-4	-35
•	Flora	Vegetación Natural	-1	-9	-4	4		-4	-6	-6	-31
віотісо		Cultivos			4					-6	-7
В	Fauna	Terrestre, Aves	-4	-8	-3	-4	-4	-4	-16	-4	-47
	i auna	Acuática									
	Estética	Paisaje	-2	-6	-2	-4	-4	-4	9	4	-35
	Egielica	Recreación					-2			-4	-6
		Salud Pública	-2		4	-4	-2	-4	-2	-8	-23
QI CO		Accidentes	-4		-4	-20	-1	-4	-2	-2	-37
SOCIO-ECONOMICO		Tránsito Vehicular	-1		4	-8		-2		-2	-14
O-EC		Transito Peatonal	-1		4	-4		-10		-4	-20
OCIC	Bienestar Social	Empleo	2	1	16	8		24		16	67
U)		Servicios Públicos	-1		4	4		-2		-2	-7
		Economía	4	4	16	32		24		8	88
		Plusvalía	-1		-2	15				-2	10
	SUMATORIA SIGN	NIFICANCIA	-27	-23	-10	-24	-37	-20	-48	-31	-220

S.- Significancia

MATRIZ A2: INTERELACCION: ACCION - FACTORES AMBIENTALES

			VIA	A NANEGAL	ITO - NANI	EGAL
		ACCIONES	ЕТАРА Г	DE OPERACIÓ	N Y MANTE	NIMIENTO
FACT(ORES ENTALES		CIRCULACIÓN VEHICULAR	CIRCULACIÓN PEATONAL	DERECHO DE VIA	MANTENIMIENTO Y LIMPIEZA
CAT.	COMPONENTE	ELEMENTO	1	2	3	4
	Suelos	Capa Vegetal	X	X	X	
		Procesos Erosivos			X	
FISICO	Agua Superficial	Calidad A.Sup.	X	X	X	
FIS	Agua Subterránea	Calidad A.Sub.				
	Aire	Calidad Aire	X			X
	THIC	Ruido - Vibración	X			X
0	Flora	Vegetación Natural	X	X	X	
ВІОТІСО	11010	Cultivos				
BIO'	Fauna	Terrestre, Aves	X	X	X	X
	i auna	Acuática				
	Estética	Paisaje	X	X	X	
	Listerea	Recreación	X	X		
9		Salud Pública	X	X		
IMC		Accidentes	X	X		X
ONC		Tránsito Vehicular	X	X		
SOCIO-ECONOMI	Bienestar Social	Transito Peatonal	X	X		
CIO	Dieliestal Sucial	Empleo	X	X	X	X
SO		Servicios Públicos	X	X		
		Economía	X	X		X
		Plusvalía	X	X		

X Se produce impacto Pos.(+) o Neg(-)
No se produce impacto

MATRIZ B2: IDENTIFICACION DE IMPACTOS

												ΊΡΑ						S(
		ACCIONEC			E/F A F				ITO-I			EMEC			ros	ros		VALORACION POSITIVOS	
		ACCIONES		1	ETAF	A DE	OPER 2	ACIO	N Y M	ANTE 3	MIMI	ENTO	4		NUMERO IMPACTOS POSITIVOS	NUMERO IMPACTOS NEGATIVOS	SUMATORIA SIGNIFICANCIA IMPACTOS	OSL	NOI:
															ERO IMPAC POSITIVOS	IERO IMPAC NEGATIVOS	SUMATORIA IGNIFICANCI IMPACTOS	N P.	VALORACION NEGATIVOS
FACTOR	ES AMB.			CIRCULACIÓN VEHICULAR			CIRCULACIÓN PEATONAL			DERECHO DE VIA			MANTENIMIENT O Y LIMPIEZA		ERO POSI	ERO VEG/	UM/ GNIF IMP	ACIC	ALO VEG/
				RCUL			RCUL			ЕСНС			YLIM		IOM	IUMI	S	LOR	N V
CAT.	COMPONENTE	ELEMENTO		CII			CI			DER			MAI		Z	Z		VAI	
		Capa Vegetal	В	M	-2	В	В	-1	M	В	4				1	2	5	0	5
	Suelos	Procesos	M	L	5	T	P	1	T	L	4								
		Erosivos							B M	A P	2				1	0	6	0	6
	Agua Superficial	Calidad A.Sup.	В	A	-3				M	В	4				1	1	7	0	7
FISICO	- 1.Guu oupermenu	Garraga Tiloupi	P	P	3				T	L	4				-	-			,
FI	Agua Subterránea	Calidad A.Sub.													0	0	0	0	0
		Calidad Aire	В	M	-2							В	В	-1	0	2	-3	0	-3
	Aire		T	P	1							T	P	1	U	2	-3	U	-5
		Ruido - Vibración	В	A	-3							В	В	-1	0	2	-10	0	-10
		Vegetación	P B	P B	3 -1	В	A	-3	В	M	2	Т	P	1					
	Flora	Natural	T	L	4	M	P	2	M	Т	2				1	2	-6	0	-6
00	11014	Cultivos													0	0	0	0	0
вютісо			В	М	-2	В	D	1	В	Λ	3	В	М	2					
BI	_	Terrestre, Aves	Р	M P	3	Р	B P	-1 3	М	A P	2	Т	M P	2	2	3	-1	0	-1
	Fauna	Acuática													0	0	0	0	0
		Troutada													Ů	·	Ů	•	Ů
		Paisaje	B P	M L	6	B T	B P	1	B M	A P	2				3	0	17	13	4
	Estética	Dogwoodión	В	M	2	M	A	6	1-1	1					2	0	46	46	0
		Recreación	M	L	5	P	L	6							2	0	46	46	0
		Salud Pública	B P	B P	-1	В	В	1							1	1	1	-3	4
			В	P M	-2	T B	L B	-1											
00		Accidentes	Т	P	1	T	P	1							0	2	-3	0	-3
SOCIO-ECONOMICO		Tránsito	В	М	2	В	В	-1							1	1	1	0	1
CON		Vehicular	Т	P	1	Т	P	1										·	
10-E		Transito Peatonal	B T	M P	2	B T	B P	-1 1							1	1	1	0	1
soc	Bienestar Social	Empleo	A	М	8	В	М	2	В	M	-2	В	M	2	3	1	40	40	0
			T	L	4	T	L	4	T	P	1	Т	P	1	J	1	70	TU	U
		Servicios Públicos	M T	B P	4										1	0	4	0	4
			A	M	8	В	M	2				В	M	2			l		
		Economía	Т	L	4	T	L	4				T	P	1	3	0	42	42	0
		Plusvalía	A	M	8	В	M	2							2	0	30	30	0
			P	P	3	P	P	3											<u> </u>
NUMERO) IMPACTOS POSITI	VOS		8			6			6			3		23				
NUMERO) IMPACTOS NEGAT	IVOS		8	_		6			1	_		2			17			
SUMATO	ORIA SIGNIFICANCI	A IMPACTOS		73			50			50			4				177		
(Suma M	(1 x I)			/3			30			50			-				1//		,
VALORA	CION POSITIVOS		L	114		L	63			52		L	6					235	
VALORA	CION NEGATIVOS			-41			-13			-2			-2						-58
VALURACION NEGATIVOS																			

			3 - Magnitud	6 - Importancia
4	5	5 6	2,- Afectación	5,- Influencia
1	2	2 3	1,- Intensidad	4,- Duración

MATRIZ C2: VALORACION DE IMPACTOS (MATRIZ DE LEOPOLD)

		RIZ C2: VALORA		VIA NANEGALI					
		ACCIONES		DE OPERACIÓ			ACTO S	ACTO 3S	IA CIA S
			1	2	3	4	ERO IMPAC POSITIVOS	IMP,	UMATORIA GNIFICANCI IMPACTOS
FACTOF AMBIEN			CIRCULACI ÓN VEHI CULAR	CIRCULACI ÓN PEATONAL	DERECHO DE VIA	MANTENIMIEN TOYLIMPIEZA	NUMERO IMPACTOS POSITIVOS	NUMERO IMPACTOS NEGATIVOS	SUMATORIA SIGNIFICANCIA IMPACTOS
CAT.	COMPONENTE	ELEMENTO				MA			
	Suelos	Capa Vegetal	-2 5	1	4 4		1	2	5
		Procesos Erosivos			3 2		1		6
FISICO	Agua Superficial	Calidad A.Sup.	·3 3		4 4		1	1	7
FIS	Agua Subterránea	Calidad A.Sub.							
	Aire	Calidad Aire	·2 1			1		2	-3
	Aire	Ruido - Vibración	- 3			1		2	-10
	Flora	Vegetación Natural	1 4	-3 2	2 2		1	2	-6
BIOTICO	riora	Cultivos							
BIOT	Fauna	Terrestre, Aves	-2 3	·1 3	3 2	2 1	2	3	-1
	Fauna	Acuática							
	Estética	Paisaje	2 6	1 1	2 2		3		17
	Esteuca	Recreación	2 5	6 6			2		46
		Salud Pública	1 3	1 4			1	1	1
001		Accidentes	·2 1	1				2	-3
SOCIO-ECONOMICO		Tránsito Vehicular	2 1	·1 1			1	1	1
10-EC	Diamonton Conial	Transito Peatonal	2 1	1			1	1	1
soc	Bienestar Social	Empleo	8 4	2 4	-2 1	2 1	3	1	40
		Servicios Públicos	4 1				1		4
		Economía	8 4	2 4		2 1	3		42
		Plusvalía	8 3	2 3			2		30
NUMER	O IMPACTOS POSITIVO	OS	8	6	6	3	23		
NUMER	O IMPACTOS NEGATIV	70S	8	6	1	3		18	
	UMATORIA SIGNIFICANCIA IMPACTOS Guma M x I)		73	50	50	4			177

MATRIZ D2: SIGNIFICANCIA DE IMPACTOS

		MAIKIZ DZ: 5			ITO - NANEO	GAL	
		ACCIONES	ETAPA DI	E OPERACIÓ	N Y MANTE	NIMIENTO	A :IA
FACTOR	ES		1	2	3	4	TORI CANC
AMBIEN	ITALES		CIRCULACIÓN VEHICULAR	CIRCULACIÓN PEATONAL	DERECHO DE VIA	MANTENIMIEN TO Y LIMPIEZA	SUMATORIA SIGNIFICANCIA
CAT.	COMPONENTE	ELEMENTO	CIR	CIR	DEI	MAN	
	Suelos	Capa Vegetal	-10	-1	16		5
	Sucios	Procesos Erosivos			6		6
FISICO	Agua Superficial	Calidad A.Sup.	-9		16		7
FIS	Agua Subterránea	Calidad A.Sub.					
	Aire	Calidad Aire	-2			-1	-3
	Alle	Ruido - Vibración	-9			-1	-10
	Flora	Vegetación Natural	-4	-6	4		-6
BIOTICO	rioia	Cultivos					
BIO	Fauna	Terrestre, Aves	-6	-3	6	2	-1
	rauna	Acuática					
	Estética	Paisaje	12	1	4		17
	Listettea	Recreación	10	36			46
		Salud Pública	-3	4			1
ИІСО		Accidentes	-2	-1			-3
SOCIO-ECONOMICO		Tránsito Vehicular	2	-1			1
O-EC	Bienestar Social	Transito Peatonal	2	-1			1
SOCI	Dienestal Social	Empleo	32	8	-2	2	40
		Servicios Públicos	4				4
		Economía	32	8		2	42
		Plusvalía	24	6			30
	SUMATOR	RIA	73	50	50	4	177

S.- Significancia

MATRIZ A3: INTERELACCION: ACCION - FACTORES AMBIENTALES

			VÍA	NANEGALI	TO - NANE	GAL
		ACCIONES	ETA	APA DE CIERI	RE Y ABAND	ONO
FACT(ORES ENTALES		DESMANTELAMIENTO CAMPAMENTOS	REPOSICION SUELOS	LIMPIEZA GENERAL	RETIRO DE EQUIPOSY MAQUINARIA
CAT.	COMPONENTE	ELEMENTO	1	2	3	4
	Suelos	Capa Vegetal	X	X	X	X
		Procesos Erosivos				
FISICO	Agua Superficial	Calidad A.Sup.	X	X	X	X
FIS	Agua Subterránea	Calidad A.Sub.				
	Aire	Calidad A.	X	X	X	X
	Time	Ruido - Vibración	X	X	X	X
0	Flora	Vegetación Natural	X	X	X	X
вютісо	Tioru	Cultivos				
BIO'	Fauna	Terrestre, Aves	X	X	X	X
	i dulla	Acuática				
	 Estética	Paisaje	X	X	X	X
	Listetica	Recreación				
00		Salud Pública	X	X	X	X
NOMICO		Accidentes	X	X	X	X
ONC		Tránsito Vehicular	X	X	X	X
SOCIO-ECO	Bienestar Social	Transito Peatonal	X	X	X	X
CIO	Dieliestal Sucial	Empleo	X	X	X	X
80		Servicios Públicos	X	X	X	X
		Economía	X	X	X	X
		Plusvalía	X	X	X	X

X	Se produce impacto Pos.(+) o Neg(-)
	No se produce impacto

MATRIZ B3: IDENTIFICACION DE IMPACTOS

	MATRIZ B3: IDENTIFICACION DE IMPACTOS																		
Accroning				VIA NANEGALITO - NANEGAL ETAPA DE CIERRE Y ABANDONO							TOS	TOS	< -		_				
ACCIONES			1]	ETAP	A DE (LIERF	EYA	BAND 3	UNO		4		NUMERO IMPACTOS POSITIVOS	NUMERO IMPACTOS NEGATIVOS	NNCL TOS	CION	CION	
				TO										MERO IMPAC POSITIVOS AERO IMPAC NEGATIVOS		SUMATORIA SIGNIFICANCIA IMPACTOS	VALORACION POSITIVOS	VALORACION NEGATIVOS	
FACTO	ORES AMB.			AN LE EN TO AMEN	n		REPOSICION SUELOS			LIMPI EZA GENERAL			RETIRO DE EQUIPOSY IAQUINARIA		MER PO	MER	SUM IGNI IMI	VAL(VALO
CAT.	COMPONENTE	ELEMENTO	2000	DESMAN I ELA MIENTO CAMPAMENTO			REPC			LIM			RETIRO DE EQUIPOS Y MAQUINARIA	,	NUI	NUI	S		
CA1.	COMPONENTE		M	М	-5	M	М	-5	М	В	-4	M	M	-5	_		24	_	24
	Suelos	Capa Vegetal	M	P	2	M	P	2	T	P	1	M	P	2	0	4	-34	0	-34
		Procesos Erosivos													0	0	0	0	0
			В	M	-2	В	M	-2	В	M	-2	В	M	-2			_		
FISICO	Agua Superficial	Calidad A.Sup.	T	P	1	T	P	1	T	P	1	T	P	1	0	4	-8	0	-8
FIS	Agua Subterránea	Calidad A.Sub.													0	0	0	0	0
			M	В	-4	В	M	-2	M	M	-5	В	M	-2					
	Aire	Calidad A.	T	P	1	T	P	1	T	P	1	M	P	2	0	4	-15	0	-15
	Mic	Ruido - Vibración	M	M	-5	M	В	-4	M	В	-4	A	M	-8	0	4	-34	0	-34
		Vegetación	M M	P B	2 -4	T M	P B	-4	T B	P M	-2	M M	P B	2 -4					
	Flora	Natural	M	P	2	T	P	1	T	P	1	T	P	1	0	4	-18	0	-18
0	rioia	Cultivos													0	0	0	0	0
вютісо			M	В	-4	В	M	-2	В	M	-2	M	В	-4					
BI	F	Terrestre, Aves	T	P	1	Т	P	1	Т	P	1	M	P	2	0	0 4 -1	-16	0	-16
	Fauna	Acuática													0	0	0	0	0
			M	В	-4	В	M	-2	В	M	-2	M	В	-4					
	Estética	Paisaje	T	P	1	Т	P	1	Т	P	1	T	P	1	0	4	-12	0	-12
	Esteuca	Recreación													0	0	0	0	0
					_	v	n	4	м	M	_	W	M	-					
		Salud Pública	M T	M P	-5 1	M T	B P	-4 1	M T	M P	-5 1	M M	M P	-5 2	0	4	-24	0	-24
		Accidentes	M	Α	-6	M	В	-4	M	В	-4	A	M	-8	0	4	-38	0	-38
исо			T	P	1	T	P	1	T	P	1	P	P	3			30	_	30
NON		Tránsito Vehicular	B T	M P	-2 1	B T	B P	-1 1	B T	B P	-1 1	B T	M P	-2 1	0	4	-6	0	-6
SOCIO-ECONOMICO		Transito	M	В	-4	М	В	-4	М	В	-4	M	M	-5	0	4	-22	0	-22
OCI O	Bienestar Social	Peatonal	T	P	1	T	P	1	T	P	1	M	P	2		4	-22	U	-22
SC		Empleo	M T	B L	4	M T	M L	5 4	M T	B L	4	M T	M L	5 4	4	0	72	72	0
		Servicios	В	M	-2	В	M	-2	В	M	-2	M	В	-4	0	4	-10	0	-10
		Públicos	T	P	1	T	P	1	T	P	1	M	2	1	U	4	-10	U	-10
		Economía	B T	B P	1	B T	M P	1	B T	B P	1	B T	M L	2	4	0	12	12	0
		Dhamile	В	M	2	В	В	1	В	В	1	В	М	2	_	0			0
		Plusvalía	T	P	1	T	P	1	T	P	1	T	P	1	4	0	6	6	0
NUME	NUMERO IMPACTOS POSITIVOS			3			3			3			3		12				
NUME	NUMERO IMPACTOS NEGATIVOS			12			12			12			12			48			
	TORIA SIGNIFICAN																	ľ	
	M x I)			-42			-18			-19			-68				-147		,
VALOI	RACION POSITIVOS			19			23			18			30					90	
VALOI	RACION NEGATIVOS			-61			-41			-37			-98						-237
				-		<u> </u>			<u> </u>	•									

 1
 2
 3
 1,- Intensidad
 4,- Duración

 4
 5
 6
 2,- Afectación
 5,- Influencia

 3,- Magnitud
 6,- Importancia

MATRIZ C3: VALORACION DE IMPACTOS (MATRIZ DE LEOPOLD)

		KIZ C3: VALUR		ÍA NANEGALI					
ACCIONES FACTORES AMBIENTALES		ETA	APA DE CIERE	RE Y ABANDO	NO	PACT OS	ACT(SIA VCIA OS	
		DESMANTELA MIENTO CAMPAMENTO S	REPOSICION SUELOS	LIMPIEZA C	RETIRO DE EQUIPOSY & MAQUINARIA	NUMERO IMPACTOS POSITIVOS	NUMERO IMPACTOS NEGATIVOS	SUMATORIA SIGNIFICANCIA IMPACTOS	
CAT.	COMPONENTE	ELEMENTO							
	Suelos	Capa Vegetal	-5 2	-5 2	-4	-5 2		4	-34
		Procesos Erosivos							
FISICO	Agua Superficial	Calidad A.Sup.	-2	-2 1	-2 1	-2 1		4	-8
FIS	Agua Subterránea	Calidad A.Sub.							
	Aire	Calidad A.	- 4	·2 1	·5 1	-2 2		4	-15
	Aire	Ruido - Vibración	-5 2	- 4	- 4	- <mark>8</mark> 2		4	-34
	Flora	Vegetación Natural	- 4	4 1	-2 1	4 1		4 -1	-18
вютісо	riora	Cultivos							
BIO	Fauna	Terrestre, Aves	4 1	-2 1	·2 1	- 4		4	-16
	rauna	Acuática							
	Estética	Paisaje	- 4	-2 1	·2 1	4 1		4	-12
		Recreación							
		Salud Pública	-5	-4 1	-5 1	-5 2		4	-24
001		Accidentes	-6 1	-4 1	-4 1	- 8 3		4	-38
SOCIO-ECONOMICO		Tránsito Vehicular	-2 1	1	1	-2 1		4	-6
10-EC	Bienestar Social	Transito Peatonal	-4 1	-4 1	-4 1	-5 2		4	-22
SOC	Dienestai sociai	Empleo	4 4	5 4	4 4	5 4	4		72
		Servicios Públicos	-2 1	-2 1	-2 1	-4 1		4	-10
		Economía	1 1	2 1	1 1	2 4	4		12
		Plusvalía	2 1	1 1	1 1	2 1	4		6
NUMERO IMPACTOS POSITIVOS		3	3	3	3	12			
NUMERO IMPACTOS NEGATIVOS		12	12	12	12		48		
SUMATORIA SIGNIFICANCIA IMPACTOS (Suma M x I)		-42	-18	-19	-68			-147	

M.- Magnitud S.- Significancia
I.- Importanci **S = M x I**

MATRIZ D3: SIGNIFICANCIA DE IMPACTOS

		11 KIZ D3. 3101			TO - NAN		ΙA
		ACCIONES	ETAPA	DE CIERF	RE Y ABAN	NDONO	CANC
FACTOR	ES		1	2	3	4	VIFIC
AMBIENTALES		DESMANTELAMIENTO CAMPAMENTOS	REPOSICION SUELOS	LI MPIEZA GENERAL	RETIRO DE EQUIPOS Y MAQUINARIA	SUMATORIA SIGNIFICANCIA	
CAT.	COMPONENTE	ELEMENTO	DESMAN CAM'	REPOSI	LIMPIE	RETIRO	SUM
	Suelos	Capa Vegetal	-10	-10	-4	-10	-34
		Procesos Erosivos					
FISICO	Agua Superficial	Calidad A.Sup.	-2	-2	-2	-2	-8
F	Agua Subterránea	Calidad A.Sub.					
	Aire	Calidad A.	-4	-2	-5	-4	-15
		Ruido - Vibración	-10	-4	-4	-16	-34
	Flora Fauna	Vegetación Natural	-8	-4	-2	-4	-18
BIOTICO		Cultivos					
BIO		Terrestre, Aves	-4	-2	-2	-8	-16
	raulia	Acuática					
	Estética	Paisaje	-4	-2	-2	-4	-12
	Estetica	Recreación					
		Salud Pública	-5	-4	-5	-10	-24
ИІСО		Accidentes	-6	-4	-4	-24	-38
ONO		Tránsito Vehicular	-2	-1	-1	-2	-6
SOCIO-ECONOMI	Bienestar Social	Transito Peatonal	-4	-4	-4	-10	-22
SOCI	Dichestal Social	Empleo	16	20	16	20	72
		Servicios Públicos	-2	-2	-2	-4	-10
		Economía	1	2	1	8	12
		Plusvalía	2	1	1	2	6
	SUMATORIA SIGN	IIFICANCIA	-42	-18	-19	-68	-147

S.- Significancia

9.2. DESCRIPCIÓN DE IMPACTOS

En las diferentes etapas se obtuvieron los siguientes impactos:

Tabla9.17 Valoración de los impactos ambientales durante la etapa de construcción

ETAPA DE CONSTRUCCIÓN							
ACCIÓN	VALORACIÓN (-)						
Trazado y replanteo eje de la vía	-28						
Campamento e instalaciones provisionales	-33						
Ruidos, compactación de sub-rasante, base, sub-base y capa de rodadura	-37						
Movimientos de tierra (corte y relleno)	-42						
Lubricantes	-48						
Manejo de residuos y escombros	-55						
Equipo de construcción	-68						
Tendido de base, sub-base y capa de rodadura	-79						

Tabla9.18 Valoración de los impactos ambientales durante la etapa de operación y mantenimiento

ETAPA DE OPERACIÓN Y MANTENIMIENTO							
ACCIÓN VALORACIÓN (
Circulación vehicular	-41						
Circulación peatonal	-13						
Derecho de vía	-2						
Mantenimiento y limpieza	-2						

Tabla9.19 Valoración de los impactos ambientales durante la etapa de operación y mantenimiento

ETAPA DE CIERRE Y ABANDONO							
ACCIÓN VALORACIÓN (-							
Desmantelamiento campamentos	-61						
Reposición de suelos	-41						
Limpieza general	-37						
Retiro de equipos y maquinaria	-98						

9.2.1. Resultados de la Evaluación de Impactos

Tabla 9.20 Resultados de la evaluación de impactos ambientales

RESULTADOS DE IMPACTOS AMBIENTALES									
ETAPA	IMPACTOS POSITIVOS	IMPACTOS NEGATIVOS							
CONSTRUCCIÓN	13	90	103						
OPERACIÓN Y MANTENIENDO	23	17	40						
CIERRE Y ABANDONO	12	48	60						

Tabla 9.21 Resultados de significancia de los factores ambientales

RESULTADOS DE SIGNIFICANCIA DE LOS FACTORES AMBIENTALES									
ETAPA	IMPACTOS POSITIVOS	IMPACTOS NEGATIVOS	TOTAL DE IMPACTOS						
CONSTRUCCIÓN	170	-390	-220						
OPERACIÓN Y MANTENIENDO	235	-58	177						
CIERRE Y ABANDONO	90	-237	-147						

Los impactos ambientales que más resalta en este estudio, se presentan en la etapa constructiva como son:

Tabla 9.22 Impactos ambientales de mayor importancia

ELEMENTO	SIGNIFICANCIA
Terrestre, Aves	-47
Capa Vegetal	-45
Accidentes	-37
Ruido - Vibración	-35
Paisaje	-35
Procesos Erosivos	-32
Vegetación Natural	-31
Calidad Aire	-26
Salud Pública	-23
Calidad A.Sup.	-20
Tránsito Peatonal	-20
Tránsito Vehicular	-14
Cultivos	-7
Servicios Públicos	-7
Recreación	-6
Plusvalía	10
Empleo	67
Economía	88

Se puede apreciar que la significancia más negativa en el proceso constructivo, es la afectación a la fauna y flora, de la zona del proyecto, pero los aspectos positivos se muestran en el aumento significativo del empleo y economía de la zona.

9.3. PLAN DE MANEJO AMBIENTAL

El plan de manejo ambiental tiene como objetivo definir los mecanismos y/o medidas que ayuden a disminuir, prevenir los daños que se puedan producir en las áreas de influencia directa o indirecta del proyecto. Además busca maximizar aquellos aspectos positivos que se obtuvieron durante la evaluación de proyectos.

9.3.1. Programa de mitigación de impacto ambiental

a) Plan para el manejo de la flora y fauna

Para reducir al máximo el impacto causado a la fauna, se identificará los sectores en los cuales se desenvuelve la vida, con el objetivo de colocar señales de tipo informativas las cuales indicaran a los trabajadores y a la maquinaría, que se debe trabajar con un cuidado especial para evitar el atropellamiento de animales y la destrucción de nidos de aves.

Los trabajos de limpieza y desbroce, se limitarán al área física, indispensable para los trabajos de construcción y deberán realizarse en forma tal que causen el mínimo daño posible en zonas aledañas.

Los suelos que por requerimiento para la construcciones de obras fueron compactado deberán ser des compactados y se realizara la reforestación de especies nativas de la zona, tanto en las zonas des compactadas como en aquellas que fueron afectadas por la ejecución del proyecto.

b) Plan de calidad del aire y emisiones de fuentes móviles.

Se mantendrá húmedo el suelo mediante riego de agua, para evitar la generación de polvo que generalmente se produce en obras de construcción, este riego dependerá del tipo de suelo y condiciones climáticas.

Para material fino que se utiliza en la realización de obras se colocara plástico o cobertores bien sujetados cubriendo en su totalidad al material fino evitando que sea llevado por el viento, incluyendo arena y áridos.

Se efectuara mantenimiento quincenal a los motores de los equipos de construcción y transporte, para evitar emanaciones excesivas de dióxido de carbono.

Queda prohibida la quema a cielo abierto de desperdicios y desechos, llantas, cauchos, plásticos, arbustos, malezas o de otros residuos, tales como: filtros de aceite, pilas, baterías, guaipes o franelas con residuos de combustibles.

El uso de químicos tóxicos y volátiles debe ser muy cuidadoso, manteniéndolos en recipientes bien sellados.

c) Plan de atenuación de ruido

Se dotara de silenciadores a los vehículo, maquinaria, equipo pesado para disminuir las emisiones sonoras, de igual menara se debe dotar de protección auditiva a los operadores y ayudante de máquina, las cuales generen ruido superior a 80 dB.

Se debe prohibir la realización de festejos en el sitio de trabajo y áreas aledañas.

Para disminuir el ruido que va a afectar a las viviendas aledañas se colocará doble ventana en las mismas con el objetivo de conseguir la atenuación del efecto producido por el ruido de la maquinaria.

d) Plan para la calidad del suelo

Con el fin de mitigar la alteración del suelo por efecto del campamento, serán realizados una vez se hayan terminados la construcción, durante la ejecución de las obras se destinara una zona señalizada para el almacenamiento temporal de combustibles y aceites en tanques, protegidos de lluvia y viento. Dado el caso que los tanques de almacenamiento se produzca fisuras y permitan la salida de los fluidos en su interior debe estar cercado con aserrín o arena para mitigar el derrame.

e) Plan de manejo de materiales peligrosos

Materiales peligrosos son cuyas características sean reactivas, inflamables, corrosivas, infecciosas, o tóxicas, que represente un riesgo para la salud humana,

los recursos naturales y el ambiente.

El constructor y los trabajadores deberán cuidar todas las fases de la Gestión de los desechos peligrosos como son: La generación, el manejo, es decir la recolección, transporte, tratamiento y reciclaje, así como los mecanismos de prevención, control, registro, tratamiento y disposición final, tal como lo establece el TULSMA.

En el caso de combustibles, será de uso exclusivo de vehículos y maquinaria pesada, cuyo consumo máximo será de 55 galones/maquinaria-día, los cuales serán recolectados en recipientes de 55 galones, tapados y plenamente identificables. Los filtros de aceite, guaipes, ente otros, serán dispuestos de igual manera en recipientes tapados y en perfectas condiciones para evitar goteos y derrames.

Una vez que se cuente con una cantidad considerable de desechos, se proceda al traslado del residuo, el medio que los transportará, deberá estar en perfectas condiciones de funcionamiento, con la señalización adecuada y sin pasajeros.

El transporte de los materiales peligrosos constara con todos los documentos necesarios tales como, el formulario de seguimiento indicando la identificación del material que transporta, cantidad, origen, destino, fecha de ingreso y salida. Esta información podrá ser revisada en cualquier momento por el supervisor ambiental del proyecto.

f) Plan de manejo de combustibles

En caso de derrame de combustible se procederá:

A cerrar la fuente del combustible, se colocara material absorbente sobre la zona del derrame para mitigar el daño hecho y dirigiendo el combustible que fluya hacia las trampa de grasa.

Una vez recogido el combustible se colocará en el recipiente previsto para la recepción, en el caso de utilizarse material absorbente es reutilizable, de lo contrario, si se ha utilizado arena o aserrín, éste se deberá colocar en un recipiente plástico para su disposición final en un sitio controlado.

Se deberá realizar la limpieza del área afectada, mediante la remoción de material contaminado, lavado de superficies, etc. Una vez la zona este libre de vapores de combustible se podrá reactivar los trabajos.

Se deberá levantar un informe técnico del incidente, el cual contenga al menos información sobre la magnitud del evento, volumen derramado, volumen recuperado, sitios afectados, labores de limpieza realizados, responsable del incidente, hora, fecha y lugar.

g) Plan para la calidad del agua y saneamiento ambiental

Las aguas servidas producidas en el campamento (ducho y sanitario), deben ser dirigidas a pozos sépticos.

Se debe mitigar de inmediato cualquier fuga de combustible o aceites debido a que estas pueden contaminar las aguas superficiales.

Los materiales sobrantes d la construcción serán dispuestas en una zona adecuada y no deberán ser colocados de ninguna manera en cruces de agua o al borde de sus cauces.

h) Plan para interrupción de servicios básicos

Se debe realizar una planificación adecuada y notificar a los habitantes de la zona si se va a realizar algún corte se los servicios básicos, con el fin de evitar incomodidades para las partes, esta interrupción deberá ser los más corta posible, además si se produce accidentalmente corte de servicio básicos el contratistas deberá contar con repuestos para reparar el daño, en el menor tiempo posible.

i) Plan para la instalación de campamentos

Se dispondrá para el campamento de:

- ✓ Disponer de servicio eléctrico, agua, batería sanitaria.
- ✓ Cuando se almacene combustible en el campamento se deberá tener recubiertos con láminas impermeables y equipo contra incendios.
- ✓ Disposición de aguas grises y negras.
- ✓ Clasificación de desechos.
- ✓ Materiales y equipos para contener derrames.
- ✓ Áreas para enfermos.
- ✓ Botiquines de primeros auxilios.
- ✓ Implementar prácticas adecuadas de orden y limpieza.
- j) Plan señalización para seguridad y protección

Las señales se colocarán en los lugares donde las personas tengan suficiente tiempo para receptar el mensaje, reaccionar y acatarlo, se los colocara en los lugares de mayor prioridad tales como lugares de almacenamiento de combustible, a una distancia en 30 y 50 metros de donde se esté realizando trabajos en la vía, etc.

CAPITULO X

9. COSTOS

9.1. CÁLCULO DE VOLÚMENES DE OBRA

- a) Excavación marginal (124.789,29 m³)
- b) Relleno compactado con material clasificado (27.047,96 m³)
- c) Transporte de material (1.2 esponjamiento de material suelto)

149.747,148 m³ los cuales se dispondrán a una distancia de 13 km donde se propuso para realizar un relleno;

Por lo que se obtuvo un resultado de: 11.520 m³/km

d) Sub-base clase 3

Tramo I: $7.2 \text{ m x } 12,0 \text{ m x } (20^{\circ} \text{ x } 2.,4 \text{ cm}) = 43.891,20 \text{ m}^{3}$

Tramo II: $7.2 \text{ m x } 1.861.80 \text{ m x } (25\text{" x } 2,54 \text{ cm}) = 8512,15 \text{ m}^3$

Total de sub-base clase $3 = 52.403,35 \text{ m}^3$

e) Base clase 3

Tramo I: $7.2 \text{ m x } 12.000 \text{ m x } (10\text{" x } 2.54 \text{ cm}) = 21.945,60 \text{ m}^3$

Tramo II: $7.2 \text{ m x } 1.861,80 \text{ m x } (10\text{" x } 2.54 \text{ cm}) = 3.404,86 \text{ m}^3$

Total de sub-base clase $3 = 25.350,46 \text{ m}^3$

f) Tratamiento bituminoso superficial tipo 2B

 $7.2 \text{ m} \times 13.861,80 \text{ m} = 99.804,96 \text{ m}^2$

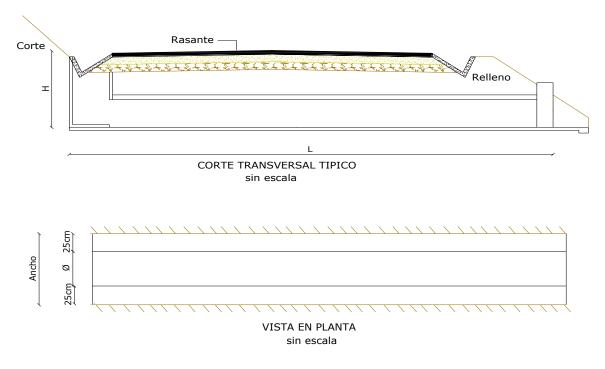


Figura 9.1 Corte transversal y en planta de una alcantarilla

g) Excavación y relleno para alcantarillas

Tabla 9.1 Excavación y relleno para alcantarillas

Tipo	Diámetro	Abscisa De Ubicación	Н	Ancho	Longitud	Volumen
	m	km	m	m	m	m^3
TIPO I	1,2	0+210,00	1,458	1,1	8	12,83
TIPO II	1,2	0+440,00	2,058	1,7	10	34,99
TIPO II	1,2	0+660,00	1,458	1,1	10	16,04
TIPO II	1,2	1+220,00	1,458	1,1	12,4	19,89
TIPO II	1,2	1+340,00	1,458	1,1	12,4	19,89
TIPO II	1,2	1+910,00	1,458	1,1	10	16,04
TIPO II	1,2	2+035,00	1,458	1,1	10	16,04
TIPO II	1,2	2+140,00	1,458	1,1	12,4	19,89
TIPO II	1,2	2+220,00	1,458	1,1	23	36,89
TIPO II	1,2	2+435,00	2,058	1,7	12,4	43,38
TIPO II	1,2	2+480,00	1,458	1,1	14	22,45
TIPO II	1,2	2+620,00	1,458	1,1	10	16,04
TIPO II	1,2	2+700,00	1,458	1,1	10	16,04
TIPO II	1,2	2+820,00	2,058	1,7	12,4	43,38
TIPO II	1,2	2+920,00	1,458	1,1	10	16,04
TIPO II	1,2	3+160,00	1,458	1,1	10	16,04
TIPO II	1,2	3+280,00	1,458	1,1	12,4	19,89

		Abscisa				
T '	Diámetro	De	Н	Ancho	Long.	Volumen
Tipo		Ubicación				
	m	km	m	m	m	m ³
TIPO II	1,2	3+400,00	1,458	1,1	10	16,04
TIPO II	1,2	3+630,00	2,058	1,7	12,4	43,38
TIPO II	1,2	3+765,00	2,058	1,7	12,4	43,38
TIPO I	1,2	3+860,00	1,458	1,1	13	20,85
TIPO II	1,2	3+945,00	2,058	1,7	10	34,99
TIPO II	1,2	4+108,00	1,458	1,1	10	16,04
TIPO II	1,5	4+330,00	2,358	2	12,4	58,48
TIPO II	1,2	4+480,00	2,058	1,7	12,4	43,38
TIPO II	1,5	4+740,00	2,358	2	12,4	58,48
TIPO II	1,2	4+870,00	2,058	1,7	12,4	43,38
TIPO II	1,2	5+270,00	2,058	1,7	12,4	43,38
TIPO II	1,2	5+520,00	2,058	1,7	12,4	43,38
TIPO II	1,2	5+720,00	2,058	1,7	12,4	43,38
TIPO II	1,2	6+089,00	2,058	1,7	11	38,48
TIPO II	2	6+240,00	2,858	2,5	14	100,03
TIPO II	1,2	6+540,00	2,058	1,7	15	52,48
TIPO II	1,2	7+064,00	1,458	1,1	12,4	19,89
TIPO II	1,5	7+934,00	2,358	2	18	84,89
TIPO II	1,2	8+075,00	1,458	1,1	12,4	19,89
TIPO II	1,5	8+287,00	2,358	2	12,4	58,48
TIPO II	1,2	8+389,00	2,058	1,7	12,4	43,38
TIPO II	1,8	8+460,00	2,658	2,3	12,4	75,81
TIPO II	1,2	8+562,00	2,058	1,7	12,4	43,38
TIPO II	1,2	8+614,00	2,058	1,7	12,4	43,38
TIPO II	1,2	8+774,00	1,458	1,1	13	20,85
TIPO II	1,2	9+084,00	2,058	1,7	12,4	43,38
TIPO II	1,2	9+390,00	1,458	1,1	10	16,04
TIPO II	1,2	9+794,00	2,058	1,7	12,4	43,38
TIPO II	1,2	10+234,00	2,058	1,7	12,4	43,38
TIPO II	1,2	10+384,00	2,058	1,7	12,4	43,38
TIPO II	1,2	10+574,00	2,058	1,7	12,4	43,38
TIPO II	1,2	10+749,00	1,458	1,1	10	16,04
TIPO II	1,2	10+949,00	1,458	1,1	12,4	19,89
TIPO II	1,2	11+154,00	2,058	1,7	12	41,98
TIPO II	1,5	11+375,00	1,458	1,1	10	16,04
TIPO II	1,2	11+859,00	2,358	2	12,4	58,48
TIPO II	1,2	12+002,00	2,058	1,7	12,4	43,38
TIPO II	1,2	12+154,00	1,458	1,1	10	16,04
TIPO II	1,2	12+660,00	2,058	1,7	12,4	43,38
					TOTAL	1.983,40 m ³

h) Excavación para cunetas y encauzamientos

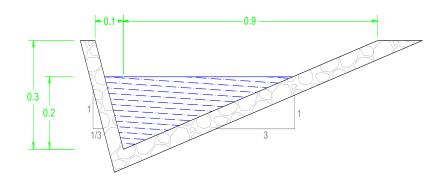


Figura 9.2 Corte transversal de la sección típica de cuneta

Espesor =
$$0.15 \text{ m}$$

Área de la sección transversal = 0.150 m²

Total a excavar = $0.150 \times 13861.80 \times 2 = 4.158,54 \text{ m}^3$

i) Hormigón estructural de cemento Portland Clase B (f'c=210 Kg/cm2) muros de ala, ver detalle en el Plano v_01_ detalle de alcantarillas

Tabla 9.1 Volumen de hormigón en muros de ala

Di	mensi	ones M	uros de	e Ala			Volumen de hormigón (m3)				
Diámetros (m)	H(m)	L (m)	M (m)	N (m)	G(m)	e(m)	Alas	Cabezal	Zapata	Diente	Volumen
0,6	0,9	0,3	0,25	0,6	1,3	0,42	0,081	0,887	0,241	0,1712	1,380
1,2	1,5	0,4	1,00	1,7	1,9	1,2	0,384	1,719	0,899	0,344	3,346
1,5	1,8	0,4	1,45	2,3	2,2	1,63	0,627	2,193	1,455	0,4368	4,712
1,8	2,1	0,4	1,90	3	2,5	2,12	0,924	2,705	2,171	0,5392	6,340
2,0	2,3	0,4	2,20	3,4	2,7	2,4	1,152	3,068	2,703	0,6	7,523

Tabla 9.2 Resumen de volumen de hormigón en muros de ala

Diámetros (m)	Cantidad	Volumen total m ³
0,6	26	35,89
1,2	24	80,30
1,5	5	23,56
1,8	1	6,34
2,0	1	7,52
		153,61
	Total	m^3

j) Hormigón estructural de cemento Portland Clase B (f'c=210 Kg/cm²) - cunetas laterales

Área de hormigón de la sección transversal de la cuneta $0.156 \ m^2$

Total de volumen de hormigón = $0,156 \times 13.861.80 \times 2 = 4.324,88 \text{ m}^3$

k) Longitudes de tubería

Tabla 9.4 Longitudes de tubería

N°	Tipo	Diám	Abscisa De Ubicación	Long	Long N° T	Tipo	Diám	Abscisa De Ubicación	Longit ud
		m	km	m			m	km	m
1	TIPO I	1,2	0+210,00	8	29	TIPO II	1,2	5+520,00	12,4
2	TIPO II	1,2	0+440,00	10	30	TIPO II	1,2	5+720,00	12,4
3	TIPO II	1,2	0+660,00	10	31	TIPO II	1,2	6+089,00	11
4	TIPO II	1,2	1+220,00	12,4	32	TIPO II	2	6+240,00	14
5	TIPO II	1,2	1+340,00	12,4	33	TIPO II	1,2	6+540,00	15
6	TIPO II	1,2	1+910,00	10	34	TIPO II	1,2	7+064,00	12,4
7	TIPO II	1,2	2+035,00	10	35	TIPO II	1,5	7+934,00	18
8	TIPO II	1,2	2+140,00	12,4	36	TIPO II	1,2	8+075,00	12,4
9	TIPO II	1,2	2+220,00	23	37	TIPO II	1,5	8+287,00	12,4
10	TIPO II	1,2	2+435,00	12,4	38	TIPO II	1,2	8+389,00	12,4

N°	Tipo	Diám	Abscisa De Ubicación	Long	N°	Tipo	Diám	Abscisa De Ubicación	Longit ud
		m	km	m			m	km	m
11	TIPO II	1,2	2+480,00	14	39	TIPO II	1,8	8+460,00	12,4
12	TIPO II	1,2	2+620,00	10	40	TIPO II	1,2	8+562,00	12,4
13	TIPO II	1,2	2+700,00	10	41	TIPO II	1,2	8+614,00	12,4
14	TIPO II	1,2	2+820,00	12,4	42	TIPO II	1,2	8+774,00	13
15	TIPO II	1,2	2+920,00	10	43	TIPO II	1,2	9+084,00	12,4
16	TIPO II	1,2	3+160,00	10	44	TIPO II	1,2	9+390,00	10
17	TIPO II	1,2	3+280,00	12,4	45	TIPO II	1,2	9+794,00	12,4
18	TIPO II	1,2	3+400,00	10	46	TIPO II	1,2	10+234,00	12,4
19	TIPO II	1,2	3+630,00	12,4	47	TIPO II	1,2	10+384,00	12,4
20	TIPO II	1,2	3+765,00	12,4	48	TIPO II	1,2	10+574,00	12,4
21	TIPO I	1,2	3+860,00	13	49	TIPO II	1,2	10+749,00	10
22	TIPO II	1,2	3+945,00	10	50	TIPO II	1,2	10+949,00	12,4
23	TIPO II	1,2	4+108,00	10	51	TIPO II	1,2	11+154,00	12
24	TIPO II	1,5	4+330,00	12,4	52	TIPO II	1,5	11+375,00	10
25	TIPO II	1,2	4+480,00	12,4	53	TIPO II	1,2	11+859,00	12,4
26	TIPO II	1,5	4+740,00	12,4	54	TIPO II	1,2	12+002,00	12,4
27	TIPO II	1,2	4+870,00	12,4	55	TIPO II	1,2	12+154,00	10
28	TIPO II	1,2	5+270,00	12,4	56	TIPO II	1,2	12+660,00	12,4

Tabla 9.5 Resumen de longitudes de tubería

Diámetro (m)	Longitud Total (m)
1,2	589
1,5	67,6
1,8	12,4
2	14

I) Marcas de pintura

Líneas de espaldón: 13.861,80 m x 2 = 277.723,60 m

Línea división de carril continua = 13.861,80 m x 2 = 277.723,60 m

Total = 277.723,60 m + 277.723,60 m = 55.447,20 m

10.2. ANÁLISIS DE PRECIOS UNITARIOS

RUBRO:	302-1	ANALISIS	DE PR	ECIOS UNITARIOS (I	USD) m2		
DETALLE:	Desbroce, desbosque y limpieza			RENDIMIEN		0.00050	
EQUIPOS	DEGOD/DOION	0.00		T.D.E.		DELIDIUMELIE I	20070
COD	DESCRIPCION	CANTID:	AD	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
1	TRACTOR DE CARRILES 285 HP	1.00		75.00	75.000	0.00050	0.038
3	CARGADORA FRONTAL	1.00		42.00	42.000	0.00050	0.021
4 22	MOTOSIERRA HERRAMIENTAS MANUALES	2.00 1.00		1.50 0.50	3.000 0.500	0.00050 0.00050	0.002 0.000
MANO DE (OPD A				SUBTOTAL M		0.060
COD COD	DESCRIPCION (CATEG.)	CANTID	AD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
14	INCRECTOR DE ORRA /OATAA	A 0.10		B	C=AxB	R	D=AxB
11 15	INSPECTOR DE OBRA (CAT V) OP. TRACTOR (OP I)	0.10 1.00		2.560 2.560	0.256 2.560	0.00050 0.00050	0.000 0.001
16	OP. CARGADORA (OP I)	1.00		2.560	2.560	0.00050	0.001
25	OP. EQUIPO LIVIANO (CAT III)	2.00		2.560	5.120	0.00050	0.003
24 1	AYUDANTE DE EQUIPO PEON (CAT I)	2.00 4.00		2.440 2.440	4.880 9.760	0.00050 0.00050	0.002 0.005
					SUBTOTAL N		0.013
MATERIAL COD	ES DESCRIPCION			UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
					A	В	D=AxB
					SUBTOTAL O		0.000
TRANSPO	RTE				SOBIOTALO		0.000
COD	DESCRIPCION	UNIDAD		CANTID/ A	AD	TARIFA B	COSTO D=CxR
					SUBTOTAL P		0.000
		TOTAL CO	STO D	DIRECTO (M+N+O+P)	SUBTUTALE		0.000
		COSTOS I	NDIRE	CTOS Y UTILIDAD	25.00%		0.018
		OTROS IN					0.000
ESTO	S PRECIOS NO INCLUYEN IVA.	018001	JIAL C	EL RUBRO			0.091
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		ANALIS	SIS DE DR	ECIOS UNITARIOS (USI	n)		
RUBRO:	303-2 (2)	ANALIS	JIS DE FIN	UNIDAD:	m3		
DETALLE:	Excavación en suelo			RENDIMIEN	ITO (R) =	0.01000	
FOLUDOS							
EQUIPOS COD	DESCRIPCION	CANTIDA	AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		А	-	В	C=AxB	R	D=CxR
1	TRACTOR DE CARRILES 285 HP	1.00		75.00	75.000	0.01000	0.750
6	EXCAVADORA 200 HP	1.00		50.00	50.000	0.01000	0.500
8	RODILLO LISO VIBRATORIO 13 TON	0.10		35.00	3.500	0.01000	0.035
9	TANQUERO DE 3000 GI	0.10		28.00	2.800	0.01000	0.028
					SUBTOTAL M		1.313
MANO DE OB COD	DESCRIPCION (CATEG.)	CANTIDA	AD T	IODNAL/HODA	COSTO HODA	RENDIMIENTO	COSTO
COD	DESCRIPCION (CATEG.)	CANTIDA	ΑU	JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=AxB
11	INSPECTOR DE OBRA (CAT V)	0.10		2.560	0.256	0.01000	0.003
15	OP. TRACTOR (OP I)	1.00		2.560	2.560	0.01000	0.026
18	OP. EXCAVADORA (OP I)	1.00		2.560	2.560	0.01000	0.026
12	CHOFER (TIPO D)	0.10		3.670	0.367	0.01000	0.004
24 1	AYUDANTE DE EQUIPO PEON (CAT I)	2.20 2.00		2.440 2.440	5.368 4.880	0.01000 0.01000	0.054 0.049
	LONGERTY	2.00		2.440	4.000	0.01000	0.043
					SUBTOTAL N		0.160
MATERIALES							
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
					SUBTOTAL O		0.000
TRANSPORTE					JUDIUIALU		0.000
COD	DESCRIPCION	UNIDAD		CANTIDA	AD	TARIFA	COSTO
				Α		В	D=CxR
					SUBTOTAL P		0.000
				TO (M+N+O+P)	a= 000°		1.473
		COSTOS IND			25.00%		0.368
		COSTO TOTA					0.000 1.841
EST	TOS PRECIOS NO INCLUYEN IVA.	CO310 101 <i>F</i>	AL DEL RU	,,,,,,			1.041
	QUITO - JULIO DEL 2012						
	(LUGAR Y FECHA)						

	303-2 Relleno compactado con material clasificado	ANALISIS DE PRECIOS UNITARIOS (USD) UNIDAD: m3 RENDIMIENTO (R) = 0.50000								
EQUIPOS COD	DESCRIPCION	CANTID	AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO			
19 22	COMPACTADOR MANUAL 5 HP HERRAMIENTAS MANUALES	A 1.00 2.00		B 1.50 0.50	C=AxB 1.500 1.000	R 0.50000 0.50000	D=CxR 0.750 0.500			
MANORE	ODDA				SUBTOTAL M		1.250			
MANO DE COD	DESCRIPCION (CATEG.)	CANTID	AD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO			
24	AYUDANTE DE EQUIPO	A 0.10	-	B 2.440	C=AxB 0.244	R 0.50000	D=AxB 0.122			
1	PEON (CAT I)	1.10		2.440	2.684	0.50000	1.342			
			1		SUBTOTAL N		1.464			
MATERIAI COD	LES DESCRIPCION		1	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO			
COD	DESCRIPCION			UNIDAD	A	B B	D=AxB			
25	MATERIAL DE RELLI	ENO		m3	1.100	2.000	2.200			
TRANSPO)RTF				SUBTOTAL O		0.000			
COD	DESCRIPCION	UNIDAD		CANTIDA A	AD	TARIFA B	COSTO D=CxR			
						J	D-OAIT			
					SUBTOTAL P		0.000			
				RECTO (M+N+O+P) TOS Y UTILIDAD	25.00%		2.714 0.679			
		OTROS IN	DIRECT	OS %	£J.UU /0		0.000			
ESTOS	PRECIOS NO INCLUYEN IVA. QUITO - JULIO DEL 2012 (LUGAR Y FECHA)	COSTO TO	OTAL DE	EL RUBRO			3.393			

RUBRO: DETALLE:	309-1 Transporte de material de	ANALISIS	DE PR	RECIOS UNITARIOS UNIDAD: RENDIMIEN	m3/Km	0.01053	
EQUIDO0	excavación (Transporte libre 500						
EQUIPOS COD	DESCRIPCION	CANTIDA	AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		Α		В	C=AxB	R	D=CxR
5	VOLQUETA 12 m3	1.00		37.00	37.000	0.01053	0.390
MANO DE		CANTID	A.D.	IODNAL GIODA	SUBTOTAL M		0.390
COD	DESCRIPCION (CATEG.)	CANTID: A	AD	JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=AxB
12	CHOFER (TIPO D)	0.10		3.670	0.367	0.01053	0.004
					SUBTOTAL N		0.004
MATERIAI COD	LES DESCRIPCION		-	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
					A	В	D=AxB
					SUBTOTALO		0.000
TRANSPO	DRTE				SUBTOTAL O		0.000
COD	DESCRIPCION	UNIDAD		CANTID. A	AD	TARIFA B	COSTO D=CxR
		1			SUBTOTAL P		0.000
				DIRECTO (M+N+O+P			0.393
		OTROS IN		CTOS Y UTILIDAD	25.00%		0.098
				DEL RUBRO			0.492
ESTOS	PRECIOS NO INCLUYEN IVA. QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		ANALISIS	DE PR	ECIOS UNITARIOS ((USD)		
RUBRO:	403-1 : Subbase, Clase 3			UNIDAD: RENDIMIEN	m3 ITO (R.) –	0.01250	
	•			KENDIWIEN	110 (11) =	0.01230	
EQUIPOS COD	DESCRIPCION	CANTIE	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		Α		В	C=AxB	R	D=CxR
7 8	MOTONIVELADORA, 135 HP RODILLO LISO VIBRATORIO 13 TON	1.00 1.00		37.00 35.00	37.000 35.000	0.01250 0.01250	0.463 0.438
9	TANQUERO DE 3000 GI	1.00		28.00	28.000	0.01250	0.436
MANO DE	- ORRA				SUBTOTAL M		1.250
COD	DESCRIPCION (CATEG.)	CANTIE	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
17	OP. MOTONIVELADORA (OP I)	1.00)	B 2.560	C=AxB 2.560	R 0.01250	D=CxR 0.032
21	OP. RODILLO (OP II)	1.00		2.540	2.540 2.540	0.01250	0.032
12	CHOFER (TIPO D)	1.00		3.670	3.670	0.01250	0.046
24 1	AYUDANTE DE EQUIPO PEON (CAT I)	3.00 4.00		2.440 2.440	7.320 9.760	0.01250 0.01250	0.092 0.122
'	PEON (CATI)	4.00	,	2.440	9.700	0.01230	0.122
MATERIA	ALES				SUBTOTAL N		0.323
COD	DESCRIPCION			UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
8	SUBBASE, CLASI	E 3		m3	A 1.200	5.500	D=AxB 6.600
	,						
					SUBTOTAL O		6.600
TRANSP		LINIDAD		OALITIC :		TADEA I	
COD	DESCRIPCION	UNIDAD		CANTIDAI A	ט	TARIFA B	COSTO D=AxB
				* *			
					SUBTOTAL P		0.000
		TOTAL CO	STO DIR	ECTO (M+N+O+P)	JOB TOTAL P		8.173
		COSTOS IN	NDIRECT	FOS Y UTILIDAD	25.00%		2.043
		COSTO TO					0.000 10.216
ESTO	S PRECIOS NO INCLUYEN IVA.	3331310					10.210
	QUITO - JULIO DEL 2012						
	(LUGAR Y FECHA)						

		ANALISIS	DE PR	ECIOS UNITARIOS (
RUBRO: DETALLE:	404-1 Base, Clase 3			UNIDAD: RENDIMIEN	m3 TO (R) =	0.01250	
	,				,		
EQUIPOS COD	DESCRIPCION	CANTID	AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
002	22001.III 0.0.1	A		В	C=AxB	R	D=CxR
7	MOTONIVELADORA, 135 HP	1.00		37.00	37.000	0.01250	0.463
8 9	RODILLO LISO VIBRATORIO 13 TON TANQUERO DE 3000 GI	1.00 1.00		35.00 28.00	35.000 28.000	0.01250 0.01250	0.438 0.350
9	TANQUERO DE 3000 GI	1.00		28.00	28.000	0.01230	0.330
MANO DE	OBRA				SUBTOTAL M		1.250
COD	DESCRIPCION (CATEG.)	CANTID	AD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
4-		A		В	C=AxB	R	D=CxR
17 21	OP. MOTONIVELADORA (OP I) OP. RODILLO (OP II)	1.00 1.00		2.560 2.540	2.560 2.540	0.01250 0.01250	0.032 0.032
12	CHOFER (TIPO D)	1.00		3.670	3.670	0.01250	0.032
24	AYUDANTE DE EQUIPO	3.00		2.440	7.320	0.01250	0.092
1	PEON (CAT I)	4.00		2.440	9.760	0.01250	0.122
MATERIAL	ES				SUBTOTAL N		0.323
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
9	BASE. CLASE 3			m3	1.200	6.500	7.800
					SUBTOTAL O		7.800
TRANSPO	DESCRIPCION	UNIDAD		CANTIDA		TARIFA	COSTO
COD	DESCRIPCION	UNIDAD		CANTIDA A		TARIFA B	D=AxB
	<u> </u>				SUBTOTAL P		0.000
_				RECTO (M+N+O+P)	25 000/		9.373
		OTROS IN		ros y utilidad os %	25.00%		2.343 0.000
		COSTO TO					11.716
ESTO	S PRECIOS NO INCLUYEN IVA. QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

	4	NALISIS DE	PRECIO	S UNITARIOS (USD)			
RUBRO:	405-3 Tratamiento bituminoso superficial tipo 2B			UNIDAD: RENDIMIEN	m2 TO (R.) =	0.00200	
	Tratarmento bituminoso superiiciai tipo 26			RENDIMEN	10 (K) =	0.00200	
QUIPOS	DESCRIPCION	CANTIL	240	TARIFA	COSTO HORA	DENIDIMIENTO	00000
COD	DESCRIPCION	CANTIL		I ARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
13	DISTRIBUIDOR DE ASFALTO 150 HP	1.00		35.00	35.000	0.00200	0.070
14	DISTRIBUIDOR DE AGREGADOS 170 HP	1.00		30.00	30.000	0.00200	0.060
18	RODILLO VIBRATORIO ASFALTICO	1.00)	37.00	37.000	0.00200	0.074
					SUBTOTAL M		0.204
COD COD	OBRA DESCRIPCION (CATEG.)	CANTIL	חאר	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
COD	DESCRIPCION (CATEG.)	A		JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	D=CxR
28	OP. DISTRIBUIDOR DE AGREGADOS (OP II)	1.00)	2.540	2.540	0.00200	0.005
21	OP. RODILLO (OP II)	1.00		2.540	2.540	0.00200	0.005
29 24	OP. DISTRIBUIDOR DE ASFALTO (OP II) AYUDANTE DE EQUIPO	1.00 3.00		2.540 2.440	2.540 7.320	0.00200 0.00200	0.005 0.015
2 4 1	PEON (CAT I)	6.00		2.440 2.440	7.320 14.640	0.00200	0.015
MATERIAL					SUBTOTAL N		0.059
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
4	ASFALTO			Kg	3.090	0.368	1.137
23 24	MATERIAL TRITURADO 3/4 MATERIAL TRITURADO 3/8			m3 m3	0.017 0.007	8.700 9.000	0.148 0.063
2 4 15	DIESEL	5		lt	0.007	0.238	0.003
					SUBTOTAL O		1.354
TRANSPO COD	DESCRIPCION	UNIDAD		CANTIDA	D I	TARIFA	COSTO
000	DEGGINI OION	S. IIDAD		A		B	D=AxB
			l		SUBTOTAL P		0.000
				ECTO (M+N+O+P)			1.617
				FOS Y UTILIDAD	25.00%		0.404
		OTROS IN					0.000 2.021
E	ESTOS PRECIOS NO INCLUYEN IVA	2001010	, , , <u>, , , , , , , , , , , , , , , , </u>			I	2.021
	QUITO - JULIO DEL 2012						

RUBRO:	307-2 (4)	ANALISIS DE	PRECIO	OS UNITARIOS (USD) UNIDAD:	m3		
	307-2 (4) Excavación y relleno para estructuras (alcantarillas)			RENDIMIEN		0.06667	
EQUIPOS							
COD	DESCRIPCION	CANTIL A		TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
6	EXCAVADORA 200 HP	1.00		50.00	50.000	0.06667	3.334
19 22	COMPACTADOR MANUAL 5 HP HERRAMIENTAS MANUALES	1.00		1.50 0.50	1.500 0.500	0.06667 0.06667	0.100 0.033
					SUBTOTAL M		3.467
WANO DE COD		CANTIE	240	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
	DESCRIPCION (CATEG.)	Α		В	C=AxB	R	D=CxR
11	INSPECTOR DE OBRA (CAT V)	0.10		2.560	0.256	0.06667	0.017
18 25	OP. EXCAVADORA (OP I) OP. EQUIPO LIVIANO (CAT III)	1.00		2.560 2.560	2.560 2.560	0.06667 0.06667	0.171 0.171
24	AYUDANTE DE EQUIPO	1.00		2.440	2.440	0.06667	0.171
1	PEON (CAT I)	4.00)	2.440	9.760	0.06667	0.651
					SUBTOTAL N		1.172
MATERIAL	LES				GODICIALIV		1.172
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
25	MATERIAL DE RELLENC)		m3	0.300	2.000	0.600
					SUBTOTAL O		0.600
TRANSPO COD	DESCRIPCION DESCRIPCION	UNIDAD		CANTIDA	D	TARIFA	COSTO
	DEGONII GIGIN	ONIDAD		A		В	D=AxB
		1	<u> </u>		SUBTOTAL P		0.000
TOTAL COSTO DIRECTO (M+N+O+P) COSTOS INDIRECTOS Y UTILIDAD 25.00%							5.239
							1.310
OTROS INDIRECTOS % COSTO TOTAL DEL RUBRO ESTOS PRECIOS NO INCLUYEN IVA.							0.000 6.548
•	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		ANALISIS DE	PRECIO	S UNITARIOS (USD)			
RUBRO: ETALLE:	307-3 (1) Excavación para cunetas y encauzamientos			UNIDAD: RENDIMIEN	m3 TO (R) =	0.05556	
	zacaracion para canciac y choadzanionico			, terto il vier	() =	0.0000	
COD	DESCRIPCION	CANTIL	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		Α		В	C=AxB	R	D=CxR
6	EXCAVADORA 200 HP	1.00		50.00	50.000	0.05556	2.778
22	HERRAMIENTAS MANUALES	1.00	J	0.50	0.500	0.05556	0.028
IANO DE (OBRA				SUBTOTAL M		2.806
COD	DESCRIPCION (CATEG.)	CANTIL		JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
11	INSPECTOR DE OBRA (CAT V)	0.10		B 2.560	C=AxB 0.256	R 0.05556	D=CxR 0.014
18	OP. EXCAVADORA (OP I)	1.00		2.560	2.560	0.05556	0.014
24	AYUDANTE DE EQUIPO	1.00		2.440	2.440	0.05556	0.136
1	PEON (CAT I)	6.00)	2.440	14.640	0.05556	0.813
WATERIAL	FS				SUBTOTAL N		1.105
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
					SUBTOTAL O		0.000
TRANSPO COD		LINIDAD	1	CANITIDA		TADICA	COSTO
COD	DESCRIPCION	UNIDAD		CANTIDA A		TARIFA B	COSTO D=AxB
					SUBTOTAL P		0.000
				ECTO (M+N+O+P)			3.911
				OS Y UTILIDAD	25.00%		0.978
		OTROS IN					0.000 4.889
E	STOS PRECIOS NO INCLUYEN IVA.	0031010	JIAL DEL	- NODINO			4.003
	QUITO - JULIO DEL 2012						

DUBBO		NALISIS DE	PRECIO	S UNITARIOS (USD)			
	503-1 Hormigón estructural de cemento Portland Clase			UNIDAD: RENDIMIEN	m3 TO (R.) =		
	B (f'c=210 Kg/cm2) (Muros de ala)			KENDIWIEN	10 (K) =	1.25000	
EQUIPOS COD	DESCRIPCION	CANTIE	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		Α		В	C=AxB	R	D=CxR
20 21	CONCRETERA 10 HP VIBRADOR DE HORMIGON	1.00 2.00		5.00 2.00	5.000 4.000	1.25000 1.25000	6.250 5.000
22	HERRAMIENTAS MANUALES	1.00		0.50	4.000 0.500	1.25000	0.625
MANO DE	OBRA				SUBTOTAL M		11.875
COD	DESCRIPCION (CATEG.)	CANTIE	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
11	INSPECTOR DE OBRA (CAT V)	0.10)	B 2.560	C=AxB 0.256	R 1.25000	D=CxR 0.320
6	ALBAÑIL (CAT III)	2.00		2.470	4.940	1.25000	6.175
2	AY. ALBAÑIL (CAT II) PEON (CAT I)	4.00 10.0		2.440 2.440	9.760 24.400	1.25000 1.25000	12.200 30.500
MATERIAL	EQ.				SUBTOTAL N		49.195
COD	DESCRIPCION			UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
_	OFMENTO TIPO IP			17	A	B	D=AxB
1 2	CEMENTO TIPO IP AGREGADO FINO (ARENA HORMIO	GONES)		Kg m3	360.000 0.600	0.137 7.000	49.392 4.200
3	AGREGADO GRUESO (RIPIO HORIV			m3	0.900	8.400	7.560
6 26	AGUA ENCOFRADO			m3 m2	0.050 4.000	2.800 5.000	0.140 20.000
TRANSPC	DRTE				SUBTOTAL O		81.292
COD	DESCRIPCION	UNIDAD		CANTIDA	D	TARIFA	COSTO
				A		В	D=AxB
					SUBTOTAL P		0.000
				ECTO (M+N+O+P)			142.362
				OS Y UTILIDAD	25.00%		35.591 0.000
		COSTO TO					177.953
E	STOS PRECIOS NO INCLUYEN IVA. QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		NALISIS DE	PRECIO	S UNITARIOS (USD)			
RUBRO:	503-1 Hormigón estructural de cemento Portland Clase)		UNIDAD: RENDIMIEN	m3	1 25000	
DETALLE. E	3 (fc=210 Kg/cm2) (cunetas laterales)			RENDIMIEN	10 (K) =	1.25000	
EQUIPOS COD	DESCRIPCION	CANTIE	240	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
COD	DESCRIPCION	A	JAD	B	C=AxB	RENDIVIENTO R	D=CxR
20	CONCRETERA 10 HP	1.00		5.00	5.000	1.25000	6.250
21 22	VIBRADOR DE HORMIGON HERRAMIENTAS MANUALES	2.00 1.00		2.00 0.50	4.000 0.500	1.25000 1.25000	5.000 0.625
22	HERMANIENT AG INANOALES	1.00	,	0.30	0.500	1.23000	0.023
MANO DE C					SUBTOTAL M		11.875
COD	DESCRIPCION (CATEG.)	CANTIE A	DAD	JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
11	INSPECTOR DE OBRA (CAT V)	0.10)	2.560	0.256	1.25000	0.320
6	ALBAÑIL (CAT III)	2.00		2.470	4.940	1.25000	6.175
2	AY. ALBAÑIL (CAT II) PEON (CAT I)	4.00 10.0		2.440 2.440	9.760 24.400	1.25000 1.25000	12.200 30.500
MATERIALE					SUBTOTAL N		49.195
COD	DESCRIPCION			UNIDAD	CANTIDAD	PRECIO UNIT. B	COSTO D=AxB
1	CEMENTO TIPO IP			Kg	A 360.000	0.137	49.392
2	AGREGADO FINO (ARENA HORM			m3	0.600	7.000	4.200
3 6	AGREGADO GRUESO (RIPIO HORI AGUA	MIGONES)		m3 m3	0.900 0.050	8.400 2.800	7.560 0.140
26	ENCOFRADO			m2	2.000	5.000	10.000
					SUBTOTAL O		71.292
TRANSPOR	RTE DESCRIPCION	UNIDAD		CANTIDA	D	TARIFA	COSTO
002	DECORAL CICIO	ONID/12		A		В	D=AxB
		1			SUBTOTAL P		0.000
				ECTO (M+N+O+P) OS Y UTILIDAD	25.00%		132.362 33.091
		OTROS IN	IDIRECTO	OS %	20.5070		0.000
E	STOS PRECIOS NO INCLUYEN IVA	COSTO TO	TAL DEL	RUBRO			165.453
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

RUBRO:	503-1	NALISIS DE	PRECIOS	UNITARIOS (USD)) m3		
	Hormigón estructural de cemento Portland Clase B (fc=210 Kg/cm2) (desfogues en cunetas laterales)			RENDIMEN		1.25000	
QUIPOS							
COD	DESCRIPCION	CANTID A	DAD	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
20 21 22	CONCRETERA 10 HP VIBRADOR DE HORMIGON HERRAMIENTAS MANUALES	1.00 2.00 1.00)	5.00 2.00 0.50	5.000 4.000 0.500	1.25000 1.25000 1.25000	6.250 5.000 0.625
					SUBTOTAL M		11.875
ANO DE	OBRA DESCRIPCION (CATEG.)	CANTID	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
		А		В	C=AxB	R	D=CxR
11 6	INSPECTOR DE OBRA (CAT V) ALBAÑIL (CAT III)	0.10 2.00		2.560 2.470	0.256 4.940	1.25000 1.25000	0.320 6.175
2	AY. ALBAÑIL (CAT II)	4.00)	2.440	9.760	1.25000	12.200
1	PEON (CAT I)	10.00	0	2.440	24.400	1.25000	30.500
MATERIAI					SUBTOTAL N		49.195
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
1	CEMENTO TIPO IP			Kg	300.000	0.137	41.160
2	AGREGADO FINO (ARENA HORMI AGREGADO GRUESO (RIPIO HORM			m3 m3	0.600 0.900	7.000 8.400	4.200 7.560
6 26	AGÜA ENCOFRADO	·		m3 m2	0.050 2.000	2.800 5.000	0.140 10.000
					SUBTOTAL O		63.060
COD	DESCRIPCION DESCRIPCION	UNIDAD		CANTIDA	AD .	TARIFA	COSTO
				A		В	D=AxB
			070 -:-	VOTO (44.1): 5. 7:	SUBTOTAL P		0.000
				CTO (M+N+O+P) OS Y UTILIDAD	25.00%		124.130 31.033
		OTROS INI	DIRECTO	S %			0.000 155.163
	ESTOS PRECIOS NO INCLUYEN IVA	00310 10	IAL DEL	NUDRU			100.103
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

RUBRO:	A 503-1	NALISIS DE	PRECIO	S UNITARIOS (USD) UNIDAD:	m3		
DETALLE:	Hormigón estructural de cemento Portland Clase B (f'c=210Kg/cm2) (topes en cunetas para desfogues)			RENDIMIEN		1.25000	
EQUIPOS							
COD	DESCRIPCION	CANTII A		TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
20 21 22	CONCRETERA 10 HP VIBRADOR DE HORMIGON HERRAMIENTAS MANUALES	1.00 2.00 1.00	0 0	5.00 2.00 0.50	5.000 4.000 0.500	1.25000 1.25000 1.25000	6.250 5.000 0.625
MANO DE		CANE		10DNW #10DA	SUBTOTAL M	DENDRIENTO	11.875
COD	DESCRIPCION (CATEG.)	CANTII A		JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
11 6 2 1	INSPECTOR DE OBRA (CAT V) ALBAÑIL (CAT III) AY. ALBAÑIL (CAT III) PEON (CAT I)	0.10 2.00 4.00 10.0	0	2.560 2.470 2.440 2.440	0.256 4.940 9.760 24.400	1.25000 1.25000 1.25000 1.25000	0.320 6.175 12.200 30.500
MATERIAL COD	LES DESCRIPCION			UNIDAD	SUBTOTAL N CANTIDAD	PRECIO UNIT.	49.195 COSTO
	DESCINI CICIA			ONDAD	A	B B	D=AxB
1 2 3 6 26	CEMENTO TIPO IP AGREGADO FINO (ARENA HORMI AGREGADO GRUESO (RIPIO HORM AGUA ENCOFRADO			Kg m3 m3 m3 m2	300.000 0.600 0.900 0.050 2.000	0.137 7.000 8.400 2.800 5.000	41.160 4.200 7.560 0.140 10.000
					SUBTOTAL O		63.060
TRANSPO	DESCRIPCION	UNIDAD	1	CANTIDA		TARIFA	COSTO
COD	DESCRIPCION	UNIDAD		A A		B	D=AxB
		COSTOS IN	NDIRECT IDIRECTO		SUBTOTAL P		0.000 124.130 31.033 0.000
E	STOS PRECIOS NO INCLUYEN IVA QUITO - JULIO DEL 2012 (LUGAR Y FECHA)	COSTO TO	DIAL DEL	. KUBKU			155.163

		ANALISIS DE	PRECIO	S UNITARIOS (USD)			
RUBRO:	504-1 (a) Acero de refuerzo en barras 12mm (fy= 4.200			UNIDAD:	Kg		
DETALLE:	Kg/cm2) (Muros de ala y cabezales en alcantarillas)			RENDIMIEN	TO (R) =	0.01250	
EQUIPOS							
COD	DESCRIPCION	CANTII A		TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
23 22	CORTADORA DOBLADORA DE HIERRO	1.00		0.60	0.600	0.01250	0.008
22	HERRAMIENTAS MANUALES	1.00	J	0.50	0.500	0.01250	0.006
					SUBTOTAL M		0.014
COD COD	OBRA DESCRIPCION (CATEG.)	CANTIL	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
		А		В	C=AxB	R	D=CxR
11 8	INSPECTOR DE OBRA (CAT V) FIERRERO (CAT III)	0.10 2.00		2.560 2.470	0.256 4.940	0.01250 0.01250	0.003 0.062
4	AY. DE FIERRERO (CAT II)	2.00	D	2.440	4.880	0.01250	0.061
1	PEON (CAT I)	2.00	S	2.440	4.880	0.01250	0.061
MATERIAL	EQ				SUBTOTAL N		0.187
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
7 27	ACERO DE REFUERZO 12mm (Fy = ALAMBRE DE AMARRE	4200kg/cm2)		Kg Kg	1.030 0.050	1.193 2.050	1.228 0.103
					CURTATALO		4.004
TRANSPO					SUBTOTAL O		1.331
COD	DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
						J	5-73.5
		TOTA: 00	OTO 2'	ECTO (MANAGE E)	SUBTOTAL P		0.000
				ECTO (M+N+O+P) OS Y UTILIDAD	25.00%		1.532 0.383
		OTROS IN	DIRECTO	OS %			0.000
E	STOS PRECIOS NO INCLUYEN IVA	COSTO TO	JIAL DEL	- KUBKU			1.914
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		ANALISIS DE	PRECIO	S UNITARIOS (USD)			
RUBRO: DETALLE:	602-2 Tubería de acero corrugado D=120 cm e=2 mm empernables paso mediano			UNIDAD: RENDIMIEN	m TO (R) =	0.66667	
EQUIPOS							
COD	DESCRIPCION	CANTII A		TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
22	HERRAMIENTAS MANUALES	1.00)	0.50	0.500	0.66667	0.333
MANO DE	OBRA				SUBTOTAL M		0.333
COD	DESCRIPCION (CATEG.)	CANTIE A		JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
11 8 4 1	INSPECTOR DE OBRA (CAT V) FIERRERO (CAT III) AY. DE FIERRERO (CAT II) PEON (CAT I)	0.10 2.00 2.00 10.0)))	2.560 2.470 2.440 2.440	0.256 4.940 4.880 24.400	0.66667 0.66667 0.66667 0.66667	0.171 3.293 3.253 16.267
MATERIAL					SUBTOTAL N		22.984
MATERIAL COD	DESCRIPCION			UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
29 4	Tubería de acero corrugado D=120 cm e=2 m ASFALTO	m multiplaca	circular	m Kg	A 1.000 8.500	B 155.700 0.368	D=AxB 155.700 3.128
TRANSPO					SUBTOTAL O		158.828
COD	DESCRIPCION	UNIDAD		CANTIDA A	ט	TARIFA B	COSTO D=AxB
					SUBTOTAL P		0.000
				COS Y UTILIDAD	25.00%		182.145 45.536
		OTROS IN	IDIRECTO	OS %			0.000
E	ESTOS PRECIOS NO INCLUYEN IVA	COSTO TO) I AL DEL	- KUBKU			227.682
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		ANALISIS DE	PRECIO	S UNITARIOS (USD)			
RUBRO: DETALLE:	602-2 Tubería de acero corrugado D=120 cm e=2 mm empernables paso mediano			UNIDAD: RENDIMIEN	m TO (R) =	0.66667	
EQUIPOS							
COD	DESCRIPCION	CANTII A		TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
22	HERRAMIENTAS MANUALES	1.00)	0.50	0.500	0.66667	0.333
MANO DE	OBRA				SUBTOTAL M		0.333
COD	DESCRIPCION (CATEG.)	CANTIE A		JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
11 8 4 1	INSPECTOR DE OBRA (CAT V) FIERRERO (CAT III) AY. DE FIERRERO (CAT II) PEON (CAT I)	0.10 2.00 2.00 10.0)))	2.560 2.470 2.440 2.440	0.256 4.940 4.880 24.400	0.66667 0.66667 0.66667 0.66667	0.171 3.293 3.253 16.267
MATERIAL					SUBTOTAL N		22.984
MATERIAL COD	DESCRIPCION			UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
29 4	Tubería de acero corrugado D=120 cm e=2 m ASFALTO	m multiplaca	circular	m Kg	A 1.000 8.500	B 155.700 0.368	D=AxB 155.700 3.128
TRANSPO					SUBTOTAL O		158.828
COD	DESCRIPCION	UNIDAD		CANTIDA A	ט	TARIFA B	COSTO D=AxB
					SUBTOTAL P		0.000
				COS Y UTILIDAD	25.00%		182.145 45.536
		OTROS IN	IDIRECTO	OS %			0.000
E	ESTOS PRECIOS NO INCLUYEN IVA	COSTO TO) I AL DEL	- KUBKU			227.682
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		ANALISIS DE	PRECIO	S UNITARIOS (USD)	l		
RUBRO:	602-2 Tubería de acero corrugado D=150 cm e=2.5			UNIDAD:	m		
DETALLE:	mm empernables paso mediano			RENDIMIEN	TO (R) =	0.83333	
EQUIPOS COD	DESCRIPCION	CANTIE	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		А		В	C=AxB	R	D=CxR
22	HERRAMIENTAS MANUALES	1.00		0.50	0.500	0.83333	0.417
MANO DE	OBRA				SUBTOTAL M		0.417
COD	DESCRIPCION (CATEG.)	CANTIE	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
11	INSPECTOR DE OBRA (CAT V)	0.10)	2.560	C=AxB 0.256	R 0.83333	D=CxR 0.213
8 6 1	FIERRERO (CAT III) ALBAÑIL (CAT III) PEON (CAT I)	2.00 2.00 10.00)	2.470 2.470 2.440	4.940 4.940 24.400	0.83333 0.83333 0.83333	4.117 4.117 20.333
MATERIA COD	LES DESCRIPCION			UNIDAD	SUBTOTAL N	PRECIO UNIT.	28.780 COSTO
COD	DESCRIPCION			UNIDAD	A	B B	D=AxB
30 4	Tubería de acero corrugado D=150 cm e=2.5 m ASFALTO	nm multiplaca	circular	m Kg	1.000 9.600	235.900 0.368	235.900 3.533
TRANSPO	ORTE				SUBTOTAL O		239.433
COD	DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
					SUBTOTAL P		0.000
				ECTO (M+N+O+P)			268.629
		OTROS IN	DIRECTO		25.00%		67.157 0.000
	ESTOS PRECIOS NO INCLUYEN IVA	COSTO TO					335.787
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		ANALISIS DE	PRECIO	S UNITARIOS (USD)			
RUBRO:	602-2 Tubería de acero corrugado D=180 cm e=3.5			UNIDAD: RENDIMIEN	m TO (P.) –	1.00000	
DETALLE.	mm empernables paso mediano			KENDIVIEN	10 (11) -	1.00000	
EQUIPOS COD	DESCRIPCION	CANTIL	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		Α		В	C=AxB	R	D=CxR
22	HERRAMIENTAS MANUALES	1.00	0	0.50	0.500	1.00000	0.500
MANO DE					SUBTOTAL M		0.500
COD	DESCRIPCION (CATEG.)	CANTII A	DAD	JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
11 8 6 1	INSPECTOR DE OBRA (CAT V) FIERRERO (CAT III) ALBAÑIL (CAT III) PEON (CAT I)	0.10 2.00 2.00 10.0)	2.560 2.470 2.470 2.440	0.256 4.940 4.940 24.400	1.00000 1.00000 1.00000 1.00000	0.256 4.940 4.940 24.400
					SUBTOTAL N		34.536
MATERIAL							
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
31 4	Tubería de acero corrugado D=180 cm e=3.5 n ASFALTO	nm multiplaca	circular	m Kg	1.000 11.500	390.300 0.368	390.300 4.232
TRANSPO	ORTE		L.		SUBTOTAL O		394.532
COD	DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
						J	D-FAD
	•	TOTAL CO	מוס סדס	ECTO (MINI O : D)	SUBTOTAL P		0.000
		COSTOS	NDIRECT	ECTO (M+N+O+P) OS Y UTILIDAD	25.00%		429.568 107.392
		OTROS IN					0.000 536.960
E	ESTOS PRECIOS NO INCLUYEN IVA	2231010					555.550
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		ANALISIS DE	PRECIO	S UNITARIOS (USD)	1		
RUBRO:	602-(2e)			UNIDAD:	m		
DETALLE:	Tubería de acero corrugado D=200 cm e=3.5 mm empernables paso mediano			RENDIMIEN	TO (R) =	4.00000	
EQUIPOS							
COD	DESCRIPCION	CANTIL	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
6	EXCAVADORA 200 HP	0.25	5	B 50.00	C=AxB 12.500	R 4.00000	D=CxR 50.000
22	HERRAMIENTAS MANUALES	1.00		0.50	0.500	4.00000	2.000
					SUBTOTAL M		52.000
MANO DE		CANTE	240	IODNIAL // IODA	00070 1100 4	DENIDIAMENTO	00070
COD	DESCRIPCION (CATEG.)	CANTII A		JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
11 18	INSPECTOR DE OBRA (CAT V) OP. EXCAVADORA (OP I)	0.10 0.25		2.560 2.560	0.256 0.640	4.00000 4.00000	1.024 2.560
24	AYUDANTE DE EQUIPO	0.25		2.440	0.610	4.00000	2.440
8	FIERRERO (CAT III)	2.00		2.470	4.940	4.00000	19.760
6 1	ALBAÑIL (CAT III) PEON (CAT I)	2.00 10.0		2.470 2.440	4.940 24.400	4.00000 4.00000	19.760 97.600
	T LOW (O/W I)	10.0	·	2.440	24.400	4.0000	07.000
MATERIAL	LES				SUBTOTAL N		143.144
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
33	Tubería de acero corrugado D=200 cm e=3,0	mm multiplaca	circular	m	1.000	431.300	431.300
4	ASFALTO			Kg	16.500	0.368	6.072
					SUBTOTAL O		437.372
TRANSPO	DRTE DESCRIPCION	TIVIDAD		C ARITIC A	D.	TARIFA	COCTO
COD	DESCRIPCION	UNIDAD		CANTIDA A	ט	TARIFA B	COSTO D=AxB
-		1			SUBTOTAL P		0.000
				ECTO (M+N+O+P)			632.516
		OTROS IN		OS Y UTILIDAD OS %	25.00%		158.129 0.000
		COSTO TO					790.645
	ESTOS PRECIOS NO INCLUYEN IVA						
	OURTO 1111 12 271 2212						
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

	A	NALISIS DE	PRECIO	S UNITARIOS (USD)			
RUBRO:	705 -3		_ 5.5	UNIDAD:	m		
DETALLE:	Marcas de pintura			RENDIMIEN	TO (R) =	0.00200	
EQUIPOS							
COD	DESCRIPCION	CANTII A	DAD	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
24	FRANJADORA, INCLUIDO PREMELTER	1.00)	20.00	20.000	0.00200	0.040
15	BARREDORA AUTOPROPULSADA	1.00)	15.00	15.000	0.00200	0.030
16	PREMEINTER MATERIAL TERMOPLASTICO	1.00)	20.00	20.000	0.00200	0.040
17	BOMBA DE LIMPIEZA (AGUA A PRESION)	1.00		1.50	1.500	0.00200	0.003
25	RODILLO LISO MANUAL 0,10 Ton	1.00)	2.40	2.400	0.00200	0.005
MANO DE	OBRA				SUBTOTAL M		0.118
COD	DESCRIPCION (CATEG.)	CANTIL	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
		Α		В	C=AxB	R	D=CxR
11	INSPECTOR DE OBRA (CAT V)	0.10		2.560	0.256	0.00200	0.001
30 22	OP. FRANJEADORA (OP I)	1.00 1.00		2.560 2.540	2.560	0.00200	0.005 0.005
24	OP. BARREDORA AUTOPROPULSADA (OP II) AYUDANTE DE EQUIPO	2.00		2.540 2.440	2.540 4.880	0.00200 0.00200	0.005
25	OP. EQUIPO LIVIANO (CAT III)	1.00		2.560	2.560	0.00200	0.005
9	PINTOR (CAT III)	1.00		2.470	2.470	0.00200	0.005
1	PEON (CAT I)	4.00		2.440	9.760	0.00200	0.020
MATERIAL	ES		•		SUBTOTAL N		0.050
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
36 37	PINTURA REFLECTIVA DE TRAI MICROESFERAS REFLECTIV			lt Kg	0.280 0.225	3.990 1.350	1.117 0.304
					SUBTOTAL O		1.421
TRANSPO COD	DRTE DESCRIPCION	UNIDAD		CANTIDA	D I	TARIFA	COSTO
000	BECOIN CICIT	ONDA		A		В	D=AxB
					SUBTOTAL P		0.000
		TOTAL CO	STO DIRI	ECTO (M+N+O+P)	CODICIALI		1.589
				OS Y UTILIDAD	25.00%		0.397
		OTROS IN			<u> </u>		0.000
E	ESTOS PRECIOS NO INCLUYEN IVA	COSTO TO	TAL DEL	. KUBRO			1.986
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		ANALISIS DE	PRECIO	S UNITARIOS (USD)			
RUBRO: DETALLE:	708-3 Señal al lado de la carretera Preventiva (0.75 m.			UNIDAD: RENDIMIEN	u TO (R) =	0.50000	
	x 0.75 m.)				,		
EQUIPOS COD	DESCRIPCION	CANTIL		TARIFA	COSTO HORA	RENDIMIENTO	COSTO
26	CAMIONETA	0.10		B 15.00	C=AxB 1.500	R 0.50000	D=CxR 0.750
22	HERRAMIENTAS MANUALES	1.00		0.50	0.500	0.50000	0.250
					SUBTOTAL M		1.000
MANO DE COD	DESCRIPCION (CATEG.)	CANTIL	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
11	INSPECTOR DE OBRA (CAT V)	0.10		B 2.560	C=AxB 0.256	R 0.50000	D=CxR 0.128
12	CHOFER (TIPO D)	0.10		3.670	0.367	0.50000	0.128
6	ALBAÑIL (CAT III)	1.00		2.470	2.470	0.50000 0.50000	1.235
'	PEON (CAT I)	4.00	J	2.440	9.760	0.30000	4.880
MATERIAL	F9				SUBTOTAL N		6.427
COD	DESCRIPCION			UNIDAD	CANTIDAD	PRECIO UNIT.	совто
38	SEÑAL PREVENTIVA (0.75 m. x 0) 75 m)		u	1.000	B 179.990	D=AxB 179.990
44	HORMIGON fc=210 Kg/cm			m3	0.050	177.953	8.898
					SUBTOTAL O		188.888
TRANSPO	DRTE DESCRIPCION	UNIDAD	I	CANTIDA		TARIFA	COSTO
000	BESONII OION	ONIDAD		A		B	D=AxB
		1			SUBTOTAL P		0.000
				ECTO (M+N+O+P)			196.314
		OTROS IN		OS Y UTILIDAD OS %	25.00%		49.079 0.000
E	ESTOS PRECIOS NO INCLUYEN IVA	COSTO TO	OTAL DEI	LRUBRO			245.393
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

	ANA	LISIS DE PR	ECIOS L	INITARIOS (USD)			
RUBRO: DETALLE:	702-3 Señales de kilometraje			UNIDAD: RENDIMIEN	TO (R) =	0.50000	
EQUIPOS COD	DESCRIPCION	CANTIE	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		Α		В	C=AxB	R	D=CxR
26 22	CAMIONETA HERRAMIENTAS MANUALES	0.10 1.00		15.00 0.50	1.500 0.500	0.50000 0.50000	0.750 0.250
MANO DE (SUBTOTAL M		1.000
COD	DESCRIPCION (CATEG.)	CANTIE	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
11 12 6 1	INSPECTOR DE OBRA (CAT V) CHOFER (TIPO D) ALBAÑIL (CAT II) PEON (CAT I)	A 0.10 0.10 1.00 4.00))	B 2.560 3.670 2.470 2.440	C=AxB 0.256 0.367 2.470 9.760	R 0.50000 0.50000 0.50000 0.50000	D=CxR 0.128 0.184 1.235 4.880
MATERIAL COD	ES DESCRIPCION			UNIDAD	SUBTOTAL N CANTIDAD	PRECIO UNIT.	6.427 COSTO
				0.115715	A	В	D=AxB
43 44	SEÑALKILOMETRAJE (0.70 m. x HORMIGON f'c=210 Kg/cm:			u m3	1.000	149.990 177.953	149.990 8.898
TRANSPO	PTE				SUBTOTAL O		158.888
COD	DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
			NDIRECT		SUBTOTAL P 25.00%		0.000 166.314 41.579 0.000 207.893
E	STOS PRECIOS NO INCLUYEN IVA. QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

RUBRO:	A 205-(1)	NALISIS DE PRE	ECIOS UN	NITARIOS (USD) UNIDAD:	miles de litro		
DETALLE: A	gua para control de polvo			RENDIMIEN		0.70000	
COD	DESCRIPCION	CANTID	AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
		Α		В	C=AxB	R	D=CxR
26	Tanquero de agua de 6000 lts.	0.17		15.86	2.696	0.70000	1.887
22	Bomba de agua 3"	0.17		3.00	0.510	0.70000	0.357
MANO DE OI	BRA				SUBTOTAL M		2.244
COD	DESCRIPCION (CATEG.)	CANTID	AD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
12	CHOFFE (TIPO D)	A 0.47		B 2 670	C=AxB	R . 70000	D=CxR
1	CHOFER (TIPO D) PEON (CAT I)	0.17 0.17		3.670 2.440	0.624 0.415	0.70000 0.70000	0.437
	•		I		SUBTOTAL N		0.727
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
TRANSPOR	TE				SUBTOTAL O		0.000
COD	DESCRIPCION	UNIDAD		CANTIDA	D	TARIFA	COSTO
				A		В	D=AxB
I .					SUBTOTAL P		0.000
				CTO (M+N+O+P)	25 000/		2.971
		OTROS IN		OS Y UTILIDAD S %	25.00%		0.743
E0	TOS PRECIOS NO INCLUYEN IVA	COSTO TO					3.714
Ė	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

	ANA	LISIS DE PR	ECIOS (JNITARIOS (USD)			
RUBRO:	220-(1)			UNIDAD:	u		
DETALLE:	Charlas de concientización			RENDIMIEN	IO (R) =	5.15000	
EQUIPOS							
COD	DESCRIPCION	CANTIL	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Camioneta ,80 HP	1.00)	B 6.34	C=AxB 6.340	R 5.15000	D=CxR 32.651
	Camorota ,co r ii		,	0.0 .	0.0.0	0.10000	02.001
					SUBTOTAL M		32.651
MANO DE							
COD	DESCRIPCION (CATEG.)	CANTIL	DAD	JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO
	conferencista	2.00)	15.000	30.000	5.15000	D=CxR 154.500
	35.110.51.51.51.51	2.00	,	10.000	30.000	0.10000	10 11000
MATERIAL	ES				SUBTOTAL N		154.500
COD	DESCRIPCION			UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
					A	В	D=AxB
TRANSPO	DRTE				SUBTOTAL O		0.000
COD	DESCRIPCION	UNIDAD		CANTIDA	D	TARIFA	COSTO
		-		Α		В	D=AxB
	I.	1			SUBTOTAL P		0.000
				RECTO (M+N+O+P)			187.151
				TOS Y UTILIDAD	25.00%		46.788
		COSTO TO					0.000 233.939
E	ESTOS PRECIOS NO INCLUYEN IVA.	0001010	, , , <u>, , D</u> E				200.000
	QUITO - JULIO DEL 2012						
	(LUGAR Y FECHA)						
	,====:y						

RUBRO:		NALISIS DE PRI	ECIOS (JNITARIOS (USD) UNIDAD:			
DETALLE: Charle	220-(2) as de adiestramiento			RENDIMIEN	u TO (R) =	3.20000	
EQUIPOS COD	DESCRIPCION	CANTID	AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTC
		A 1.00		В	C=AxB	R	D=CxR
	Camioneta ,80 HP	1.00		6.34	6.340	3.20000	20.288
MANO DE OBRA					SUBTOTAL M		20.288
COD	DESCRIPCION (CATEG.)	CANTID A	AD	JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
	conferencista	2.00		15.000	30.000	3.20000	96.000
MATERIALES					SUBTOTAL N		96.000
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
	l						
TRANSPORTE					SUBTOTAL O		0.000
COD	DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
					SUBTOTAL P		0.000
				RECTO (M+N+O+P)	•		116.288
		COSTOS IN		OS Y UTILIDAD	25.00%		29.072 0.000
ESTOS	S PRECIOS NO INCLUYEN IVA	COSTO TO					145.360
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		LISIS DE PR	ECIOS (JNITARIOS (USD)			
RUBRO: DETALLE:	220-(3) Afiches			UNIDAD: RENDIMIEN	u TO (R) =	0.10000	
EQUIPOS COD	DESCRIPCION	CANTIL	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Herramienta menor	0.02	2	B 1.00	C=AxB 0.020	0.10000	D=CxR 0.002
					SUBTOTAL M		0.002
MANO DE COD	OBRA DESCRIPCION (CATEG.)	CANTIL	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
		Α		В	C=AxB	R	D=CxR
	Categoría I Categoría II	1.00		2.130 2.130	2.130 2.130	0.10000 0.10000	0.213 0.213
MATERIAL	F.C.				SUBTOTAL N		0.426
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
	l				SUBTOTAL O		0.000
TRANSPO	DRTE				SUBTOTALO		0.000
COD	DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
					CHIDTOTAL		
				ECTO (M+N+O+P)	SUBTOTAL P		0.000 0.428
		COSTOS IN		OS Y UTILIDAD	25.00%		0.107 0.000
		COSTO TO					0.535
E	ESTOS PRECIOS NO INCLUYEN IVA. QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

	ANA	LISIS DE PR	ECIOS (JNITARIOS (USD)			
	220-(4) Instructivos o trípticos			UNIDAD: RENDIMIEN	u TO (R) =	0.10000	
EQUIPOS COD	DESCRIPCION	CANTIL	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Herramienta menor	0.02	2	1.00	C=AxB 0.020	R 0.10000	D=CxR 0.002
MANO DE	ODDA				SUBTOTAL M		0.002
MANO DE COD	DESCRIPCION (CATEG.)	CANTIL	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
	Categoría I	1.00)	B 2.130	C=AxB 2.130	0.10000	D=CxR 0.213
	Categoria II	1.00		2.130	2.130	0.10000	0.213
					SUBTOTAL N		0.426
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
	1						
TRANSPO	ORTE				SUBTOTAL O		0.000
COD	DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
		TOTAL CO	STO DIR	RECTO (M+N+O+P)	SUBTOTAL P		0.000 0.428
		COSTOS II	NDIRECT	FOS Y ÚTILIDAD	25.00%		0.107
	ESTAS DESCIOS NA INCLUSOS NA	COSTO TO					0.000 0.535
	ESTOS PRECIOS NO INCLUYEN IVA. QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

RUBRO: DETALLE: C	220-(5)						
	Comunicados radiales			UNIDAD: RENDIMIEN	u TO (R) =	0.10000	
EQUIPOS	77007701011						
COD	DESCRIPCION	CANTIE A	DAD	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
					SUBTOTAL M		0.000
MANO DE O	DESCRIPCION (CATEG.)	CANTIE) AD	IODNIAL /LIODA	COSTO HORA	RENDIMIENTO	COSTO
COD	DESCRIPCION (CATEG.)	A	JAD	JORNAL/HORA B	C=AxB	RENDIMIENTO R	COSTO D=CxR
ı							
ı							
					SUBTOTAL N		0.000
MATERIALE							•
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
	Cuña radial			u	1.000	3.420	3.420
ı							
	ı						
TRANSPOR	PTE				SUBTOTAL O		3.420
COD	DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
		TOTAL CO	STO DIR	ECTO (M+N+O+P)	SUBTOTAL P		0.000 3.420
		COSTOS IN	NDIRECT	OS Y UTILIDAD	25.00%		0.855
		OTROS IN					0.000 4.275
ES	STOS PRECIOS NO INCLUYEN IVA.	3001010	INE DEL	- NODINO			7.213

	AN	ALISIS DE PR	ECIOS	UNITARIOS (USD)			
RUBRO: DETALLE: F	201-(1)dE Fosa de Desechos Biodegradables			UNIDAD: RENDIMIEN	u TO (R) =	,54	
EQUIPOS COD	DESCRIPCION	CANTID	DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
	Excavadora 220LC , 133HP	A		В	C=AxB	R	D=CxR
	Herramienta menor	1.00 0.52		47.61 0.52	0.540 0.540	0.54000 0.54000	25.590 0.280
MANO DE C	DRD A				SUBTOTAL M		25.870
COD	DESCRIPCION (CATEG.)	CANTIE	DAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
	Operador I	1.00		B 3 130	C=AxB	R 0.54000	D=CxR
	Operador I Categoria I	2.00		2.130 2.130	2.130 4.260	0.54000 0.54000	1.140
MATERIALE					SUBTOTAL N		3.430
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
	Cemento blanco			50kg	0.250	12.420	3.110
				1	SUBTOTAL O		3.110
TRANSPO	RTE DESCRIPCION	UNIDAD		CANTIDA	D	TARIFA	COSTO
	2230.NI OION	3.30		A	_	B	D=AxB
					SUBTOTAL P		0.000
				RECTO (M+N+O+P) TOS Y UTILIDAD	25 00%		32.410
		OTROS IN			25.00%		8.103 0.000
E:	STOS PRECIOS NO INCLUYEN IVA.	COSTO TO	TAL DE	L RUBRO			40.513
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		LISIS DE PRE	CIOS L	JNITARIOS (USD)			
RUBRO: DETALLE: Letrir	201-(1)aE na Sanitaria			UNIDAD: RENDIMIEN	u TO (R) =	2.00000	
COD	DESCRIPCION	CANTID	AD	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
	Excavadora 220LC , 133HP Herramienta menor	1.00 3.20		47.61 3.20	0.540 0.540	2.00000 2.00000	95.220 6.390
MANO DE OBRA	A				SUBTOTAL M		101.610
COD	DESCRIPCION (CATEG.)	CANTID	AD	JORNAL/HORA	COSTO HORA C=AxB	RENDIMIENTO	COSTO D=CxR
	Operador I Categoria II Categoria III Categoria V	A 1.00 2.00 1.00		B 2.130 2.130 2.130 2.130	2.130 4.260 2.130 2.130	R 2.00000 2.00000 2.00000 2.00000	4.260 8.520 4.260 4.260
MATERIALEO		1			SUBTOTAL N		21.300
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
	Cemento chimborazo Bloque liviano de 10x20x40 Gaval./ cielo ras.friso Kubipared e : Inodoro lido estándar blanco fv (L Tabla dura de encofrado de 0. Agregado grueso Agregado fino Tubo PVC 4"	=0.45mm . econ.)		50kg UNIDAD m2 UNIDAD UNIDAD m3 m3 m3	0.250 320.000 2.400 1.000 5.000 0.100 0.100 12.000	6.590 0.290 14.200 59.240 1.790 5.000 5.000 3.180	1.650 92.800 34.080 59.240 8.960 0.500 0.500 38.150
					SUBTOTAL O		235.880
TRANSPORTE		T					
COD	DESCRIPCION	UNIDAD		CANTIDA A	ט	TARIFA B	COSTO D=AxB
		1			SUBTOTAL P		0.000
				ECTO (M+N+O+P)		: 	358.790
		OTROS INC	DIRECTO		24.00%		86.110 0.000 444.900
ESTO	S PRECIOS NO INCLUYEN IVA. QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

		NALISIS DE PR	ECIOS	UNITARIOS (USD)			
	201-(1)aE etrina Sanitaria			UNIDAD: RENDIMIEN	u TO (R) =	2.00000	
COD COD	DESCRIPCION	CANTID	AD	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
	Excavadora 220LC , 133HP Herramienta menor	1.00 3.20		47.61 3.20	0.540 0.540	3.40000 3.40000	161.870 11.080
MANO DE OE	BRA				SUBTOTAL M		172.950
COD	DESCRIPCION (CATEG.)	CANTIE A	AD	JORNAL/HORA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
	Operador I Categoria I	1.00		2.130 2.130	2.130 4.260	3.40000 3.40000	7.240 14.480
MATERIALE					SUBTOTAL N		21.720
COD	DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO D=AxB
	Cemento blanco			50kg	0.250	12.420	3.110
					SUBTOTAL O		3.110
TRANSPOR'	TE DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
					SUBTOTAL P		0.000
				RECTO (M+N+O+P) TOS Y UTILIDAD	25.00%		197.780 49.445
ES.	TOS PRECIOS NO INCLUYEN IVA	OTROS IN	DIRECT	OS %	20.0070		0.000
	QUITO - JULIO DEL 2012 (LUGAR Y FECHA)	.					

DUIDDO		NALISIS DE PRE	ECIOS UI	NITARIOS (USD)			
	201-(1)cE pa de grasas y aceites			UNIDAD: RENDIMIEN	u TO (R) =	0.53000	
COD	DESCRIPCION	CANTID.	AD	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTC D=CxR
	Excavadora 220LC , 133HP Herramienta menor	1.00		47.61 3.20	0.530 0.530	3.40000 3.40000	25.000 0.880
MANO DE OBRA	A				SUBTOTAL M		25.880
COD	DESCRIPCION (CATEG.)	CANTID	AD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
	Categoria V Categoria III Categoria II Categoria I Operador 1	A 1.00 2.00 2.00 4.00 1.00		B 2.130 2.130 3.130 4.130 5.130	C=AxB 2.130 4.260 4.260 8.520 2.130	R 0.53000 0.53000 0.53000 0.53000 0.53000	D=CxR 1.120 2.240 2.240 4.470 1.120
MATERIALES COD	DESCRIPCION			UNIDAD	SUBTOTAL N CANTIDAD	PRECIO UNIT.	11.190
	Agregado grueso Agregado fino Cemento Encofrado			m3 m3 kg global	A 1.000 1.000 350.000 1.000	B 5.000 5.000 0.130 18.000	D=AxB 5.000 5.000 45.500 18.000
					SUBTOTAL O		73.500
TRANSPORTE COD	DESCRIPCION	UNIDAD		CANTIDA A	D	TARIFA B	COSTO D=AxB
				A		В	D=AXB
L					SUBTOTAL P		0.000
				CTO (M+N+O+P) OS Y UTILIDAD	25.00%		110.570 27.643
		OTROS INC	DIRECTO	S %	20.0070		0.000 138.213
ESTO	S PRECIOS NO INCLUYEN IVA. QUITO - JULIO DEL 2012 (LUGAR Y FECHA)						

10.3. PRESUPUESTO GENERAL DE LAS OBRAS

Tabla 9.6. Presupuesto del proyecto

PROYECTO: CARRETERA NANEGALITO - NANEGAL

LUGAR Y
FECHA: QUITO - JULIO DEL 2012

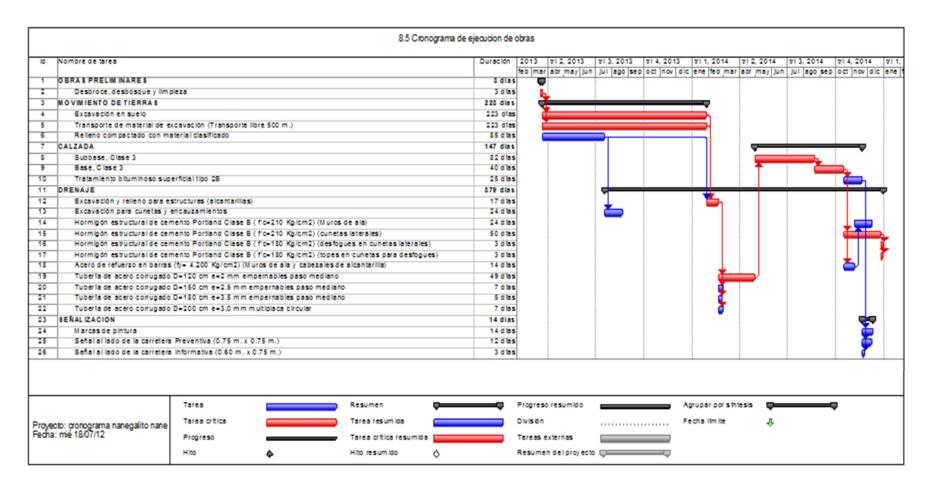
RUBRO No.	DESCRIPCIÓN	UNI.	CANTIDAD	PRECIO UNITARIO	PRECIO TOTAL
	OBRAS PRELIMINARES				
302-1	Desbroce, desbosque y limpieza	m ²	10.650,97	0,09	969,48
	MOVIMIENTO DE TIERRAS				
303-2 (2)	Excavación en suelo	m ³	124.789,29	1,84	229.754,24
303-2	Relleno compactado con material clasificado	m ³	27.047,96	3,39	91.760,20
309-1	Transporte de material de excavación (Transporte libre 500 m.)	m ³ /Km	11.520,00	0,49	5.666,03
	IMPACTO AMBIENTAL				
205-(1)	Agua para control de polvo	miles de litro	900,00	3,71	3.168,00
220-(1)	Charlas de concientización	u	2,00	233,94	467,88
220-(2)	Charlas de adiestramiento	u	2,00	145,36	290,72
220-(3)	Afiches	u	500,00	0,54	270,00
220-(4)	Instructivos o Trípticos	u	500,00	0,54	270,00
220-(5)	Comunicados radiales	u	600,00	4,28	2.562,00
201-(1)dE	Fosa de Desechos Biodegradables	u	1,00	40,51	40,50
201-(1)aE	Letrina Sanitaria	u	2,00	444,90	896,96
201(1)bE	Pozo Séptico	u	1,00	247,23	247,23
201(1)cE	Trampa de Grasas y Aceites	u	2,00	138,21	276,40
	CALZADA				
403-1	Subbase, Clase 3	m ³	52.403,35	10,22	535.373,91
404-1	Base, Clase 3	m ³	25.350,46	11,72	297.016,29
405-3	Tratamiento bituminoso superficial tipo 2B	m ²	99.804,96	2,02	201.746,99
	DRENAJE				
307-2 (4)	Excavación y relleno para estructuras (alcantarillas)	m ³	1.983,40	6,55	12.987,88
307-3 (1)	Excavación para cunetas y encauzamientos	m ³	3.410,00	4,89	16.671,50

503-1	Hormigón estructural de cemento Portland Clase B (f'c=210 Kg/cm2) (Muros de ala)	m^3	153,61	177,95	27.335,28
503-1	Hormigón estructural de cemento Portland Clase B (f'c=210 Kg/cm2) (cunetas laterales)	m ³	4.324,88	165,45	715.562,21
503-1	Hormigón estructural de cemento Portland Clase B (f'c=210 Kg/cm2) (desfogues en cunetas laterales)	m ³	4,53	155,16	702,89
503-1	Hormigón estructural de cemento Portland Clase B (f'c=210Kg/cm2) (topes en cunetas para desfogues)	m ³	1,40	155,16	217,23
504-1 (a)	Acero de refuerzo en barras 12mm (fy= 4.200 Kg/cm2) (Muros de ala y cabezales en alcantarillas)	Kg	10.032,70	1,91	19.207,44
602-2	Tubería de acero corrugado D=120 cm e=2 mm empernables paso mediano	m	589,00	227,68	134.104,59
602-2	Tubería de acero corrugado D=150 cm e=2.5 mm empernables paso mediano	m	67,60	335,79	22.699,18
602-2	Tubería de acero corrugado D=180 cm e=3.5 mm empernables paso mediano	m	12,40	536,96	6.658,30
602-(2e)	Tubería de acero corrugado D=200 cm e=3.5 mm empernables paso mediano	m	14,00	790,65	11.069,03
	REPARACIÓN DE LOS PUENTES				
MR-02E	reparación de estructura de hormigón armado con láminas FRP	m²	15,00	110,71	1.660,65
MR-03E	Reparación contra la corrosión de vigas y cerchas metálicos mediante el procedimiento de San-Blasting	m^2	12,00	409,04	4.908,48
507(2)	Pintura de acero estructural	m ²	8,00	579,91	4.639,28
MR-04E	Reparación de Juntas transversales	m	41,00	60,00	2.460,00
	SEÑALIZACIÓN				
705 -3	Marcas de pintura	m	55.447,20	1,99	110.118,28
708-3	Señal al lado de la carretera Preventiva (0.75 m. x 0.75 m.)	u	194,00	245,39	47.606,18
702-3	Señales de kilometraje	u	3,00	207,89	623,68
	MANTENIMIENTO				
MR-112E	Limpieza de cuentas y encauzamientos a mano	m^3	3.300,00	2,72	8.976,00
MR-133E	Mantenimiento de señales verticales	u	194,00	135,42	26.271,48
				TOTAL (USD)	2.510.008,91

10.4. COSTOS INDIRECTOS

Son todos aquellos costos que no han sido incluidos en los costos directos y que comúnmente son técnicos - administrativos, los mismos que son necesarios para la ejecución de la obra.

Tabla 9.7. Cálculo de Costos Indirectos


PROYECTO: Carretera Nanegalito - Nanegal

UBICACIÓN: PROVINCIA DE PICHINCHA

HOJA 1 DE

ANÁLISIS DE COSTOS INI	DIRECTOS	<u>'</u>
COMPONENTES DEL COSTO INDIRECTO	VALOR (USD)	%
DIRECCIÓN DE OBRA	39.941,4	2,00%
ADMINISTRATIVOS	59.912,2	3,00%
LOCALES PROVISIONALES	13.979,5	0,70%
VEHÍCULOS	11.982,4	0,60%
SERVICIOS PÚBLICOS	8.188,0	0,41%
PROMOCIÓN	3.395,0	0,17%
GARANTÍAS	29.956,1	1,50%
SEGUROS	15.976,6	0,80%
COSTOS FINANCIEROS	3.994,1	0,20%
EQUIPOS DE COMUNICACIÓN	26.361,4	1,32%
PREVENCIÓN DE ACCIDENTES	5.991,2	0,30%
IMPREVISTOS	59.912,2	3,00%
1% LEY CONTRATACIÓN PUBLICA	19.970,7	1,00%
UTILIDAD	199.707,2	10,00%
TOTAL DE INDIRECTOS	499.268,1	25,000%

10.5. CRONOGRAMA DE EJECUCIÓN DE OBRAS

10.6. EVALUACIÓN SOCIO ECONÓMICA

Mediante el proceso de identificación, cuantificación y valoración de los costos, como se lo ha hecho en los índices anteriores, se obtendrá posteriormente los Valores Actuales Netos (VAN) y la Tasa Interna de Retorno (TIR), tanto en el ámbito económico como financiero.

10.6.1. Cálculo Del Valor Actual Neto

En proyecto de inversión es útil conocer sobre todo la vialidad del proyecto, es decir, saber la rentabilidad que se tiene después de varios años de invertir. Un indicador es el VAN, el cual nos permite conocer el valor excedente producidos por los mismos fondos de inversión en un plazo determinado e igual tasa de interés.

10.6.1.1. Valor actual neto económico

Se determina el van económico mediante la aplicación de la siguiente expresión, considerando solo los flujos de caja económico

VANE =
$$\frac{FE_1}{(1+i)^1} + \frac{FE_2}{(1+i)^2} + \frac{FE_3}{(1+i)^3} + \dots + \frac{FE_n}{(1+i)^n} - Io$$

Donde:

FE = Flujo de entrada del periodo n

i = Tasa de interés

n = Periodo de análisis

lo = Inversión inicial

El flujo de salida de nuestro proyecto, es el costo que tiene ejecutarlo, el mismo que lo determinamos en el punto 10.4 que hace referencia al presupuesto general de las obras.

Para la determinación del flujo de entrada se requiere hacer un análisis de los sectores a los cuales beneficiará nuestro proyecto.

a) Transporte público

Este sector se verá sumamente beneficiado ya que, con la ampliación y mejoramiento de la vía existente el transportista disminuirá los tiempo de viaje, lo que significa que este percibirá más ingresos diarios por concepto de cobro de pasajes a usuarios y debido a que la vía se encuentra en óptimas condiciones el mantenimiento del vehículo se lo realizará con menos frecuencia. Ver Tabla 9.8.

b) Agricultura

El proyecto agilitará el traslado de productos que se cultivan en el sector como principalmente el palmito y la guayaba lo cual se traduce a más ingresos para el sector y también el vehículo mediante el cual se realiza el traslado de proyectos requerirá un mantenimiento menos frecuente.

c) Comercio

Con el mejoramiento de las condiciones viales de la vía Nanegalito Nanegal, dará una mayor atracción turística de la zona, debido a la facilidad de llegada ya sea en vehículo particular o en bus, se tiene un ahorro en mantenimiento vehicular, mayor turistas a la zona y un mayor comercio de servicios como de artesanías, para lo cual se ha realizado un análisis de beneficio de la parte, considerando que tan solo la mitad del TPDA de buses y un tercio del TPDA de los buses, que pasan por la zona van con destino a practicar turismo utilizando la vía del proyecto. Ver Tabla 9.9.

Tabla 9.8. Determinación de beneficio por mejora de carretera en transporte

			Costo	Recorrido d	lel Proyecto	Diferencia	Frecuencia	Ahorro	Vehículo			
Transporte	Pasajeros	P.E.A. *	Pasajero (\$ / hora) **	Sin mejoramiento (horas)	Con mejoramiento (horas)	(horas)	uso	por viaje	por día	Por Día	Por Año	
BUS	40	26	\$ 2,84	0,70	0,55	0,15	2	\$ 21,75	15	\$ 326,20	\$ 117.433,43	
AUTOMÓVIL	4	2	\$ 2,84	0,64	0,55	0,08	2	\$ 0,95	125	\$ 118,50	\$ 42.659,81	
VOLQUETAS	2	2	\$ 2,84	0,70	0,55	0,15	6	\$ 5,02	32	\$ 160,59	\$ 57.813,38	
* 5 -	, .								TRANS	PORTE	\$ 217.906,63	

^{*} Persona Económicamente Activa

Tabla 9.9. Beneficio de la zona turística por mejoramiento de la carretera

COMERCIO	PASAJEROS	ECO. ACTIVA	COSTO DE ALIMENTACIÓN	COSTO ENTRADA	COSTO POR PERSONA	VEHÍCULOS POR FIN DE SEMANA	GENERADO POR FIN DE SEMANA	GENERADO POR AÑO
BUS	40	26	\$ 15,00	2,00	\$ 17,00	8	\$ 3.315,00	\$ 172.380,00
AUTOMÓVIL	4	2	\$ 15,00	2,00	\$ 17,00	42	\$ 1.416,67	\$ 73.666,67
						COME	RCIO	\$ 246.046,67

Tabla 9.10. Ingresos generados por sectores

SECTOR	AGRÍCOLA	PECUARIO	FORESTA	BOVINO	TOTAL ANUAL
ESTIMADO DE INGRESOS	\$ 20.000,00	\$ 9.000,00	\$ 18.000,00	\$ 15.000,00	\$ 62.000,00

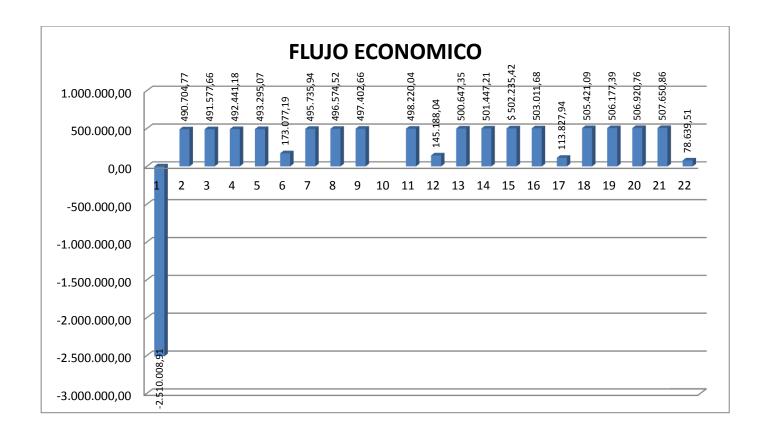
^{** (500\$/(22*8)) = 2,84 (\$/}hora)

^{***} Estimado de vehículos por día Fuente Hidroequinoccio

Tabla 9.11. Flujo de caja económico

CONCEPTO	PERIODO CONSTRU	JCCIÓN 18 MESES	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5	AÑO 6	AÑO 7	AÑO 8
A FLUJO DE BENEFICIOS										
TRANSPORTE PUBLICO			217.906,63	218.560,35	219.216,03	219.873,68	220.533,30	221.194,90	221.858,48	222.524,06
AGRICULTURA			62.000,00	62.186,00	62.372,56	62.559,68	62.747,35	62.935,60	63.124,40	63.313,78
COMERCIO			246.046,67	246.784,81	247.525,16	248.267,74	249.012,54	249.759,58	250.508,86	251.260,38
TOTAL BENEFICIOS	0,00	0,00	525.953,29	527.531,15	529.113,75	530.701,09	532.293,19	533.890,07	535.491,74	537.098,22
B FLUJO DE COSTOS										
OBRAS PRELIMINARES	969,48	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MOVIMIENTOS DE TIERRAS	218120,32	109060,16	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
IMPACTO AMBIENTAL	5659,79	2829,90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
PAVIMENTO	689424,80	344712,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
DRENAJE	644810,35	322405,17	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
REPARACIÓN PUENTES	13668,41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SEÑALIZACIÓN	0,00	158348,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MANTENIMIENTO VIA	0,00	0,00	35.248,52	35.953,49	36.672,56	37.406,01	359.216,0 *	38.154,13	38.917,22	39.695,56
TOTAL COSTOS	1.572.653,15	937.355,76	35.248,52	35.953,49	36.672,56	37.406,01	359.216,00	38.154,13	38.917,22	39.695,56
C FLUJO ECONÓMICO	-1.572.653,15	-937.355,76	490.704,77	491.577,66	492.441,18	493.295,07	173.077,19	495.735,94	496.574,52	497.402,66

^{*} Reforzamiento De la capa de rodadura


Tabla 9.11. Flujo de caja económico Continuación 1

CONCEPTO	AÑO 9	AÑO 10	AÑO 11	AÑO 12	AÑO 13	AÑO 14	AÑO 15	AÑO 16	AÑO 17	AÑO 18	AÑO 19	AÑO 20
A FLUJO DE BENEFICIOS												
TRANSPORTE PUBLICO	223.191,63	223.861,20	224.532,79	225.206,39	225.882,01	226.559,65	227.239,33	227.921,05	228.604,81	229.290,63	229.978,50	230.668,43
AGRICULTURA	63.503,72	63.694,23	63.885,31	64.076,97	64.269,20	64.462,01	64.655,39	64.849,36	65.043,91	65.239,04	65.434,76	65.631,06
COMERCIO	252.014,16	252.770,21	253.528,52	254.289,10	255.051,97	255.817,13	256.584,58	257.354,33	258.126,39	258.900,77	259.677,48	260.456,51
TOTAL BENEFICIOS	538.709,51	540.325,64	541.946,62	543.572,46	545.203,17	546.838,78	548.479,30	550.124,74	551.775,11	553.430,44	555.090,73	556.756,00
B FLUJO DE COSTOS												
OBRAS PRELIMINARES	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MOVIMIENTOS DE TIERRAS	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
IMPACTO AMBIENTAL	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
PAVIMENTO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
DRENAJE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
REPARACIÓN PUENTES	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SEÑALIZACIÓN	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MANTENIMIENTO VÍA	40.489,47	395.137,6 *	41.299,26	42.125,25	42.967,75	43.827,11	434.651,3 *	44.703,65	45.597,72	46.509,68	47.439,87	478.116,5 *
TOTAL COSTOS	40.489,47	395.137,60	41.299,26	42.125,25	42.967,75	43.827,11	434.651,36	44.703,65	45.597,72	46.509,68	47.439,87	478.116,50
C FLUJO ECONÓMICO	498.220,04	145.188,04	500.647,35	501.447,21	502.235,42	503.011,68	113.827,94	505.421,09	506.177,39	506.920,76	507.650,86	78.639,51

^{*} Reforzamiento De la capa de rodadura

ANÁLISIS ECONÓMICO	i=	12,0%
ANALISIS ECONOMICO	VAN=	\$ 785.937,72

Figura 9.3. Gráfica De Flujo De Caja Económico Del Proyecto

10.6.1.2. Valor actual neto financiero

Se determina el van financiero mediante la aplicación de la siguiente antes mencionada del VAN, considerando un financiamiento banco público como podría ser el Banco de Estado el cual presta a un valor de 8,35%, para proyectos viales.

VANF =
$$\frac{FE_1}{(1+i)^1} + \frac{FE_2}{(1+i)^2} + \frac{FE_3}{(1+i)^3} + \dots + \frac{FE_n}{(1+i)^n} - Io$$

Se trabaja con un porcentaje de 12,0% de interés anual para el prestamos, de esta manera tendríamos un colchón de dinero que serviría para la reinversión en nuevos proyectos

Tabla 9.12. Amortización del Préstamo Anual

PAGO DE INTERÉS ANUAL	PAGO PER CAPITAL ANUAL
280225,2449	389779,8977
230791,3976	439213,745
175088,1012	494917,0414
112320,2325	557684,9101
41591,82697	628413,3157
840016,8032	2510008,91

Tabla 9.11. Flujo de caja Financiero.

CONCEPTO	Pre-operación	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5	AÑO 6	AÑO 7	AÑO 8
A FLUJO DE BENEFICIOS									
Contribución Especial de Mejoras	0,0	224.000,00	244.160,00	266.134,40	290.086,50	316.194,28	344.651,77	375.670,42	409.480,76
TOTAL BENEFICIOS	0,0	224.000,00	244.160,00	266.134,40	290.086,50	316.194,28	344.651,77	375.670,42	409.480,76
B FLUJO DE COSTOS									
Inversión Fija	2.510.008,91	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Inversión Diferida	0,0	35.248,52	35.953,49	36.672,56	37.406,01	359.216,00	38.154,13	38.917,22	39.695,56
TOTAL COSTOS	2.510.008,91	35.248,52	35.953,49	36.672,56	37.406,01	359.216,00	38.154,13	38.917,22	39.695,56
C FLUJO ECONÓMICO (A-B)	-2.510.008,91	188.751,48	208.206,51	229.461,84	252.680,48	-43.021,72	306.497,63	336.753,21	369.785,20
Inversión inicial	2.510.008,91	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Pago del capital (-)	0,0	389.779,90	439.213,75	494.917,04	557.684,91	628.413,32	0,0	0,0	0,0
Interés del préstamo BEDE (-)	0,0	280225,2449	230.791,40	175.088,10	112.320,23	41.591,83	0,0	0,0	0,0
TOTAL DE PRÉSTAMO	2.510.008,91	670.005,14	670.005,14	670.005,14	670.005,14	670.005,14	0,00	0,00	0,00
D FLUJO DE EFECTIVO	0,00	-481.253,67	-461.798,64	-440.543,31	-417.324,66	-713.026,86	306.497,63	336.753,21	369.785,20

Tabla 9.13. Flujo de caja Financiero. Continuación 1

CONCEPTO	AÑO 9	AÑO 10	AÑO 11	AÑO 12	AÑO 13	AÑO 14	AÑO 15	AÑO 16	AÑO 17	AÑO 18	AÑO 19	AÑO 20
A FLUJO DE BENEFICIOS												
Contribución Especial de Mejoras	446.334,03	486.504,09	530.289,46	578.015,51	630.036,91	686.740,23	748.546,85	815.916,07	889.348,52	969.389,88	1.056.634,97	1.151.732,12
TOTAL BENEFICIOS	446.334,03	486.504,09	530.289,46	578.015,51	630.036,91	686.740,23	748.546,85	815.916,07	889.348,52	969.389,88	1.056.634,97	1.151.732,12
B FLUJO DE COSTOS												
Inversión Fija	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Inversión Diferida	40.489,47	395.137,60	41.299,26	42.125,25	42.967,75	43.827,11	434.651,36	44.703,65	45.597,72	46.509,68	47.439,87	478.116,50
TOTAL COSTOS	40.489,47	395.137,60	41.299,26	42.125,25	42.967,75	43.827,11	434.651,36	44.703,65	45.597,72	46.509,68	47.439,87	478.116,50
C FLUJO ECONÓMICO (A-B)	405.844,56	91.366,49	488.990,20	535.890,27	587.069,16	642.913,13	313.895,49	771.212,42	843.750,79	922.880,21	1.009.195,10	673.615,63
Inversión inicial	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Pago del capital (-)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Interés del préstamo BEDE (-)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
TOTAL DE PRÉSTAMO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
D FLUJO DE EFECTIVO	405.844,56	91.366,49	488.990,20	535.890,27	587.069,16	642.913,13	313.895,49	771.212,42	843.750,79	922.880,21	1.009.195,10	673.615,63

ANÁLISIS FINANCIERO	I	12,00%
	VANF	\$ 8.788,68

Se recomienda, que la entidad encargada de cobrar el CEM, cobrar un valor de \$ 92,0, anuales por persona económicamente activa de la población de Nanegalito y Nanegal, para con esto cubrir los gastos de mantenimiento, refuerzo y cubrir el costo del préstamo.

10.6.2. Cálculo de la tasa interna de retorno

La tasa interna de retorno nos ayuda a definir cuál es la tasa de interés en la cual

los flujos de caja cálculos, nos va un valor VAN=0, es decir si se calcula un valor

de interés mayor a la tasa de interés del préstamo, existirá rentabilidad en la

inversión realizada.

$$VAN = \sum_{t=1}^{n} \frac{F_t}{(1 + TIR)^t} - I = 0$$

Donde:

F_t: Flujo de caja en el periodo t

n: numero de periodos

I: Inversión Inicial

10.6.2.1. Tasa interna de retorno económico

Se utiliza los flujos económicos de la Tabla 9.10, para el cual nos da un valor de:

$$TIRE = 15,223\% > 12\% OK$$

10.6.2.2. Tasa interna de retorno financiero

Se utiliza los flujos financieros considerando la inversión exterior o préstamo, de la

Tabla 9.11, para el cual nos da un valor de:

$$TIRF = 12,06 \% > 12\% OK$$

Se acepta el proyecto puesto que tiene un valor de TIR mayor al del interés, aunque sea una valor muy cercano recordemos que El Banco cobra solo el 8,35% de interés anual y nosotros calculamos con el 12%.

299

CAPITULO XI

11.1. CONCLUSIONES

Por muchos años el Ecuador ha sido un consumidor de energía eléctrica extranjera, el desarrollo de nuevas plantas hidroeléctricas en el país, nos permitirá ahora ser nosotros los exportadores de energía limpia, a demás de poder abandonar el uso de combustibles para la generación de energía eléctrica, ayudando de esta manera a la coexistencia con el Ambiente.

El mejoramiento y construcción de nuevas carreteras ayudan al desarrollo de un país, debido a la mayor comunicación entre los pueblos se fomentara el comercio, el intercambio de conocimientos, entre otros, y en este caso en particular permitirá la factibilidad del transporte de turbinas, para la generación de energía eléctrica a benefician del país.

Una vez realizado la visita de campo, pudimos observar es estado del trazado actual que tenia excesiva curvas muy sinuosa, mediante un estudio de factibilidad, se determino que la forma más económica para el mejoramiento de la vía era determinar la topografía actual de la vía y rediseñar curvas tanto horizontales como verticales que no cumplieran con las normas del MTOP.

La topografía se obtuvo mediante fotogrametría a escala 1:5000, la cual permite obtener curvas de nivel cada metro, pero vale destacar que este método no es preciso debido a que hay pequeñas elevaciones, y depreciaciones no visibles en la fotografía aérea.

El estudio hidrológico nos permitió conocer el comportamiento de las premeditaciones de la zona del proyecto, lo cual permitió el diseño de drenaje longitudinal, transversal de la carretera además del estudio hidrológicos de los

Puentes Palupe, Pillipe y Llullupe que son parte de la vía Nanegalito Nanegal, los cuales no presentan dificultades por el cauce de los ríos.

Para los ríos Palupe, Pillipe y Llullupe se utilizo un camión de diseño denominado camión transportador de transformadores, el cual pasara varias veces por los mencionados puentes, debido a que la vía Nanegalito Nanegal, es un acceso importante para la casa de maquinas del proyecto hidroeléctrico que aprovechan el caudal del Río Guayllabamba, la utilización de polímeros reforzados con fibras es fue la alternativas más eficiente por costo, manejabilidad entre otros beneficios para el refuerzo de los puentes Palupe y Llullupe, mientras que el Puente Pillipe no requirió refuerzo.

Debido a que toda construcción de obra civil produce un impacto ambiental en la zona donde se está construyendo, el plan expuesto en este proyecto ayudara a reducir el impacto ambiental, se mejora el manejo de materiales de construcción, inflamables y contaminantes, dando un correcto manejo y desecho de los mismo, El análisis económico financiero del proyecto, mediante los indicadores como son el VAN y el TIR, no permitieron conocer la vialidad económica del proyecto y el beneficio de las comunidades.

11.2. RECOMENDACIONES

Se recomienda tomar todas las medidas posibles para evitar accidentes, medidas entre las cuales se encuentra un correcto uso de las señales tanto verticales como horizontales las mimas que, serán efectivos, cumpliendo características de localización del dispositivo tiene un rol importante para su cumplimiento, puesto que de dicha localización depende que el conductor pueda percatarse de su

presencia y así tomar la acción necesaria como respuesta inmediata al dispositivo.

Se recomienda que para todo diseño vial que se realice, se siga las normas vigentes en el Ecuador ya que dichas normas garantizan que la vía sea confortable y segura.

10.3. BIBLIOGRAFÍA

- DISEÑO GEOMÉTRICO DE CARRETERAS, (2005), Cárdenas Grisales
 James, Bogotá Colombia
- NORMAS DE DISEÑO GEOMÉTRICO MOP 2003. Manual de Diseño Geométrico de Carreteras.
- MINISTERIO DE OBRAS PUBLICAS 001-F. Especificaciones Técnicas para la Construcción de Caminos y Puentes.
- ESTUDIOS DEFINITIVOS DE LOS PROYECTOS DE INFRAESTRUCTURA COMUNITARIA DE SERVICIOS BÁSICOS PARA PAÑACOCHA, (2011), Consulflex.
- Diseño de pavimentos ING. MILTON TORRES ESPINOZA, Escuela Politécnica del Ejército, Quito

BIOGRAFÍA

DATOS PERSONALES

APELLIDOS: LUGMAÑA PRIMERA

NOMBRES: GUILLERMO JESÚS

LUGAR DE NACIMIENTO: Quito

FECHA DE NACIMIENTO: 22 de Diciembre de 1987

ESTADO CIVIL: Soltero

DIRECCIÓN: Av. Mariscal Sucre S 13-118 y Juan Camacaro

Sector La Sabtiago

TELÉFONO: 099-269838 / 022-632-334 / 022-845590

FORMACIÓN ACADÉMICA

ESTUDIOS PRIMARIOS: Unidad Educativa Experimental "Quito Sur" - Quito

ESTUDIOS SECUNDARIOS: Instituto Tecnológico Superior "Policía Nacional" -

Quito

TÍTULO OBTENIDO: Físico Matemático

ESTUDIOS SUPERIORES: Escuela Politécnica del Ejercito ESPE - Sangolquí

Carrera de Ingeniería Civil

TÍTULO OBTENIDO: Egresado de Ingeniero Civil

BIOGRAFÍA

DATOS PERSONALES

APELLIDOS: BENAVIDES HERRERA

NOMBRES: GIOVANNY ANDRÉS

LUGAR DE NACIMIENTO: Quito

FECHA DE NACIMIENTO: 01 de Noviembre de 1987

ESTADO CIVIL: Soltero

DIRECCIÓN: S4D Y E21 Sector Eden del Valle

TELÉFONO: 092-501861

FORMACIÓN ACADÉMICA

ESTUDIOS PRIMARIOS: Escuela municipal Eugenio Espejo

ESTUDIOS SECUNDARIOS: Unidad Educativa Salesiana "Cardenal Espelman"

TÍTULO OBTENIDO: Ciencias

ESTUDIOS SUPERIORES: Escuela Politécnica del Ejercito ESPE - Sangolquí

Carrera de Ingeniería Civil

HOJA DE LEGALIZACIÓN DE FIRMAS

ELABORADO POR:		
Andrés Giovanny Benavides Herrera :.		
Ovilla mana a la a éa la vena a ão Britana a s		
Guillermo Jesús Lugmaña Primera		
DIRECTOR DE LA CARRERA DE INGENIERÍA CIVIL.		
Ing. Jorge Zúñiga		
DIRECTOR DE LA UNIDAD DE ADMISIÓN Y REGISTRO		
Lugar y fecha:		