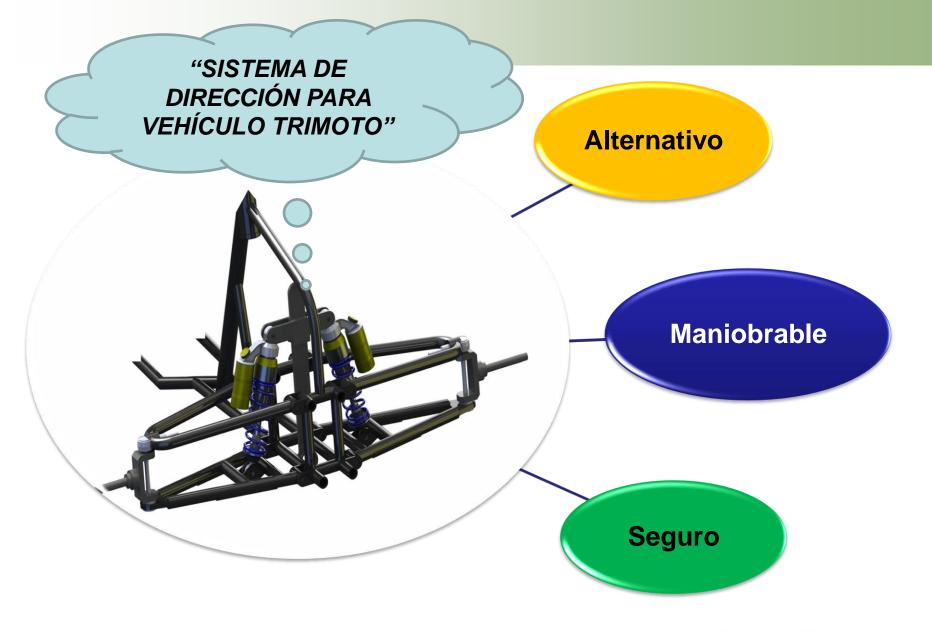
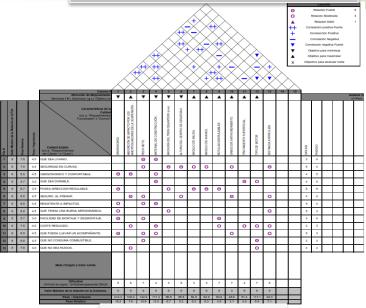


# INGENIERÍA AUTOMOTRIZ


# "DISEÑO Y CONSTRUCCIÓN DE UN SISTEMA DE DIRECCIÓN PARA UN VEHÍCULO TRIMOTO"

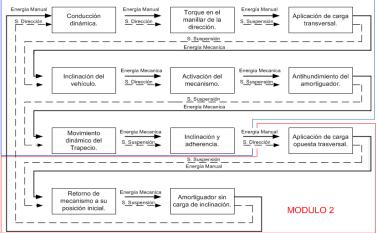
**AUTOR: CARLOS SUNTAXI** 

DIRECTOR: ING. GUIDO TORRES


CODIRECTOR: ING. FÉLIX MANJARRÉS.








#### **CASA DE LA CALIDAD**

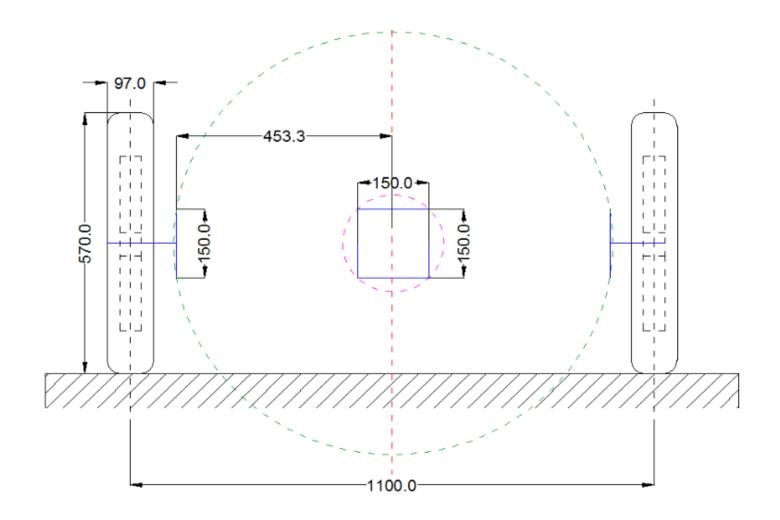


# **MODULACIÓN**

#### MODULO 1

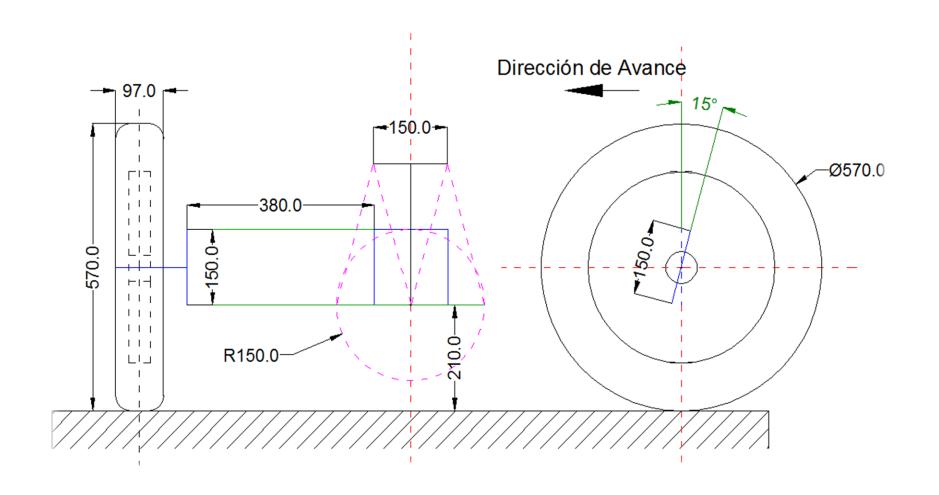


# DIAGRAMA MORFOLÓGICO


|                                                       | Solución<br>Hotchkiss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solución<br>Mcpherson | Solución doble trapecio |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|
| Transmitir energia como fuerza y desplazamiento       | Idea to see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | <b>Å</b> →∞ <b>*</b>    |
| Amplificar<br>fuerza y<br>disminuir<br>desplazamiento | Name of State of Stat |                       |                         |
| Almacenar<br>energía                                  | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mmao                  |                         |
| Disipar energía                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M                     |                         |
| Estabilizar el vehículo                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                         |
|                                                       | ALTERNATIVA S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALTERNATIVA S2        | ALTERNATIVA S3          |

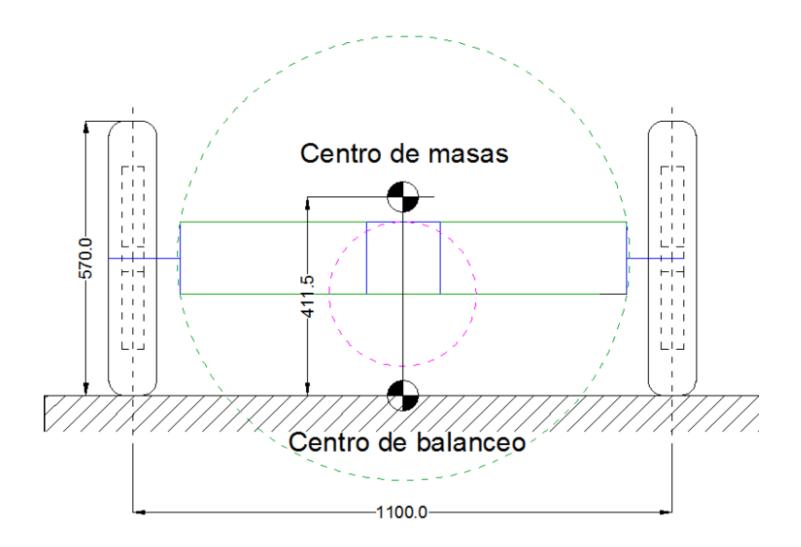


# MODELACIÓN Y ANÁLISIS PRELIMINAR



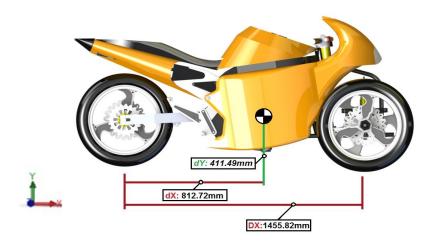

# GEOMETRÍA PRELIMINAR DEL SISTEMA



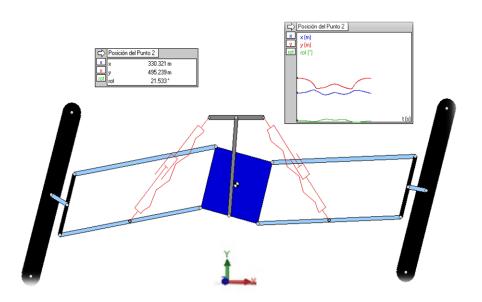



# **GEOMETRÍA Y COTAS APLICADAS**






#### DISTANCIA DEL CENTRO DE MASAS- CENTRO DE BALANCEO






# POSICIÓN DEL CENTRO DE MASAS 3D - 2D

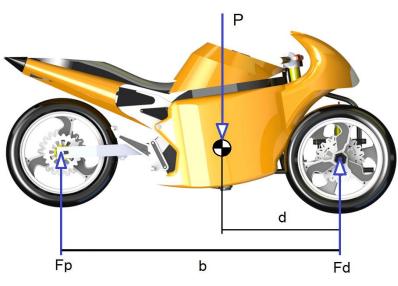






| UBICACIÓN DEL CENTRO DE MASAS |                            |         |  |  |  |  |
|-------------------------------|----------------------------|---------|--|--|--|--|
| Rot (Grados)                  | Rot (Grados) x (mm) y (mm) |         |  |  |  |  |
| 0                             | 0                          | 411.49  |  |  |  |  |
| 5                             | 6.591                      | 411.216 |  |  |  |  |
| 10                            | 13.058                     | 410.361 |  |  |  |  |
| 15                            | 19.426                     | 408.947 |  |  |  |  |
| 25                            | 31.742                     | 404.458 |  |  |  |  |
| 30                            | 37.526                     | 401.443 |  |  |  |  |




# DISTRIBUCIÓN DE FUERZAS CON RESPECTO AL CENTRO DE MASAS

| CARGA VIVA                             | MASA (kg) |
|----------------------------------------|-----------|
| Persona promedio del 95% percentil x 2 | 140       |
| Motor mono cilíndrico 4 Tiempos        | 30        |
| Total                                  | 170       |



| CARGA MUERTA                  | MASA (kg) |
|-------------------------------|-----------|
| Estructura tubular            | 40        |
| Bastidor                      | 20        |
| Transmisión                   | 15        |
| Carrocería                    | 5         |
| Llanta y frenos               | 30        |
| Suspensión                    | 10        |
| Dirección                     | 5         |
| Sistema eléctrico             | 5         |
| Pedales y sistemas de cambios | 5         |
| Total                         | 116       |





$$F_d = F_t * \frac{d}{b} \qquad \qquad F_p = F_t * \frac{b-d}{b}$$

| DISTRIBUCIÓN DE FUERZAS RESPECTO AL CENTRO DE MASAS |         |       |  |  |
|-----------------------------------------------------|---------|-------|--|--|
| Fuerza (N) Porcentaje (%)                           |         |       |  |  |
| Eje delantero                                       | 1440.74 | 44.17 |  |  |
| Eje posterior 1825.19 55.83                         |         |       |  |  |

286 kg



# TRANSFERENCIA DE MASAS EN ACELERACIÓN BRUSCA

$$w_a = \frac{a * m_t * h_{CG}}{b}$$

$$w_a = \frac{2.18 \frac{m}{s^2} * 286 \ kg * 0.41149m}{1.45 \ m}$$

$$w_a = 176.93 N$$

$$w_{a(30\%)} = w_a + 0.3(w_a)$$

$$w_{a(30\%)} = 176.93 \text{ N} + 0.3(176.93 \text{ N})$$

$$w_{a(30\%)} = 230.01 \text{ N}$$

$$m_{ac}^d = \left(m_{st}^d * \gamma_P\right) + \left(\frac{w_{a(30\%)}}{g} * \gamma_v\right)$$

 $\gamma_P = Factor \ de \ carga \ permanente \ (1.33)$ 

 $\gamma_v = Factor\ de\ carga\ variable\ (1.50)$ 

$$m_{ac}^d = (126.34 \ kg * 1.33) + (\frac{230.01 \ N}{9.8 \frac{m}{s^2}} * 1.50)$$

$$m_{ac}^d = (168.03 \, kg) + (35.20 \, kg)$$

**Eje Delantero** 
$$m_{ac}^d = 203.23 \, kg$$

**Eje Posterior** 
$$m_{ac}^p = 247.2 \ kg$$



## TRANSFERENCIA DE MASAS EN FRENADA BRUSCA

$$V_o = 27.8 \frac{m}{s} = 100 \frac{Km}{h}$$

$$V_f = 0$$

 $Tiempo\ de\ frenada=t=3s$ 

$$V_f = V_o + a.t$$

$$a = \frac{V_f - V_0}{t}$$

$$a = \frac{-27.8 \frac{m}{s}}{3 s}$$

$$a = -9.26 \frac{m}{s^2}$$

$$w_f = \frac{a_f * m_t * h_{CG}}{b}$$

$$w_f = \frac{9.26 \frac{m}{s^2} * 286 \ kg * 0.41149m}{1.45 \ m}$$

$$w_f = 751.56 N$$

$$w_{f(30\%)} = w_f + 0.3(w_f)$$

$$w_{f(30\%)} = 751.56 N + 0.3(751.56 N)$$

$$w_{f(30\%)} = 977.03 N$$

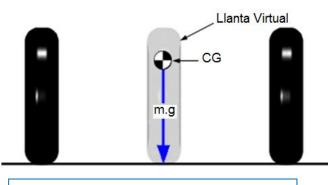
$$m_f^d = \left(m_{st}^d * \gamma_P\right) + \left(\frac{w_{f(30\%)}}{g} * \gamma_v\right)$$

 $\gamma_P = Factor \ de \ carga \ permanente \ (1.33)$ 

 $\gamma_v = Factor\ de\ carga\ variable\ (1.50)$ 

$$m_f^d = (126.34 \, kg * 1.33) + (\frac{977.03 \text{ N}}{9.8 \frac{m}{s^2}} * 1.50)$$

$$m_f^d = (168.03\,kg) + (149.54\,kg)$$


**Eje Delantero**  $\longrightarrow$   $m_f^d = 317.54 \, kg$ 

**Eje Posterior** 
$$m_f^p = 361.54 \ kg$$



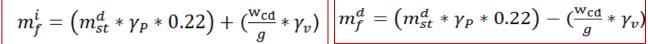
## TRANSFERENCIA DE MASAS EN CURVA

| UBICACIÓN CENTRO DE MASAS |      |  |
|---------------------------|------|--|
| X(m)                      | Y(m) |  |
| 0                         | 0.41 |  |



| $A_n$ | $=\frac{v^2}{}$ |
|-------|-----------------|
| n     | r               |

| V      | r   |
|--------|-----|
| (Km/h) | (m) |
| 40     | 60  |
| 60     | 100 |
| 80     | 150 |


$$W_c = \frac{A_n * m_t * h_{CG}}{Av}$$

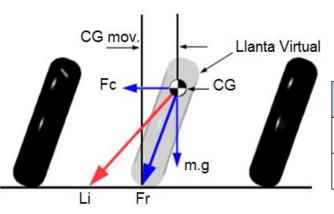
#### **DELANTERO**

$$W_{cd} = \frac{A_n * m_t * h_{CG} * 0.44}{Av}$$

#### **POSTERIOR**

$$W_{cp} = \frac{A_n * m_t * h_{CG} * 0.56}{Av}$$




$$m_f^d = \left(m_{st}^d * \gamma_P * 0.22\right) - \left(\frac{w_{cd}}{g} * \gamma_v\right)$$



# TRANSFERENCIA DE MASAS EN CURVA

#### 25 GRADOS

| UBICACIÓN CENTRO DE MASAS |      |  |
|---------------------------|------|--|
| X(m)                      | Y(m) |  |
| 0.31                      | 0.40 |  |



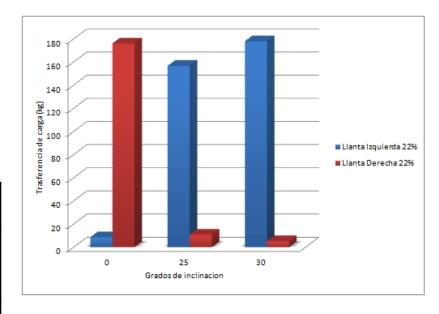
#### 30GRADOS

| UBICACIÓN CENTRO DE MASAS |      |  |
|---------------------------|------|--|
| X(m)                      | Y(m) |  |
| 0.37                      | 0.40 |  |

$$W_{c(x)} = \frac{A_n * m_t * h_{CG(x)}}{Av}$$

$$W_c = \frac{A_n * m_t * h_{CG}}{Av}$$

$$W_{c(y)} = \frac{A_n * m_t * h_{CG(y)}}{Av}$$

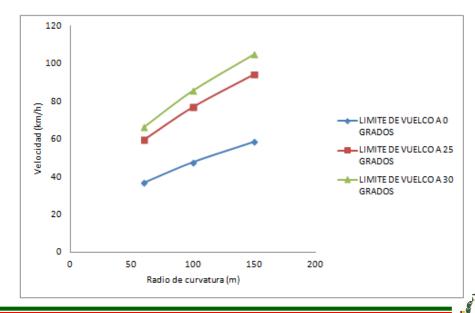

$$W_c = \sqrt{W_{c(x)}^2 + W_{c(y)}^2}$$



# ANÁLISIS DE RESULTADOS

| TRANSFERENCIA DE CARGAS EN CURVA |          |          |            |  |  |  |
|----------------------------------|----------|----------|------------|--|--|--|
| GRADO Wcx Wcy [Wc]               |          |          |            |  |  |  |
| S                                | (N)      | (N)      | (N)        |  |  |  |
| 0                                | -        | -        | 1370.11719 |  |  |  |
| 25                               | 663.2418 | 855.7958 | 1082.7171  |  |  |  |
| 30                               | 791.6112 | 855.7958 | 914.7765   |  |  |  |

|    |        | DISTRIBUCIÓN DE<br>CARGAS  |                     | CARGA EJE DELANTERO<br>44% |                            |
|----|--------|----------------------------|---------------------|----------------------------|----------------------------|
| No | Grados | Eje<br>Delantero           | Eje<br>Posterior    | Llanta<br>Izquierda        | Llanta<br>Derecha          |
| 1  | 0      | <b>44%(kg)</b><br>602.8515 | 66%(kg)<br>767.2656 | <b>22%(kg)</b><br>8.5895   | <b>22%(kg)</b><br>175.9567 |
| 2  | 25     | 476.3955                   | 606.3215            | 156.6012                   | 10.7659                    |
| 2  | 30     | 512.9416                   | 402.8348            | 177.8950                   | 5.1721                     |






# RANGO DE VELOCIDAD SEGURA DE CONDUCCIÓN

$$V = \sqrt{g * r * \frac{Av}{2h_{CG}}} \qquad V = \sqrt{g * r * \tan(\theta)}$$

|      | LIMITE A 0<br>GRADOS |         | LIMITE A 25 GRADOS |         | LIMITE A 3 | 80 GRADOS |
|------|----------------------|---------|--------------------|---------|------------|-----------|
| r(m) | V(m/s)               | V(km/h) | V(m/s)             | V(km/h) | V(m/s)     | V(km/h)   |
| 60   | 10.28                | 37.00   | 16.55              | 59.58   | 18.42      | 66.31     |
| 100  | 13.28                | 47.80   | 21.37              | 76.93   | 23.78      | 85.60     |
| 150  | 16.26                | 58.53   | 26.18              | 94.26   | 29.13      | 104.86    |

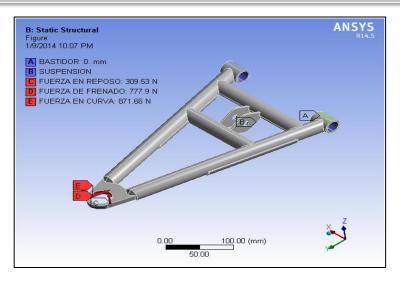


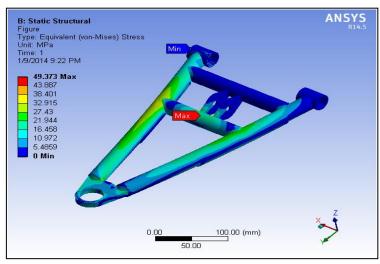


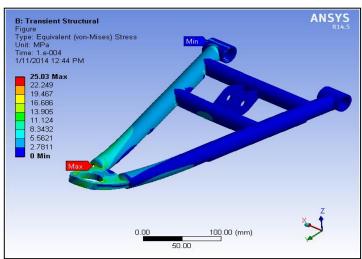
# TRANSFERENCIA DE MASAS

| EN RE     | POSO      | ACELERACIÓ                  | N BRUSCA  |
|-----------|-----------|-----------------------------|-----------|
| 63.17 kg  | 63.17 kg  | 101.61 kg                   | 101.61 kg |
| 160.05 kg |           | 247.20 kg                   |           |
|           | ) BRUSCA  | CURVA INCLINACIÓN 30 GRADOS |           |
| 158.77 kg | 158.77 kg | 177.89 kg                   | 5.17 kg   |
|           |           |                             |           |
| 36^       | 1.54 kg   | 402.83                      | 3 kg      |



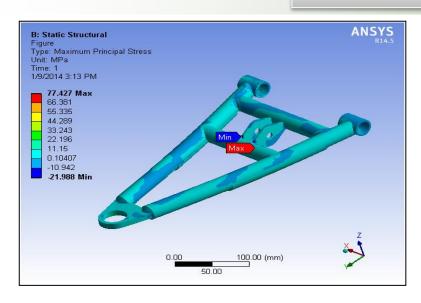

#### PROPIEDADES MECÁNICAS DEL MATERIALES Resistencia a la tensión Resistencia de fluencia Grado, Componente del Designación del producto o material mecanismo geometría (ksi) (MPa) (Ksi) (MPa) Bastidor, Tubo Redondo, ASTM A-500 58 400 42 290 Trapecio superior e grado B inferior Conjunto mangueta-ASTM A36 Barra, eje 58 250 400 36 punta de eje Barra de inclinación 250 ASTM A36 Plancha 58 400 36

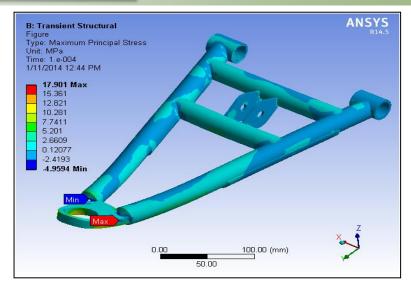


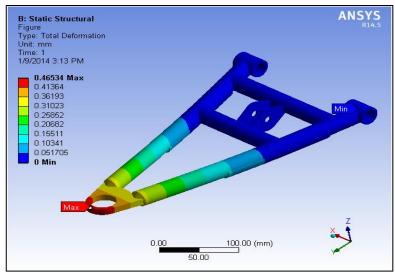


# OPTIMIZACIÓN Y DESARROLLO DE ANÁLISIS POR ELEMENTOS FINITOS

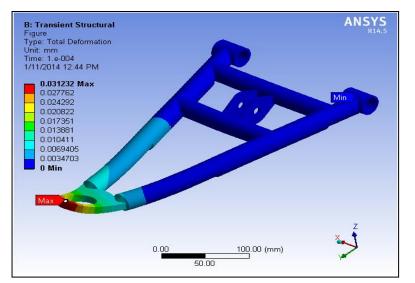


# ANÁLISIS DE LOS ELEMENTOS DEL SISTEMA DE SUSPENSIÓN TRAPECIO INFERIOR



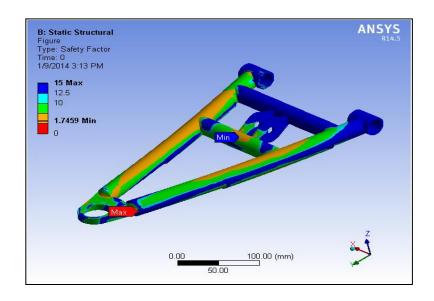



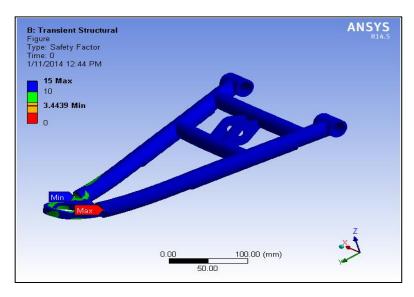




#### **TRAPECIO INFERIOR**





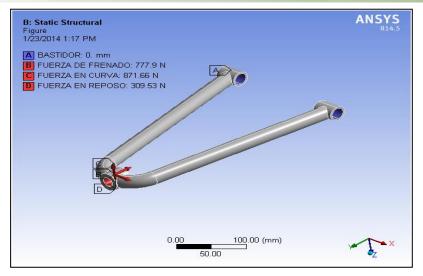



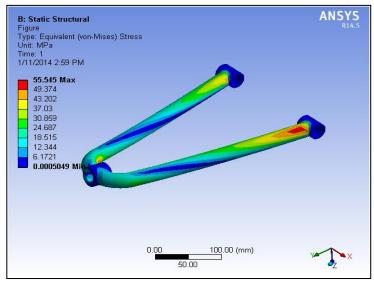


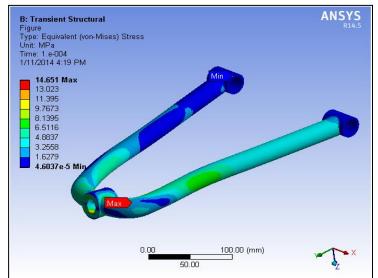



## TRAPECIO INFERIOR



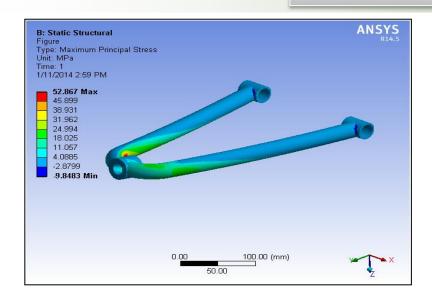


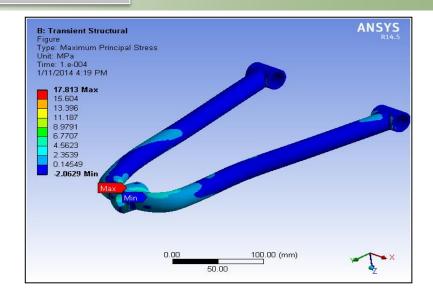


| RESULTADO ANÁLISIS ESTÁTICO         |             |            |      |  |  |
|-------------------------------------|-------------|------------|------|--|--|
| Parámetro principal Total seguridad |             |            |      |  |  |
| Mínimo                              | -21.988 MPa | 0. mm      | 1,74 |  |  |
| Máximo                              | 77.427 MPa  | 0.46534 mm | 15   |  |  |

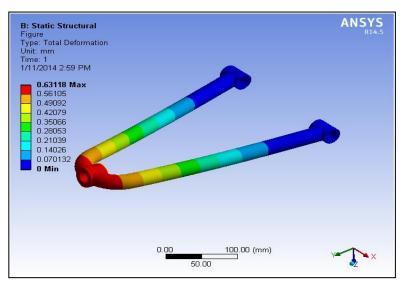

| RESULTADO ANÁLISIS TRANSITORIO                                  |             |                |      |  |  |
|-----------------------------------------------------------------|-------------|----------------|------|--|--|
| Parámetro Esfuerzo Deformación Factor de máximo Total seguridad |             |                |      |  |  |
| Mínimo                                                          | -4.9594 MPa | 0. mm          | 3.44 |  |  |
| Máximo                                                          | 17.901 MPa  | 3.1232e-002 mm | 15   |  |  |

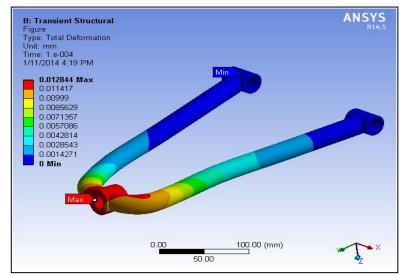


#### **TRAPECIO SUPERIOR**



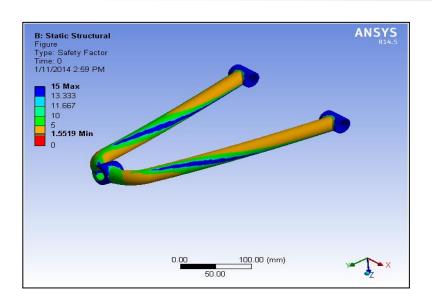



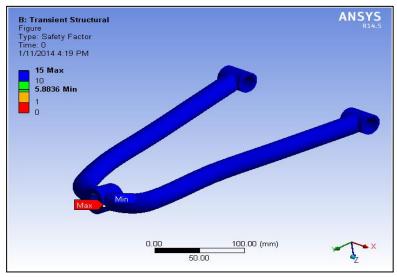




#### **TRAPECIO SUPERIOR**





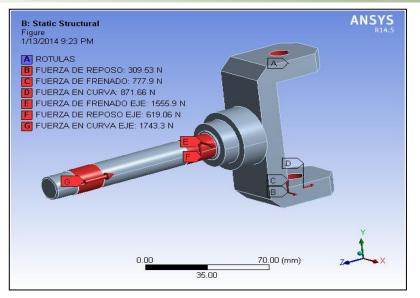



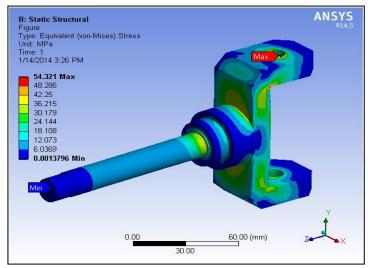


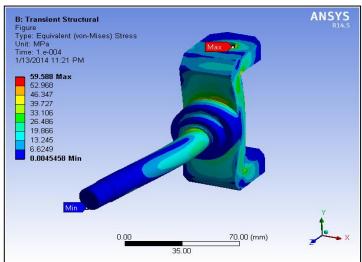



## **TRAPECIO SUPERIOR**



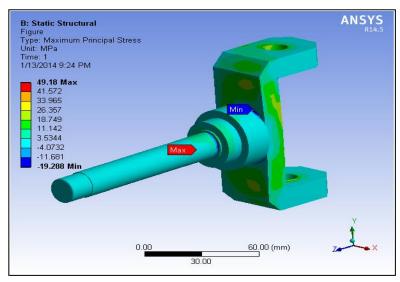


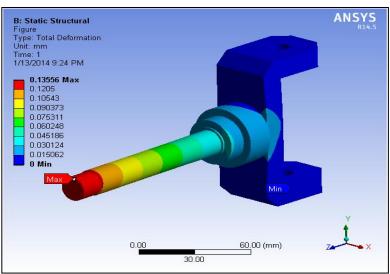


| RESULTADO ANÁLISIS ESTÁTICO |                                                                     |            |      |  |  |
|-----------------------------|---------------------------------------------------------------------|------------|------|--|--|
| Parámetro                   | Parámetro Esfuerzo principal máximo Deformación Factor de seguridad |            |      |  |  |
| Mínimo                      | -9.8483 MPa                                                         | 0. mm      | 1,55 |  |  |
| Máximo                      | 52.867 MPa                                                          | 0.63118 mm | 15   |  |  |

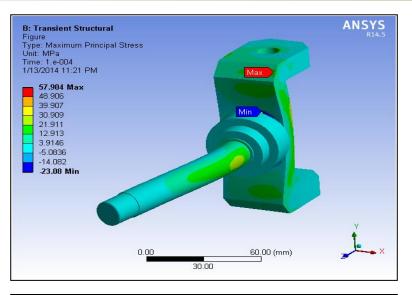

| RESULTADO ANÁLISIS TRANSITORIO     |             |                |      |  |  |  |
|------------------------------------|-------------|----------------|------|--|--|--|
| Parámetro principal Total segurida |             |                |      |  |  |  |
| Mínimo                             | -2.0629 MPa | 0. mm          | 5.88 |  |  |  |
| Máximo                             | 17.813 MPa  | 1.2844e-002 mm | 15   |  |  |  |

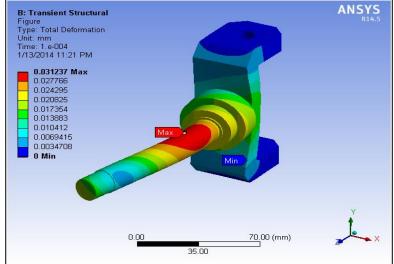


#### **CONJUNTO MANGUETA-EJE**



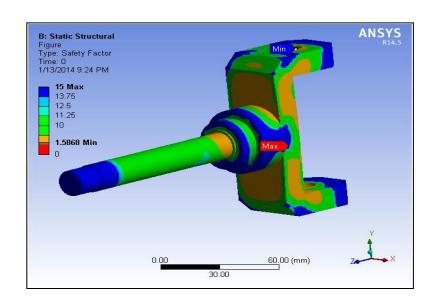



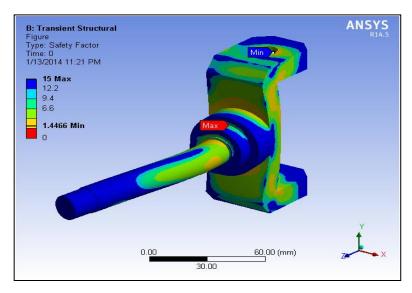




#### **CONJUNTO MANGUETA-EJE**





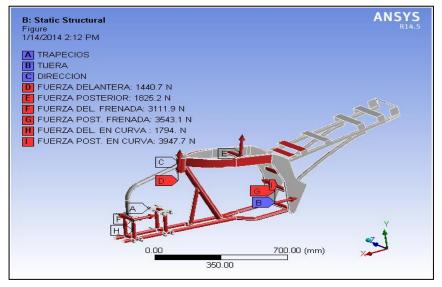





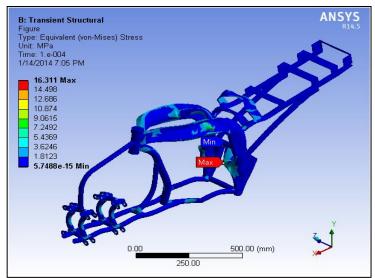



## **CONJUNTO MANGUETA-EJE**



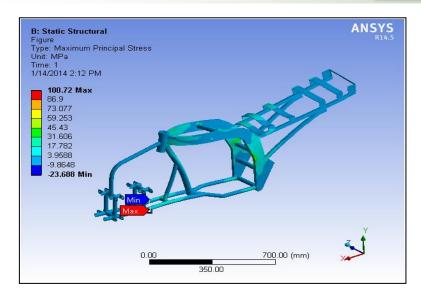


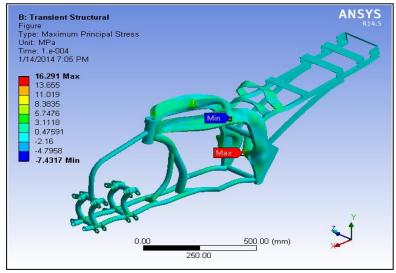

| RESULTADO ANÁLISIS ESTÁTICO |                                 |                      |                        |  |  |
|-----------------------------|---------------------------------|----------------------|------------------------|--|--|
| Parámetro                   | Esfuerzo<br>principal<br>máximo | Deformación<br>Total | Factor de<br>seguridad |  |  |
| Mínimo                      | -19.288 MPa                     | 0. mm                | 1,58                   |  |  |
| Máximo                      | 49.18 MPa                       | 0.13556 mm           | 15                     |  |  |

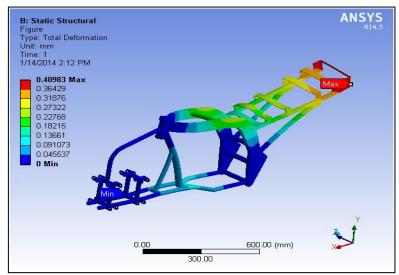

| RESULTADO ANÁLISIS TRANSITORIO |                                 |                      |                        |  |  |  |
|--------------------------------|---------------------------------|----------------------|------------------------|--|--|--|
| Parámetro                      | Esfuerzo<br>principal<br>máximo | Deformación<br>Total | Factor de<br>seguridad |  |  |  |
| Mínimo                         | -23.08 MPa                      | 0. mm                | 1.44                   |  |  |  |
| Máximo                         | 57.904 MPa                      | 3.1237e-002 mm       | 15                     |  |  |  |

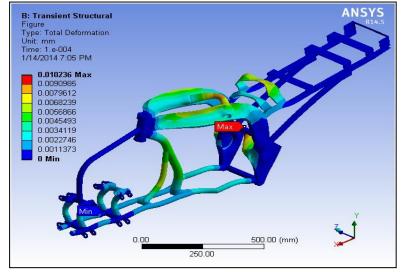


#### **BASTIDOR**



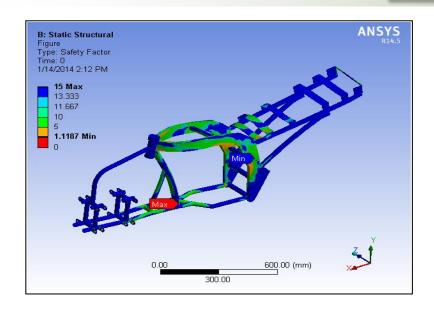



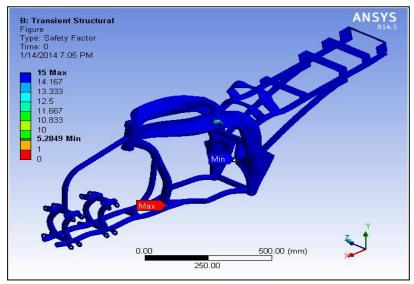




#### **BASTIDOR**





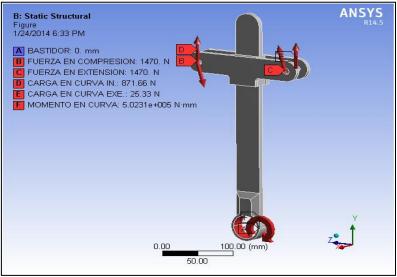



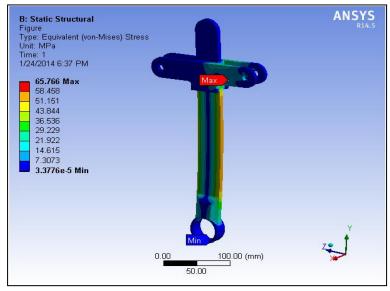


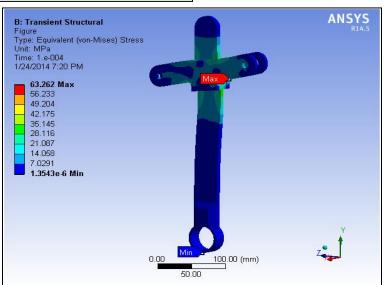



## **BASTIDOR**



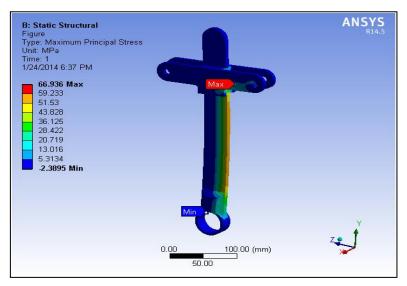


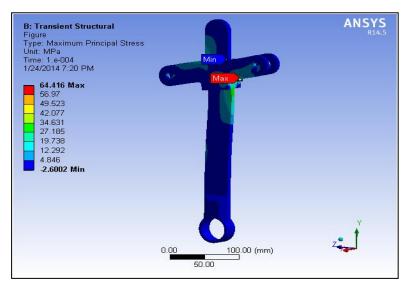


| RESULTADO ANÁLISIS ESTÁTICO                                         |             |            |      |  |  |
|---------------------------------------------------------------------|-------------|------------|------|--|--|
| Parámetro Esfuerzo principal máximo Deformación Factor de seguridad |             |            |      |  |  |
| Mínimo                                                              | -23.688 MPa | 0. mm      | 1,11 |  |  |
| Máximo                                                              | 100.72 MPa  | 0.40983 mm | 15   |  |  |

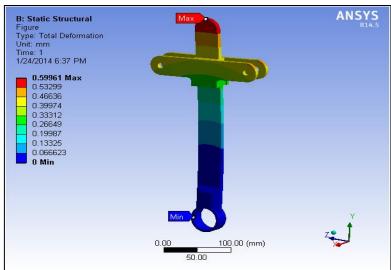

| RESULTADO ANÁLISIS TRANSITORIO |                                 |                      |                        |  |  |  |
|--------------------------------|---------------------------------|----------------------|------------------------|--|--|--|
| Parámetro                      | Esfuerzo<br>principal<br>máximo | Deformación<br>Total | Factor de<br>seguridad |  |  |  |
| Mínimo                         | -7.4317 MPa                     | 0. mm                | 5.28                   |  |  |  |
| Máximo                         | 16.291 MPa                      | 1.0236e-002 mm       | 15                     |  |  |  |

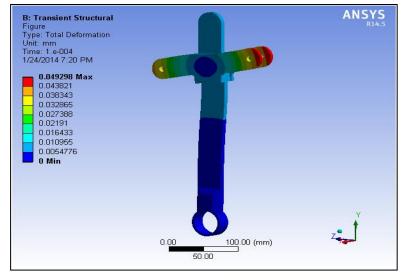


# **BARRA DE INCLINACIÓN**



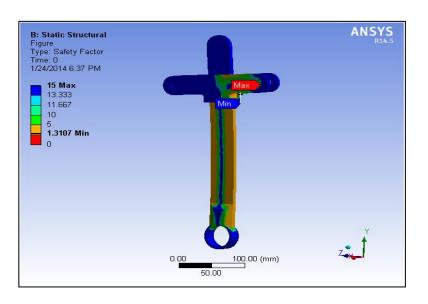



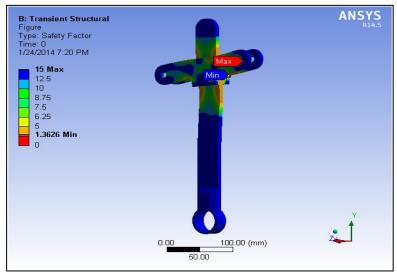




## **BARRA DE INCLINACIÓN**










# **BARRA DE INCLINACIÓN**





| RESULTADO ANÁLISIS ESTÁTICO                                |             |            |      |  |  |
|------------------------------------------------------------|-------------|------------|------|--|--|
| Parámetro principal máximo Deformación Factor de seguridad |             |            |      |  |  |
| Mínimo                                                     | -2.3895 MPa | 0. mm      | 1,31 |  |  |
| Máximo                                                     | 66.936 MPa  | 0.59961 mm | 15   |  |  |

| RESULTADO ANÁLISIS TRANSITORIO                           |             |                |      |  |  |  |
|----------------------------------------------------------|-------------|----------------|------|--|--|--|
| Parámetro principal máximo Deformación Factor o segurida |             |                |      |  |  |  |
| Mínimo                                                   | -2.6002 MPa | 0. mm          | 1.36 |  |  |  |
| Máximo                                                   | 64.416 MPa  | 4.9298e-002 mm | 15   |  |  |  |



# MANUFACTURA, ENSAMBLAJE Y MONTAJE DEL SISTEMA







# **SOLDADURA BASTIDOR PROCESO GMAW**











# **TRAPECIO INFERIOR-SUPERIOR**











# **CONJUNTO MANGUETA - EJE**











# **ELEMENTOS DEL MECANISMO**





## **ENSAMBLE DEL MECANISMO**









# MECANISMO MONTADO EN EL VEHÍCULO TRIMOTO



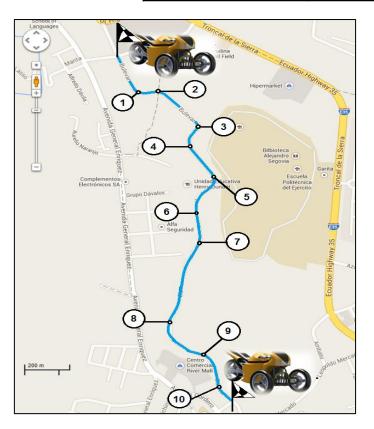


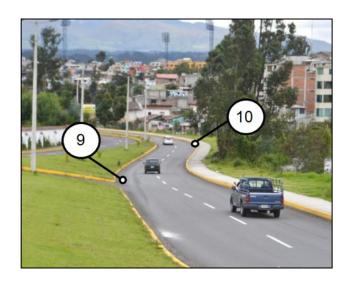






# MECANISMO MONTADO EN EL VEHÍCULO TRIMOTO








| ESCENARIO DE PRUEBA VEHÍCULO TRIMOTO |                                               |               |        |  |  |  |  |
|--------------------------------------|-----------------------------------------------|---------------|--------|--|--|--|--|
| Realizada por:                       | Carlos Alfredo Suntaxi Llumiquinga            |               |        |  |  |  |  |
| Localización:                        | Pichincha, Cantón Rumiñahui, Avenida Bulevar. |               |        |  |  |  |  |
|                                      | Utilidad                                      | Longitud (km) | Curvas |  |  |  |  |
|                                      | Transito urbano                               | 2,6           | 10     |  |  |  |  |
| Fecha/ Hora:                         | 5 de Enero 2014 / 14H00                       |               |        |  |  |  |  |







| MANIOBRABILIDAD EN CURVAS |           |             |                           |    |    |  |  |
|---------------------------|-----------|-------------|---------------------------|----|----|--|--|
| Escenarios                |           |             | Velocidad promedio (km/h) |    |    |  |  |
| Curva.                    | Radio (m) | Inclinación | 40                        | 60 | 80 |  |  |
| 1                         | 60        | Izquierda   | E                         | ME | R  |  |  |
| 2                         | 60        | Derecha     | E                         | ME | R  |  |  |
| 3                         | 15        | Derecha     | R                         | R  | R  |  |  |
| 4                         | 70        | Izquierda   | E                         | E  | ME |  |  |
| 5                         | 80        | Derecha     | E                         | E  | ME |  |  |
| 6                         | 120       | Izquierda   | E                         | Е  | E  |  |  |
| 7                         | 120       | Derecha     | E                         | E  | Е  |  |  |
| 8                         | 100       | Izquierda   | E                         | ME | R  |  |  |
| 9                         | 90        | Derecha     | E                         | ME | R  |  |  |
| 10                        | 130       | Izquierda   | Е                         | Е  | E  |  |  |

E: Estable, ME: Marginalmente estable R: Reducción de velocidad, I: Inestable, P: Peligro.





## FICHA TÉCNICA VEHÍCULO TRIMOTO





#### CARACTERÍSTICAS MECÁNICAS

**Tipo** Monocilindrico, 4T, Refrigerado por aire.

Cilindrada 250 cc.

**Potencia** 10,3kw @ 7500 rpm.

**Torque máximo** 15 N.m @ 600 rpm.

Velocidad máxima 80 km/h.

Sistema de encendido CDI.

Sistema de Arranque Eléctrico.

Sistema de trasmisión Toma constante, 5 velocidades.

Trasmisión final Cadena.



#### **ESTRUCTURA DE LA TRIMOTO**

**Bastidor** Multitubular, cuna simple.

Suspensión Delantera Independiente, doble trapecio con sistema

de inclinación activo a 30 grados, conjunto

resorte- amortiguador.

Suspensión posterior Brazo basculante, conjunto resorte-

amortiguador.

Freno delantero Disco.

Freno posterior Disco.

Neumáticos delanteros 110/70/R17.

Neumático posterior 140/70/R17.

#### **DATOS GENERALES**

**Distancia al piso** 210 mm.

Ancho de vía 1100mm.

Distancia entre ejes 1450mm.

**Masa-Peso** 143 kg.- 1430.8N







## **CONCLUSIONES**

- Una geometría de suspensión de brazos paralelos permite el cambio de posición del sistema en forma armónica para la inclinación del vehículo, el cual permite seguir una trayectoria en forma segura dentro de una curva.
- El comportamiento dinámico del vehículo permite que las cargas generadas por trasferencia de masas en curvas, sean distribuidas de tal forma que tienda a tener un equilibrio por acción de movimiento del centro de masas.
- El comportamiento dinámico del centro de masas en curvas permite que la velocidad de conducción segura, aumente en consideración al grado de inclinación del vehículo.



## **CONCLUSIONES**

- Los elementos del mecanismo los cuales fueron expuestos a cargas criticas de maniobrabilidad del vehículo trimoto, tiene una alta fiabilidad en análisis de falla mecánica.
- El vehículo trimoto dotado del sistema de dirección, tiene un rango de maniobrabilidad segura de conducción máxima de 80 km/h en carreteras de un buen trazado, cuidando los radios de curvaturas inferiores a 70 metros.
- Mecanismo de dirección puede ser adaptado a un una motocicleta comercial previo a un análisis de comportamiento de todo el vehículo para determinar los rango de conducción segura así como la fiabilidad de los elementos.



## **RECOMENDACIONES**

- Utilizar un software de diseño para obtener dimensiones y resultados de análisis con altas precisión y rapidez, pudiendo modificar y efectuar cambios con facilidad.
- La construcción y adaptación del mecanismo de dirección se debe realizarse bajo normas de seguridad y procesos de calidad de manufactura.
- No se debe exceder la velocidad máxima promedio de conducción recomendada para el prototipo de dirección montado en el vehículo trimoto.



## **RECOMENDACIONES**

- Se debe realizar una inspección visual periódica y de mantenimiento adecuado del mecanismo, así como de los diferentes sistemas del vehículo trimoto para brindar seguridad al conductor.
- Revisar daños en los terminados superficiales de los diferentes elementos del mecanismo y repáralos para evitar la corrosión de los mismos.



# ESPE









