

UNIVERSIDAD DE LAS FURZAS ARMADAS - ESPE

Departamento de Eléctrica y Electrónica.

Carrera: Ingeniería Electromecánica.

TEMA:

"DISEÑO, CONSTRUCCIÓN Y AUTOMATIZACIÓN DE UN HORNO ELÉCTRICO PARA EL CALENTAMIENTO DE PREPOLYMER Y POLYOL EN LA ELABORACIÓN DE CALZADO PARA LA EMPRESA CALZADO CASS"

Autores: Aguirre Patricio,

Sánchez Boris

OBJETIVO GENERAL.

 Diseñar, construir y automatizar un horno eléctrico para el calentamiento de Polyol y Prepolymer para elaborar calzado en la Empresa Calzado Cass.

OBJETIVOS ESPECÍFICOS

- Diseñar y seleccionar cada uno de los elementos necesarios para la implementación del horno de calentamiento.
- Implementar un Controlador de Temperatura y Timer para el control del sistema.
- Seleccionar el sensor de temperatura adecuado para el control.

DESCRIPCIÓN DEL PROYECTO

El proyecto consta del diseño y construcción de un horno eléctrico que es controlado por un Controlador de Temperatura ESM-7745, un Timer EZM - 3344, y una termocupla tipo "J", que sensa la temperatura del interior, y que en conjunto estos dispositivos realizan el control de temperatura, realizando un control así de los requeridos de temperatura para calentamiento de Prepolymer y Polyol para la elaboración de calzado.

Condiciones físicas

El horno de calentamiento tiene un espacio físico de 1,5m de ancho, 1m de profundidad y 0,98 m de alto

El tablero de control, donde están ubicados los circuitos de control y de fuerza, se encuentra ubicado en la parte superior del horno, esto facilita su visualización y operación.

Las resistencias eléctricas de calentamiento que elevan la temperatura dentro del horno, están ubicadas en la parte inferior interna del horno.

Sistema de control.

Controlar

Termocupla

Resistencia

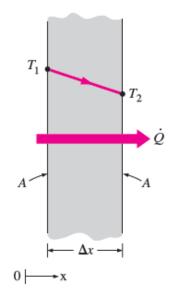
COMPONENTES DEL SISTEMA.

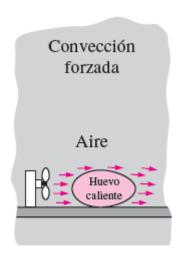
Materia Prima

Lana de Vidrio

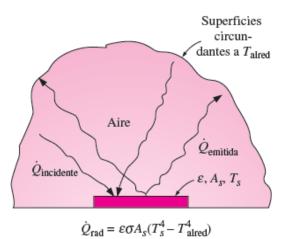
Hornos eléctricos

Resistencias eléctricas


Controlador y Timer


Termocupla

MECANISMO DE CONDUCCIÓN DE CALOR


Conducción

Convección forzada

Convección natural

Radiación

ECUACIONES QUE SE UTILIZARÁN EN EL DISEÑO TÉRMICO.

• Ecuación para determinar el calor acumulado en las paredes del horno.

$$\mathbf{q} = \frac{\mathbf{T_{int}} - \mathbf{T_{\alpha}}}{\frac{1}{\mathbf{h_{int}}A} + \frac{\mathbf{X_{1}}}{\mathbf{K_{1}}A} + \frac{\mathbf{X_{2}}}{\mathbf{K_{2}}A} + \frac{\mathbf{X_{3}}}{\mathbf{K_{3}}A} + \frac{1}{\mathbf{h_{\alpha}}A}}$$

• Ecuación para el cálculo del calor suministrado por el horno para un ciclo de trabajo

$$Q_s = Q_p + Q_{Carga\ Total} \qquad \quad Q_p = Q_{kT} + Q_{CT} + Q_R$$

• Ecuación para determinar las pérdidas de calor por conducción.

$$\mathbf{Q_k} = \mathbf{m} * \mathbf{Cp} * \mathbf{\Delta T}$$

• Ecuación para determinar las pérdidas de calor por convección.

Nusselt, Grashof, Prandlt

$$N_u = F(Gr, Pr)$$

$$\mathbf{G_r} = (\Delta \mathbf{T} * \boldsymbol{\beta}) * \frac{\mathbf{L}^3 * \boldsymbol{\rho}^2 * \mathbf{g}}{\mathbf{u}^2}$$

$$P_{\mathbf{r}} = \frac{\mathbf{u} * \mathbf{CP}}{\mathbf{k}}$$

Temperatura media de película.

$$\mathbf{Tm} = \frac{\mathbf{Ts} + \mathbf{Tf}}{2}$$

Número de Rayleigh

$$Ra = Gr * Pr$$

RÉGIMEN LAMINAR.

$$Gr * Pr < 10^9 \longrightarrow Condición$$

$$N_{\rm u} = 0.68 + \frac{0.670(\text{Gr} * \text{Pr})^{1/4}}{\left[1 + \left(\frac{0.492}{\text{Pr}}\right)^{9/16}\right]^{4/9}}$$

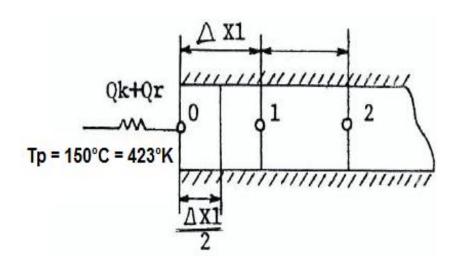
RÉGIMEN TURBULENTO.

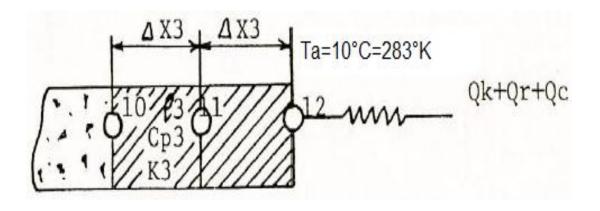
$$Gr * Pr > 10^9 \longrightarrow Condición$$

$$Nu = 0.10(Gr * Pr)^{1/3}$$

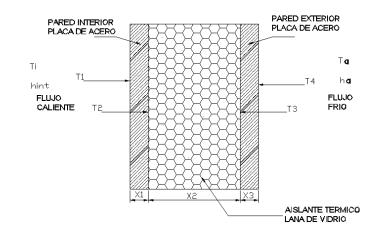
• Ecuación para determinar las pérdidas de calor por convección.

Coeficiente de película convectivo.

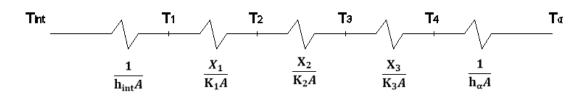

$$hc = \frac{N_u * K}{L}$$


$$Q_C = \mathbf{hc} * \mathbf{A} * \Delta \mathbf{T} \quad \left(\frac{\mathbf{Kcal}}{\mathbf{h}}\right)$$

Ecuación para determinar las pérdidas de calor por radiación.


$$Q_R = \varepsilon * \tau * A(Ts^4 - Ta^4)$$

ECUACIONES PARA DETERMINAR LA DISTRIBUCIÓN DE TEMPERATURAS


Analogía eléctrica

$$R_T = R_1 + R_2 + R_3 + R_4 + R_5$$

$$\mathbf{R}_{1} = \frac{1}{\mathbf{h}_{int}A}, \mathbf{R}_{2} = \frac{X_{1}}{\mathbf{K}_{1}A}, \mathbf{R}_{3} = \frac{X_{2}}{\mathbf{K}_{2}A}, \mathbf{R}_{4} = \frac{X_{3}}{\mathbf{K}_{3}A}, \mathbf{R}_{5} = \frac{1}{\mathbf{h}_{\alpha}A}$$

$$q = \frac{T_{int} - T_1}{R_1} = \frac{T_1 - T_2}{R_2} = \frac{T_2 - T_3}{R_3} = \frac{T_3 - T_4}{R_4} = \frac{T_4 - T_\alpha}{R_5}$$

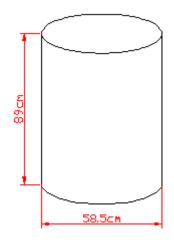
 Ecuación para determinar el rendimiento térmico de convección.

$$Ntc = \frac{Q_{carga\ total}}{Qs} x100$$

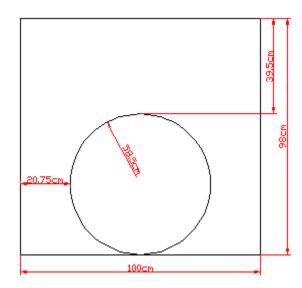
ANÁLISIS DEL SISTEMA

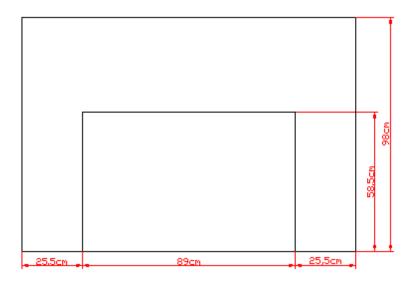
• Consideraciones físicas y ambientales para el diseño

Sector:	Provincia del Tungurahua / Ambato
Altitud (m):	2640 m.
Temperatura media:	15°C
Temperatura mínima:	10°C
Humedad Relativa (Φ):	82%
Presión Atmosférica (P):	73.4 kPa. (Anexo: F).

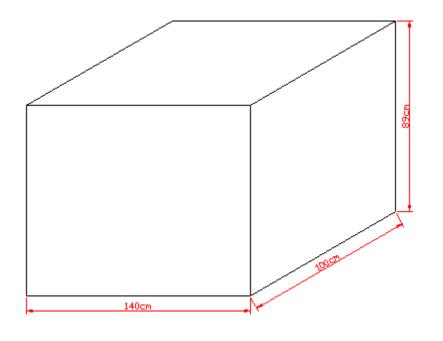

Temperatura del aire atmosférico

Número de Tomas	Mañana	Noche
1	20°C	13°C
2	15°C	12°C
3	18°C	10°C
4	19°C	13°C




Medidas de la cámara de calentamiento.

Dimensión del tanque de Polyol y Prepolymer


masa del tanque = 143.52kg

• Medidas de la cámara de calentamiento.

Alto: 98cm = 0.98 m.

Ancho: 140cm = 1.40 m.

Profundidad: 100cm = 1 m.

volúmen = 1.40 m x 0.98 m x 1 m.

 $volúmen = 1.372 \text{ m}^3$

DETERMINACIÓN DEL AISLANTE TÉRMICO.

Propiedades de los materiales de las paredes del horno

MATERIAL	DENSIDAD ($ ho$) $\left[rac{Kg}{m^3} ight]$	CONDUCTIVIDAD TERMICA (k) $\left[\frac{W}{m^\circ K}\right]$	CALOR ESPECIFICO (C_p) $\left[\frac{J}{\mathrm{Kg.}^{\circ}\mathrm{K}}\right]$	
Láminas de Acero	7850	58	460	
Lana de Vidrio	18	0.040	660	

CÁLCULO DEL FLUJO DE CALOR.

Datos:

$$T_{int} = 150^{\circ}C = 423.15^{\circ}K$$

$$T_{\alpha} = 10^{\circ}C = 283.15^{\circ}K$$

area =
$$0.98 m^2$$

$$h_{\rm int} = 25 \; \frac{w}{m^2 {}^{\circ} K}$$

Flujo y temperaturas en función del espesor de la lana de vidrio (MathCad).

Espesor lana de vidrio (X ₂) Pulg	Flujo de calor (q) W °K		T ₂ °K	T₃ °K	T ₄ °K	
1	194.590894	415.207515	415.200668	291.099332	291.092485	
2	103.152546	418.939692	418.936062	287.363938	287.360308	
3	70.176553	420.285651	420.283182	286.016818	286.014349	
4	52.365034	421.012652	421.010809	285.289191	285.287348	

RESULTADOS OBTENIDOS:

Calor acumulado en las Paredes $(oldsymbol{q})$	Espesor de las Pa	aredes	Distribución de Temperaturas		
q = 103.152546 w	X1 = 0.002 m X2 = 0.05 m X3 = 0.002 m		$\begin{split} T_{int} &= 423.15^{\circ}\text{K} \\ T_1 &= 418.9396^{\circ}\text{K} \\ T_2 &= 418.9360^{\circ}\text{K} \\ T_3 &= 287.3639^{\circ}\text{K} \\ T_4 &= 287.3603^{\circ}\text{K} \\ T_{\alpha} &= 283.15^{\circ}\text{K} \end{split}$		
	PÉRDIDAS DE CALOR				
Pérdidas de calor por Convección $(oldsymbol{Q}_{CT})$	Pérdidas de calor por Radiación $(oldsymbol{Q}_R)$	Pérdidas de calor en las Paredes por conducción (Q_{KT})	Pérdidas Totales de calor (Q_p)		
284.6354 W	1.4337 W	11.9 W	297. 9691 W		
	CALOR SUMINISTRADO				
El calor Total necesario para calentar la Car	ga y elementos internos	Calor Total Suministrado por el Sister $(oldsymbol{Q}_{oldsymbol{s}})$			
220 W	220 W				
RENDIMI	ENTO TÉRMICO DE CONVECCIÓN	N			
	42.47 %				

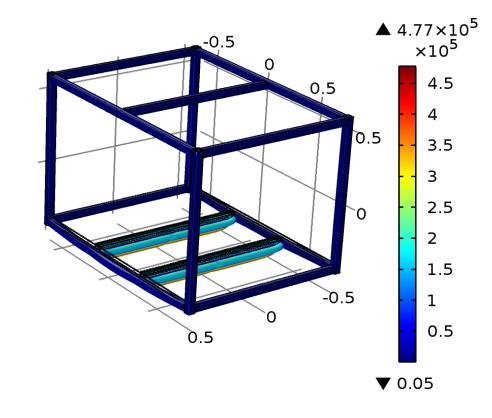
CÁLCULO DEL TIEMPO DE CALENTAMIENTO DEL AIRE EN EL INTERIOR DEL HORNO.

$$C_{p \ aire} = 1,005 \frac{KJ}{Kg^{\circ}K}$$

$$\Delta t = \frac{mc_p \Delta T}{0.92 Q_s - Q_p}$$

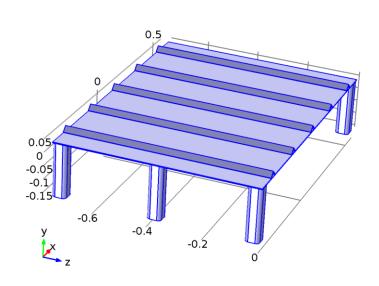
$$\Delta t = \frac{1,61Kg * 1,005 \frac{KJ}{Kg^{\circ}K} * (353,15 - 283,15)^{\circ}K}{0,92(0.5179691 \text{ KW}) - 0.2979691 \text{ KW}}$$

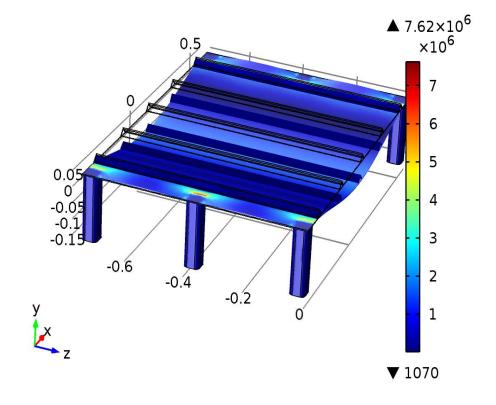
$$\Delta t = 634,3074 \, s \approx 10,57 \, min$$



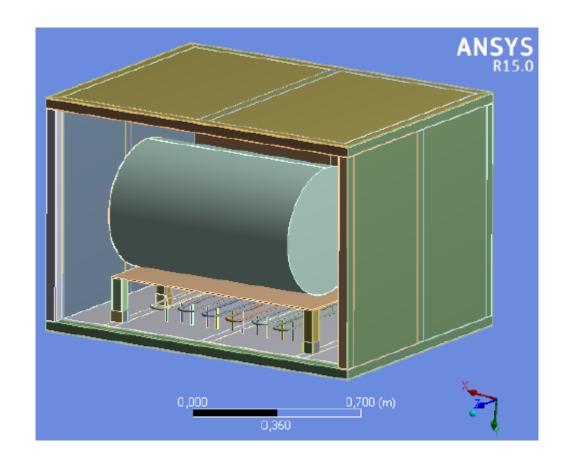
ANÁLISIS DE ESFUERZO DE LA ESTRUCTURA EN COMSOL.

Superficie: Tensión von Mises (N/m²)


Nombre	Expresión
CARGA_BASE	281.29[N]



ANÁLISIS DE ESFUERZO DE LA ESTRUCTURA EN COMSOL.

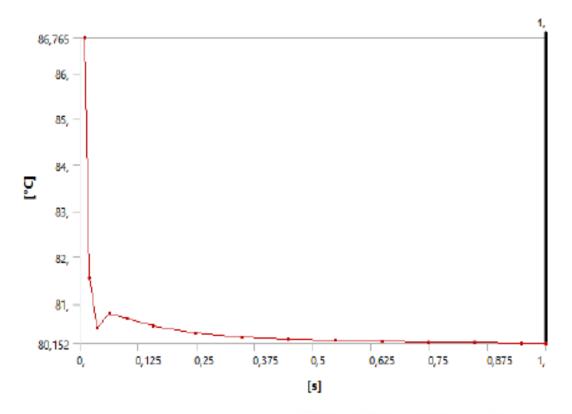


Superficie: Tensión von Mises (N/m²)

ANÁLISIS TÉRMICO DEL HORNO MEDIANTE EL SOFTWARE "ANSYS R15.0".

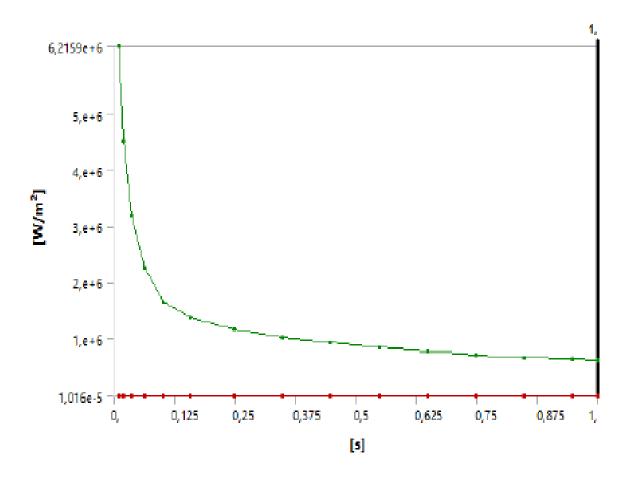


- Temperatura ambiente.
- Temperatura de diseño.
- Peso de la carga

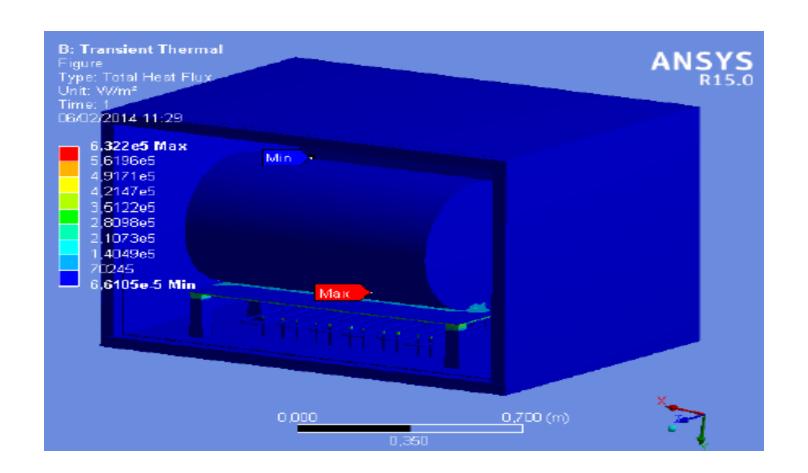


RESULTADOS OBTENIDOS DEL SOFTWARE ANSYS "ANSYS R15.0".

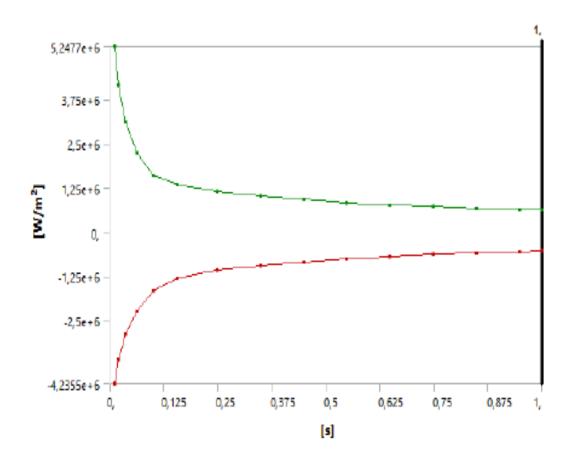
Curva transitoria térmica



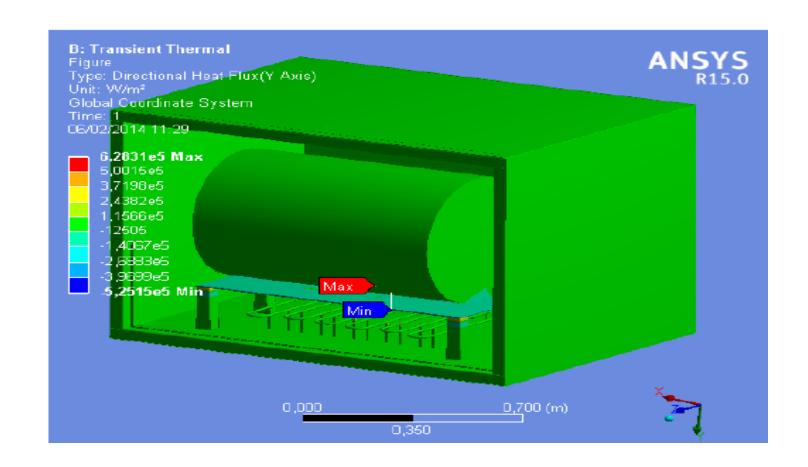
Curva temperatura global máxima


CURVA DEL FLUJO DE CALOR TOTAL

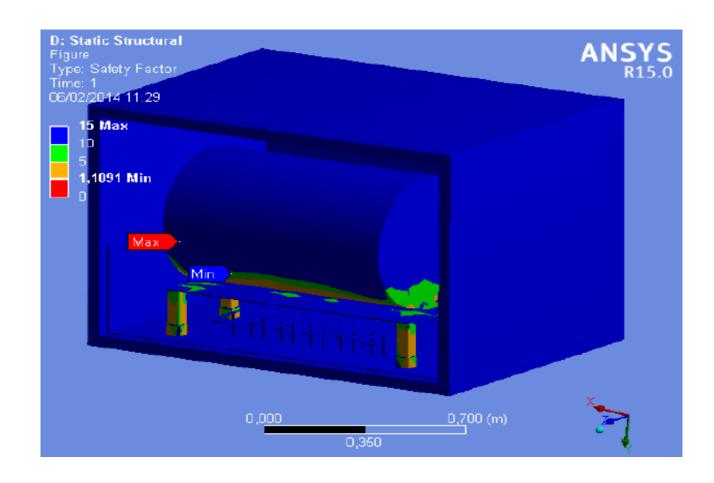
Time [s]	Minimum [W/m²]	Maximum [W/m²]
1,e-002	1,016e-005	6,2159e+006
2,e-002	1,297e-005	4,5264e+006
3,6644e-002	1,1916e-005	3,1874e+006
6,2925e-002	1,4762e-005	2,2581e+006
0,10074	1,8047e-005	1,6548e+006
0,1562	5,0632e-005	1,3659e+006
0,24792	6,469e-005	1,1625e+006
0,34792	2,3236e-005	1,022e+006
0,44792	2,4104e-005	9,2071e+005
0,54792	5,9888e-005	8,4278e+005
0,64792	2,9299e-005	7,8047e+005
0,74792	1,6433e-005	7,293e+005
0,84792	7,8766e-005	6,864e+005
0,94792	4,0679e-005	6,4979e+005
1,	6,6105e-005	6,322e+005



FLUJO TOTAL DE CALOR INTERNO DEL HORNO.

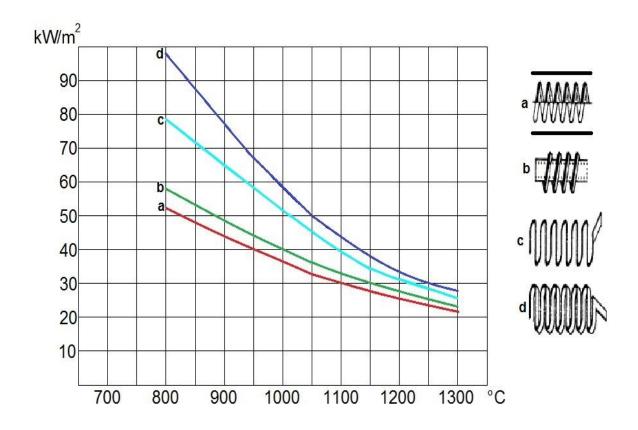

CURVA DE LA DIRECCIONAL DEL FLUJO DE CALOR

Time [s]	Minimum [W/m²]	Maximum [W/m²]
1,e-002	-4,2355e+006	5,2477e+006
2,e-002	-3,5691e+006	4,1492e+006
3,6644e-002	-2,8952e+006	3,1105e+006
6,2925e-002	-2,2237e+006	2,2395e+006
0,10074	-1,6446e+006	1,5921e+006
0,1562	-1,2905e+006	1,3577e+006
0,24792	-1,0811e+006	1,1554e+006
0,34792	-9,4105e+005	1,0157e+006
0,44792	-8,3304e+005	9,1506e+005
0,54792	-7,4382e+005	8,376e+005
0,64792	-6,739e+005	7,7567e+005
0,74792	-6,2343e+005	7,2481e+005
0,84792	-5,8073e+005	6,8217e+005
0,94792	-5,434e+005	6,4579e+005
1,	-5,2515e+005	6,2831e+005

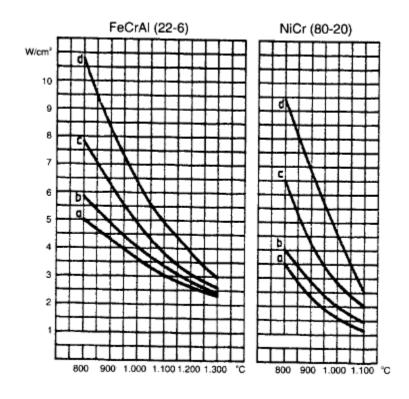


ESTADO ESTACIONARIO TÉRMICO

FACTOR DE SEGURIDAD.



CÁLCULO DE LOS ELEMENTOS DE RESISTENCIA ELÉCTRICA.



DISPOSICIÓN DE LA RESISTENCIA ELÉCTRICA.

Carga específica (p=W/cm2)

Para nuestro diseño tenemos una carga específica de 5 (W/cm²)

Coeficiente de resistividad (Ct)

Aleación	22-6 PM	22-6	22-5	22-4	14-4
Resistividad eléctrica μΩcm. Coeficiente de resistividad:					
20 °C	145	145	139	135	125
20 °C	1	1	1	1	1
100 °C	1	1	1	1	1,01
200 °C	1	1	1,01	1,01	1,02
300 °C	1	1	1,01	1,01	1,03
400 °C	1	1	1,02	1,02	1,04
500 °C	1,01	1,01	1,03	1,03	1,05
600 °C	1,02	1,02	1,04	1,04	1,07
700 °C	1,02	1,02	1,04	1,05	1,09
800 °C	1,03	1,03	1,05	1,06	1,11
900 °C	1,03	1,03	1,05	1,06	1,13
1.000 °C	1,04	1,04	1,06	1,07	1,14
1.100 °C	1,04	1,04	1,06	1,07	1,15
1.200 °C	1,04	1,04	1,06	1,08	-
1.300 °C	1,04	1,04	1,06	1,08	-
1.400 °C	1,05	1,05	1,07	-	-

CÁLCULO NUMÉRICO DEL ELEMENTO DE RESISTENCIA.

Cálculo del diámetro de hilo (d).

$$\frac{A_C}{R_{20}} = \frac{P}{R_{20} * p} = \frac{I^2 * R_t}{R_{20} * p} = \frac{I^2 * C_t}{p} = \frac{P^2 * C_t}{V^2 * p} \quad (cm^2/p)$$

Datos:

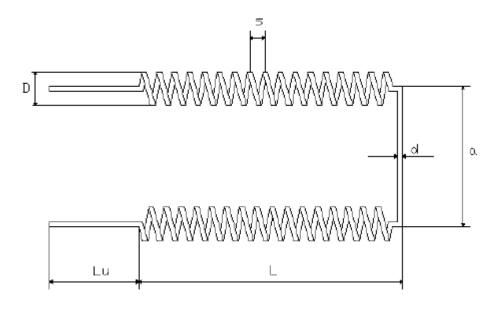
Potencia del horno	1200 W
Tensión	220 V
Temperatura de trabajo	150 °C
Factor de temperatura Ct,	150 °C, tenemos un valor de
para T	1.01
Carga especifica (p)	$5^{w}/_{cm^{2}}$.
Resistividad eléctrica (ρ)	139 $^{\mu\Omega}/_{cm} = 1.39*10^{-4} \ ^{\Omega}/_{cm}$.

$$\frac{A_C}{R_{20}} = \frac{P^2 * C_t}{V^2 * p} = \frac{(1200W)^2 * 1.01}{(220 V)^2 * 5} = 6 \left(\frac{cm^2}{\Omega} \right)$$

Resistencia Kanthal, Relación $\frac{cm^2}{\Omega}$

the table figures are valid for kanthal a-1

I= current, Ct = temperature factor, p = surface load , W/cm2, regarding the use of cm2/ Ω see also page 52


			2C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400
1													1,0					
1	Kanth	al A-1	Ct	1	1	1	1	1	1,01	1,02	1,02	1,03	3	1,04	1,04	1,04	1,04	1,04

diameter	Resistanc	cm2/Ω	weigth per	surface		diameter
9,5	0.0205	20°C	length g/m 503	cm2/m 298	70.9	9,5
8,0	0.0288 8710		357	251	50.3	8.0
7,5	,		314	236	44.2	7,5
7,0	0,0377	5840	273	220	38,5	7,0
6,5	0,0437	4670	236	204	33,2	6,5
6,0	0,0513	3680	201	188	28,3	6,0
	-,				20,0	
5,5	0.0610	2830	169	173	23,8	5,5
5,0	0,0738	2130	139	157	19,6	5,0
4,8	0,0801	880	128	151	18,1	4,8
4,5	0,0912	1550	113	141	15,9	4,5
4,2	0,1050	1260	98,4	132	13,9	4,2
4,0	0,1150	1090	89,2	126	12,6	4,0
3,8	0,1280	934	80,5	119	11,3	3,8
3,5	0,1510	730	68,3	110	9,6	3,5
3,2	0,1800	558	57,1	101	8,0	3,2
3,0	0,2050	459	50,2	94,2	7,1	3,0
2,8	0,2350	374	43,7	88,0	6,2	2,8
2,5	0,2950	266	34,9	78,5	4,9	2,5
2,2	0,3810	181	27,0	69,1	3,8	2,2
2,0	0,4620	136	22,3	62,8	3,1	2,0
1,9	0,5110	117	20,1	59,7	2,8	1,9
1,8	0,5700	99,2	18,1	56,5	2,5	1,8
1,7	0,6390	83,6	16,1	53,4	2,3	1,7
1,6	0,7210	69,7	14,3	50,3	2,0	1,6
1,5	0,8210	57,4	12,5	47,1	1,8	1,5
1,4	0,9420	46,7	10,9	44,0	1,5	1,4
1,3	1,0900	37,4	9,42	40,8	1,33	1,3
1,2	1,2800	29,4	8,03	37,7	1,13	1,2
1,1	1,5300	22,6	6,75	34,6	0,95	1,1
1,0	1,8500	17,0	5,58	31,4	0,79	1,0

d = 1mm Resistencia por unidad de longitud = 1.85 ($^{\Omega}/_{m}$)

Elemento de resistencia.

S = paso del arrollamiento (mm)

D = diámetro de la hélice (mm)

d = diámetro del hilo (mm)

a = distancia eje-brazos (mm)

L = longitud del elemento (mm)

Lu = longitud de los terminales (mm)

Cálculo de la resistencia en caliente.

$$Rc = R = 40.3\Omega$$

Cálculo de la resistencia en frío (R20°C).

$$R_{20^{\circ}C} = \frac{Rc}{Ct} \qquad R_{20^{\circ}C} = 40 \Omega$$

Longitud radiante de hilo (L).

$$L = \frac{P}{\pi * d * p} \qquad L = 0.70 m$$

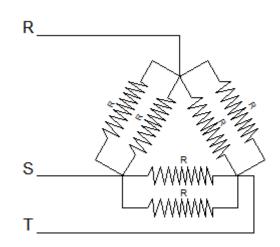
Cálculo del diámetro de la espiral (D)

$$D/d = 6$$
mm a 8 m m
 $D = 6 * d = 6 * 1 m m$

· Cálculo del número de espiras (n).

$$n = \frac{1000 * L}{\pi * (D - d)}$$
 $n = 573 \text{ espiras}$

• Cálculo de la longitud de la espira extendida (L).


$$L = 1146 \text{ mm} = 1.15 \text{ m}$$

Cálculo del paso del arrollamiento (s).

$$S/_{d} = 2 - 3$$
mm $S = 2$ mm

CONEXIONES ELÉCTRICAS.

Datos de las resistencias eléctricas

Potencia del horno	1200 W
Tensión	220 V
Temperatura de trabajo	150 °C

$$V_L = V_F$$

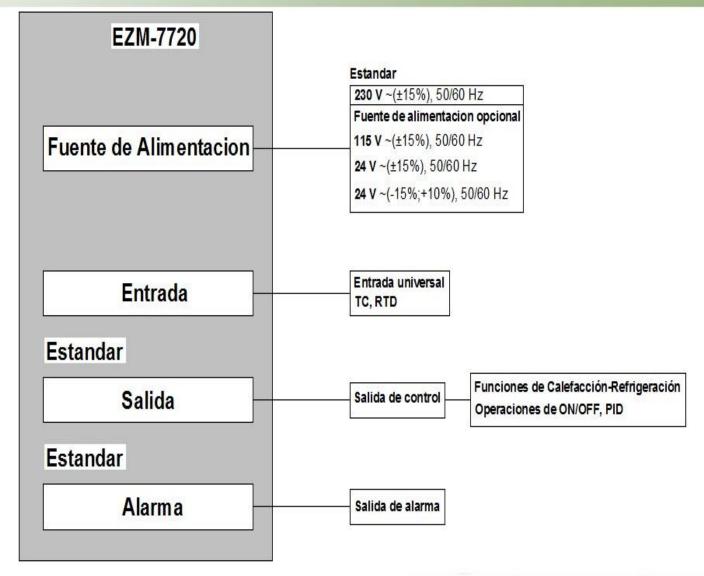
$$I_L = \sqrt{3} * I_F$$

$$P_F = V_L * I_F$$

$$P_T = \sqrt{3} * I_L * I_F$$

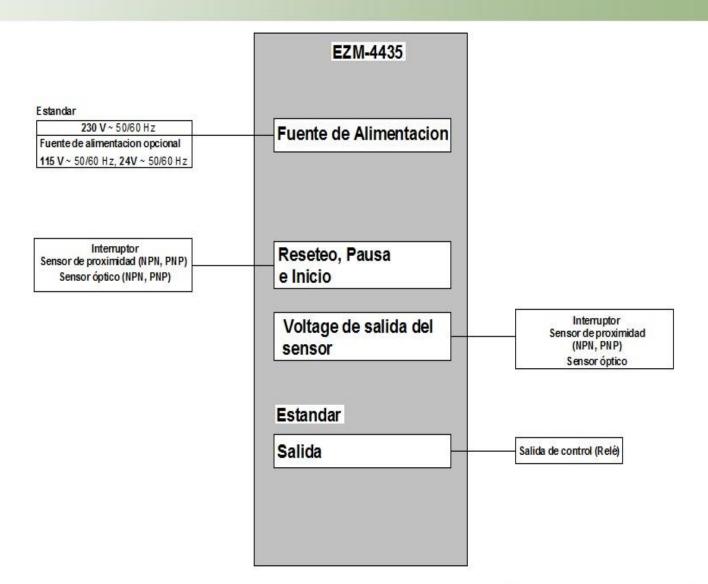
$$P_T = 3 * P_F$$

Valores obtenidos.


VALORES DE MAGNITUDES ELÉCTRICAS.			
Potencia trifásica (P)	7200 [W]		
Corriente de línea (I _L)	18,9 [A]		
Corriente de fase (I _f)	10,9 [A]		
Resistencia (R)	40,3[Ω]		
Voltaje (V)	220 [V]		

DISEÑO DEL SISTEMA DE AUTOMATIZACIÓN.

• Controlador de temperatura.



• Timer.

• Termocupla "J".

Marca:	ЕМКО			
Termopar:	Tipo J			
Rango Temperatura:	-200 a 1200 °C			
Precisión:	1%			
Composición:	Hierro – Constan			
Recubierto:	Acero inoxidable.			

SELECCIÓN DEL ELEMENTOS DE CONTROL

• Selección del contactor.

 $Icontactor = 2 \ o \ 3In \longrightarrow Icontactor = 37.8A$

Marca:	LS	
Modelo:	MC-40a	
Cantidad:	1	
Voltaje de Alimentación de la Bobina:	220 VAC	
Intensidad de Corriente:	40 A	
Frecuencia:	50. – 60 Hz	

Selección del relé auxiliar.

Marca:	CNC
Modelo:	70.3
Cantidad:	1
Voltaje de Alimentación de la Bobina:	220 VAC
Contactos NA	3
Contactos NC	3
Frecuencia:	60 HZ

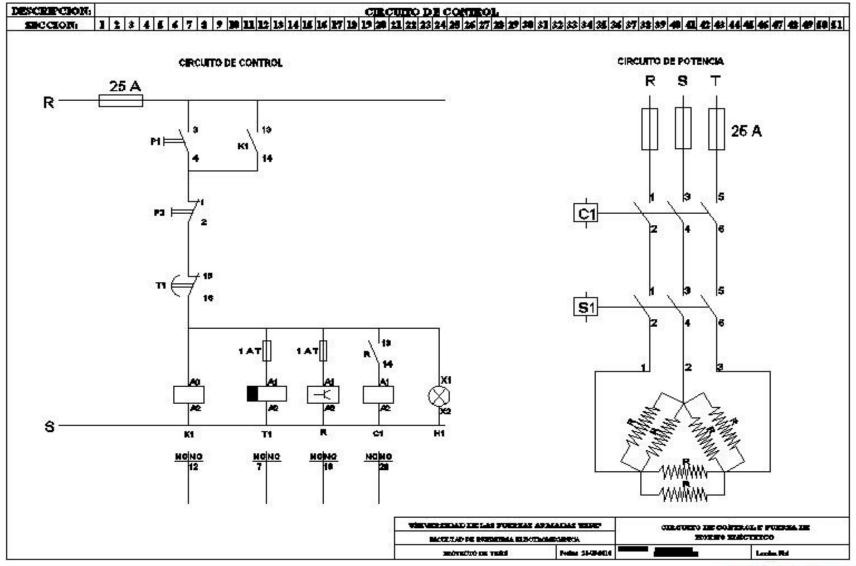
Selección de los fusibles para el circuito de fuerza y control.

Seleccion del fusible: ILx25%

Selection del fusible: 18.9x1.25 = 23.62A

Marca:	SASSIN		
Modelo:	VDE0636		
Cantidad:	2		
Capacidad:	500v-80KA		
Amperaje:	1A		

Selección del breaker para el circuito de fuerza.


IBreaker = 1.5In

IBreaker = 28.35A

CIRCUITO DE CONTROL Y FUERZA

CONSTRUCCIÓN Y MONTAJE

Herramientas para el Proceso de Trazado y corte.

Paredes interiores del horno

Aspecto de la estructura metálica.

Lijado de las planchas

Aplicación del fondo.

Aplicación de la pintura de acabados.

Malla de acero galvanizado.

Sujeción de la lana de vidrio.

Ensamble mediante tornillo hexagonal autoperforante.

Instalación de las resistencias eléctricas.

Ensamble de las paredes del horno.

Terminal de conexión utilizado

MONTAJE DE LOS ELEMENTOS EN EL TABLERO DE CONTROL.

Adaptación de los elementos de control en el tablero

Tablero de control

Circuito de control y de fuerza

PARÁMETRO DE FUNCIONAMIENTO.

Voltaje de alimentación	220V	
Corriente de línea	I _L =18,9A	
Temperatura de calentamiento	80 °C	
Histéresis	± 2 °C	
Resistencias eléctricas	1200w c/u	

PROTOCOLO DE PRUEBAS DEL HORNO Y DEL MATERIAL

Verificar que no exista fugas de calor por ranuras desde el interior del horno hacia el exterior.

Comprobar la temperatura de calentamiento del Polyol y del Prepolymer.

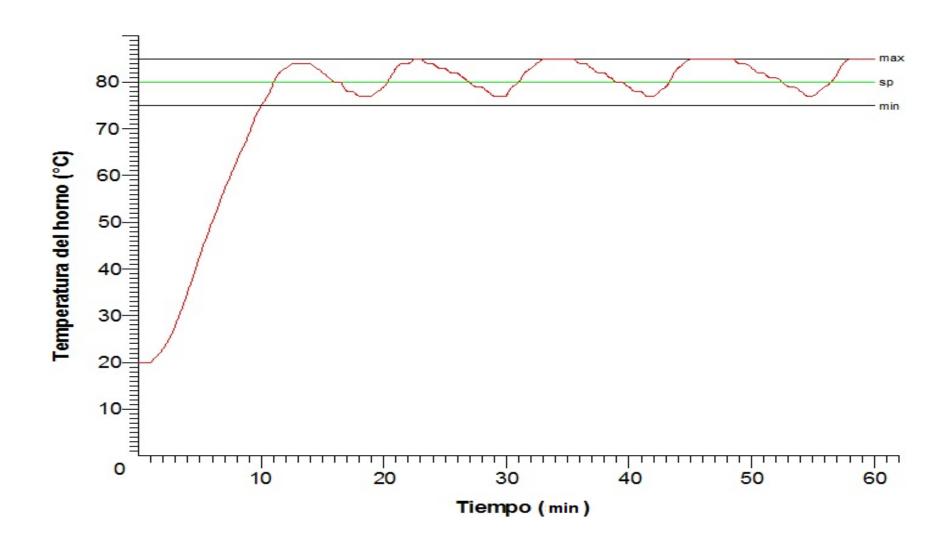
Comprobar el tiempo de calentamiento del Polyol y del Prepolymer.

Verificar que no existan fugas en los respectivos tanques que contiene el material a calentar

DISPOSICIÓN DEL MATERIAL EN EL HORNO

VERIFICACIÓN DE LA HERMETICIDAD DEL TANQUE

DATOS OBTENIDOS EN LAS PRUEBAS REALIZADAS

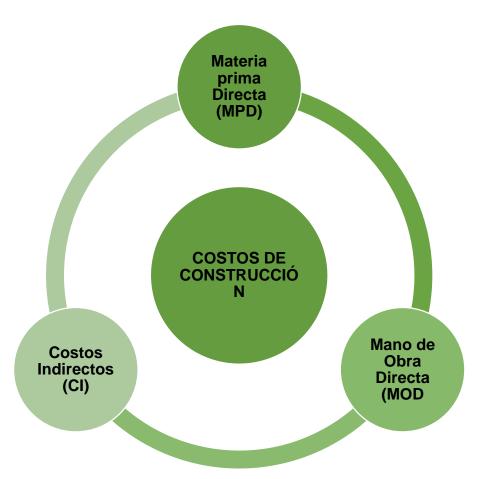

Tiempo (min)	Temper atura Termoc upla °C	Encendido y Apagado de las Resistencias Eléctricas. Encendido= Apagado=————————————————————————————————————
0	20	(0:0)
1	20	ید
2	23	
3	28	
4	35	
5	43	
6	50	
7	57	
8	63	
9	69	
10	75	

11	80	(11:08)
12	83	
13	84	
14	84	
15	82	
16	80	
17	78 🟒	(17:30)
18	77	
19	77	
20	79	(20:11)
21	83	
22	84	
23	85	
24	84	
25	83	
26	82	
27	80	T
28	79	(28:20)
29	77 _×	<u>. </u>
30	77	
31	80	(30:56)
32	83	
33	85	
34	85	
35	85	
36	84	
37	83 🟒	_
38	82	
39	80	
40	79	(40:40)

41	78	
42	77	
43	79	(43:12)
44	83	x
45	85	
46	85	
47	85	
48	85	
49	84	
50	83	
51	82	
52	81	
53	79	(53:58)
54	78 -	/_
55	77	
56	79	(56:27)
57	82	x
58	85	
59	85	
60	85	

CURVA DE CONTROL ON-OFF REAL.

FORMA LÍQUIDA DEL POLYOL



FORMA LÍQUIDA DEL PREPOLYMER

ANÁLISIS ECONÓMICO.

COSTOS DE LOS MATERIALES PARA LA CONSTRUCCIÓN DEL HORNO ELÉCTRICO INDUSTRIAL.

HORNO DE CALENTAMIENTO					
Detalle	Cantidad	Valor Unitario	Valor 12% IVA	Total	
	Estructura				
Tubo cuadrado de 50x50x3mm.	6	22,01	15,85	147,91	
Plancha de acero galvanizado de 3mm espesor.	4	37,05	17,79	166,00	
Plancha de acero de 100cmX70cmX6mm.	1	54,33	6,52	60,85	
Plancha de acero galvanizado de 2mm espesor.	4	29,06	13,95	130,20	
Malla soldada de (2x1)".	5	5,22	3,13	29,25	
Angulo de (1x1/8)".	1	6,33	0,76	7,09	
Rollo de lana de vidrio de 2".	1	89,29	10,71	100,00	
Cerradura tipo barra mecánica.	1	35,00	4,20	39,20	
Tornillos auto-perforante	100	0,05	0,60	5,60	
RESISTENCIAS ELÉCTRICAS					
Resistencias Diam. 3/8x140cm en forma de U, 220V, 1200w	6	49,00	35,28	329,28	
TOTAL \$ 1015,					

COSTOS DE LOS MATERIALES PARA EL SISTEMA DE AUTOMATIZACIÓN.

AUTOMATIZACIÓN				
Detalle	Cantidad	Valor Unitario	Valor 12% IVA	Total
E	structura			
Termocupla tipo "J" EMKO 2mts.MOB-L12- K02.	1	14,05	1,69	15,74
Tablero de control de 40x30x20cm MEGABOOS.	1	47,00	5,64	52,64
TIMER EZM-4435.	1	85,50	10,26	95,76
Controlador de Temperatura ESM-7720.	1	106,20	12,74	118,94
Riel DIN acero.	1	1,95	0,23	2,18
Tope Schneider para riel.	2	0,69	0,17	1,55
Pulsador de Emergencia NP2-ES545.	1	3,00	0,36	3,36
Cable térmico de asbesto # 12.	15	2,32	4,18	38,98
Fusible 1A porcelana.	2	0,31	0,07	0,69
Fusible 25A porcelana.	4		0,00	0,00
Porta fusible	6	1,87	1,35	12,57
Contactor MC-40a, 12Hp, 220V.	1	25,35	3,04	28,39
Relé 220V-11 pines.	1	6,86	0,82	7,68
Luz piloto rojo 220V.	1	1,42	0,17	1,59
Pulsador CAMSCO rojo 220V.	1	1,87	0,22	2,09
Pulsador CAMSCO verde 220V.	1	1,87	0,22	2,09
Disyuntor CHINT C32-3polos.	1	5,70	0,68	6,38
Cable #14 amarillo	20	0,40	0,96	8,96
Cable #12 rojo	2	0,55	0,13	1,23
Canaleta 2m	1	2,45	0,29	2,74
TOTAL \$				403,58

• Materia Prima Directa (MPD).

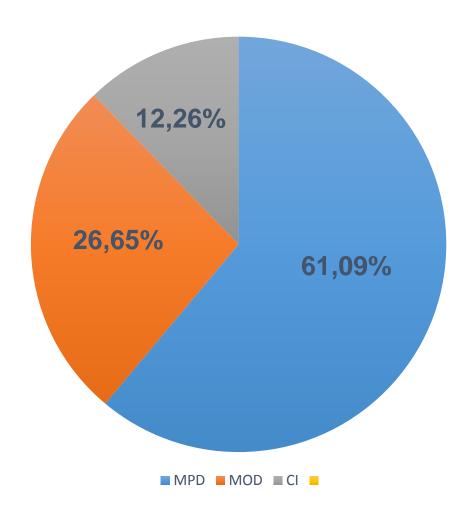
INVERSIÓN TOTAL MPD			
Tipo de Inversión	Monto		
Horno de Calentamiento	1015,38		
Automatización	403,58		
TOTAL \$	1418,96		

• Mano de Obra Directa (MOD).

COSTOS ESPECIALIZADOS				
Mano de obra	Descripción	Cantidad	%MPD	Total
Técnica	Jefe de obra	2	25	351,51
Mano de obra	Descripción	Cantidad	Subtotal	Total
No Técnica Soldador 1 250,00				250,00
TOTAL \$				601,51

Costos Indirectos (CI).

MATERIALES COMPLEMENTARIOS					
	Cantidad	Descripción	V. unitario	V. con 12% IVA	total
	10	lbs. Electrodos E-6011 AGA.	2,60	3,12	29,12
	1	Disco de amolar 4 X1/4 X5/8.	1,50	0,18	1,68
	2	Guantes de caucho # 8.	1,50	0,36	3,36
Materia Prima	1	Estilete.	0,50	0,06	0,56
Indirecta	1	Flexómetro de 3m.	3,00	0,36	3,36
	1	Pintura esmalte anticorrosivo color negro mate.	3,95	0,47	4,42
	1	Pintura esmalte color celeste.	8,00	0,96	8,96
	2	Mascarilla de pintar color blanco.	0,75	0,18	1,68
Transporte	90	Latacunga- Ambato.	2,50	-	225,00
		TOTAL			278.14



ANÁLISIS DE LOS COSTOS DE CONSTRUCCIÓN.

INVERSIÓN TOTAL					
Descripción	Descripción	INV.	% INV.	INV. Total	% INV. Total
Materia Prima Directa	Horno de Calentamiento	1015,38	73,25	1386,18	61,09
	Automatización	370,80	26,75		
	Técnica	354,74	58,66	00474	26,65
Mano de Obra Directa	No Técnica	250,00	41,34	604,74	
Costos Indirectos	Materia Prima Indirecta	53,14	19,11	278,14	12,26
	Transporte	225,00	80,89		
	TOTAL				100,00

INVERSIÓN PORCENTUAL

DEPRECIACIÓN Y RECUPERACIÓN DE LA INVERSIÓN.

RUBROS DEPRECIADOS					
AÑOS	% DEPR.	RESISTENCIAS METÁLICAS	TABLERO DE CONTROL	LANA DE VIDRIO	TOTAL DEPR. ANUAL
0	10	329,28	403,58	100	832,86
1	10	296,35	363,22	90,00	749,57
2	10	266,72	326,90	81,00	674,62
3	10	240,05	294,21	72,90	607,16
4	10	216,04	264,79	65,61	546,44
5	10	194,44	238,31	59,05	491,80
6	10	174,99	214,48	53,14	442,62
7	10	157,49	193,03	47,83	398,35
8	10	141,74	173,73	43,05	358,52
9	10	127,57	156,36	38,74	322,67
10	10	114,81	140,72	34,87	290,40

CÁLCULO DEL TIEMPO DE FUNCIONAMIENTO DEL HORNO Y POTENCIA DE CONSUMO AL MES

TIEMPO DE CALENTAMIENTO DEL HORNO				
Descripción	Cantida d	Tiempo (hrs)	Subtotal Tiempo (hrs)	
Tanque de Polyol	1	24	24	
Tanque de Prepolymer	1	24	24	
Pares de tanques pequeños de Polyol/Prepolymer 4 4 16				
TIEMPO TOTAL DE CALENTAMIENTO (hrs) 64				

	POTENCIA TOTAL				
Descripción	Cantidad (KW)	Tiempo Total de Calentamiento (hrs)	Pot. Total (KW*h)		
Potencia del horno	1,2	64	76,8		

ELABORACIÓN DE PLANTILLAS					
Descripción	Cantidad	Costo Unitario	Subtotal		
tanque de Polyol	1	1500	1500		
tanque de Prepolymer	1	1000	1000		
pago de trabajador	1	400	400		
FABRICACIÓN DEL HORNO					
Costo de	Costo de fabricación del horno 2269,06				
CONSU	MO DE ENERG	ÍA ELÉCTRICA	A 220V		
Descripción	Cantidad	Costo (ctvs.) KW/h	Subtotal \$		
consumo de KW*h al mes	76,80 0,07				
cos	COSTO TOTAL AL MES				
cos	62093,25				

COMPRA DIRECTA DE PLANTILLAS				
Descripción	Cantidad/par	Costo c/par	Costo total \$	
# de Plantillas	2000	3	6000	
cos	6000			
cos	72000			

AHORRO				
Descripción	Costo total al mes \$	Costo total al año \$		
COMPRA DIRECTA DE	6000	72000,00		
PLANTILLAS	0000	72000,00		
ELABORACIÓN DE	5174,44	62093,25		
PLANTILLAS	3174,44	02093,23		
AHORRO TOTAL \$	825,56	9906,75		

CÁLCULO DEL VAN, TIR Y TIEMPO DE RECUPERACIÓN (TR).

Cálculo del valor actual neto (V.A.N)

Valor	Significado	Decisión a tomar
VAN > 0	La inversión producirá ganancias.	El proyecto puede aceptarse.
VAN < 0	La inversión producirá pérdidas.	El proyecto debería rechazarse.
VAN = 0	La inversión no producirá ni ganancias ni pérdidas.	Dado que el proyecto o agrega valor monetario, la decisión debería basarse en otros criterios, tales como la obtención de un mejor posicionamiento en el mercado, beneficios sociales, u otros factores.

$$VAN = -lo + \sum_{t=1}^{n} \frac{V_t}{(1+k)^t}$$

$$VAN =$$
\$ 52513,97

Cálculo del T.I.R (Tasa Interna de Retorno) de una inversión.

Valor	Decisión a tomar
K <tir< th=""><th>Conviene realizar la inversión.</th></tir<>	Conviene realizar la inversión.
K>TIR	No se debería realizar el proyecto.

La TIR representa entonces, la tasa de interés (tasa de descuento) más alta que puede tener un proyecto para que sea rentable

$$TIR = \frac{-I + \sum_{i=1}^{n} F_i}{\sum_{i=1}^{n} i * F_i}$$

Cálculo del Tiempo de recuperación de la inversión (TR).

$$TR = n = -\frac{\ln(\frac{A - I_o i}{A})}{\ln(1 + i)}$$

Tasa de descuento (anual):	11,25%
Inversión inicial:	\$ 5.174,44
Ahorro mensual:	\$ 825,56
Ahorro anual:	\$ 9.906,75
PERIODO	FLUJO DE FONDOS ANUALES
0	-5.174,44
1	9906,75
2	9906,75
3	9906,75
4	9906,75
5	9906,75
6	9906,75
7	9906,75
8	9906,75
9	9906,75
10	9906,75
Valor Actual Neto (VAN):	\$ 52.513,97
Tasa Interna de Retorno (TIR) mensual:	15,95%
Tasa Interna de Retorno (TIR) anual:	191%
Tiempo de Recuperación (TR):	7 meses

CONCLUSIONES.

- El horno de resistencias eléctricas, es diseñado y construido de tal forma que existe el 92% de ganancia de calor.
- El calor del horno se distribuye homogéneamente gracias a que las resistencias fueron ubicadas de manera que se aproveche al máximo la potencia que entregan.
- El calor que se transmite hacia las paredes externas del horno es mínima, debido a que el diseño de las dimensiones de las paredes del aislamiento nos permiten tener una temperatura de 30°C, con lo que se evita que los operarios sufran quemaduras.
- Con la simulación realizada del diseño horno en "ANSYS R15.0", se puede concluir que el diseño tendrá un factor de seguridad del 1.1, con lo que se puede concluir que la estructura del horno soportara la temperatura para la que fue diseñado sin sufrir daños.
- En el análisis estructural que se realizó en el software "COMSOL" se determinó que la estructura de la mesa podría soportar hasta 7,62 veces el peso del tanque, con lo que no existiría peligro que la estructura colapse.
- De igual manera se realizó el análisis de la estructural del esqueleto del horno, en el cual nos dio que la estructura soportará 4,77 veces la carga a la que fue diseñada.
- Para una mejor lectura de temperatura del horno, se dispuso a la termocupla en la parte superior media del horno, ya que por sus dimensiones el calor en su totalidad sube, y de esta forma esta nos dará una mejor lectura de la temperatura interna del horno.

- En las pruebas que se realizó a partir de un control "ON-OFF", con una histéresis de ±2°C, con el que se tomaron datos cada minuto de la temperatura interna del horno, permitiendo obtener un registro el cual nos permitió dibujar la curva de control del horno, para el proceso de calentamiento requerido es satisfactoria.
- La cantidad total con la que fue construido el horno fue de \$2269.06 (dólares americanos), que serán recuperados en 7 meces, eso tomando en cuenta la producción de plantillas. Dadas estas cifras se ha hecho un gran ahorro ya que un horno en el mercado un horno de las mismas características cuesta \$7500 dólares americanos.
- Anteriormente se adquirían 2000 plantillas a \$3 c/u, con la puesta en marcha de este horno la producción de plantillas de buena calidad será de 2500 plantillas, con lo que se mejoraría la producción y calidad de zapatos.

RECOMENDACIONES

- Antes de cualquier operación del horno tomar en cuenta el manual de operación y mantenimiento, para evitar daños tanto personales como de la máquina, todo esto va documentado en el **Anexo: S**.
- Para realizar el mantenimiento de la lana de vidrio, se debe usar equipo de protección personal (EPP), y se lo deberá realizar cada año para evitar que el horno pierda sus propiedades térmicas aislantes.
- El controlador deberá ser manipulado por una persona autorizada, ya que una manipulación incorrecta podría afectar seriamente la producción y producir daños a los equipos
- Para obtener resultados óptimos en el diseño térmico y estructural del horno, es recomendable realizar simulación de los prototipos en software tales como "ANSYS", que son de gran ayuda en la construcción de máquinas térmicas o de cualquier tipo.
- Es recomendado antes de realizar cualquier proyecto un estudio de factibilidad, para determinar si es viable seguir con el proyecto y que impacto ambiental producirá en el medio ambiente.

