

DEPARTAMENTO DE ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECATRÓNICA

"DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA AUTOMÁTICO DE CORTE LINEAL, TRANSPORTE Y EMPAQUETADO DE ENVASES PLÁSTICOS CON UNA INTERFACE DE MONITOREO HMI EN LA EMPRESA NS INDUSTRIAS DE LA CIUDAD DE LATACUNGA"

AUTORES: BUSTILLOS MORENO DIEGO ALEJANDRO ORTIZ BAUTISTA EDGAR ALEJANDRO

INTRODUCCIÓN

Conteo manual

Cortado de rebabas manual

Almacenamiento

Corte Manual

Empacado Manual

DISEÑO Y SELECCIÓN DE ELEMENTOS

DISEÑO MECÁNICO

Sistema de corte Tornillo de potencia

$$P = \frac{F(\sin \lambda + f \cos \lambda)}{\cos \lambda - f \sin \lambda}$$

Dónde:

- P = fuerza de levantamieto
- F = fuerza aplicada
- f = fricción
- $\lambda =$ ángulo de rosca

Los datos de la carga y la rosca son los siguientes:

$$m = 12Kg$$

$$F = m \times g$$

$$F = 12Kg \times (9.81 \, \frac{m}{s^2})$$

$$F = 117.72 \, N$$

$$f = 0.08$$

 $\lambda = 14^{\circ}$

$$P = \frac{117.72N(\sin 14^\circ + (0.08)\cos 14^\circ)}{\cos 14^\circ - (0.08)\sin 14^\circ}$$

$$P = 48 \, N$$

La fuerza requerida del tornillo de potencia para levantar el peso que tiene sobre él es de 48 N lo que satisface el diseño.

Selección de banda

Potencia del motor P = 0.55KW

Velocidad angular del reductor n = 17 rpm

$$P = \frac{T(n)}{9550}$$

$$T = \frac{P(9550)}{n}$$

$$T = \frac{(0.55KW)(9550)}{17rpm}$$

$$T = 308.9 Nm$$

De acuerdo al diseño y requerimiento de los envases y diseño de la cortadora con unas poleas de 12 cm de diámetro se selecciona una banda en V tipo B.

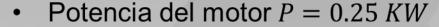
Belt Section	Width a, in	Thickness b, in	Minimum Sheave Diameter, in	hp Range, One or More Belts
Α	1/2	11 32	3.0	1 -10
В	21 32	7 16	5.4	1-25
С	<u>7</u> 8	17 32	9.0	15-100
D	$1\frac{1}{4}$	3 4	13.0	50-250
Е	$1\frac{1}{2}$	1	21.6	100 and up

Longitud de la banda seleccionada

$$L = 2C + 1.57(D + d)$$

Dónde:

- L = longitud de la banda
- C = distancia entre centros
- D = diametro mayor de la polea
- d = diametro menor de la polea


Datos:

• C = 0.296 m

$$D = d$$

•
$$D = 0.0115 m$$

 $L = 2(0.296m) + 1.57(0.0115m + 0.0115m)$
 $L = 0.59 m$

Sistema de empaquetado Acople de embrague

• Velocidad angular de la rueda motriz n = 16 rpm

$$T = \frac{P \times 9550}{n}$$

Dónde:

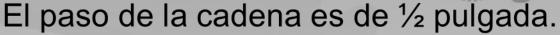
- T = torque
- P = potencia en KW
- n = velocidad angular

$$T = \frac{(0.25 \, KW) \times 9550}{16}$$
$$T = 149.2 \, Nm$$

El torque al que está sometido el acople de embrague es de 149.2 Nm.

Sistema de transmisión

- Potencia del motor P = 0.25 KW
- Velocidad angular de la rueda motriz n = 16 rpm
- Número de dientes de la rueda motriz N1 = 16
- Relación de transmisión 1:1
- Tipo de cadena ANSI 40


Número de pasos de la cadena

$$\frac{L}{P} = \frac{2C}{p} + \frac{N1 + N2}{2} + \frac{N2 - N1}{4\pi^2 \frac{C}{p}}$$

$$\frac{L}{P} = 2(112) + \frac{16 + 16}{2} + \frac{16 - 16}{4\pi^2(12)}$$

$$\frac{L}{P} = 240 \ pasos.$$

Longitud de la cadena

$$\frac{L}{P} = p$$

Dónde:

• p = paso de la cadena

$$L = P \times p$$

$$L = 240 \times (0.5) pulg$$

$$L = 120 pulg \approx 3.05 m$$

La longitud total requerida de la cadena es de 3.05m, lo cual es importante para que el sistema de transmisión sea correcto.

Distancia entre centros

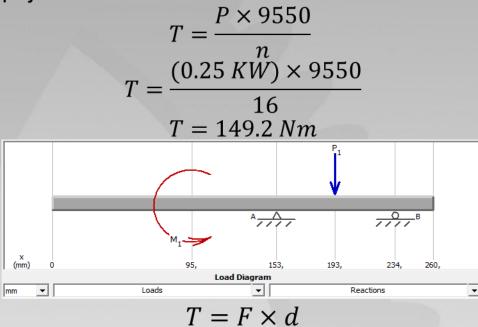
$$A = \frac{N1 + N2}{2} - \frac{L}{P}$$

$$A = \frac{16 + 16}{2} - 240$$

$$A = -224$$

$$C = \frac{1}{4}p \left[-A + \sqrt{A^2 - 8\left(\frac{N2 - N1}{2\pi}\right)^2} \right]$$

$$C = \frac{1}{4}p \left[-(-224) + \sqrt{(-224)^2 - 8\left(\frac{16 - 16}{2\pi}\right)^2} \right]$$


$$C = 112(0.5 \ pulg)$$

$$C = 56 \ pulg \approx 1.42 \ m$$

Sistema de empuje

- Potencia del motor $P = 0.25 \, KW$
- Velocidad angular n = 16 rpm

A partir de los datos obtenidos se procede a calcular el torque producido por el motor para el empuje de las botellas.

Dónde:

- T = torque
- F = fuerza disco
- d = distancia

$$F_A = \frac{T}{r}$$


$$F_A = 2984 N$$

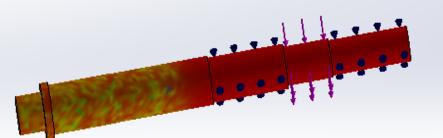
$$F_B = Fe + Fc$$

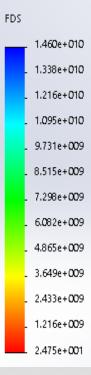
Dónde:

- $F_B = fuerza en el punto B$
- $F_e = fuerza de empuje de botellas$
- $F_c = fuerza del carro$

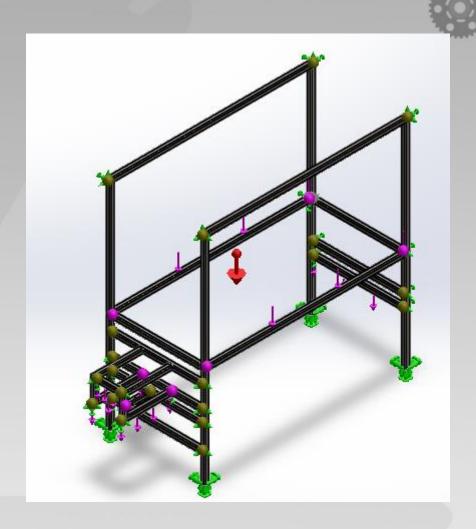
$$F_B = 264.87 N$$

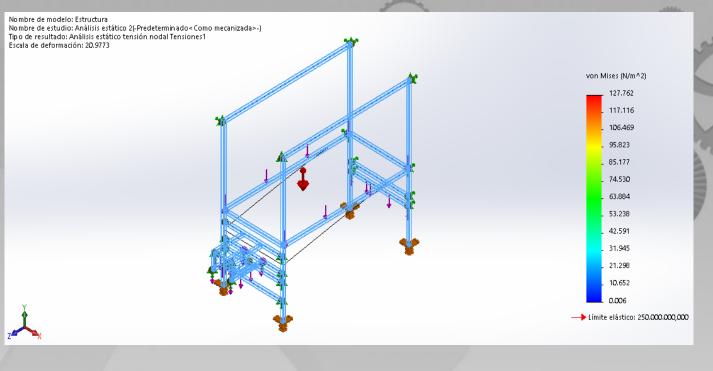
 $R_D = -1.71KN$
 $R_A = 1.97 KN$

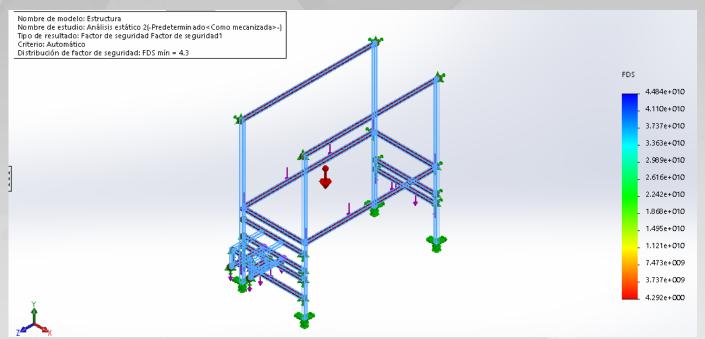



EJE

Nombre de modelo: Eje Principal Nombre de estudio: Análisis estático 1(-Predeterminado-) Tipo de resultado: Factor de seguridad Factor de seguridad1 Criterio: Automático


Distribución de factor de seguridad: FDS mín = 25





Análisis estructural

DISEÑO ELÉCTRICO

Selección del PLC

Entradas	Salidas
12	7

LOGO Siemens

Posee 8 entradas y 4 salidas.

Módulo de expansión de 4 entradas y 4 salidas.

Selección del panel de visualización

LOGO! TD DISPLAY

Selección de automatismos

Carro principal

- Potencia del motor $P = 0.25 \, KW$
- Corriente nominal I = 1.19A
- Voltaje nominal V = 220V

	Voltaje (V)	Intensidad (A)	
Contactor	220V	9A	
Relé térmico	220V	Rango de	
	4	operación de	
/		1.6 – 2.5 A	

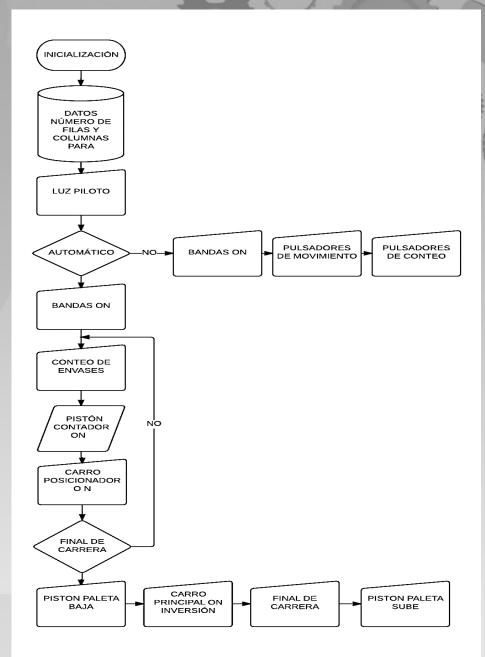
Carro posicionador

- Potencia del motor $P = 0.18 \, KW$
- Corriente nominal I = 0.87A
- Voltaje nominal V = 220V

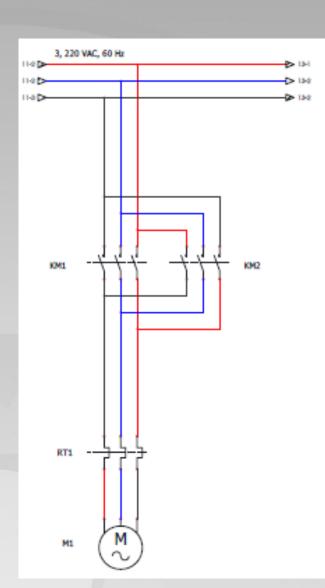
	Voltaje (V)	Intensidad (A)	
Contactor	220V	9A	
Relé térmico	220V	Rango de	
		operación de 1	
		– 1.6 A	

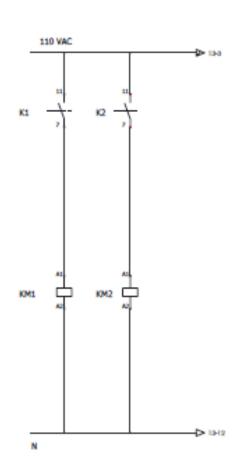
Bandas

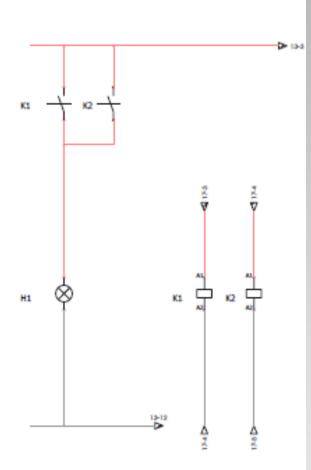
- Potencia del motor $P = 0.55 \, KW$
- Corriente nominal I = 2.9A
- Voltaje nominal V = 220V


	Voltaje (V)	Intensidad (A)	Potencia (KW)
Relé térmico	220	Rango de operación de 2.5 – 4	
Variador de frecuencia	220	11	0.75

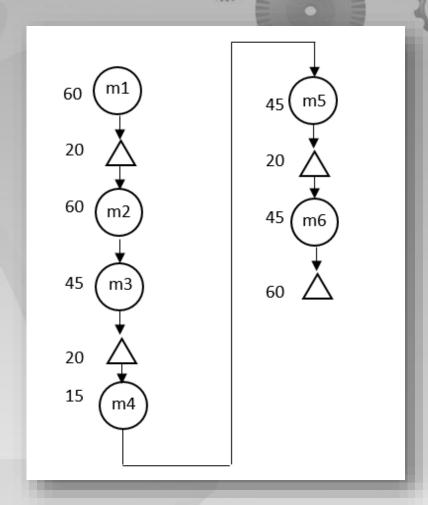
Cortador


- Potencia del motor $P = 0.56 \, KW$
- Corriente nominal I = 2.7A
- Voltaje nominal V = 220V


	Voltaje (V)	Intensidad (A)	Potencia (KW)
Relé térmico	220	Rango de operación de 2.5 – 4	
Variador de frecuencia	220	11	0.75


DISEÑO DEL SISTEMA AUTOMÁTICO

ESQUEMA ELÉCTRICO



Flujograma de Montaje

CÓDIGO	DESCRIPCIÓN
m1	Montaje de Pistón Paleta
m2	Montaje de Motores
m3	Montaje de Carro Posicionador
m4	Montaje de Control Neumático
m5	Montaje de Tablero de Potencia
m6	Montaje de Tablero de control

RESULTADOS Carro principal de empaque Cortado de Carro posicionador rebabas Sensado de número de Transporte botellas

GRACIAS

