

DEPARTAMENTO DE ENERGÍA Y MECÁNICA

Carrera de Ingeniería Mecánica

TÍTULO DEL PROYECTO

"VERIFICACIÓN DE LA RIGIDEZ DE UNA ESTRUCTURA"

AUTOR: BRUNO GERARDO ORTIZ ESTUPIÑÁN

DIRECTOR: ING. JOSÉ PEREZ

CODIRECTOR: ING. FERNANDO OLMEDO

JUSTIFICACIÓN

En el diseño de estructuras existen parámetros fuera del alcance de los modelos teóricos como son:

- Proceso de fabricación de la estructura
- Proceso de montaje de la estructura
- Funcionamiento de la estructura bajo los casos más críticos en la realidad

Por medio de ensayos en estructuras se pueden medir qué tanto afectan estos parámetros a un proyecto en general.

ALCANCE

El presente proyecto involucra el uso de normas como:

- AISC → Diseño de miembros y conexiones, método LRFD
- ASCE 10-97 → materiales y pautas para ejecución de pruebas
- ASTM A-123 → galvanizado en estructuras metálicas

Simulación de condiciones de carga mediante SAP2000 V14.

Ensayo de la estructura mediante un banco de pruebas de escala 1:1.

Verificación de rigidez de la estructura por medio de datos obtenidos a través del banco de pruebas.

ANTECEDENTES

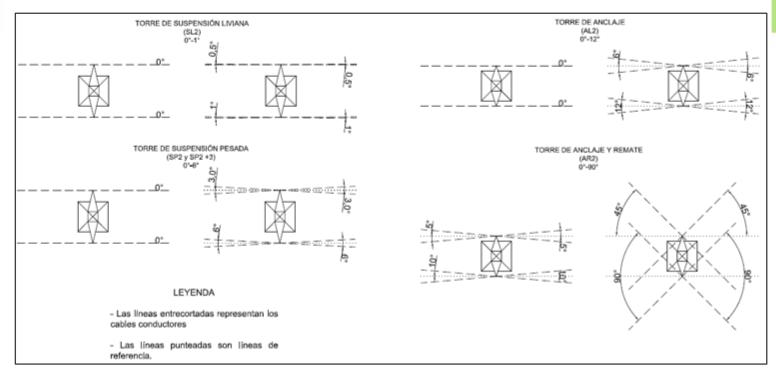


Figura 3. Esquemas de las torres especificadas por la EEQ y sus alcances angulares.

Fuente: Autor.

El día 7 de Enero del 2013 se adjudicó el proyecto de suministro de estructuras metálicas galvanizadas a la empresa SEDEMI S.C.C. proyecto Tababela – El Quinche.

Como parte del contrato se determina realizar un ensayo de cargas en la torre de transmisión más numerosa del proyecto con extensión de patas, SP2+3.

OBJETIVO GENERAL

Verificar el diseño de una torre eléctrica autosoportada de suspensión para una línea de 138kV mediante un banco de pruebas de escala real

OBJETIVOS ESPECÍFICOS

- Analizar la geometría más adecuada para una torre de suspensión que cumpla los requerimientos del cliente.
- Seleccionar los elementos capaces de conformar la torre de suspensión según las condiciones que plantea el cliente.
- Verificar el número y tipo de conexiones principales necesarias en la torre.
- Verificar la placa base que sujetará la torre al banco de pruebas mediante su sector más crítico.
- Por medio del programa SAP2000 V14 simular las condiciones sobre las cuales funcionaría la torre de suspensión.
- Verificar los elementos que conforman el banco de pruebas mediante las condiciones a las que se someterían en la realización del ensayo de la torre solicitada.
- Obtener por medio de la simulación de la torre los datos de deformación teórica permisibles que sufrirá la torre para los casos seleccionados para la prueba en el banco.
- Analizar el procedimiento de prueba de la torre solicitada.
- Comparar los datos teóricos obtenidos por medio de la simulación, con los arrojados por el banco de pruebas existente de escala 1:1.
- Plantear opciones de mejoras económicas al banco de pruebas existente.

ESPECIFICACIONES DE PRUEBAS PARA TORRES ELÉCTRICAS SEGÚN NORMA ASCE 10-97

- Material → mismo de torre de servicio
- **Deformación** → especificado por cliente
- Ensamblaje y erección → mismo proceso que de la torre de servicio
- Cargas de prueba → igual que las de diseño, especificadas por el diseñador del ensayo y aprobadas por el cliente
- Aplicación de cargas → lo más semejante a la realidad y con los mismos grados de libertad que la torre de servicio en sus puntos de aplicación
- Procedimiento de carga → en proporciones de 50%, 75%, 90%, 95% y 100%, cada proporción con retención de carga para estabilizar los equipos de medición y registrar deflexiones; proporción de 100% con retención de 5 minutos, las cargas se removerán de manera controlada y sincronizada.
- Medida de cargas

 las cargas aplicadas deben ser medidas en los puntos de aplicación al prototipo con equipos de medición certificables.

- Deflexiones → de acuerdo a especificación del ingeniero responsable, medición antes durante y después de aplicar cargas. De haber más de un caso de ensayo, el desplazamiento final será referencial para el Nuevo caso de carga a ensayarse.
- Fallas → durante la prueba quedará a criterio del ingeniero encargado y del cliente continuar o repetir prueba; al finalizar ensayos no se consideran fallas.
 - Arqueos residuales de elementos a tensión.
 - Ovalización de no más de la mitad de agujeros en una conexión.
 - Deformación ligera de no más de la mitad de los pernos en una conexión.

Selección de geometría para torre SP2+3

Figura 40. Proyección 3D de Torre SP2+3

Fuente: Autor

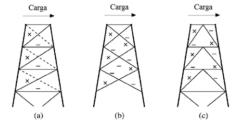
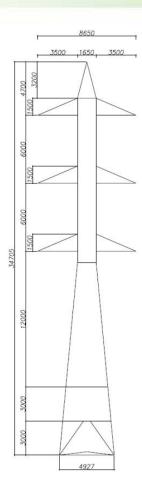



Figura 6. Sistemas de arriotramiento; (a) disposicion Z o armadura tipo Pratt; (b) armadura tipo Warren y (c) armadura tipo Delta.

Fuente: (Fang, Roy, & Kramer, 1999)

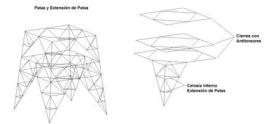


Figura 41. Esquema de Antitorsores parte baja de la torre SP2+3 y celosía interna de Patas.

Fuente: Autor

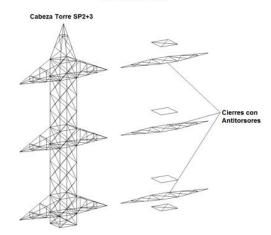


Figura 42. Esquema cierres con antitorsores de cabeza de la torre SP2+3.

Fuente: Autor

Casos críticos:

Para los gráficos presentados en cada caso, se señalan las siguientes indicaciones:

- Todas las cargas longitudinales y transversales serán aplicadas como se presentan o en dirección opuesta.
- Todas las cargas son finales e incluyen los factores de seguridad (O.L.F. Over Load Factor; Factor de sobrecarga).
- Vt = (PESO MUERTO DE LA TORRE + 100Kg) x (O.L.F.), siendo O.L.F. = 1.4
- Todas las cargas están en kilogramos (kg).

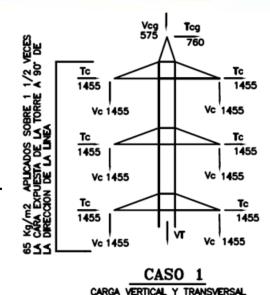
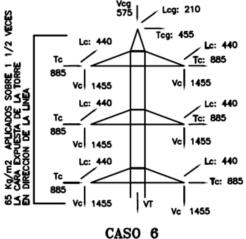
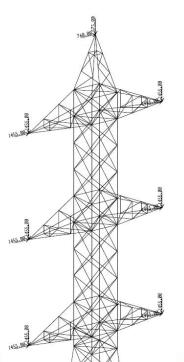



Figura 43. CASO 1 de cargas para torre SP2.

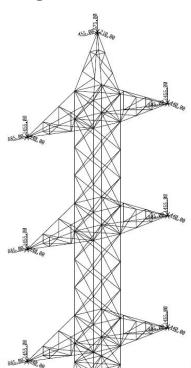
Fuente: (compraspublicas, 2012)

DESBALANCIAMIENTO LONGITUDINAL

Figura 48. CASO 6 de cargas de la Torre SP2


Fuente: (compraspublicas, 2012)

Cargas puntuales:


CASO 1:

Carga vertical y transversal

CASO 6:

Desbalaciamiento longitudinal

Reacciones axiales:

CASO 1:

Diseño de miembros bajo cargas axiales de acuerdo a la norma AISC método LRFD

Compresión:

• Resistencia a compresión por pandeo flexionante de elementos esbeltos

Tensión:

- Tensión de fluencia en el área bruta
- Tensión de ruptura en la sección neta
- Tensión de ruptura en el área neta efectiva
- Rotura por corte en el área neta efectiva
- Aplastamiento del área proyectada por los pernos

Resultados:

<u>FUNCIÓN</u>	UBICACIÓN	CONDICIÓN	CÁLCULO	DISEÑO DEFINITIVO	SOBREDIMENSIONADO
COLLINANIA	TRAMO 2	COMPRESIÓN	L100X8	L100X12	SI
COLUMNA	TRAMO 3	TENSIÓN	L100X10	L100X12	SI
CELOSÍA,	TRAMO 5	COMPRESIÓN	L50X3	L50X5	SI
DIAGONALES	TRAMO 1	TENSIÓN	L50X3	L50X3	NO
HORIZONTALES,	TRAMO 1	COMPRESIÓN	L65X5	L65X5	NO
CIERRES	TRAMO 5	TENSIÓN	L50X3	L50X5	SI
BRAZOS, CRUCETAS	TRAMO 5	COMPRESIÓN	L50X4	L50X4	NO
BRAZOS, CROCETAS	TRAMO 7	TENSIÓN	L50X3	L50X4	SI
REDUNDANTES	TRAMO 5	COMPRESIÓN	L40X3	L40X3	NO
REDUNDANTES	TRAMO 7	TENSIÓN	L40X3	L40X3	NO

VERIFICACIÓN DE JUNTAS EMPERNADAS MÁS CRÍTICAS TORRE SP2+3

Se analizan las juntas de acuerdo a las siguientes condiciones:

- Esfuerzo de corte en zona roscada del perno
- Fuerza de aplastamiento en agujeros de placas
- Resistencia de placas a corte
- Resistencia de bloque de corte

Se tiene como resultado que la fuerza gobernante en las conexiones se da en los casos de Esfuerzo de corte en zona roscada del perno y Fuerza de aplastamiento en agujeros de placas

Verificación de pernos en columnas en diseño definitivo: Tabla 24. Verificación de número de pernos utilizados

TRAMO	UBICACION MONTANTE (m)	ESPESOR PERFIL COLUMNA (mm)	CARGA AXIAL MAYOR (kips)	TIPO DE PLACA	ARRANQUE DE BLOQUE PLACA (laps)	APLASTAMIENTO DE MATERIAL DE CONEXIÓN (kips)	NÚMERO MÍMIMO DE PERNOS DEFINIDO POR PLACA EN APLASTAMIENTO	NUMERO MINIMO DE PERNOS DEFINIDO POR CORTANTE PERNO	NUMERO DE PERNOS SELECCIONADO	PORCENTAJE DE TRABAJO (%)	VERIFICACIÓN
STUB	0.64	12	62.058	DOBLE	16.95	30.83	3.66	3.09	10	36.60%	VÁLIDO
1	3.60	12	64.999	DOBLE	16.95	30.83	3.83	3.24	10	38.34%	VÁLIDO
2	6.56	12	64.964	DOBLE	16.95	30.83	3.83	3.24	10	38.32%	VÁLIDO
3	12.48	12	63.711	DOBLE	16.95	30.83	3.76	3.17	10	37.58%	VÁLIDO
4	17.00	12	61.801	SIMPLE	16.95	30.83	3.65	6.16	8	76.98%	VÁLIDO
5	20.00	10	53.782	SIMPLE	14.13	25.69	3.81	5.36	8	66.99%	VÁLIDO
6	26.00	8	39.413	SIMPLE	11.30	20.55	3.49	3.93	6	65.46%	VÁLIDO
7	31.50	6	14.306	SIMPLE	8.48	15.41	1.69	1.43	4	42.19%	VÁLIDO

Fuente: Autor

Resultados de verificación de placa base torre SP2+3 a corte:

- Para resistir las fuerzas cortantes un cordón de soldadura de ¼ in es suficiente
- De acuerdo a la Tabla J2-4 de la norma AISC la mínima dimensión para un cordón en un elemento de entre 6mm y 13mm es de 3/16 in, por lo tanto el cordón de 8mm soporta las cargas de corte de 3099kgf y 3356.151kgf

Resultados de verificación de placa base torre SP2+3 a tensión:

• Factor de seguridad de **9.982** para carga de tensión de 29830.752kgf.

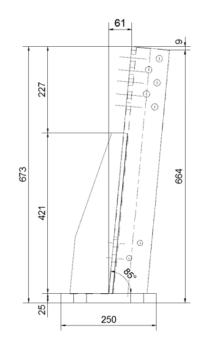


Figura 73. Vista lateral de pata de torre a prueba

Resultados de verificación de placa base torre SP2+3 espesor de placa y pernos:

- Éspesor mínimo determinado **18mm**, ya que se utilizó un espesor de **25mm**, la placa resiste sin problemas.
- El factor de seguridad obtenido a corte en los pernos es de 15.588.
- El factor de seguridad a tensión en pernos fue de 3.979

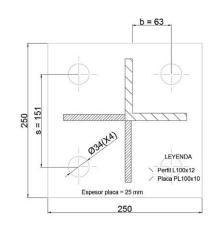


Figura 74. Distancias referenciales para cálculo de accion de palanca en placa base

Fuente: Autor

SIMULACIÓN

Definición de miembros estructurales

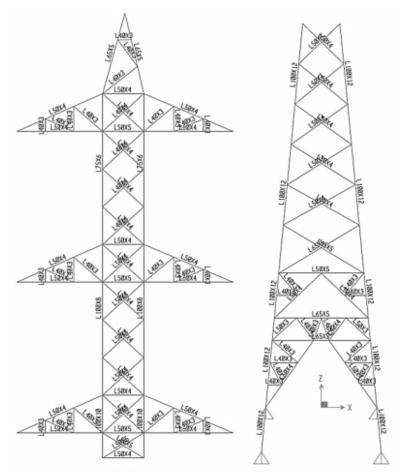


Figura 75. Ubicación de perfiles aplicados en Torre SP2+3

Fuente: Autor

Desplazamiento de pto. Más alto

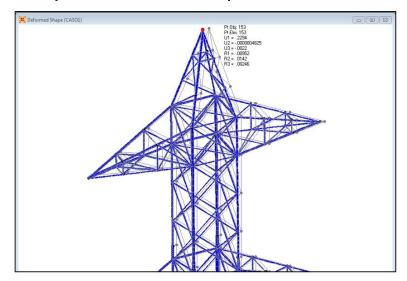


Figura 76. Punto de máxima deformación Torre SP2+3 CASO 1 de carga

Fuente: SAP2000 V14

Tabla 33. Deformaciones en el Nodo 153, punta de la Cúpula

Joint	OutputCase	CaseType	U1	U2	U3	R1	R2	R3
Text	Text	Text	m	m	m	Radians	Radians	Radians
153	CASO1	Combination	0.229393	-4.825E-07	-0.002187	0.009524	0.0142	0.002459
153	CASO2	Combination	0.137173	0.102216	-0.002185	0.001673	0.008669	0.001875
153	CASO3	Combination	0.093384	-1.876E-07	-0.003132	0.003057	0.00555	0.000954
153	CASO4	Combination	0.061003	0.096673	-0.001925	-0.004899	0.002686	0.00858
153	CASO5	Combination	0.055726	0.084093	-0.001901	-0.003489	0.002593	0.013685
153	CASO6	Combination	0.131046	0.084217	-0.002187	-0.003209	0.006739	0.000506

Fuente: SAP2000 V14

Porcentaje de Desplazamiento

 La empresa eléctrica señala que el desplazamiento máximo de la estructura deberá ser no mayor al 1.5% de la altura total de la misma, la altura de la torre SP2+3 es de 34.705m, es decir el valor límite de desplazamiento será de 52.06cm.

Tabla 34. Porcentaje de deformación de Torre SP2+3

Casos Críticos	Deform	ación (cm)	Porcentaje de Deformación (%)
CASO 1	22.94		0.66
CASO 6	13.1	8.42	0.45

Fuente: Autor

Demanda/Capacidad

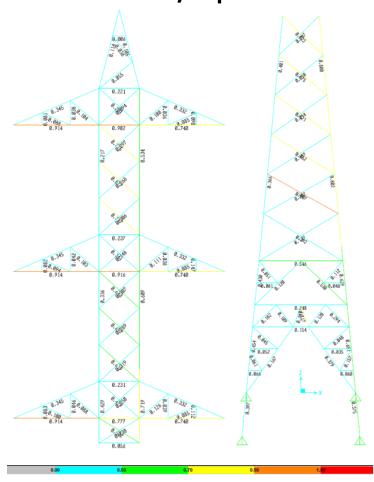


Figura 77. Relación Demanda/Capacidad de Torre SP2+3

Fuente: SAP 2000 V14

BANCO DE PRUEBAS DE LA EMPRESA SEDEMI S.C.C.

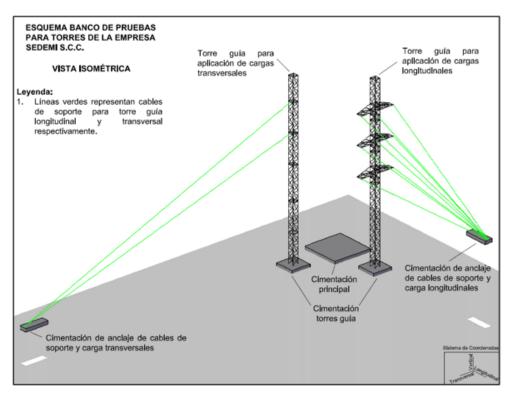


Figura 25. Esquema de Banco de pruebas de la empresa SEDEMI S.C.C.

Fuente: Autor

Especificaciones:

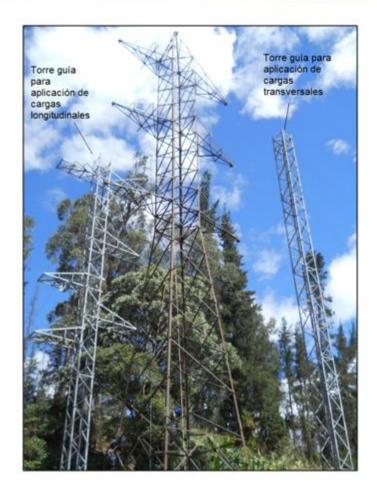
- Capacidad 400 ton-m
- Máxima carga 3000 kgf
- Altura máxima de prototipos 37 m
- Máxima longitud de crucetas
 3.5 m
- Máxima apertura de patas 8 m
- Torres guía de soporte capacidad 100 ton-m

Elementos del Banco de pruebas de la empresa SEDEMI S.C.C.

Cimentaciones:

Figura 26. Cimentación para cables de carga y soporte. (a) cimentación de carga transversal y soporte; (b) cimentación de carga longitudinal y soporte.

Fuente: SEDEMI S.C.C.


Figura 27. Cimentación principal para torre a prueba.

Continúa >

Torres guía:

Viga HEM 500:

Figura 29. Vigas HEM 500.

Fuente: SEDEMI S.C.C.

Asiento:

Figura 30. Asiento para pata de torre a prueba.

Fuente: SEDEMI S.C.C.

Figura 28. Torres guía de carga en banco de pruebas de SEDEMI S.C.C.

Continúa >

Pernoancla Largo y corto:

Figura 33. Pernosancla cortos y largos.

Fuente: SEDEMI S.C.C.

Grapas y anclas de sujeción:

Figura 31. Ancla o grapa de sujeción para viga HEM 500.

Fuente: SEDEMI S.C.C.

Figura 32. Dados de anclaje para cables de carga y soporte

Verificación elementos de sujeción de banco de pruebas:

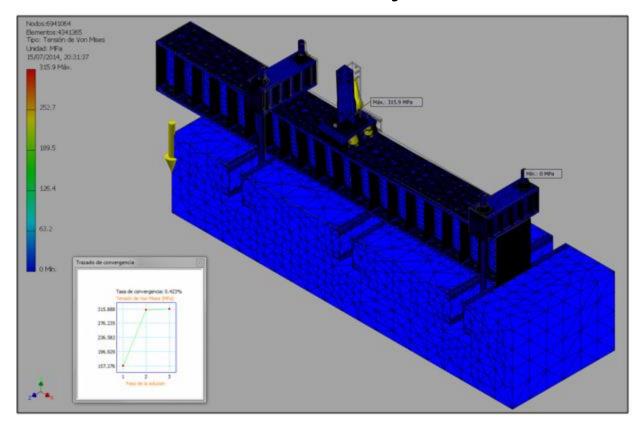


Figura 109. Tensión de Von Mises sobre porción de banco de pruebas más crítico con mallado visible

Fuente: Autor

PARÁMETROS DE VERIFICACIÓN

Convergencia: 0.423%

Carga aplicada T: 29830 kgf Carga aplicada V: 3099.5

kgf y 3356 kgf

Asiento:

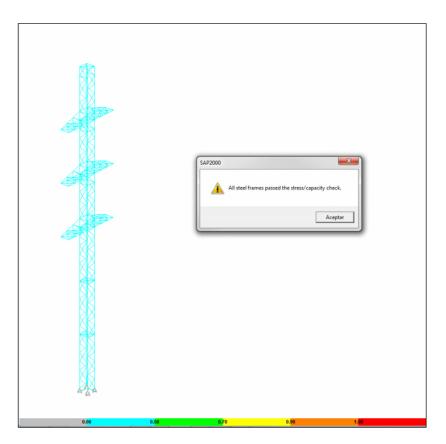
F.S. = 9.608 en soldadura a tensión

Viga HEM500:

desplazamiento 0.05279mm

Grapa de sujeción:

esfuerzo máximo generado 8MPa aprox. 81.57 kgf/cm²


Anclas de sujeción:

esfuerzo máximo generado 3MPa aprox. 33.55 kgf/cm² y desplazamiento 0.00155mm

Verificación torres guía de banco de pruebas:

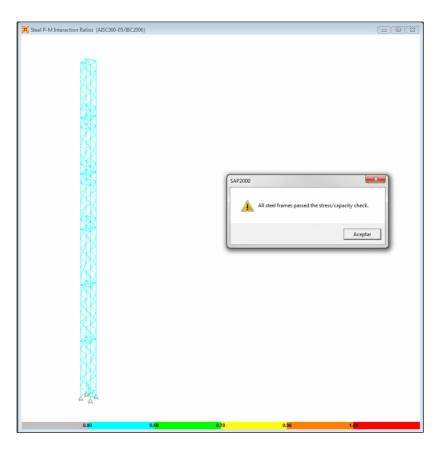


Figura 116. Verificación de resistencia de la torre guía de carga longitudinal Figura 117. Verificación de la resistencia de la torre guía de carga transversal

Fuente: Autor Fuente: Autor

Correcciones de elementos en periodo de ensamblaje: Errores de manufactura

Montante SP2-97 carece de perforación indicada en el plano de fabricación, ver Placa SP2-P14 posee una perforación mal ubicada, ver Figura 131.

Figura 128.

Figura 128. Montante SP2-97

Fuente: SEDEMI S.C.C.

Antiescalante SP2-A1 carece de despunte indicado en planos de fabricación, ver Figura 129.

Figura 129. Antiescalante SP2-A1

Fuente: SEDEMI S.C.C.

Celosía SP2-71 carece de despuntes indicados en los planos de fabricación, ver Figura 130.

Figura 130. Celosía SP2-71

Fuente: SEDEMI S.C.C.

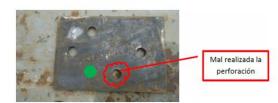


Figura 131. Placa SP2-P14

Fuente: SEDEMI S.C.C.

Placa SP2-P22 posee una perforación mal ubicada, ver Figura 132.

Figura 132. Placa SP2-P22

Fuente: SEDEMI S.C.C.

Errores de dibujo

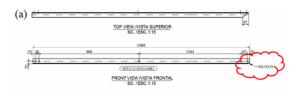

Montante SP2-33 carece de perforación necesaria para ensamblaje que no se indica en planos de fabricación, ver Figura 133.

Figura 133. Montante SP2-33

Fuente: SEDEMI S.C.C.

La celosía SP2-57 poseía un despunte tipo RS en los planos de fabricación, ver Figura 134 (a), cuando en lugar del mismo debía haber estado un despunte tipo RD, el mismo se corrigió como se indica en la Figura 134 (b).

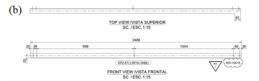


Figura 134. Celosía SP2-57; (a) despunte incorrecto y (b) despunte corregido

FUNCIONAMIENTO DE BANCO DE PRUEBAS

Disposición de prueba:

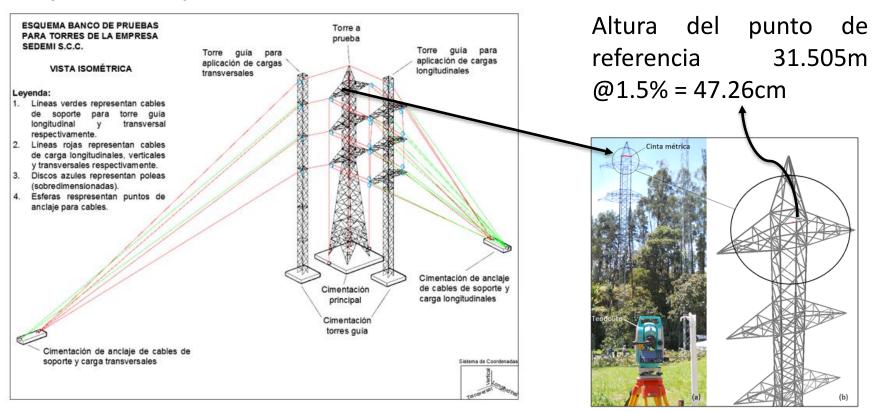


Figura 83. Esquema de configuración de banco de pruebas para ensayo en torre Figura 87. Punto referencial de medida de desplazamiento de torre SP2+3; (a) SP2+3, vista isométrica. prueba real; (b) modelo SAP2000

Fuente: Autor

Fuente: Autor

RESULTADOS

Comparación de desplazamiento en estructura no considerando fuerza de viento y considerándola:

Para el ensayo no se consideraron cargas causadas por el viento:

Tabla 60. Porcentaje de variación entre desplazamiento de simulación con viento y simulación sin viento, condiciones de carga del CASO 1

Tabla 61. Porcentaje de variación entre desplazamiento transversal de simulación con
viento y simulación sin viento, condiciones de carga del CASO 6

DESPLAZAMIENTO "X" CASO 1				
Porcentaje de Carga	Simulación sin.V.	Simulación con V.	Variación	
de Carga	X (mm)	X (mm)	(%)	
0.00%	0	0	0	
50.00%	112.6	119.6	-5.85%	
71.40%	160.8	170.8	-5.85%	
75.00%	168.9	179.4	-5.85%	
90.00%	202.6	215.3	-5.90%	
100.00%	225.2	237.3	-5.10%	

Fuente: Autor

DESPLAZAMIENTO "X" CASO 6					
Porcentaje de Carga	Simulación sin V.	Simulación con V.	Variación		
de Carga	X (mm)	X (mm)	(%)		
0.00%	0	0	0.00%		
50.00%	68.3	68.3	0.00%		
71.40%	97.5	97.5	0.00%		
75.00%	102.4	102.4	0.00%		
90.00%	122.9	122.9	0.00%		
95.00%	129.8	129.8	0.00%		
100.00%	136.6	136.6	0.00%		

Fuente: Autor

Tabla 62. Porcentaje de variación entre desplazamiento longitudinal de simulación con viento y simulación sin viento, condiciones de carga del CASO 6

	DESPLAZAMIENTO CASO 6					
Porcentaje	Simulacion sin V.	Simulación con V.	Variación			
de Carga	Y (mm)	Y (mm)	(%)			
0.00%	0	0	0.00%			
50.00%	33.5	44.3	-24.38%			
71.40%	47.9	63.3	-24.33%			
75.00%	50.3	66.5	-24.36%			
90.00%	60.4	79.8	-24.31%			
95.00%	63.7	84.2	-24.35%			
100.00%	67.1	88.7	-24.35%			

Fuente: Autor

Comparación desplazamientos entre datos teóricos y simulación, CASO 1:

Tabla 63. Porcentaje de variación entre desplazamiento de ensayo con repecto a simulación sin viento, condición de carga CASO 1

	DESPLAZAMIENTO CASO 1					
Porcentaje de	Ensayo	Simulación	Variación			
Carga	X (mm)	X (mm)	(%)			
0.00%	0	0	0			
50.00%	111.0	112.6	-1.42%			
71.40%	168.0	160.8	4.48%			
75.00%	180.0	168.9	6.57%			
90.00%	210.0	202.6	3.65%			
100.00%	260.0	225.2	15.45%			

Fuente: SEDEMI S.C.C.

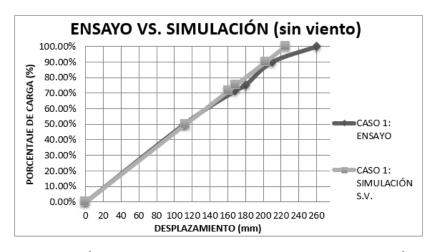


Figura 125. Gráfica de resultados de desplazamiento Ensayo vs. Simulación sin viento, CASO 1

Comparación desplazamientos entre datos teóricos y simulación, CASO 6: X (Transversal) Y (Longitudinal)

Tabla 64. Porcentaje de variación entre desplazamiento transversal de ensayo con respecto a simulación sin viento, condiciones de carga CASO 6

DESPLAZAMIENTO TRANSVERSAL CASO 6					
Porcentaje de	Ensayo	Simulación	Variación		
Carga	X (mm)	X (mm)	(%)		
0.00%	0	0	0.00%		
50.00%	25	68.3	-63.40%		
71.40%	150	97.5	53.85%		
75.00%	151	102.4	47.46%		
90.00%	175	122.9	42.39%		
95.00%	180	129.8	38.67%		
100.00%	180	136.6	31.77%		

Fuente: SEDEMI S.C.C.

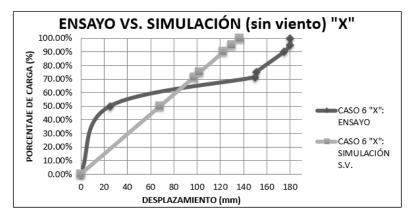


Figura 126. Gráfica de resultados de desplazamiento transversal Ensayo vs. Simulación sin viento CASO 6

Fuente: SEDEMI S.C.C.

Tabla 65. Porcentaje de variación entre desplazamiento longitudinal de ensayo con respecto a simulación sin viento, condiciones de carga CASO 6

DESPLA	ZAMIENTO LO	ONGITUDINAL (CASO 6
Porcentaje de	Ensayo	Simulación	Variación
Carga	Y (mm)	Y (mm)	(%)
0.00%	0	0	0.00%
50.00%	38	33.5	13.43%
71.40%	39	47.9	-18.58%
75.00%	42	50.3	-16.50%
90.00%	41	60.4	-32.12%
95.00%	45	63.7	-29.36%
100.00%	49	67.1	-26.97%

Fuente: SEDEMI S.C.C.

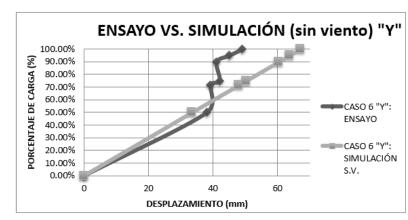


Figura 127. Gráfica resultado desplazamiento longitudinal Ensayo vs. Simulación sin viento, CASO 6

Inspección posterior al ensayo:

Estructura aún montada

Figura 135. Inspección de placa más crítica en Torre SP2+3; (a) extracción de muestras; (b) superficie marcada por del perno; y (c) inspección de borde de agujero.

Fuente: SEDEMI S.C.C.

Estructura desmontada

Figura 136. Clasificación elementos de Tramo 7; (a) Tramo 7 y (b) celosía y antitorsores Tramo 7, señalados elementos deformados

Fuente: SEDEMI S.C.C.

Figura 137. Celosía SP2-7; (a) y (c) vista de flejamiento del elemento; (b) y (d) agujero intermedio donde inicia la flexión del perfil

Fuente: SEDEMI S.C.C.

Figura 138. Placas de interés desmontadas y pernería; (a) Placas interiores y principales; (b) Placa interior de unión más critica a compresión y (c) pernos de acuerdo a condición de desmontaje

COSTO TORRE SP2+3 Y ENSAYO

SERVICIO

Tabla 53. Costo total de producción.

COSTO TOTAL DE PRODUCCIÓN						
ELEMENTO DE PRO	CANTIDAD (kg)	COSTO UNITARIO (\$)	COSTO (\$)			
MATERIA PRIMA DIRECTA	ASTM A572 Gr.50	5804.44	\$ 1.05	\$ 6,094.66		
	ASTM A36	518.36	\$ 0.95	\$ 492.44		
MATERIA PRIMA IN	DIRECTA	651.21	\$ 0.25	\$ 162.80		
MAQ UIN AR	IA	6974.01	\$ 0.48	\$ 3,347.52		
MANO DE OBRA DIRECTA		6974.01	\$ 0.64	\$ 4,463.37		
MANO DE OBRA IN	6974.01	\$ 0.28	\$ 1,952.72			
	COSTO TOTAL			\$ 16,513.52		

Fuente: Autor

Tabla 78. Costo total de ensayo

COSTO TOTAL DE ENSAYO	
COSTO TOTAL DE PRODUCCION Y ENSAMBLAJE	\$ 14,179.07
COSTO TOTAL DE ACCESORIOS	\$ 17,043.50
COSTO TOTAL	\$ 31,222.57

Fuente: Autor

MONTAJE Y ENSAYO

Tabla 76. Costo total de producción y ensamblaje

COST O TOTAL DE PRODUCCIÓN Y ENSAMBLAJE				
ELEMENTO DE PR	ODUCCIÓN	CANTIDAD (kg)	COSTO UNITARIO (\$)	COS TO (\$)
MATERIA PRIMA DIRECTA	ASTM A572 Gr.50 ASTM A36	4315.06 534.79	\$ 1.05 \$ 0.95	\$ 4,530.81 \$ 508.05
MATERIA PRIMA	INDIRECTA	651.21	\$ 0.25	\$ 162.80
MAQUINA	RIA	5159.43	\$ 0.51	\$ 2,631.31
MANO DE OBRA	DIRECTA	5159.43	\$ 0.77	\$ 3,972.76
MANO DE OBRA	INDIRECTA	5159.43	\$ 0.46	\$ 2,373.34
	COST O T OT AL			\$ 14,179.07

Fuente: Autor

Tabla 77. Accesorios para prueba.

•				
EQUIPO PARA BANCO DE PRUEBAS				
MATERIAL	PRECIO UNITARIO (\$/m)	CANTIDAD (m)	COSTO UNITARIO	COS TO TOTAL (\$)
Cable de 3/8''	\$1.80	2000	\$ 1.80	\$3,600.00
MATERIAL	PRECIO UNITARIO (\$)	CANTIDAD (u)	COSTO UNITARIO	COS TO TOTAL (\$)
Us de montaje 1/2"	\$3.50	220	\$ 3.50	\$ 770.00
Tensor 3/4" (OJO-OJO/OJO-GANCHO)	\$ 5.00	23	\$ 5.00	\$ 115.00
Tecle 3 Toneladas	\$ 320.00	12	\$ 320.00	\$3,840.00
Dinamómetro 16 kN	\$ 198.00	2	\$198.00	\$ 396.00
Dinamómetro 40 kN	\$ 288.00	10	\$ 288.00	\$ 2,880.00
Dinamó metro Digital 5 Ton.	\$ 1,547.00	1	\$1,547.00	\$1,547.00
Grillete 2 Toneladas	\$ 3.50	265	\$ 3.50	\$ 927.50
Polea 6 Toneladas	\$ 228.00	5	\$ 228.00	\$1,140.00
Polea 4 Toneladas	\$ 147.00	1	\$147.00	\$ 147.00
Polea 2 Toneladas	\$ 70.00	19	\$ 70.00	\$1,330.00
Guardacabos 3 Toneladas	\$3.90	90	\$ 3.90	\$ 351.00
COSTO TOTAL POR ACCESORIOS DE BANCO DE PRUEBAS \$17,043.50				\$17,043.50

Fuente: Autor

Opciones de mejoras de ensayos en Banco de Pruebas existente:

Control de Deflexiones en torres guía

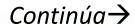
	VENTAJA		DESVENTAJA
Las estruct modificación a		requerirían	Aumento de equipo de carga, medición y personal de control

Aplicación de cargas longitudinales en líneas individuales

VENTAJA	DESVENTAJA
Estructuras guía se mantienen dada la disminución de cargas horizontales	Aumento de equipo de carga, medición y personal de control

Reducción de la capacidad de circuitos de ensayo

VENTAJA	DESVENTAJA
Estructuras guía se mantienen iguales y el equipo de medición, carga y control se reduce	Se limita la capacidad del banco de pruebas a estructuras de simple circuito


*Celdas de carga = menor personal encargado de medición

CONCLUSIONES Y RECOMENDACIONES

Conclusiones:

- La torre resiste satisfactoriamente las cargas aplicadas y no presenta roturas ni desprendimientos de elementos.
- El diseño presentado en la torre SP2+3 cumple con el margen de desplazamiento requerido por el cliente menor al 1.5%.
- Los miembros estructurales están definidos además de las cargas, por el tipo de conexión que deben llevar ya que dependiendo del perfil estructural utilizado la configuración de las conexiones puede o no complicarse.
- Las sobredimensiones de las placas base son innecesarios ya que la utilidad de estos es solamente para el banco de pruebas y con placas base de menor espesor es posible tener los mismos resultados.
- El proceso de fabricación presenta errores difíciles de corregir en campo, por lo cual control de calidad en producción requiere una supervisión más rigurosa.
- El ensayo del primer caso de carga será siempre el más significativo para los resultados que se buscan puesto que posterior al mismo existirán esfuerzos residuales en zonas específicas de la estructura.
- Errores de cálculo del diseño del arreglo de poleas en el ensayo para el CASO 6 ocasionaron que se obtengan datos inútiles.
- La consideración de la carga de viento resulta ser significante en el CASO 6, por lo cual no debió ser obviada, al menos para dicho caso de carga.
- La utilidad de los datos de ensayos en el banco de pruebas dependen directamente de la rigidez de las torres guía de cargas.

- Este método de ensayo sobre torres autosoportadas se lo puede trasladar a otro tipo de estructuras como son pórticos, monopolos, galpones, etc. contando con el equipo de carga y anclaje necesarios.
- El ensayo muestra la diferencia que existe entre la simulación de la estructura con respecto a la vida real de manera muy concreta, ya que no existe un comportamiento igual con respecto al comportamiento de la simulación de la estructura, como lo revela en CASO 1 de ensayo.
- El costo del ensayo de la torre SP2+3 es casi el doble del costo de fabricación de la torre SP2+3 para servicio.
- Ensayos en torres de doble circuito que incurren en arreglos de poleas no dan resultados esperados en el banco de pruebas existente.
- La solución más plausible para realizar ensayos con el banco existente sin riesgo a errores es orientando los ensayos a torres de simple circuito.
- Un sistema automatizado de aplicación de carga no justifica el costo de la inversión, ya que los ensayos que se realizan en torres son de dos a tres al año, además los resultados no muestran problemas de coordinación en la aplicación de cargas hacia la torre de prueba.

Recomendaciones:

- De ser necesario realizar ensayos en torres de doble circuito, se deberán contar con líneas de carga independientes para evitar utilizar arreglos de poleas.
- Sería más conveniente contar con equipos de medición más sensibles o equipos digitales, dado que las cargas con las que se trata y el equipo analógico que se posee dan lugar a errores de interpretación por parte de los observadores.
- La medición de cargas aplicadas sobre el prototipo se deben medir en los puntos de aplicación sobre el mismo, para evitar errores de medición de las cargas aplicadas a la estructura, tal y como lo indica la norma ASCE 10-97, para ello sería inevitable adquirir celdas de carga u otro tipo de dispositivos de medición que no requieran lectura próxima al observador.
- Un ensayo con datos de desplazamiento variados se lo podría obtener por medio de equipos de medición en más de un punto de referencia del desplazamiento como crucetas, cúpula, y paneles específicos de la celosía, lo cual daría mayor idea de la deformación en toda la estructura y se podría definir de manera más sencilla sí su comportamiento se aproxima al idealizado.
- Las estructuras de soporte de cables de carga (torres guía) deberían ser estudiadas con el fin de determinar una capacidad de transmisión de carga útil hacia la torre a prueba, ya que carecen de la rigidez necesaria para transmitir fuerza sin estas absorber una parte de la misma al existir cargas laterales de consideración.
- Ensayos en estructuras grandes son solamente recomendados cuando una magnitud considerable de estas se van a fabricar, dado que su costo final justifica el gasto en ensayos de este tipo, los cuales tienen un precio considerable.

MUCHAS GRACIAS

