

CARRERA DE INGENIERÍA AUTOMOTRIZ

"ESTUDIO PARA LA IMPLEMENTACIÓN DE UNA MONOCICLETA DE MANDO ELÉCTRICO PARA LA MOVILIZACIÓN AUTÓNOMA DE PERSONAS PARAPLÉJICAS"

TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AUTOMOTRIZ

AUTOR: PAULO MISAEL CUNALATA CUNALATA

MARCELO ALFONSO MANOSALVAS SALAZAR

DIRECTOR: ING. GUIDO TORRES

Latacunga 2017

INTRODUCCIÓN

- El presente trabajo a desarrollar es el estudio de la implementación de una monocicleta de mando eléctrico para la movilización autónoma de personas parapléjicas, cuya investigación se realizó para ayudar al traslado de las personas con esta discapacidad.
- La movilización se debe realizar con rapidez, seguridad, eficiencia y debe ser amigable al medio ambiente; por ello se ejecutará el estudio para la implementación de la monocicleta de mando eléctrico considerando su ergonomía, basándose en normas técnicas

JUSTIFICACIÓN

 Con el avance tecnológico se puede implementar dispositivos para que las personas con paraplejía para que puedan movilizarse de una manera autónoma, debido a la ausencia hasta el momento de una solución, es indispensable un medio de transporte innovador, versátil, económico y ecológico que se acople a la movilización de personas con discapacidad.

OBJETIVO GENERAL

 Determinar el estudio para la implementación de una monocicleta de mando eléctrico para la movilización autónoma de personas parapléjicas

OBJETIVOS ESPÉCIFICOS

- Establecer el estado de arte de las sillas de ruedas eléctricas y acoples motrices hasta la actualidad.
- Analizar la viabilidad técnica basada en métodos analíticos con el fin de obtener las exigencias de seguridad con la tecnología disponible para la implementación de la monocicleta de mando eléctrico.
- Realizar el diseño de una monocicleta de mando eléctrico para personas parapléjicas con los componentes eléctricos, electrónicos y mecánicos, mediante software CAD.
- Validar el funcionamiento del sistema motriz a través de cargas y esfuerzos realizados mediante cálculos matemáticos y software CAE.
- Implementar la monocicleta de mando eléctrica con sus accesorios eléctricos, electrónicos y mecánicos en una silla de ruedas convencional para la movilidad de personas parapléjicas.

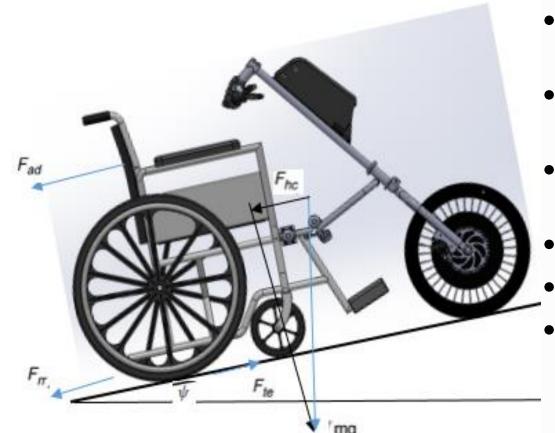
ESTADO DEL ARTE

PARAPLEJÍA

La paraplejía es un impedimento en la función motora o sensorial de las extremidades inferiores como se muestra en la figura . Por lo general, la consecuencia de la lesión de la médula espinal como la espina bífida que perturba a los elementos neurales del canal espinal

VEHÍCULOS ELÉCTRICOS

 Los vehículos eléctricos desplazan por medio de un motor sustentado por baterías que se cargan a través de una toma de corriente. Su utilización muestra ventajas desde el punto de un panorama ambiental, ya que reduce el nivel de emisiones de CO al espacio.


DISEÑO Y SELECCIÓN DEL SISTEMA

ESFUERZO DE TRACCIÓN

 El prototipo, en pendiente tendrá que cumplir con la Segunda ley de Newton que plantea que la sumatoria de fuerzas en el eje x es igual a la masa del cuerpo en movimiento por la aceleración que este tenga

- Fuerza de fricción entre la superficie a rodar (Frr).
- Fuerza de fricción con el viento (Fad).
- Componente del peso del vehículo a lo largo de la pendiente (Fhc).
- Fuerza de tracción (Fte).
- Torque necesario (Tn).
- Potencia necesaria (*Pn*).

DATOS NECESARIOS PARA EL CÁLCULO

COMPONENTE	PESO EN KG
KIT ELÉCTRICO	7
CHASIS	3
BATERÍAS	4
SILLA DE RUEDAS	20
PASAJERO	90
TOTAL	124

MOVIMIENTO	VELOCIDAD EN
	KM/H
HACIA ADELANTE	20

CÁLCULOS DE FUERZAS

- $Frr = Urr * m * g * cos(\psi)$ Frr = 24.092[N]
- $Fad = \frac{1}{2} * \rho * A * Cd * V^2$ Fad = 1.2592 [N]
- $Fhc = m * g * sen(\psi)$ Fhc = 169.295[N]
- Fte = m.a + Frr + Fad + FhcFte = 199.606[N]

CÁLCULOS DE FUERZAS

• Tn = R.F

$$Tn = 25.3499 [Nm]$$

• Pcalculada = Fte.vmaxPcalculada = 831.758 W

•
$$PMotor = \frac{Pcalculada}{eficiencia}$$

 $PMotor = 996.6977 [W]$

MOTOR SELECCIONADO

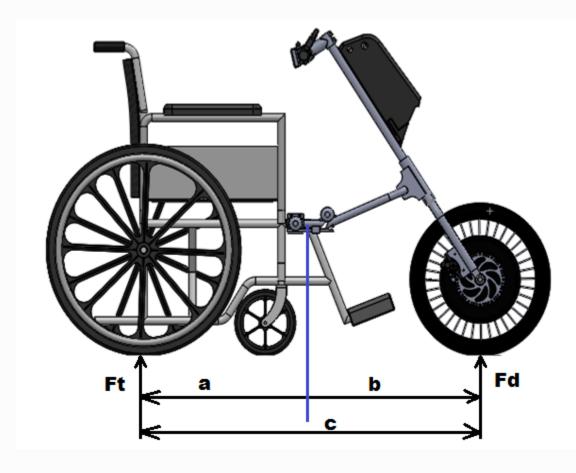
PARAMETROS	ESPECIFICACIONES
TIPO DE MOTOR	MOTOR BRUSHLESS
VOLTAJE (V)	48
POTENCIA (W)	1000
CORRIENTE MAX (A)	12
EFIENCIA (%)	80
VELOCIDAD (Km/h)	20
RADIADO EN LLANTA (IN)	10
TIPO DE FRENO	DISCO
PESO (Kg)	5.47
AUTONOMÍA (Km)	60

BATERÍA SELECCIONADA

	Peso	≤ 3.10 kg
Dime	nsión (L * W * H)	310*150*100mm
Temperatura de	Temperatura de la carga	0 ~ 45 ° C
trabajo	Temperatura de descarga	-20 ~ 65 ° C
	2. Datos técnicos	
Ter	nsión nominal	48 V
Capacio	dad nominal de C1	12 Ah
Resistencia de la batería		≤100mΩ
	Corriente de Carga estándar	2A
Cargo	Corriente de Carga máxima	5A
	Max Voltaje De Carga	54.6 V
Corriente de descarga estándar		10A se puede personalizar
Descarga	Max. Corriente de Descarga	20A puede ser personalizado
	Descarga de Tensión de Corte	39 V
Ciclo de Vida		≥ 600 Ciclos

AUTONOMÍA DE LA BATERÍA

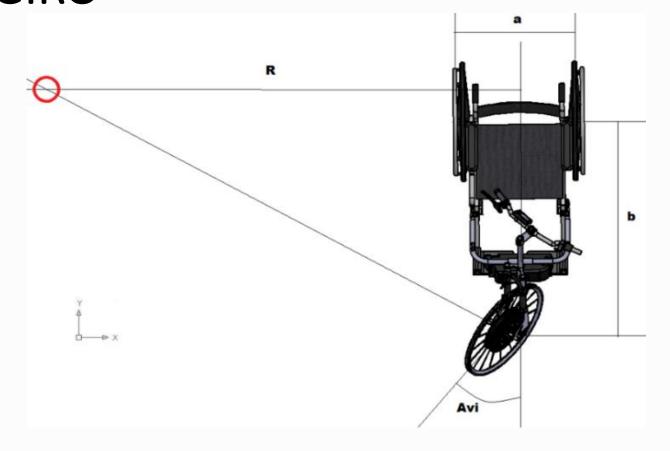
TIEMPO DE DESCARGA		
TIEMPO 1 hora y 20 minutos		
DISTANCIA DE RECORRIDO		
PLANO 25 Km		
CUESTA	15 Km	


CARGAS REALES

Elementos	Masa (Kg)
Motor	5.47
Batería	3.36
Estructura	3
Silla	20
Total (m_{cm})	31.83
Elementos	Masa (Kg)
Persona con discapacidad	90
Total (m_{cv})	90

DISTRIBUCIÓN DE CARGAS RESPECTO AL CENTRO DE GRAVEDAD

- $\sum F_T = F_{cm(10\%)} + F_{cv(10\%)}$
- $\sum F_T = 971.19 N + 455.98 N$
- $\sum F_T = 1427.178 [N]$
- $F_{d(10\%)} = 925.2969 [N]$
- $F_{t(10\%)} = 644.193 [N]$


VELOCIDAD DE LÍMITE DE VUELCO Y ÁNGULO DE **GIRO**

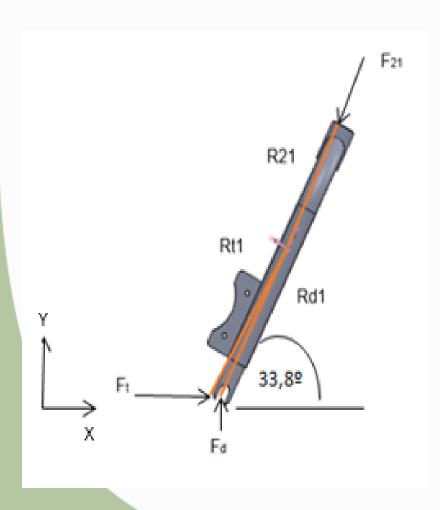
$$V_v = \sqrt{g * r * \frac{A_v}{2*h_{cg}}}$$

•
$$V_v = 40.12 \frac{Km}{h}$$

•
$$tg(A_{vi}) = \frac{2b}{4b-a}$$

• $A_{vi} = 30.08^{\circ}$

•
$$A_{vi} = 30.08^{\circ}$$

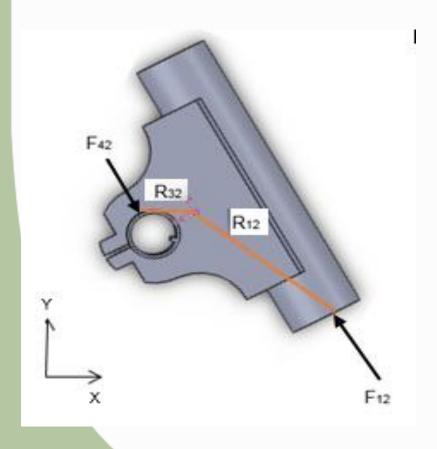

MODELACIÓN Y SIMULACIÓN

 Con las cargas obtenidas en los cálculos anteriores, se procede a la distribución de las fuerzas en cada elemento que conforma la monocicleta.

$$F_t = W_f = 52,156 [N]$$

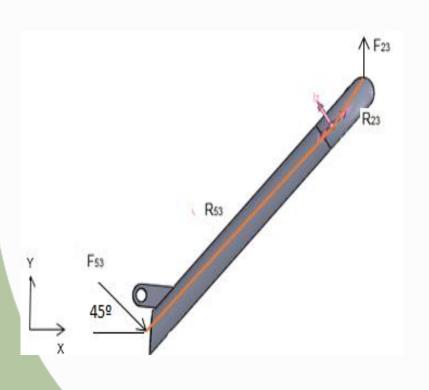
 $F_a = W_a = 26.315 [N]$
 $F_d = 841,539 [N]$

REACCIONES EN EL ACOPLE DE LA LLANTA DELANTERA



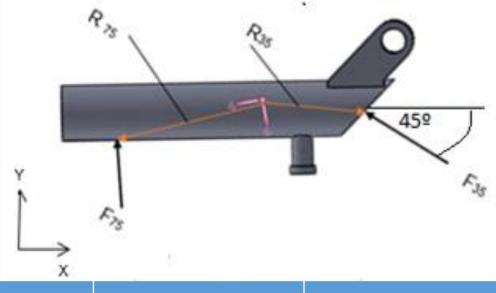
Variable	Valor	Unidad	Comentario
F21	3025,10	N	Fuerza que actúa el elemento 2
			en 1
Fd	841,539	N	Fuerza producidas por las masas
Ft	51,156	N	Fuerza de frenado
R21	118,20	mm	Reacción de la fuerza 21
Rd1	224,65	mm	Reacción de la fuerza d1
Rt1	212,28	mm	Reacción de la fuerza t1
Rd2	224,65	mm	Reacción de la fuerza d2
Rt2	212,28	mm	Reacción de la fuerza t2

REACCIONES EN LA UNIÓN DEL TRINCHE



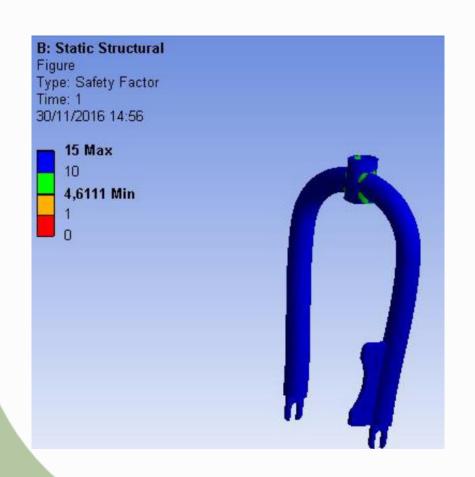
Variable	Valor	Unidad	Comentario
F32	-1512,755	N	Fuerza que actúa el elemento 3
			en 2
F42	-1512,755	N	Fuerza que actúa el elemento 4
			en 2
F12	-3025,51	N	Fuerza que actúa el elemento 1
			en 2
R42	153,79	mm	Reacción de la fuerza 42
R32	153,79	mm	Reacción de la fuerza 32
R12	41,27	mm	Reacción de la fuerza 12

REACCIONES EN LOS TUBOS DEL CHASIS



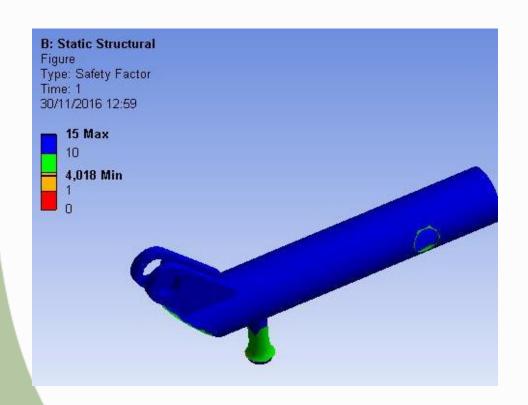
Variable	Valor	Unidad	Comentario
F23	- 1512,75 5	N	Fuerza que actúa el elemento 2 en 3
F53	2139,35 9	N	Fuerza que actúa el elemento 5 en 3
R53	251,86	mm	Reacción de la fuerza 53
R23	120,98	mm	Reacción de la fuerza 23

REACCIONES EN LAS CONEXIONES DE SOPORTES



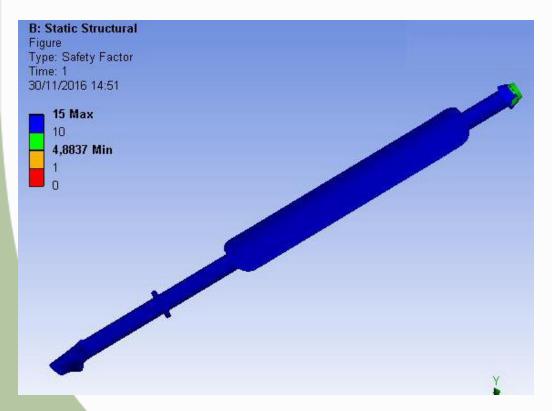
Variable	Valor	Unidad	Comentario
F75	1512,755	N	Fuerza que actúa el elemento 7 en 5
F35	-2139,359	N	Fuerza que actúa el elemento 3 en 5
R35	40,13	mm	Reacción de la fuerza 35
R75	51,9	mm	Reacción de la fuerza 75

ANÁLISIS DEL TRINCHE



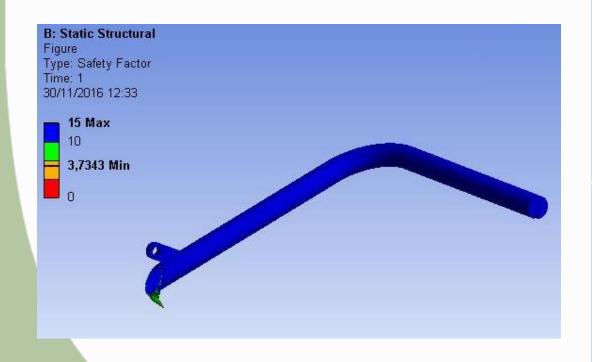
Análisis del Acople		
Nombre de la Prueba	Valor de la prueba	
	MAX	
Estraves Eschalante	54,217 MPa	
Esfuerzo Equivalente	MIN	
	1,30e ⁻¹¹ MPa	
	MAX	
Esfuerzo Principal	55,794 MPa	
Máximo	MIN	
	-10,536 MPa	
Deformación Total	0.0284mm	

ACOPLE PARA EL SEGURO DE LA SILLA



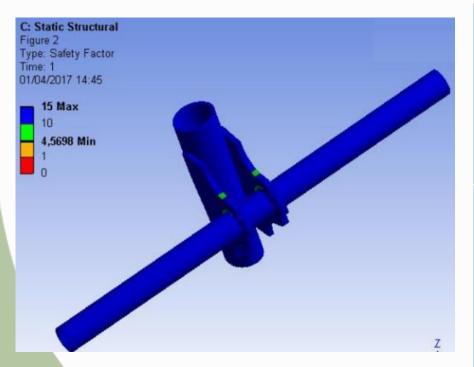
ANÁLISIS SEGURO DE LA SILLA		
Nombre de la Prueba	Valor de la prueba	
	MAX	
Ecfuerzo Equivalente	62,72 MPa	
Esfuerzo Equivalente	MIN	
	8,74e ⁻¹² MPa	
	MAX	
Esfuerzo principal	74,671 MPa	
máximo	MIN	
	-7,58 MPa	
Deformación Total	0,0027 mm	

EJE VOLANTE TRINCHE



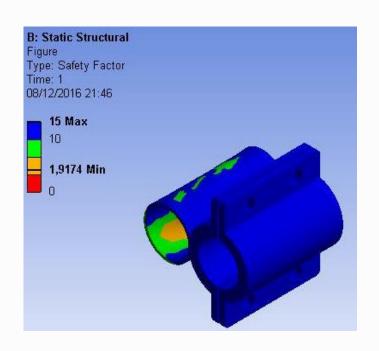
Nombre de la Prueba	Valor de la prueba		
	MAX		
Esfuerzo Equivalente	51,191 MPa		
	MIN		
	5,88 MPa		
	MAX		
Esfuerzo principal	38,436 MPa		
máximo	MIN		
	-1,74 MPa		
Deformación Total	5 220-4 mm		

BRAZOS



Nombre de la Prueba	Valor de la prueba		
	MAX		
Esfuerzo Equivalente	66,946 MPa		
	MIN		
	7,43 MPa		
	MAX		
Esfuerzo Principal	63,66 MPa		
Máximo	MIN		
	-14,61 MPa		
Deformación Total	0,00117 mm		

UNIÓN DE TRINCHE



Nombre de la Prueba	Valor de la prueba	
	MAX	
Esfuerzo Equivalente	51,61MPa	
	MIN	
	4,18e ⁻¹² MPa	
	MAX	
Esfuerzo Principal	55,73 MPa	
Máximo	MIN	
	-19,72 MPa	
Deformación Total	0,026mm	

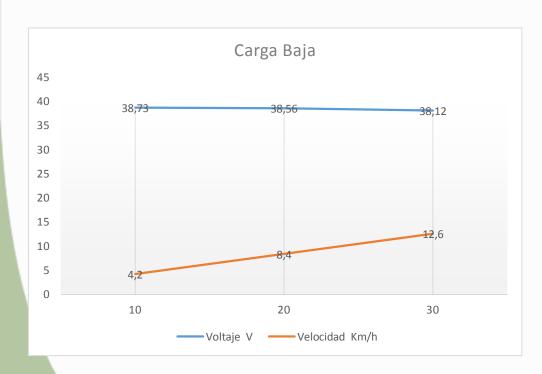
SEGUROS DE LA SILLA DE RUEDAS

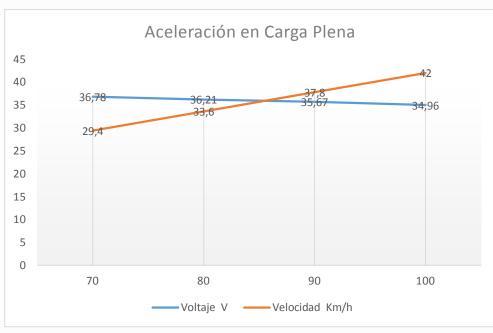
Nombre de la Prueba	Valor de la prueba	
	MAX	
Esfuerzo Equivalente	138,38 MPa	
	MIN	
	14,48 MPa	
	MAX	
Esfuerzo principal	74,76 MPa	
máximo	MIN	
	-11,148 MPa	
Deformación Total	0,0172 mm	



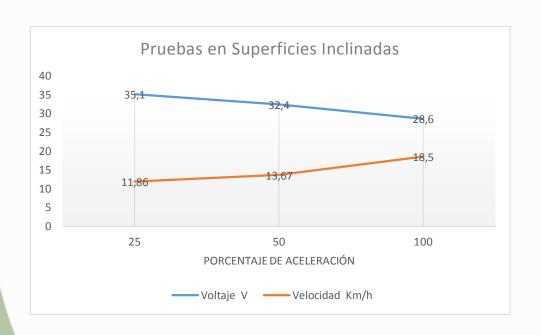
CONSTRUCCIÓN DEL PROTOTIPO




MONOCICLETA


PRUEBAS

Porcentaje de	Voltaje	Velocidad
Aceleración %	V	Km/h
10	38,73	4,2
20	38,56	8,4
30	38,12	12,6



Porcentaje de Aceleración %	Voltaje V	Velocidad Km/h
70	36,78	29,4
80	36,21	33,6
90	35,67	37,8
100	34.96	42

PRUEBAS EN SUPERFICIES INCLINADAS

Porcentaje de	Voltaje	Velocidad
Aceleración %	V	Km/h
25	35,1	11,86
50	32,4	13,67
100	28,6	18,5

TIEMPO DE ACOPLE.

Tiempo Condiciones		Tiempo de acople	Tiempo de desacople	Total
Prueba 1 Baja Car	ga	53	53	106
Prueba 2 Media Ca	rga	49	35	84
Total	102		88	190
Tiempo Condiciones	Tiempo de acople		Tiempo de desacople	Total
Persona 1		43	57	100
	49			
Persona 2		49	17	66

PRUEBA DE AUTONOMÍA

CONCLUSIONES:

- La utilización de estos equipos brindan requerimientos como el confort, seguridad, fácil manejo e instalación sencilla; a la vez el prototipo es libre de emisiones de CO₂ las cuales contribuyen con el medio ambiente.
- El sistema eléctrico está constituido de un motor brushless con una potencia de 1000 W y una batería de ION LITIO de 48 V y 12 Ah de acuerdo a un peso máximo de 125 Kg (vehículo y persona).
- La pendiente máxima que puede subir el monociclo es de 8% de inclinación en calzadas de asfalto, adoquín y cemento.
- Con las pruebas realizadas se determinó que a plena carga de la batería es capaz de recorrer 28 Km en 90 minutos en diferentes calzadas a una velocidad promedio de 25 km/h con una persona discapacitada de 96kg.
- La seguridad del Monociclo eléctrico tiene un factor de seguridad de 2.89, logrando así superar el factor establecido en el diseño el cual es de 2. De esta manera se garantiza la seguridad del pasajero, en este caso una persona discapacitada

CONCLUSIONES:

- Con la ayuda del software CAE, se realizó los análisis estáticos y dinámicos a cada una de las piezas, demostrando que el eje horizontal es quien sufre más deformación con el 0,026mm el cual brinda una garantía al momento de la construcción.
- El monociclo cumple con los parámetros de diseño dinámicos y estáticos para una persona parapléjica, dándonos como resultado implementar un sistema eléctrico de propulsión con un motor eléctrico de 1000 W de potencia efectiva el cual alcanzara una velocidad máxima de 40 km/h con un voltaje de 39 voltios y 12 Ah para su funcionamiento.
- El prototipo alcanza su velocidad máxima de 40 km/h en 18.3 segundos recorriendo 500 metros, la cual es igual a la velocidad teórica de 40 km/h, manteniendo la seguridad de la persona con capacidades reducidas.

RECOMENDACIONES:

- Para el funcionamiento óptimo del monociclo de mando eléctrico, la batería de Ion litio deberá estar totalmente cargada, con la verificación del rango de carga de 12 A de carga para poder alargar la vida útil de la batería.
- Se deberá hacer un buen ajuste de los elementos móviles que están en los acoples y el sistema de elevación para evitar posibles accidentes.
- Revisar el sistema de frenos, la tensión en el cable, el manubrio se debe accionar de una manera suave, la pastilla de freno y el disco tiene que tener toda su superficie libre de impurezas o grasas que limiten su capacidad de frenado
- Revisar el sistema de dirección, una vez seleccionada la altura del manubrio debe asegurarse el perno de seguro, el manubrio tiene que tener la protección de goma para las manos y esta no debe chocar con los brazos de la silla de ruedas

RECOMENDACIONES:

- Revisar las conexiones eléctricas de tal forma que cuando el monociclo se encuentre en movimiento estas no se desconecten y en caso de lluvia no ingrese agua en las conexiones y de esta forma evitar posibles accidentes
- Se recomienda una tolerancia IT 15 para los ejes de los brazos de esta manera una vez cromado se dejara un ajuste de 24.5k15 que es un ajuste medio

GRACIAS