

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA CONSTRUCCIÓN

CARRERA DE INGENIERÍA CIVIL

TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TITULO DE INGENIERO CIVIL

TEMA: MODELACIÓN Y REDISEÑO VIAL DE LA INTERSECCIÓN AV. ISAAC ALBÉNIZ Y AV. GALO PLAZA LASSO

AUTOR: HIDALGO BORJA ROBERTO JAVIER

DIRECTOR: ING. MORALES MUNOZ BYRON OMAR

SANGOLQUI

2017

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

CERTIFICACIÓN

Certifico que el trabajo de titulación, MODELACIÓN Y REDISEÑO VIAL DE LA INTERSECCIÓN AV. ISAAC ALBÉNIZ Y AV. GALO PLAZA LASSO, realizado por el señor ROBERTO JAVIER HIDALGO BORJA, ha sido revisado en su totalidad y analizado por el software anti-plagio, el mismo cumple con los requisitos teóricos, científicos, técnicos, metodológicos y legales establecidos por la Universidad de Fuerzas Armadas ESPE, por lo tanto, me permito acreditarlo y autorizar al señor para que lo sustente públicamente.

Sangolquí, 31 de agosto del 2017

ING. BYRON OMAR MORALES MUNOZ

DIRECTOR

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

AUTORÍA DE RESPONSABILIDAD

Yo, ROBERTO JAVIER HIDALGO BORJA, con cédula de identidad N°1716635261, declaro que este trabajo de titulación autorizo "MODELACIÓN Y REDISEÑO VIAL DE LA INTERSECCIÓN AV. ISAAC ALBÉNIZ Y AV. GALO PLAZA LASSO" ha sido desarrollado considerando los métodos de investigación existentes, así como también se ha respetado los derechos intelectuales de terceros considerándose en las citas bibliográficas.

Consecuentemente declaro que este trabajo es de mi autoría, en virtud de ellos me declaro responsable del contenido, veracidad y alcance de la investigación mencionada.

Sangolquí, 31 de agosto del 2017

ROBERTO JAVIER HIDALGO BORJA C.I. 1716635261

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

AUTORIZACIÓN

Yo, ROBERTO JAVIER HIDALGO BORJA, autorizo a la Universidad de las Fuerzas Armadas ESPE publicar en la biblioteca Virtual de la institución el presente trabajo de titulación "MODELACIÓN Y REDISEÑO VIAL DE LA INTERSECCIÓN AV. ISAAC ALBÉNIZ Y AV. GALO PLAZA LASSO" cuyo contenido, ideas y criterios son de mi autoría y responsabilidad.

Sangolquí, 31 de agosto del 2017

ROBERTO JAVIER HIDALGO BORJA C.I. 1716635261 **DEDICATORIAS**

A mis padres, Sara y Ramiro, por apoyarme en todo

momento, por motivarme siempre con sus consejos,

velando por mi superación, y bienestar.

A mi hermana, Sara, por brindarme oportunamente

esas palabras de aliento, camaradería e incondicional

confianza.

A mis abuelos, Jaime y Colombita, por enseñarme lo

que significa la familia, por regalarme tanto amor, por

ser mi motivación y mi gran ejemplo a seguir.

Los amo profundamente.

Roberto Javier Hidalgo Borja

AGRADECIMIENTOS

Gracias Ma y Pa, por todo el apoyo y esfuerzo que siempre me han brindado, otorgándome lecciones de vida, que han enriquecido mis valores, formando la persona que soy ahora.

A usted, Papa, que con sus experiencias personales y profesionales me enseñó a enamorarme de esta carrera; es para mí una inspiración y de aquí en adelante seguiré trabajando duro para tal vez llegar a ser un poco de lo que usted es.

A Renata, por tu apoyo incondicional, sin importar día ni hora, gracias por brindarme tu motivación y temple, porque sin ello hubiera sido más complicado llegar a este punto de mi vida.

Gracias a mi familia, por estar constantemente pendientes de mí, dándome palabras de aliento cuando lo necesitaba, o regañándome cuando me desviaba de la meta.

Agradezco a mi tutor, Ingeniero Byron Morales, por apoyarme en todo este proceso para la realización del proyecto, y brindarme su paciencia, sus conocimientos, tiempo y experiencias.

A Richard Hidalgo y todo el equipo de RHV, por darme el respaldo y motivación que fueron necesarios para la realización de este trabajo.

Les estaré eternamente agradecido.

Roberto Javier Hidalgo Borja

ÍNDICE DE CONTENIDO

CERTIF	ICACIÓN	ii
AUTORÍ	ÍA DE RESPONSABILIDAD	iii
AUTORI	IZACIÓN	iv
DEDICA	ATORIAS	v
AGRAD	ECIMIENTOS	vi
ÍNDICE	DE CONTENIDO	vii
ÍNDICE	DE TABLAS	xii
ÍNDICE	DE FIGURAS	XV
RESUM	EN	. xviii
ABSTR A	ACT	xix
CAPÍTU	LO 1: INTRODUCCIÓN Y GENERALIDADES	1
1.1	Introducción	1
1.2	Importancia y justificación	3
1.3	Ubicación	4
1.4	Objetivos	5
1.4.1	Objetivo general	5
1.4.2	Objetivos específicos	5
1.5	Metodología	5
CAPÍTU	LO 2: METODOLOGÍA Y MARCO TEÓRICO	7
2.1	Metodología del estudio	7
2.2	Marco teórico	8
2.2.1	Generalidades	8
2.2.2	Usuarios	9
2.2.2.1	Peatón	9

2.2.2.2	Ciclista	10
2.2.2.3	Conductor	11
2.2.2.4	Vehículos	11
2.2.3	Sistema vial urbano	13
2.2.3.1	Arterias principales	13
2.2.3.2	Arterias menores o secundarias	13
2.2.3.3	Colectores urbanos	14
2.2.3.4	Calles locales urbanas	14
2.2.3.5	Clasificación del sistema vial en el DMQ	14
2.2.4	Tráfico	17
2.2.4.1	Tráfico promedio diario	18
2.2.4.2	Hora pico	19
2.2.4.3	Factor de hora pico	20
2.2.4.4	Proyección al tráfico futuro	21
2.2.4.5	Tráfico generado	22
2.2.5	Uso de suelo	23
2.2.6	Tasas de crecimiento	24
2.2.7	Intersecciones	24
2.2.7.1	Intersecciones a nivel	26
2.2.7.2	Rotondas	27
2.2.7.3	Intersecciones a desnivel	29
2.2.8	Nivel de servicio	30
2.2.9	Aspectos de diseño en vías urbanas	33
2.2.9.1	Velocidad de diseño y de circulación	35
2.2.9.2	Carriles de aceleración y desaceleración	36
2.2.9.3	Vehículo de diseño	40

2.2.9.4	Señalización y dispositivos de control de tráfico.	42
CAPÍTU	LO 3: CARACTERIZACIÓN DEL TRÁFICO	44
3.1	Generalidades de las condiciones actuales	44
3.2	Tasas de crecimiento	44
3.3	Obtención de datos de campo	47
3.4	Variación horaria de tráfico	49
3.5	Factor de hora pico	50
3.6	Cálculo del TPDA	50
3.6.1	Porcentaje de uso por giro	51
3.6.2	Semana tipo para 2015	57
3.6.3	Aportación de aforos del año 2015 para cada uno de los giros analizado	os 61
3.6.4	Cálculo de coeficientes de variación anual horario	71
3.6.5	Determinación del TPDA	83
3.7	Variación diaria de tráfico	84
3.8	Composición vehicular	85
3.9	Volumen de la hora de diseño	86
3.10	Tráfico futuro y tráfico generado	89
3.10.1	Proyecto: Albéniz Plaza	89
3.10.2	Proyecto: Centro Metropolitano de Convenciones de la Ciudad de Quit	to 91
3.10.3	Proyecto: Anteproyecto del Corredor Labrador – Carapungo	92
3.10.4	Tráfico promedio diario anual futuro	93
3.11	Criterios del proyecto	94
3.11.1	Tráfico	94
3.11.2	Congestión	95
3.11.3	Seguridad vial	96
CAPÍTU	LO 4: MODELACIÓN DE LA INTERSECCIÓN	98

4.1	Introducción	98
4.2	Condiciones actuales	100
4.3	Modelos propuestos para la solución	102
4.3.1	Alternativa 1	102
4.3.2	Alternativa 2	107
4.3.3	Alternativa 3	109
4.4	Resultados de la simulación	113
CAPÍTU	LO 5: DISEÑO GEOMÉTRICO	117
5.1	Generalidades	117
5.2	Anchos de vía	117
5.3	Diseño vial	118
5.4	Velocidad de diseño	118
5.5	Diseño vertical	118
5.6	Curvas convexas	119
5.7	Curvas cóncavas	120
5.8	Paso deprimido	120
5.9	Señalización	121
5.9.1	Señalización horizontal	121
5.9.1.1	Línea segmentada de separación de circulación opuesta (LG-1)	121
5.9.1.2	Línea doble de barrera (LG-2)	122
5.9.1.3	Línea interior de chevron (LG-3)	122
5.9.1.4	Líneas de separación de carril de circulación (LG-4)	122
5.9.1.5	Línea de separación de carril continua (LG-5)	122
5.9.1.6	Líneas de carriles en intersecciones (LG-6)	122
5.9.1.7	Línea de continuidad (LG-7)	122
5.9.1.8	Línea de borde de calzada (LG-8)	123

5.9.1.9	Línea de contorno para chevron (LG-11)	123
5.9.1.10	Líneas de pare (LT-1)	123
5.9.1.11	Línea de ceda el paso (LT-2)	123
5.9.1.12	Línea de detención (LT-3)	123
5.9.1.13	Línea de cruce cebra (LT-4)	123
5.9.1.14	Línea de cruce controlada por semáforos (LT-4B)	123
5.9.2	Flechas	123
5.9.3	Chevrones	124
5.9.4	Señalización vertical	125
5.9.4.1	R1-1 Pare	125
5.9.4.2	R4-5 Altura máxima	125
5.9.4.3	R5-1 No Estacionar	125
5.9.4.4	Doble vía (R2-2)	126
5.9.4.5	Una vía izquierda (R2-1I)	126
5.9.4.6	Peatones en la vía (P6-1)	126
5.9.4.7	Alineamiento horizontal (D5-1)	127
5.9.5	Anclaje de señalización vertical	127
CAPÍTU	LO 6: CONCLUSIONES Y RECOMENDACIONES	128
6.1	Conclusiones	128
6.2	Recomendaciones	129
6.3	Referencias	131

ÍNDICE DE TABLAS

Tabla 1 Clasificación peatonal por nivel de servicio	10
Tabla 2 Clasificación del sistema vial urbano	14
Tabla 3 Factores de K para área urbanizadas	20
Tabla 4 Comparación de tipos de rotondas	29
Tabla 5 Niveles de servicio para intersecciones controladas	31
Tabla 6 Niveles de servicio para aproximaciones a una intersección	32
Tabla 7 Niveles de servicio para intersecciones semaforizadas	33
Tabla 8 Aspectos de diseño del sistema vial urbano en quito	34
Tabla 9 Mínima longitud de aceleración para terminales de entrada con	
gradientes del 2% o menos	37
Tabla 10 Factores de corrección por gradiente, para carriles de aceleración,	
para rampas de entrada	37
Tabla 11 Mínima longitud de deceleración para terminales de salida con	
gradiente del 2% o menos	38
Tabla 12 Factores de corrección por gradiente en carriles de salida	39
Tabla 13 Normativa INEN que interfiere en el proyecto	43
Tabla 14 Tasa de crecimiento vehicular en Ecuador	45
Tabla 15 Tasa de venta de combustible diésel en Ecuador	46
Tabla 16 Tasas de crecimiento para el diseño	47
Tabla 17 Factores de hora pico	50
Tabla 18 Porcentaje de la probabilidad por Giro en lunes 6 sentido Norte - Sur	
	51
Tabla 19 Porcentaje de la probabilidad por Giro en lunes 6 sentido Sur - Norte	
	51
Tabla 20 Porcentaje de la probabilidad por Giro en lunes 6 sentido Oriente -	
Occidente	52
Tabla 21 Porcentaje de la probabilidad por Giro en lunes 6 sentido Occidente -	
Oriente	52
Tabla 22 Porcentaje de la probabilidad por Giro en martes 7 sentido Norte -	
Sur	53

Tabla 23 Porcentaje de la probabilidad por Giro en martes 7 sentido Sur - Norte	
	53
Tabla 24 Porcentaje de la probabilidad por Giro en martes 7 sentido Oriente -	
Occidente	54
Tabla 25 Porcentaje de la probabilidad por Giro en martes 7 sentido Occidente	
- Oriente	54
Tabla 26 Porcentaje de la probabilidad por Giro en miércoles 8 sentido Norte -	
Sur	55
Tabla 27 Porcentaje de la probabilidad por Giro en miércoles 8 sentido Sur -	
Norte	55
Tabla 28 Porcentaje de la probabilidad por Giro en miércoles 8 sentido Oriente	
- Occidente	56
Tabla 29 Porcentaje de la probabilidad por Giro en miércoles 8 sentido	
Occidente - Oriente	56
Tabla 30 Promedio estadístico de los 10 Giros que comprenden la intersección	
	56
Tabla 31 Volumen de semana tipo, febrero 2015, sentido Norte – Sur carril	
derecho	57
Tabla 32 Volumen de semana tipo, febrero 2015, sentido Norte – Sur carril	
central	58
Tabla 33 Volumen de semana tipo, febrero 2015, sentido Sur – Norte carril	
derecho	59
Tabla 34 Volumen de semana tipo, febrero 2015, sentido Sur – Norte carril	
central	60
Tabla 35 Volumen de semana tipo, febrero 2015, sentido Oriente-Occidente	61
Tabla 36 Volumen probabilístico del Giro 1	62
Tabla 37 Volumen probabilístico del Giro 2	63
Tabla 38 Volumen probabilístico del Giro 3	64
Tabla 39 Volumen probabilístico del Giro 4	65
Tabla 40 Volumen probabilístico del Giro 5	66
Tabla 41 Volumen probabilístico del Giro 6	
Tabla 42 Volumen probabilístico del Giro 7	68

Tabla 43 Volumen probabilístico del Giro 8	60
Tabla 44 Volumen probabilístico del Giro 9	
Tabla 45 Volumen probabilístico del Giro 10	
Tabla 46 Volumen de semana tipo, febrero 2015, Giro 1	73
Tabla 47 Volumen de semana tipo, febrero 2015, Giro 2	74
Tabla 48 Volumen de semana tipo, febrero 2015, Giro 3	75
Tabla 49 Volumen de semana tipo, febrero 2015, Giro 4	76
Tabla 50 Volumen de semana tipo, febrero 2015, Giro 5	77
Tabla 51 Volumen de semana tipo, febrero 2015, Giro 6	78
Tabla 52 Volumen de semana tipo, febrero 2015, Giro 7	79
Tabla 53 Volumen de semana tipo, febrero 2015, Giro 8	80
Tabla 54 Volumen de semana tipo, febrero 2015, Giro 9	81
Tabla 55 Volumen de semana tipo, febrero 2015, Giro 10	82
Tabla 56 TPDA 2017, Giros del 1 al 5	83
Tabla 57 TPDA 2017, Giros del 6 al 10	84
Tabla 58 Volumen de la hora de diseño total	87
Tabla 59 Composición del tráfico en livianos, buses y camiones	87
Tabla 60 Volumen de la hora de diseño, para vehículos livianos	88
Tabla 61 Volumen de la hora de diseño, para buses	88
Tabla 62 Volumen de la hora de diseño, para camiones	88
Tabla 63 Vehículos Proyecto Albéniz Plaza	89
Tabla 64 Volumen de diseño para vehículos livianos	93
Tabla 65 Volumen de diseño para buses	93
Tabla 66 Volumen de diseño para camiones	93
Tabla 67 Resumen de resultados para condiciones actuales	101
Tabla 68 Comparativa de resultados para las alternativas de diseño	113
Tabla 69 Relación señalización línea de separación de circulación opuesta	
segmentada	122

ÍNDICE DE FIGURAS

Figura 1 Hipercentro de Quito	2
Figura 2 Ventas mensuales de vehículos	2
Figura 3 Localización geográfica de la intersección	5
Figura 4 Espacio de operación para ciclistas	11
Figura 5 Total de vehículos en el ecuador	12
Figura 6 Total de vehículos por provincia	12
Figura 7 Elección del tipo de intersección	25
Figura 8 Curvas flujo-velocidad-densidad	36
Figura 9 Rampara de entrada de un carril, diseño de entrada directa	38
Figura 10 Rampara de entrada de un carril, diseño de entrada paralela	38
Figura 11 Diseño de salida curva	39
Figura 12 Diseño de salida paralela	39
Figura 13 Vehículos de diseño 1 de 3	41
Figura 14 Vehículos de diseño 2 de 3	41
Figura 15 Vehículos de diseño 3 de 3	42
Figura 16 Tasa de crecimiento poblacional	46
Figura 17 Cámara usada para conteos, Trivision Outdoor HD 1080P IP Camera	47
Figura 18 Instalación de cámara de video	48
Figura 19 Vista después de la instalación de la cámara de video	48
Figura 20 Numeración de posibilidades de giro en la intersección	49
Figura 21 Variación horaria de tráfico sentido N – S y S - N	49
Figura 22 Variación horaria de tráfico sentido O - OCC y OCC - O	50
Figura 23 Explicación de la determinación del coeficiente de variación	72
Figura 24 Valores de TPDA 2017	84
Figura 25 Variación diaria de tráfico sentidos N-S y S-N	85
Figura 26 Variación diaria de tráfico sentidos O-OCC y OCC-O	85
Figura 27 Composición del tráfico porcentual para la Av. Galo Plaza	86
Figura 28 Composición del tráfico porcentual para la Isaac Albéniz	86
Figura 29 Distribución de porcentaje de viajes desde y hacia el proyecto	90

Figura 30 Porcentaje de vehículos que salen e ingresan del proyecto, vivienda y	
oficinas, en hora pico.	90
Figura 31 Trafico generado Albéniz Plaza	91
Figura 32 Ubicación del Proyecto Centro Metropolitano de Convenciones de la	
Ciudad de Quito	92
Figura 33 Tráfico Generado Proyecto Centro Metropolitano de Convenciones de	
la Ciudad de Quito	92
Figura 34 Densidad en condiciones actuales	94
Figura 35 Flujo en condiciones actuales	95
Figura 36 Promedio de velocidad de circulación	96
Figura 37 Cola media para condiciones actuales	96
Figura 38 Representación de la intersección para el modelamiento en AIMSUN	.100
Figura 39 Representación de giros y de flujo vehicular	.100
Figura 40 Nivel de servicio condiciones actuales	.101
Figura 41 Asignación de numeración para nivel de servicio	.102
Figura 42 Alternativa 1	.103
Figura 43 Simulación Alternativa 1	.103
Figura 44 Grupo Semafórico 1	.104
Figura 45 Grupo Semafórico 2	.104
Figura 46 Grupo Semafórico 3	. 105
Figura 47 Grupo Semafórico 4	. 105
Figura 48 Grupo Semafórico 5	.106
Figura 49 Tiempos para Grupos Semafóricos Alternativa 1	.106
Figura 50 Alternativa 2, Proyecto: Anteproyecto del Corredor Labrador –	
Carapungo	.107
Figura 51 Simulación Alternativa 2	.107
Figura 52 Grupo Semafórico 1	.108
Figura 53 Grupo Semafórico 2	.108
Figura 54 Grupo Semafórico 3	.109
Figura 55 Tiempos para Grupos Semafóricos Alternativa 2	.109
Figura 56 Alternativa 3	.110
Figura 57 Simulación Alternativa 3	.110

Figura 58 Grupo Semafórico 1	111
Figura 59 Grupo Semafórico 2	111
Figura 60 Grupo Semafórico 3	112
Figura 61 Tiempos para Grupos Semafóricos Alternativa 3	112
Figura 62 Nivel de servicio Alternativa 1	115
Figura 63 Nivel de servicio Alternativa 2	115
Figura 64 Nivel de servicio Alternativa 3	115
Figura 65 Sección tipo paso a desnivel	118
Figura 66 Sección tipo Isaac Albéniz	118
Figura 67 Pendientes para colectores urbanos	119
Figura 68 Flechas para velocidades menores o iguales a 50km/h	124
Figura 69 Chevrones	124
Figura 70 Anclaje de una señalética vertical	127

RESUMEN

Al encontrar que la intersección de la Av. Galo Plaza Lasso y Av. Isaac Albéniz, presenta una evidente congestión de tráfico que causa malestar en los usuarios, y conociendo que este cruce será de importancia al momento que inicien las operaciones del Metro de la Ciudad de Quito, se consideró evaluar dicha intersección. El alcance del presente estudio tiene como objetivo la determinación del tráfico actual, tráfico futuro y tráfico generado del punto de análisis, la modelación con un software especializado de tráfico para las condiciones actuales y para las soluciones propuestas; y el rediseño geométrico de la alternativa más óptima para el escenario futuro en la intersección. Este proyecto es considerado en etapa de prefactibilidad, obteniendo las estimaciones del TPDA, con datos históricos del punto de análisis y los datos de tráfico futuro se los considera con la sumatoria del valor del tráfico generado, con el tráfico natural aplicándole las tasas de crecimiento calculadas.

PALABRAS CLAVE:

- TPDA: TRÁFICO PROMEDIO DIARIO ANUAL
- TRÁFICO ACTUAL
- TRÁFICO FUTURO
- TRÁFICO GENERADO
- MODELACIÓN DE TRÁFICO
- DISEÑO GEOMÉTRICO

ABSTRACT

Finding that the intersection of Av. Galo Plaza Lasso and Av. Isaac Albéniz, presents an obvious traffic jam that causes discomfort in the users, and knowing that this crossing will be important when the operations of the Metro of Quito begins, I considered to evaluate this intersection. The scope of this investigation aims at determining the current, future and generated traffic of the point of analysis, the modeling with specialized traffic software for the current conditions and the proposals for geometric redesign for the most optimal alternative for the future scenario. This project is considered in the pre-feasibility stage, obtaining the estimates of the TPDA, with historical data of the point of analysis. The data of future traffic are considered with the sum of the value of the traffic generated, with the natural traffic applying the calculated growth rates.

KEY WORS:

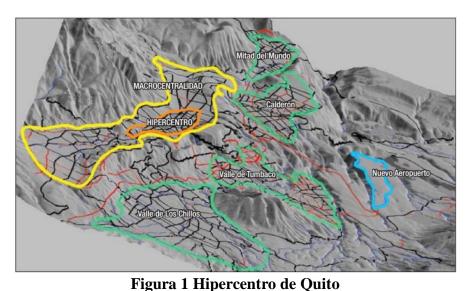
- ADT: AVERAGE DAILY TRAFFIC
- CURRENT TRAFFIC
- FUTURE TRAFFIC
- GENERATED TRAFFIC
- TRAFFIC MODELING
- GEOMETRIC ROAD DESIGN

CAPÍTULO 1

INTRODUCCIÓN Y GENERALIDADES

1.1 Introducción

Quito es la capital de la República del Ecuador, forma parte de la provincia de Pichincha, y por tal razón se ubica como la ciudad más importante en cuanto a la sierra se refiere. La población según el censo del año 2010 señala que la provincia de Pichincha llega a 2.576.287 habitantes, siendo Quito el que aporta con el 87.1% de este total y colocándose como la segunda ciudad más poblada del país.


La ciudad cuenta con una superficie de 423.000 has., y de estas 18.860 has. corresponden a la macro centralidad o ciudad de Quito, que se ubica sobre una meseta a 2.850 msnm. (Municipio del Distrito Metropilitano de Quito, 2009)

Es importante destacar que, las 18.860 has. abarcan con la mayor parte de la población de la ciudad (72%), pero con el paso del tiempo las personas al requerir vivienda, se han ido desplazando hacia los valles, principalmente en Los Chillos, Tumbaco, Cumbayá, Carapungo, Calderón, Pomasqui y San Antonio de Pichincha, sin embargo, el sector económicamente productivo y social, se ha mantenido en la macro centralidad, haciendo los valles en su mayoría residenciales, provocando que toda la población que habita en estos lugares necesite desplazarse hacia la ciudad para llegar a sus trabajos.

Dentro de la urbe, el Municipio del Distrito Metropolitano de Quito (2009) define como hipercentro, donde los índices de concentración de población y equipamientos son más elevados, generando puntos donde los números de viajes son mayores o donde se reciben más números de viajes, lo que se traduce como las zonas donde se encuentran la mayoría de oficinas públicas y privadas, escuelas, colegios, lugares de entretenimiento, etc.

Como vemos en la (Figura 1), el hipercentro se ubica aproximadamente desde el centro histórico (Sur), hasta el sector de la Kennedy (Norte), y las nuevas zonas residenciales, como era de esperar, están alejadas de esta división; generando un

problema de movilización, agregando a esto los pocos accesos vehiculares que tienen los valles, y la mala distribución de tráfico que ha ido prevalecido en la urbe; los residentes de estas áreas y de Quito en general, vieron como oportunidad y solución el adquirir vehículos para desplazarse dejando en segundo plano el trasporte público, debido a varios factores, como: inseguridad, incomodidad, tiempo de viaje, etc.

Fuente: (Municipio del Distrito Metropilitano de Quito, 2009)

Beneficiados por la economía y la facilidad de crédito que los concesionarios prestaban, generaron un gran crecimiento en el parque automotor, llegando a aumentar un 57% desde el año 2011 al 2016 (Instituto Nacional de Estadísticas y Censos, 2016), y obligando a las autoridades a optar por soluciones ambiciosas como el Pico y Placa o el incremento de impuestos a la importación de autos.

A continuación, en el grafico vemos las ventas mensuales de los años 2014, 2015, 2016, hasta abril del 2017 (Asociación de Empresas Automotrices del Ecuador, 2017).

Figura 2 Ventas mensuales de vehículosFuente: (Municipio del Distrito Metropilitano de Quito, 2009)

Actualmente no se ha llegado a una solución de tráfico optima, a pesar de que por la economía actual el número de vehículos nuevos ha ido bajando, pero conforme ha pasado el tiempo, se han ido creando posibles soluciones viales, como: rediseños geométricos de intersecciones, contraflujos, pasos deprimidos, túneles, puentes, proyectos de movilización verde (BiciQ), reformas en direccionamiento de tráfico, etc.

Es claro que, en la ciudad de Quito, la solución es ver de forma integral el problema, tanto de trasporte y movilidad; pero no dejando de lado, el análisis puntual de ciertos sitios que es de vital importancia intervenirlos, con el objetivo de prestar un mejor nivel de servicio y evitar que lleguen al colapso.

Acogiendo este ideal, es clave optar por un estudio de tráfico y, si se requiere, por reformas geométricas que ayuden a esta zona, para que a futuro no sea un problema para el usuario.

1.2 Importancia y justificación

Si los ramales que convergen en una intersección están superando su capacidad con un sobre flujo de vehículos, quiere decir que la funcionalidad con la que fue diseñada dicha intersección no está rindiendo como se había planeado, generando congestión.

"Habitualmente se entiende (la congestión), como la condición en que existen muchos vehículos circulando y cada uno de ellos avanza lenta e irregularmente" (Thomson & Bull, 2002). Con la demanda creciente y con el antecedente de que la intersección en objeto de estudio servirá como un punto importante donde se proveerá de trasporte público una vez que los usuarios del Metro de Quito hayan cumplido con su necesidad de desplazarse hasta una de las paradas más importantes de este proyecto, como lo es, la del Parque Bicentenario; se requerirá de un mayor control de flujo vehicular.

Esta intersección se considera nueva, ya que al salir el antiguo aeropuerto Mariscal Sucre y convertirse en un parque, el municipio de Quito creó la continuidad de la Av. Isaac Albéniz hacia la Av. Amazonas, librando de cierta forma un porcentaje de tráfico que convergía sobre la Av. Galo Plaza Laso, pero con la llegada del Metro de Quito, este corredor trasversal en particular, se lo usará para solventar la influencia de tráfico que saldrá de la estación Bicentenario, lo cual aportará una considerable demanda a

esta vía secundaria, y a su vez, contribuirá con un mayor flujo vehicular que caerá sobre el corredor principal, que como antecedente sabemos, que actualmente, ya sufre de congestionamiento por la excesiva demanda de vehículos, por esta razón la Policía Metropolitana optó por quitar un carril del sentido Sur – Norte de la Av. Galo Plaza y darlo al sentido contrario, en hora pico.

Al estar saturada una intersección, los usuarios optan por vías alternas que pueden o no estar diseñadas para solventar tal flujo vehicular; en el caso de no estarlo, esto genera un tráfico inducido por la intersección que obligó al conductor a tomar otra ruta, y superando la capacidad de funcionamiento de varias intersecciones se genera una alta densidad de tráfico.

Es conocido que el parque automotor de la ciudad ha crecido considerablemente, y que, al hacerlo en tan poco tiempo, la capacidad de los corredores secundarios y principales no creció a la par, generando un malestar ambiental para la ciudad y psicológico para el usuario, que no encuentra la comodidad al trasportarse.

Entonces, al tener corredores con alta densidad de tráfico especialmente los secundarios (los cuales generalmente no reciben solución, dando más importancia a los principales) y querer, con el Metro de Quito, dar otra solución de trasporte para los residentes de la urbe, hay que considerar los posibles problemas de flujo vehicular que este traerá en el área de influencia; resulta evidente que hay que estudiar el caso y dar soluciones basadas en soportes técnicos, con respaldos enfocados en el punto de congestión; según datos bibliográficos y técnicos coinciden que el mayor problema dentro de una intersección es su diseño geométrico y los tiempos que los vehículos deben esperar para salir de la misma.

1.3 Ubicación

La localización escogida para el estudio es la intersección de la Av. Isaac Albéniz y Av. Galo Plaza Lasso, la misma que se encuentra en el Norte de la ciudad, en el sector de "El Labrador", sobre uno de los corredores principales de la ciudad de Quito.

Figura 3 Localización geográfica de la intersección Fuente: Google Earth

1.4 Objetivos

1.4.1 Objetivo general

Diseñar y modelar una alternativa vial de tráfico ubicada en la intersección Av. Isaac Albéniz y Av. Galo Plaza Lasso, para prever un futuro aumento de flujo vehicular considerando la parada principal del Metro de Quito.

1.4.2 Objetivos específicos

- Determinar el flujo de tráfico involucrado.
- Caracterizar los vehículos.
- Calcular los valores de tráfico diarios, mensuales y anuales, tanto actuales como futuros.
- Elaborar alternativas de solución vehicular.
- Diseñar una reforma geométrica.

1.5 Metodología

En este proyecto de investigación se aplicará métodos descriptivos y analíticos, donde presidirá el siguiente procedimiento:

• Siendo el **método descriptivo** el que representa los hechos como son observados, no hay manipulación de variables, estas se observan y se describen tal como se presentan en su ambiente natural.

- Por lo cual se realizarán aforos vehiculares para la obtención del volumen de tráfico; estos se lo harán con conteos volumétricos con mínimo de 3 días de duración en la intersección, y para la clasificación vehicular, ayudados por contadores neumáticos, colocados en sitios clave para obtener los datos requeridos, se tomará una semana entera, procurando que esté libre de feriados.
- Para este análisis se contabilizará la vía principal, secundaria y los giros que pueda tener la intersección.
- Se utilizará metodología analítica de modelación, dado que en esta se manipulará una o más variables, y opera en forma práctica y teórica con una determinada situación.
- Los datos de tráfico sacados de campo son de fundamental importancia para dar una solución vial y se usarán para dar procedimientos de diseño y tráfico actual y futuro, dependiendo el interés del estudio, por eso es clave la toma adecuada de datos, para continuar con el siguiente punto que es el volumen de tráfico, el cálculo del TPDA, la hora de diseño y las proyecciones estadísticas para tráfico futuro.
- Para el diseño de intersecciones, se tomará en cuenta que son urbanas, por ende, los usuarios no son solo vehículos, sino también peatones; este concepto será adoptado con énfasis para el planeamiento y descripción de consideraciones.
- Bajo los términos de trasporte y movilidad, se describirán los modelos de intersecciones urbanas.
- Con relación a normativas aceptadas nacional e internacionalmente se dará soluciones respaldas a las reformas geométricas y de tráfico.
- Se considerarán trabajos de investigación similares al tema propuesto, así como normativas, información web de precedencia respaldada y datos estadísticos.
- Para dar solución al problema se optará por la ayuda de un software especializado de tráfico.

CAPÍTULO 2

METODOLOGÍA Y MARCO TEÓRICO

2.1 Metodología del estudio

El problema del presente estudio inicia con el antecedente de que en el punto de análisis se localizará la parada más importante del Metro de Quito, Parque Bicentenario, suponiendo que por esta razón el flujo de vehículos motorizados aumentará en volumen, creando un congestionamiento mayor al que actualmente existe.

Para desarrollar la hipótesis mencionada, es necesario adquirir datos reales de la intersección y dar así un diagnóstico de su funcionamiento, se debe seguir el siguiente proceso:

- Obtener datos de topografía, para tener la geometría de la intersección y poder trabajar con datos planimétricos, los altimétricos se usarán para realizar las reformas geométricas de ser necesarias.
- Recolectar toda la información histórica posible, que nos ayude a conocer como se ha comportado el punto de análisis con el paso de los años.
- Obtener conteos vehiculares por medio de ATRs (Automatic Traffic Recorder), que se los necesitará para conocer la cantidad de usuarios que tiene la intersección, pudiendo clasificarlos por las características que los diferencian a cada uno y también saber que porcentaje de ese volumen de usuarios utilizan los giros que integra la intersección, este punto es de fundamental importancia para el estudio, y es la partida del análisis de tráfico.

Los aforos vehiculares se los realizaran en días que se considere de importancia para el proyecto, queriendo que el comportamiento de los usuarios sea el cotidiano a lo largo del tiempo, y se excluirá días que alteren representativamente el flujo vehicular, por ejemplo, los días feriados o días en que el sector se vea afectado por eventos, conciertos, etc.

Se debe tomar en cuenta estos factores, porque la solución dependerá de los resultados que arroje el aforo.

- Procesar la información; como se dijo anteriormente, se obtendrá una distribución de vehículos dentro de la intersección, los cuales se clasificarán por el número de giros que integra la misma, y se los debe cotejar con los datos históricos obtenidos en la primera parte del proyecto.
- Calcular el TPDA y demás indicadores de tráfico, aplicando factores de ajuste (factor estacional) en los datos de tráfico que se obtuvo por un periodo de tiempo corto en la estación de conteo y los datos históricos obtenidos.
- Con estos datos se evalúa la intersección, y se encamina el estudio a soluciones primarias, donde interviene su geometría, demanda vehicular, y demás factores que, dentro del procesamiento de información se identifica como un problema en la actualidad.
- Realizar propuestas de diseño geométrico sustentadas en normativas nacionales e internacionales, así como ordenanzas municipales que se apliquen al estudio.
- Modelar la intersección actualmente, así también el diseño propuesto, utilizando un programa de micro simulación de tráfico, AIMSUN, cuyo desarrollador es la empresa TSS (Trasport Simulation Sistems).
- Para concluir con el estudio, se presenta la alternativa, que, con mayor sustento técnico, da solución al problema planteado en un inicio; proponiendo recomendaciones y observación a la propuesta final.

2.2 Marco teórico

2.2.1 Generalidades

Todas las personas necesitan movilizarse, y la ingeniería de transito da facilidad para que ese desplazamiento sea diseñado para solventar las demandas que el caso requiera.

Las vías actualmente, con los avances tecnológicos se han podido proyectar bajo el requerimiento de los vehículos que las utilizan, pero, a pesar de los avances tecnológicos aún existen problemas de tránsito. (Reyes & Cárdenas, 1994)

Se presenta a continuación los diferentes problemas que una vía podría presentar según Reyes y Cárdenas (1994):

- Diferentes tipos de vehículos en la misma vialidad.
- Superposición del tránsito motorizado en vialidades inadecuadas.
- Falta de planificación en el tránsito.
- El automóvil no considerado como una necesidad pública.
- Falta de asimilación del gobierno y del usuario.

Para solventar todas estas dificultades es necesaria la ingeniería de tránsito, además de una buena normativa, ayudada de controles de agentes de tránsito y educación vial para el usuario desde temprana edad.

2.2.2 Usuarios

2.2.2.1 *Peatón*

"Se puede considerar como peatón potencial a la población en general, desde personas de un año hasta de cien años. Prácticamente todos somos peatones, por lo tanto. Es importante estudiar al peatón porque no solamente es víctima del tránsito, sino también una de sus causas." (Reyes & Cárdenas, 1994, pág. 40)

Según Amando de Miguel (2000), los peatones potenciales son, las personas que no tienen carné de conducir, ya que están obligadas, en su mayoría, a movilizase ya sea a pie o con trasporte público, finalmente van a tener que usar las vías peatonales para desplazarse; también menciona que potencialmente cuatro de cada diez personas son peatones, considerando el total de licencias de conducir.

Una de las formas de clasificar al peatón nos presenta el HCM (2000) que lo agrupa por nivel de servicio, especificando el espacio, flujo y velocidad de desplazamiento. (Trasportation Research Board, 2000)

Tabla 1 Clasificación peatonal por nivel de servicio

NIVEL DE SERVICIO		Flujo (peatón/min/m)	Velocidad (m/s)
A	>5.6	≤16	>1.30
В	>3.7-5.6	>16-23	>1.27-1.30
C	>2.2-3.7	>23-33	>1.22-1.27
D	>1.4-2.2	>33-49	>1.14-1.22
E	>0.75-1.4	>49-75	>0.75-1.14
F	≤0.75	variable	≤0.75

Fuente: (Trasportation Research Board, 2000)

2.2.2.2 Ciclista

Según la ANT (2012), es la persona que conduce una bicicleta; y como tal, responsable de la movilización de la misma.

El Municipio de Quito en respuesta de las buenas experiencias que otras ciudades tienen a la movilidad en bicicleta, ha creado una red de vías para estos usuarios en particular, y creando un sistema de trasporte amigable con el ambiente llamado BiciQuito. Además, el Ministerio de Trasporte y Obras Publicas implementa un Plan Nacional de Ciclo Vías, que es una estrategia para aliviar la congestión vehicular, mejorar el uso del espacio público y para el cuidado del medio ambiente.

La movilidad para ciclistas exige el mismo sistema de trasporte que el urbano, utilizando las mismas vías que los vehículos de motor, compartidas con los peatones o utilizando su vía exclusiva. En todo caso, la ciclovía debe dar beneficios en la movilidad del usuario, siempre buscando la seguridad del ciclista, por ejemplo, incorporando sobreanchos en la vía, haciendo exclusivas para este tipo de movilidad.

El ciclista requiere por lo menos 1,0m para su espacio de operación, es por esto que se recomienda que el ancho mínimo para una ciclovía sea de 1,2m, para facilidades de diseño. (AASHTO, 1999)

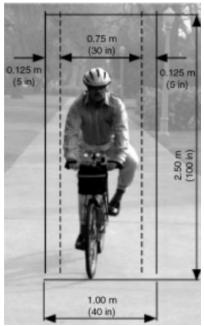


Figura 4 Espacio de operación para ciclistas Fuente: (AASHTO, 1999)

2.2.2.3 Conductor

Según el AASHTO (2011), la consideración esencial para proponer un diseño de una vía es conocer el comportamiento y capacidades del conductor, para saber la sustentabilidad del diseño y conocer lo efectivo que este será. Los errores más comunes dentro de las vías son provocados por los conductores, la mayor parte son ocurridos por los controladores de tráfico o señalización, porque la persona no siempre reconoce la acción que debe tomar apropiadamente en situaciones particulares debido a una sobrecarga o falta de información, incoherencias dentro del sistema, etc., también puede resultar de la complejidad de las decisiones, o tiempo inadecuado para responder; por último se puede decir que la navegación de los conductores es otro de los factores que pueden conducir indirectamente a los accidentes. El diseño vial optimo velara por la seguridad, confort, comodidad y tiempo de viaje de todos los usuarios.

2.2.2.4 Vehículos

El parque automotor del Ecuador es grande, considerando que las vías urbanas con las que cuenta no están proyectadas para otro aumento de volumen de vehículos, ya que algunas de ellas ya sobrepasaron su capacidad y se ha visto en la necesidad de crear carriles de descongestionamiento o vías nuevas para llegar a destinos con más recurrencia.

La Asociación de Empresas Automotrices del Ecuador (2017), nos presenta una figura donde resume el número de vehículos que hay en el país:

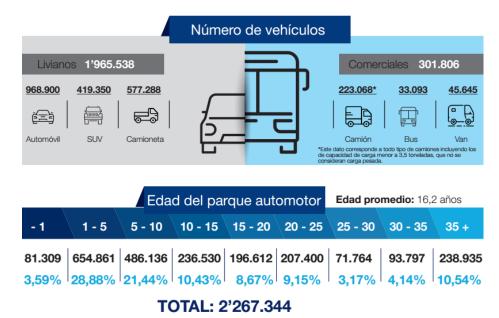


Figura 5 Total de vehículos en el ecuador

Fuente: (Asociación de Empresas Automotrices del Ecuador, 2017)

En la Figura 5 notamos que la edad del parque automotor en Ecuador es antigua, con un promedio de 16.2 años, y contando como mayoría los vehículos livianos. En la Figura 6 se muestra que el mayor porcentaje de vehículos está en Pichincha con un total aproximado de 750 mil vehículos.

Figura 6 Total de vehículos por provincia

Fuente: (Asociación de Empresas Automotrices del Ecuador, 2017)

Los vehículos de diferentes tamaños y pesos tienen diferentes características operacionales que tienen que ser consideradas en el diseño. Además de ser más

pesados, los camiones generalmente son más lentos y ocupan más espacio dentro de la vía. Como consecuencia los camiones tienen efectos individuales de operación, que no son los mismo que los vehículos livianos, esos efectos van a estar ligados en la gradiente, en el número de carriles y distancia de visibilidad. Así una gran proporción de tráfico, en una vía equivale a tener una gran demanda de tráfico y un mayor requerimiento de capacidad vial. (AASHTO, 2011)

El AASHTO (2011) clasifica, considerando la composición de tráfico, a los vehículos de la siguiente manera:

- Autos de pasajeros. todos los autos que pueden llevar pasajeros, incluidas las minivans, vans, camionetas, y los vehículos deportivos.
- Camiones. todos los buses, camiones de un eje, camiones de 3 o más ejes y los vehículos recreacionales.

2.2.3 Sistema vial urbano

Para los sistemas urbanos hay cuatro sistemas de clasificación para vías; arterias principales, arterias menores, colectores urbanos y calles locales urbanas. La diferencia entre ellas está en la importancia de flujo vehicular. (AASHTO, 2011)

2.2.3.1 *Arterias principales*

Estas sirven a los principales centros de actividad en las áreas del sistema vial urbano, son los corredores de mayor volumen de tráfico y tiene los tramos de viaje más largos. Este sistema tiene una elevada proporción del total de desplazamientos urbanos, y está integrado internamente entre las principales conexiones rurales. Cada una de estas arterias está distanciada entre una con la otra entre 1.6 km, en las áreas de negocios, a 8 km o más en las franjas urbanas escasamente desarrollada; cabe decir que esto no es una regla, pero en la mayoría de los casos se cumple. (AASHTO, 2011)

2.2.3.2 Arterias menores o secundarias

El sistema de calles arterial menor se interconecta y aumenta el sistema arterial principal urbano. Esta se caracteriza longitudes de viaje moderadas y niveles de movilidad algo menor que las principales. Estas arterias conectan a lugares geográficos más pequeños. Las Arterias Menores llevan rutas de autobús locales y conexiones urbanas a caminos rurales. El espaciamiento de las calles arteriales menores urbanas

pueden variar de 0.2 a 1.0 km en lugares de mayor comercio y de 3.0 a 5.0 km en franjas suburbanas, pero normalmente no superan los 2 km. (AASHTO, 2011)

2.2.3.3 *Colectores urbanos*

El sistema de colectores urbanos proporciona acceso a terrenos, circulación dentro de zonas residenciales, áreas comerciales e industriales. La diferencia con el sistema arterial está en que las colectoras pueden comprender barrios residenciales, distribuyendo los viajes de las arterias a través de estas zonas hasta los destinos finales, y también, al contrario, distribuyen recorridos desde barrios residenciales hasta las vías arteriales. Tienen rutas de buses urbanos. (AASHTO, 2011)

2.2.3.4 Calles locales urbanas

Estas comprenden todas las demás vías que no se especifican en la distribución anterior, primordialmente permiten acceso directo a conexiones de sistemas de orden superior y a terrenos contiguos. Las calles locales tienen el nivel más bajo de movilidad y no tienen rutas de auto bus, en su mayoría. (AASHTO, 2011)

La Tabla 2 presenta una breve descripción de como catalogar los diferentes tipos de sistema dentro de la urbe, presentado por el AASHTO (2011):

Tabla 2 Clasificación del sistema vial urbano

SISTEMAS	% de la Longitud de Vías Urbanas
Arterias Principales	5% - 10%
Arterias Principales a Secundarias	15% - 25%
Colectores	5% - 10%
Calles Locales	65% - 80%

Fuente: (AASHTO, A Policy on Geometric Design of Highways and Streets, 2011)

2.2.3.5 Clasificación del sistema vial en el DMQ

El Concejo metropolitano en su ordenanza 3746, explica las características principales que cada una de las vías de los sistemas urbanos tienen, a continuación, se mencionarán dichas particularidades:

- Vías Expresas. Vías de circulación sin interferencias laterales y accesos controlados. Sus características son:
 - Soporte del tráfico de paso de larga y mediana distancia.
 - Separan el tráfico de paso del tráfico local.
 - Permiten una velocidad de operación hasta 80 km/h.
 - No admiten accesos directos a lotes frentistas.
 - Los accesos y salidas se realizan mediante carriles de aceleración y deceleración respectivamente.
 - No admiten el estacionamiento lateral
 - Las intersecciones con otras vías se realizan solo a desnivel.
 - Admiten la circulación de líneas de trasporte interurbanas o interprovinciales.
- Vías Semi-Expresas. Vías de circulación con control parcial de accesos.
 Sus características son:
 - Permiten el desarrollo de altas velocidades vehiculares y es soporte del tráfico de paso de larga y mediana distancia con características menores a las expresas.
 - Separan el tráfico de paso del tráfico local.
 - Permiten una velocidad de operación de hasta 70 km/h.
 - Admiten la circulación de transporte interurbano, interprovincial y urbano.
 - Excepcionalmente admiten accesos directos a predios frentistas mediante vías laterales de servicio.
 - No admiten el estacionamiento lateral.
 - Las intersecciones con otras vías se realizan sólo a desnivel y a nivel en caso excepcional.
- Vías Arteriales. Enlazan las vías expresas y las vías colectoras. Estas vías deben observar las siguientes características:
 - Articulan las grandes áreas urbanas entre sí.
 - Conectan las vías de acceso a las áreas urbanas.
 - Permiten una velocidad de operación de hasta 50 km/h.
 - Permiten la circulación de trasporte colectivo.

- Permiten el tráfico pesado mediante regulaciones.
- Permiten el acceso a predios frentistas.
- Los cruces en intersecciones se realizan mayoritariamente a nivel e incluyen señalización y semaforización adecuadas.
- No admiten el estacionamiento de vehículos.
- Vías Colectoras. Enlazan las vías arteriales y las vías locales. Estas vías deben observar las siguientes características:
 - Articulan sectores urbanos.
 - Permiten una velocidad de operación de hasta 50 km/h.
 - Permiten la circulación de trasporte colectivo.
 - Permiten el tráfico pesado con regulaciones.
 - Permiten el acceso a los predios frentistas.
 - Pueden permitir el estacionamiento lateral.
 - Admiten intersecciones a nivel con dispositivos de control.
- Vías Locales. Se constituyen en el sistema vial urbano menor y se conectan con las vías colectoras. Estas vías deben observar las siguientes características:
 - Permiten la movilidad al interior de sectores urbanos.
 - Tienen prioridad la circulación peatonal.
 - Permiten una velocidad de operación de hasta 30 km/h.
 - Admiten medidas de moderación de tráfico.
 - Excepcionalmente permiten tráfico pesado de media y baja capacidad.
 - Excepcionalmente permiten la circulación de trasporte colectivo.
 - Dan acceso a los predios frentistas.
 - Todas las intersecciones son a nivel.
 - Permiten el estacionamiento lateral.
- Sistemas de Vías Peatonales. Estas vías son para uso exclusivo del tránsito peatonal, y deben observar las siguientes características:
 - Permiten la movilidad no motorizada al interior de sectores urbanos.
 - Excepcionalmente permiten el paso de vehículos de residentes para acceso a sus predios.

- Dan acceso a los predios frentistas.
- Todas las intersecciones son a nivel.
- No permiten el estacionamiento de vehículos.
- Deben permitir el acceso de vehículos de emergencia y de servicio; recolectores de basura, emergencias médicas, bomberos, policía, mudanzas, etc.
- Ciclovías. Se observarán las siguientes especificaciones:
 - En los puntos de cruce con vías vehiculares o peatonales, se deberán prever mecanismos de control de prioridad de circulación (señalización, semaforización, plataformas a nivel, etc.)
 - En caso de que se contemple una acera o sendero peatonal junto con la ciclovía, éstos se separarán mediante: señalización horizontal, textura o color diferente de piso, bolardos, bordillos, etc.
 - El sistema de ciclovías debe estar provisto de facilidades y dispositivos de control como cicloparqueaderos, señalización, semaforización, elementos de protección.
- Escalinatas. Son aquellas que permiten salvar con gradas la diferencia de nivel entre vías o permiten el acceso a predios que se encuentran a desnivel de las aceras. La circulación es exclusivamente peatonal y deberán incluir canaletas para facilitar el traslado de bicicletas. Si son laterales, cada una deberá tener 15 cm de ancho, separándose 15 cm del muro vertical, ó una canaleta central (bidireccional) de 40 cm.

El emplazamiento y distribución de las gradas deberán acompañas orgánicamente a la topografía. El máximo de gradas continuas será de 16 contrahuellas, luego de lo cual se utilizarán descansos no menores a 1.20 m. La norma general para establecer la dimensión de la huella (H) y contrahuellas (CH) será 2CH+1H=64. La contrahuella máxima será de 0.17 m.

2.2.4 Tráfico

Dentro del estudio de tráfico se encuentran varias metodologías teniendo la más conocida las dadas por el AASHTO, que es en la que está basada nuestra actual

normativa, realizada por el Ministerio de Trasporte y Obras Públicas, por lo que esta base es la más aceptada y aplicada en el mundo.

Dentro de lo que corresponde con tráfico, está el HCM (Highway Capacity Manual), que es una normativa estadounidense que caracteriza los niveles de servicio, dentro de distintos panoramas dentro de lo que a vías se refiere, no dejando de lado la movilidad urbana, integrando a peatones, ciclistas y demás sistemas de desplazamiento para el usuario.

Los datos obtenidos por los contadores de tráfico son la base para el estudio de tráfico y son utilizados para realizar diversos cálculos de tráfico y de diseño tanto de distribución como de geométrico. La recolección de datos de tráfico debe ser precisa y tomada con el mayor detalle posible, para los procesos de planificación de trasporte.

Para empezar los cálculos de tráfico, lo hacemos con un concepto básico, el volumen, que está representado por la siguiente ecuación:

$$q = \frac{M}{\Lambda t} \tag{1}$$

Donde:

- M: Es el número de vehículos en un punto específico.
- Δt : Es el tiempo durante el cual pasan dichos vehículos.

2.2.4.1 Tráfico promedio diario

La medida más básica del análisis es el tráfico promedio diario (ADT, con sus siglas en inglés); es definido como el total del volumen durante un periodo dado, mayor a un día y menor a un año, dividido para el número de días in ese límite de tiempo. (AASHTO, 2011)

$$TPD = \frac{1d > Volúmen > 1año}{Total de días}$$
 (2)

El TDP en una vía se debe determinar con un continuo conteo de tráfico; cuando el periodo de conteos es tomado, el volumen total se lo puede estimar usando factores periódicos de conteos, tomando como concordancia las temporadas, meses o días de la semana. (AASHTO, 2011)

Conocer este volumen es importante para determinar el uso anual de una vía, y justificar una nueva intersección, ampliación o un rediseño de una vía. Sin embargo, el uso directo del TDP en el diseño geométrico de vías no es apropiado, con excepción de vías locales y colectoras que tienen un volumen de tráfico relativamente bajo, ya que las variaciones de demanda que tienen los demás sistemas son apreciables a lo largo del análisis. Por lo tanto, una carretera diseñada para el TDP tendría que llevar un volumen mayor que el volumen de diseño para una parte considerable del año, en muchos días el volumen trasportado sería mucho mayor que el volumen de diseño. (AASHTO, 2011)

Dentro de todo este volumen se los puede caracterizar por tráfico promedio diario anual, mensual o semanal, tomando las siglas de TPDA, TPDM y TPDS, respectivamente. (Reyes & Cárdenas, 1994)

• Tránsito Promedio Diario Anual (TPDA)

$$TPDA = \frac{Tr\'afico\ Anual}{365} \tag{3}$$

• Tránsito Promedio Diario Mensual (TPDM)

$$TPDM = \frac{Tr\'{a}fico\ Mensual}{30} \tag{4}$$

• Tránsito Promedio Diario Semanal (TPDS)

$$TPDS = \frac{Tráfico\ Semanal}{7} \tag{5}$$

2.2.4.2 *Hora pico*

El patrón de tráfico en cualquier vía muestra variaciones considerables en los volúmenes de tráfico, durante varias horas del día y en volúmenes horarios a lo largo del año. Una decisión clave de diseño implica determinar cuál de los volúmenes de tráfico por hora debe utilizarse como base para el diseño. El volumen de tráfico por hora utilizado debe ser un valor que no se excederá muy a menudo. Una guía para determinar el volumen de trabajo horario más adecuado para su uso en el diseño es una curva que muestra la variación en los volúmenes de tráfico por hora durante un año. (AASHTO, 2011)

Después de revisar una larga base de datos de las curvas anteriormente descritas, se recomienda que el volumen de tráfico por hora se debe usar generalmente sea la 30va hora de más alto volumen del año. Si esta hora es demasiado alta se puede optar por usar la tendencia de volúmenes por hora inferiores a la hora 30. En áreas del sector urbano se puede tomar un valor del TPDA representativo, que varía entre un 8 y 12%. (AASHTO, 2011)

Este porcentaje, el HCM (2000), lo presenta como un factor K, que multiplicado por el TPDA da como resultado el equivalente a las 30va hora, que se la conoce como Volumen Hora de Diseño (DHV, por sus siglas en ingles). En la siguiente tabla se exponen los factores K para los diferentes sistemas de vías.

Tabla 3 Factores de K para área urbanizadas

TIPOS DE AREAS	K
Urbanizadas	0.091
Urbanas	0.093
Urbanas	0.093
Transitorias	0.093
Rurales en	0.095
Crecimiento	0.075
Rurales	0.1

Fuente: (Highway Capacity Manual, 2000)

Lo que se resume en la siguiente formula:

$$DVH = TPDA * K * D \tag{6}$$

Donde D es el porcentaje de giro que va a resultar del conteo de tráfico.

2.2.4.3 Factor de hora pico

Hay ciertos períodos dentro de una hora, durante los cuales la congestión es peor que en otros momentos, el HCM (2000) considera las condiciones de operación que prevalecen durante un periodo de 15 minutos más congestionado en una hora, para establecer el nivel de servicio para la misma. Entonces, el volumen horario total, es igual o inferior a cuatro veces el recuento máximo de 15 minutos con mayor congestión.

El factor de hora pico (PHF) se lo describe como la relación del volumen horario total al número de vehículos durante el período más alto de 15 minutos multiplicado

por 4. El PHF nunca es mayor a 1 y está normalmente dentro del intervalo de 0.75 a 0.95. Así, por ejemplo, la tasa máxima de flujo, que puede estar dada por una determinada autopista sin congestión excesiva, es de 4200 vehículos por hora, durante el periodo pico de 15 minutos y, además, si el PHF es de 0.80, el volumen horario total que puede haber en ese nivel de servicio es de 3360 vehículos, o el 80 por ciento del flujo del tráfico, durante el periodo de 15 minutos. (AASHTO, 2011)

El factor dentro de la hora de máxima demanda se los expresa de la siguiente forma (Reyes & Cárdenas, 1994):

$$PHF = \frac{VHMD}{4(q_{max15})} \tag{7}$$

Siendo:

- VHMD: Volumen de máxima demanda.
- q_{max15}: flujo máximo dentro de 15min

2.2.4.4 Proyección al tráfico futuro

El diseño geométrico de nuevas carreteras, o vías donde se tenga que intervenir para mejorar el tráfico, no debería basarse en los volúmenes de tránsito actuales, sino, se debería considerar los futuros que se espera para el determinado punto de intervención. Así una autopista se diseñará para adecuar un tráfico futuro proyectado, acomodando el volumen que probablemente va a incurrir a lo largo del tiempo. (AASHTO, 2011)

Es impredecible determinar cuánto durarán los componentes de una vía, puesto que cada uno se diseña para un diferente periodo de retorno, y por este motivo es difícil definir la vida de una autopista; por ejemplo, las estructuras de drenaje menores y mayores se diseñan para 50 años; puentes, de 25 a 100 años; repavimentaciones, cada 10 años; estructuras de pavimento, de 20 a 30 años, asumiendo un adecuado mantenimiento y sin considerar la obsolescencia. (AASHTO, 2011)

Es prudente mencionar, que, si el costo adicional de un diseño de 50 años para una vía sobre otra de 25 años es representativo, puede ser imprudente hacer una inversión adicional que proporcione una capacidad que no será necesaria durante al menos 25 años, el ahorro de costos de construcción podría ser usado para construir otro proyecto de autopista actualmente necesario, además se evitaría el coste mayor de

mantenimiento del proyecto y se ahorraría con el del proyecto más pequeño. Además, la mayor parte de vías está diseñada para solventar volúmenes de tráfico más altos que con el que está diseñada, pero con algunas variaciones, como velocidades más bajas, o menos maniobrabilidad. Generalmente los diseños de predicción de tráfico se los hacen para 15 o 20 años. (AASHTO, 2011)

Para realizar las proyecciones de tráfico, se necesita relacionarlo con tasas de otros factores como la población, PIB, crecimiento de trasporte motorizados, etc.

En caso de no contar con la información estadística, las proyecciones se harán en base a la tasa de crecimiento poblacional o al consumo de combustible. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

$$Tf = Ta(1+i)^n \tag{8}$$

Donde:

- Tf: Tráfico futuro
- Ta: Tráfico actual.
- i: Tasa de crecimiento del tráfico (en caso de no contar con datos, utilizar la tada de crecimiento poblacional o de combustibles)
- n: Número de años proyectados

2.2.4.5 *Tráfico generado*

El tráfico generado se presenta una vez que las propuestas de mejoras ocurren, y está constituido por el número de viajes que da como respuesta a la alternativa vial. Se caracterizan por ser los viajes que los usuarios no efectuaban anteriormente, los que se realizaron anteriormente, pero por trasporte público o los que se hacían hacia otros destinos usando otras alternativas y optaron por usar la vía propuesta. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

El tráfico generado se presenta generalmente dentro de los dos primeros años después de realizadas las mejoras viales, o por la construcción de la carretera. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

2.2.5 Uso de suelo

Los usos de suelo se identifican en el territorio bajo dos denominaciones, usos principales (residencial, agrícola residencial, múltiple, área patrimonial, industrial, equipamiento, recurso, protección ecológica, natural renovable, natural no renovable), y actividades complementarias (comercios y servicios). (Consejo Metropilitano de Quito, 2016)

Para la elaboración del presente proyecto no se necesitará especificar todos los usos que propone el Municipio de Quito, para esto se disgregará en los usos más comunes que se encuentren en el sector.

- Uso residencial urbano 1 (RU1): son zonas de uso residencial en que se permite el desarrollo limitado de equipamientos, comercios y servicios de nivel barrial y sectorial. (Consejo Metropilitano de Quito, 2016)
- Uso residencial urbano 2 (RU2): zonas de uso residencial en que se permite el desarrollo de equipamientos, comercios y servicios de nivel barrial, sectorial y zonal, así como industrias de bajo impacto. (Consejo Metropilitano de Quito, 2016)
- Uso residencial urbano 3 (RU3): zonas de uso residencial en que se permite el desarrollo de equipamientos, comercios y servicios de nivel barrial, sectorial, zonal y metropolitano, así como industrias de bajo impacto. (Consejo Metropilitano de Quito, 2016)
- Uso Múltiple (M): uso asignado a los lotes con frente a ciertos ejes viales y áreas ubicadas en centralidades en los que se puede implantar y desarrollar actividades residenciales, comerciales, de servicios y equipamientos, así como industrias de bajo impacto. (Consejo Metropilitano de Quito, 2016)
- Uso Industrial (II): es el uso destinado a la elaboración, trasformación, tratamiento y manipulación de materias primas para producir bienes o productos, en instalaciones destinadas a este fin. (Consejo Metropilitano de Quito, 2016)
- Uso Equipamiento: Destinado a la implantación y desarrollo de actividades para los servicios sociales de educación, cultura, salud, bienestar social, recreativo, deportivo y culto; y públicos de seguridad, administración

24

pública, servicios funerarios, trasporte, infraestructura y equipamientos

especiales. (Consejo Metropilitano de Quito, 2016)

Al considerar toda esta clasificación de usos de suelo, podemos considerar que el

área analizada de estudio es en su mayoría de Uso de Equipamiento, y de Uso Múltiple.

2.2.6 Tasas de crecimiento

Se necesita la tasa de crecimiento de tráfico para determinar los valores de TPDA a

futuro, para los años que estén previstos en el análisis. Estas tasas varían dependiendo

del tipo de vehículo y para su estimación se necesitan datos históricos del sector o de

lugares secanos a este.

Para determinar la tasa de crecimiento se recurre a datos certeros como lo son los

del INEC (Instituto Nacional de Estadísticas y Censos) o al AEADE (Asociación de

Empresas Automotrices del Ecuador), recolectando información histórica que sea de

ayuda para la investigación.

Se aplicará la fórmula para tasa de crecimiento promedio anual, que es la siguiente:

 $i(\%) = 100 \times \left[\left(\frac{Pf}{Pa} \right)^{\frac{1}{n}} - 1 \right] \tag{9}$

Donde:

i: Tasa de crecimiento en porcentaje

Pa: Valores al inicio del ciclo

Pf: Valores al final del ciclo

n: Número de años involucrados

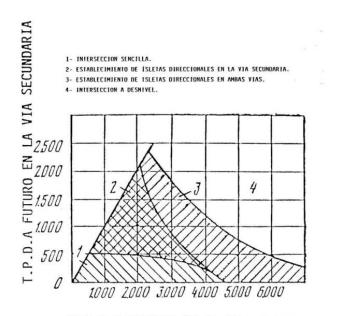
2.2.7 Intersecciones

Una intersección es el área donde dos o más carreteras se unen o cruzan, incluyendo

los bordes de vía y los movimientos de tráfico dentro de la zona. Cada vía que radica

desde una intersección forma parte de un ramal de la misma; la intersección más

común es la de 4 ramales, donde se cruzan dos vías de dos sentidos cada una.


(AASHTO, 2011)

Hay dos tipos de cruces en una vía, intersecciones a nivel y a desnivel, en el que también están incluidos los intercambiadores.

Las intersecciones a nivel, por ser tramos más peligrosos, deben ser ubicados en lugares con buena visibilidad, en rectas y preferentemente en la parte interior de perfil longitudinal. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

Las intersecciones a desnivel son estructuras o diseños caros, para su justificación, el volumen de transito debería ser el valor que presenta la conveniencia de realizar este tipo de soluciones. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

Para la elección del tipo de intersección se propone la utilización de la Figura 7, en el cual se establece el campo de utilización de cada alternativa de intersección, con la consideración de pérdidas mínimas de trasporte vehicular. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

T.P.D.A FUTURO EN LA VIA PRINCIPAL

Figura 7 Elección del tipo de intersección Fuente: (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

Una intersección incluye todas las áreas necesarias para que el usuario tenga comodidad, tanto los peatones, ciclistas, vehículos pesados, livianos, y buses. Por esto la intersección no toma en cuenta solamente el pavimento de la calzada, sino también

las aceras y rampas peatonales. También abarca los carriles auxiliares, parterres, señalización, etc. (AASHTO, 2011)

Para el diseño de una intersección se considera las siguientes características:

- Focos de actividad: los terrenos cercanos a la intersección a menudo son motivo para crear destinos de viaje. (AASHTO, 2011)
- Movimientos conflictivos: Vías peatonales, giros y cruces de bicicletas, motos, y diferentes movimientos que ocurren dentro de la intersección. (AASHTO, 2011)
- Controles de tráfico: El movimiento de los usuarios se asigna a través de dispositivos de control de tráfico, como señalética de parada, de tránsito, semaforización. A menudo resulta una demora para los usuarios que viajan a lo largo de las vías que cruzan. (AASHTO, 2011)
- Capacidad: En muchos casos, el control de tráfico en intersecciones limita la capacidad de las carreteras que se intersecan, definidas como el número de usuarios que pueden ser colocados dentro de un periodo de tiempo dado, dentro del cruce. (AASHTO, 2011)

Además, para una primera etapa del proyecto que consiste en la producción, análisis, interpretación y por último consideración o so de una serie de datos, circunstancias y criterios que constituyen un cuerpo de factores concurrentes a la elección de un tipo de intersección, entere los muchos posibles. Estos factores se agrupan en cuatro categorías básicas, que son factores humanos, consideraciones de tráfico, elementos físicos de la vía y factores económicos. (Ministerio de Obras Publicas Dirección de Vialidad, 2002)

2.2.7.1 Intersecciones a nivel

Los tipos básico de intersecciones son de tres ramales, 4 ramales, multiramal y rotondas. En cada ubicación en particular, el tipo de intersección se la determina principalmente por el número de carriles que se cruzan, la topografía, el tipo de sistemas de las vías que se intersecan, y el tipo de operación deseado. (AASHTO, 2011)

Según TAMS-ASTEC (2003), para diseñar una intersección a nivel se debe observar que:

- La correspondencia del ángulo de intersección se adapte a las mejores condiciones de visibilidad (el ángulo no debe ser menor de 60 a 75 grados).
- Se deben dar condiciones de tránsito preferenciales al flujo vehicular de mayor intensidad.
- Eliminar en lo posible los puntos de cruce entre sí, de los flujos vehiculares en el área de intersección para lo cual se deben establecer isletas que los separen.
- Con la ayuda de isletas o de señalización pintada sobre la calzada fija los carriles de tránsito para la circulación, intersección y divergencia del flujo vehicular.
- Establecimiento de parte del área de intersección, que no es utilizada por los flujos de vehículos, como zona de reserva, ya que el sobrante del ancho de carriles de tránsito altera la precisión de la circulación vehicular.
- Al haber un alto porcentaje de vehículos que realizan giro a la izquierda, se debe implementar un carril adicional para la espera de la posibilidad de cruzar, sin que se obstaculice el tránsito de los vehículos que se desplazan en dirección recta.
- Ubicación de las isletas direccionales de tal manera que, en cada momento el conductor tenga la posibilidad de elegir no más de dos direcciones de tránsito, recta o giro.

2.2.7.2 Rotondas

Las intersecciones circulares aparecen a comienzo del siglo 20, donde William Phelps diseñó el Círculo de Colón en la ciudad de Nueva York. Este tipo de diseño permitió que los vehículos mientras estén curvando no pierdan velocidad, pero la tasa de accidentes aumentaba, provocando congestión, lo que ocasionó que las rotondas no sean bien aceptadas en los años 50. (AASHTO, 2011)

El Reino Unido fue el que realizó los diseños para las rotondas modernas. En 1966, adoptó una regla obligatoria de "ceda el paso" en todas las intersecciones con redondeles. Esta regla impedía que las intersecciones se bloquearan, al no permitir que

los vehículos entraran en la intersección hasta que hubiera suficientes espacios en el tráfico circulante. Además, se propusieron intersecciones circulares con menores curvaturas horizontales para que las trayectorias del vehículo no logren velocidades altas. (AASHTO, 2011)

Existen cuatro tipos de intersecciones circulares:

- Las rotondas de estilo antiguo se caracterizan por un diámetro grande (superior a los 100m). Este gran diámetro permite velocidades que superan los 50 km/h, proporcional pocas o nulas deflexiones horizontales, y operan para su desvío con la regla de "mantenga la derecha". (AASHTO, 2011)
- Las rotondas señalizadas, son intersecciones circulares de estilo antiguo en las que se usa señales de tráfico para controlar uno o más puntos de entrada de circulación, por lo tanto, tienen características operativas distintas que las controladas por ceder el paso. (AASHTO, 2011)
- Las rotondas para lugares residenciales se construyen típicamente en calles locales para calmar el tráfico, o para dar estética al sector. Los enfoques de la intersección pueden estar controlados por ceda el paso, paradas, o sin ningún control. El diámetro generalmente está entre 15 y 30 m. En algunos casos, se permiten algunos movimientos de giro izquierdo en la isla central, pero esto puede incurrir en conflictos potenciales de tráfico. (AASHTO, 2011)
- Según A Policy on Geometric Design of Highways and Streets (2011), las rotondas son intersecciones circulares con características de diseño y controles de tráfico específicos, que incluyen:
 - Controles para el tráfico entrante.
 - Aproximaciones canalizadas.
 - Curvatura apropiada para la geometría de la intersección, generando velocidades menores de 50km/h.
 - Las islas de división en cada ramal tienen la función de separar el tráfico entrante y saliente, desviar y proporcionar el acceso al vehículo dentro del tráfico y proporcionar un refugio para el peatón. Las rotondas diseñadas de esta manera se las conoce como modernas.

La clasificación de las rotondas se las distribuye en tres, mini rotondas, rotondas de un solo carril y rotondas de multicarriers.

Tabla 4 Comparación de tipos de rotondas

e or pur were at the set reterior			
Elemento de Diseño	Mini	Rotonda de	Rotonda
Elemento de Diseño	Rotonda	1 carril	Multicarril
Velocidad en entrada recomendada	25 a 30 km/h	30 a 40	40 a 50
velocidad eli elitrada recomendada	25 a 50 Kill/II	km/h	km/h
Número máximo de carriles de	1	1	más de 2
aproximación por ramal	1	1	mas de 2
Diámetro típico del circulo inscrito	13 a 27 m	27 a 46 m	40 a 76 m
Isla Central	Cruza	Elevada	Elevada
Volúmenes diarios en los 4	0 a 15000	0 a 20000	más de
ramales en veh/día	0 a 13000	0 a 20000	20000

Fuente: (A Policy on Geometric Design of Highways and Streets, 2011)

2.2.7.3 Intersecciones a desnivel

En con un TPDA alto, el mantenimiento de tránsito constante y seguro exige que se eliminen las interferencias al flujo vehicular en intersecciones, para lo que se establecen intercambiadores a desnivel; se ubican en las vías donde la sumatoria del TPDA supera los 4 mil vehículos/día. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

Hay muchos tipos de intersecciones a desnivel, ya que dependen de la geometría del punto de análisis, del nivel de servicio que presta, de qué condiciones presenta el sistema de vía donde se va a intervenir, lo que lleva a diseños muy complicados con múltiples ramales. Los diseños de mayor frecuencia sin de tipo trébol (completo o parcial), diamante, direccional, entre otras. (AASHTO, 2011)

TAMS-ASTEC (2003) nos dice que, se consideran dos criterios básicos para el intercambio de vehículos en las intersecciones de una autopista y un camino trasversal.

- Permitir la trasferencia del camino trasversal, y desde la autopista, a caminos de una red que se conecta con la misma.
- Permitir un intercambio entre autopistas o entre caminos principales.

En el caso de interconexiones urbanas las primordiales consideraciones son Operación de Tránsito y Capacidad; debe estudiarse bien el transito que llega y sale de la autopista para evitar el embotellamiento, tanto en la autopista como en las calles urbanas y, con más razón en el distribuidor. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

2.2.8 Nivel de servicio

Para el presente estudio se necesitará una metodología para determinar el nivel de servicio para intersecciones con semáforo. Para este tipo de intersecciones la definición del nivel de servicio es a través de las demoras medias que el vehículo tendrá por las detenciones para un periodo de muestra de 15min. (Trasportation Research Board, 2000)

El HCM (2000) presenta seis niveles de servicio, las letras designan cada nivel, de la "A" a la "F", siendo el A representado con la mejor condición de operación y el F el peor. Cada nivel de servicio representa una gama de condiciones de operación y la percepción del conductor de esas condiciones. En los niveles de servicio no se considera la seguridad de la vía.

- Nivel A: los conductores casi no tienen impedimento para maniobrar dentro del flujo vehicular, brindándoles un nivel alto de confort tanto físico como psicológico.
- Nivel B: los conductores se desplazan con flujo razonablemente libre, pero la velocidad se mantiene. Todavía el nivel de confort físico y psicológico es alto, a pesar de que la maniobrabilidad de la vía se restringe ligeramente.
- Nivel C: en este nivel la corriente vehicular se eleva lo que lleva a una maniobrabilidad restringida, para los cambios de carril se debe tener precaución. El tráfico todavía no es alto.
- Nivel D: las demoras son de mayor duración, la maniobrabilidad está notablemente restringida, los ciclos fallan, la razón volumen/capacidad es elevada.
- Nivel E: la maniobrabilidad es extremadamente limitada, el nivel de confort físico y psicológico no es bueno para el conductor. El problema más pequeño pude causar una larga cola, como un accidente o un auto dañado. El estado del tráfico oscila entre estable e inestable.

 Nivel F: la maniobrabilidad es nula, el tráfico está sobrecargado, la demanda es mayor que la capacidad que tiene la vía.

Los niveles de servicio en intersecciones se definen para representar rangos razonables en tiempos de demora con dispositivos de control, ya sean semáforos o señalética. (AASHTO, 2011)

Tabla 5 Niveles de servicio para intersecciones controladas

Nivel de Servicio	Condiciones de la Intersección
A	El tiempo de demora es corto y la mayoría de los vehículos no se detienen como resultado de la progresión favorable, la llegada de la mayoría de vehículos durante la fase de verde, y la duración de ciclo corto
В	El tiempo de demora es corto y muchos vehículos no paran, o paran por un coro tiempo, como resultado del ciclo corto y buena progresión.
C	Retardo moderado, muchos vehículos tienen que parar, y en ocasiones hay fallos de ciclo individual, como resultado de longitudes de ciclo más largas y progresión razonable.
D	Demoras más largas, muchos vehículos tienen que parar, y un número notable de fallos de ciclo individuales, elevada razón v/c, progresión desfavorable
Е	Largos retrasos y los frecuentes fallos en ciclos individuales, como consecuencia de ciclos de larga duración o alta razón v/c, baja progresión.
F	Las demoras consideradas inaceptables por los usuarios, la capacidad del cruce es superada por la magnitud de volumen de llegada y se prolonga durante largos periodos.

Fuente: (AASHTO, A Policy on Geometric Design of Highways and Streets, 2011)

El modelamiento en Aimsun también usa la metodología del HCM (2000) para el cálculo de niveles de servicio, el cual está descrito en el Capítulo 24 del mismo.

Durante la simulación Aimsun implementa los algoritmos dados por el HCM (2000), para la determinación de niveles de servicio, los cuales dependen, para intersecciones con dispositivos de control, de los tiempos de demora, velocidad y cola de vehículos involucrados.

Los resultados se generarán considerando que hay dos tipos de análisis para las trayectorias; análisis longitudinal y análisis espacial.

 El análisis longitudinal, consiste en seguir vehículos individuales a lo largo del tiempo de diseño a medida que viajan por los corredores diseñados. Análisis espacial, es el que considera en el mismo tiempo todos los vehículos involucrados en el tiempo de modelación.

Término de cálculos de salida durante la simulación:

- El análisis longitudinal calcula un enlace durante cada paso de tiempo acumulados para cada vehículo hasta atravesar la intersección y agregando tiempo para los vehículos que salen del enlace durante el intervalo estadístico.
- El análisis espacial calcula para cada enlace y para cada carril durante cada paso las medidas necesarias que implican a los vehículos presentes, estas medidas se presentan a continuación.
- Los resultados otorgados por el análisis longitudinal son: demoras del segmento, demoras de colas, demoras de parada, números de parada.
- Los resultados presentados por el análisis espacial son: longitud media de cola, promedio de cola, máximo de cola, porcentaje de vehículos dentro de la cola, desbordamiento, vehículos lentos.

El cálculo de las salidas se basa en la determinación del estado de cada vehículo en cada paso de tiempo y en la realización de los cálculos pertinentes.

La salida para un intervalo de tiempo y para un enlace se calcula promediando todos los vehículos que salen del enlace durante el intervalo, es decir añadiendo las demoras individuales del vehículo y luego dividiéndolos por el número de vehículos que salen del enlace durante el intervalo. (TSS-Trasport, 2014)

El nivel de servicio para cada aproximación a una intersección debe ser determinado basándose en el retardo de la cola, de acuerdo con los rangos de la siguiente tabla:

Tabla 6 Niveles de servicio para aproximaciones a una intersección

Level of Service	Queue delay (s/veh)
A 1	≥ 10
B 2	>10 and ≥20
C 3	>20 and ≥35
D 4	>35 and ≥55
E 5	>55 and ≥80
F6	>80 or Q/C>1

Fuente: (TSS-Trasport, 2014)

Los niveles de servicio para intersecciones se basan en el promedio de la demora de las aproximaciones, ponderado por el flujo de cada aproximación, y van de acuerdo a los rangos de la Tabla 6. (TSS-Trasport, 2014)

Para el cálculo de niveles de servicio en intersecciones con dispositivos de control se debe determinar en base a la cola de demora, de acuerdo a los rangos de la siguiente tabla:

Tabla 7 Niveles de servicio para intersecciones semaforizadas

Level of Service	Queue delay (s/veh)
A 1	≥ 10
B 2	>10 and ≥15
C 3	>15 and ≥25
D 4	>25 and ≥35
E 5	>35 and ≥50
F6	>50 or Q/C>1

Fuente: (TSS-Trasport, 2014)

Las formulas utilizadas para el cálculo de estos parámetros serán las siguientes:

• Número de paradas

$$n + = \left[\left(\frac{S_{max}}{S_{objeto}} \right)^2 \right] \tag{10}$$

Donde Smax es la velocidad máxima alcanzada desde la última parada, y Sobjeto es la velocidad deseada.

Medidas relacionadas con la densidad

$$f_{HV} = \frac{1}{1 + \sum_{Vtipos} P_i(E_i - 1)}$$
 (11)

Donde Pi es la proporción de vehículos y Ei es el equivalente de tipo de vehículos de pasajeros.

2.2.9 Aspectos de diseño en vías urbanas

Se aprecia en la Tabla 8, los aspectos generales técnicos que una vía urbana debe tener en la ciudad de Quito, diferenciándose por su funcionalidad, en vías Expresas (Autopistas – Viaductos), vías Arteriales, vías Colectoras Principales, vías Colectoras Secundarias, vías Locales, vías Peatonales, Escalinatas y ciclovías, toda esta clasificación se las describió anteriormente en la sección 2.2.3.5. (Concejo Metropolitano de Quito, 2008)

Tabla 8 Aspectos de diseño del sistema vial urbano en quito

F 3000	N° de	er sistema		4	-		
TIPO	carriles por sentido	Ancho de Carril (m)	Parterre (m)	Acera (m2)	Espaldón Interno (m)	Espaldón Externo (m)	N° Carriles Estaciona.
Expresa	3	3.65	6	=	1.05	2.5	-
Semi-							
Expresa	2	3.65	6	-	0.5	2	-
Arterial	3	3.65	4	5	-	-	-
Colectoras							
A	2	3.65	4	3.5	-	-	2
В	2	3.5	-	3.5	-	=	2
Locales	N° total de carriles						
C	2	3	-	3	-	-	2
D	2	3	-	3	-	-	1
E	2	3	-	3	-	-	-
F	2	3	-	2	-	-	-
Peatonal	-	-	-	-	-	-	-
Escalinata	-	3	-	-	-	-	-
TIPO	Ancho de Carriles de Estaciona. (m)	Ancho Total (m)	Distancia Paralela entre ejes (m)	Longitud. (m)	Velocidad del Proyecto (km/h)	Velocidad Máx. de Operación (km/h)	
Expresa	-	35	3001 o>	variable	90	80	
Semi- Expresa	-	25.6	1501-3000	variable	70	70	
Arterial	-	35.9	1501-3000	variable	70	60	
Colectoras							
A	2.2	30	501-1500	1001 o>	70	50	
В	2.2	25.4	400-500	501 - 1000	50	40	
Locales							
C	2	16	-	401-500	-	Máx. 30	
D	2	14	-	301-400	-	Máx. 30	
E	-	12	-	101-300	-	Máx. 30	
F	-	10	-	Hasta 100	-	-	
Peatonal	-	6	-	Hasta 80	-	-	
Escalinata	-	-	6	-	-	-	_,

Fuente: (Ordenanza N° 3746, 2008)

El Consejo Metropolitano (2008), dice que, se pueden tomar algunos criterios sustentándose en varios resultados como:

- El número de carriles puede ser menor al mínimo especificado si el estudio de tráfico lo sustenta.
- El nivel de la capa de rodadura debe estar al nivel de las aceras colindantes con rampas que permitan el ingreso de vehículos de emergencia.
- La sección de las escalinatas incluye canaletas para el traslado de bicicletas.
- En aquellos casos en que la sección total de la vía sea mayor a la sección mínima, el remanente se repartirá entre las aceras.
- En áreas históricas se normalizará la calzada entre 4.50 m y 7.0 m como mínimo y las veredas serán de ancho variable.
- Las vías existentes para su regularización deberán acogerse a las características de las tipologías señaladas en la Tabla 8, independientemente de su longitud.
- Cuando se incluyan ciclovías, bandas ciclísticas o aceras-bici, la sección total de la vía deberán adicionar el ancho correspondiente a este tipo de vías.

2.2.9.1 Velocidad de diseño y de circulación

El diseño horizontal y vertical de una vía depende de la velocidad de diseño y de la topografía del terreno en la zona donde va a ser construida. También pude influir en las velocidades de circulación, sin embargo, es difícil de evaluar en el campo. (AASHTO, 2011)

La velocidad de diseño debe seleccionarse para el tramo de carreteras más desfavorables y debe mantenerse en una longitud mínima entre 5 y 10 kilómetros. Una vez seleccionada la velocidad, todas las características propias del camino se deben considerar a ella, para obtener un proyecto equilibrado. Siempre que sea posible se aconseja usar valores de diseños mayores a los mínimos establecidos. Los cambios de topografía pueden obligar hacer cambios de velocidad de diseño en determinados tramos, al ocurrir esto, esta transición no debe ser rápida, sino sobre una distancia adecuada que permita al usuario a acoplarse al cambio gradualmente; la diferencia entre las velocidades de dos tramos no será mayor de 20 km/h. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

La velocidad de circulación es la velocidad real del vehículo a lo largo de una sección específica de carretera y es igual a la distancia recorrida dividida para el tiempo

de circulación del vehículo, o a la suma de las distancias recorridas por todos los vehículos o por un grupo determinado de ellos, dividida para la suma de los tiempos de recorrido correspondiente. (Ministerio de Transporte y Obras Públicas, Normas de Diseño Geométrico de Carreteras, 2003)

En la siguiente figura se observa la relación básica entre los tres parámetros, velocidad, densidad y flujo, donde se puede apreciar, que a mayor densidad y velocidad el flujo se comporta bien hasta llegar al punto máximo donde llega a su límite, tendiendo después a reducir el flujo. Con la densidad relacionada a la velocidad, se observa que a medida que la velocidad aumenta la densidad disminuye.

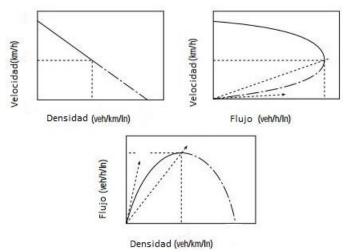


Figura 8 Curvas flujo-velocidad-densidad

Fuente: (AASHTO, A Policy on Geometric Design of Highways and Streets, 2011)

El Concejo Metropolitano en su ordenanza 3746 (2008), determina en base a la velocidad de diseño algunos factores que son importantes para la geometría del lugar, como son: la longitud de carriles de aceleración en curva y recta, factores de corrección por gradiente, entre otros.

2.2.9.2 Carriles de aceleración y desaceleración

Son carriles auxiliares pavimentados, que permiten que los vehículos aceleren al entrar o desaceleren al salir, en el carril de tráfico de la vía. (AASHTO, 2011)

Para Quito, dentro de la zona urbana, El Consejo Metropolitano (2008) presenta en la Tabla 9 y Tabla 10, los criterios para el diseño de carriles de entrada, dependientes

de su velocidad de diseño, y en la Figura 9 y Figura 10, como se debe diseñar las mismas.

Tabla 9 Mínima longitud de aceleración para terminales de entrada con gradientes del 2% o menos

LO	LONGITUD DE LOS CARRILES DE ACELERACIÓN L(m)										
Carr	etera		Velo	ocidad	de Di	seño e	n la C	urva (kph)		
Velocidad	Velocidad	0	25	35	40	50	55	65	75	80	
de Diseño	Alcanzada,		Velocidad Inicial, V´a (kph)								
(kph)	Va (kph)	0	22	30	35	42	50	60	65	70	
50	37	60	-	-	-	-	-	-	-	-	
65	50	115	100	75	70	45	-	-	-	-	
80	65	230	215	195	180	150	115	50	-	-	
100	75	360	340	330	300	280	240	180	120	50	
115	85	480	470	460	430	405	375	310	250	180	

Fuente: (Concejo Metropolitano de Quito, 2008)

Tabla 10 Factores de corrección por gradiente, para carriles de aceleración, para rampas de entrada

		Carriles de Aceleración								
Velocidad	Facto	Factor de Corrección a la Longitud Requerida para una								
de Diseño			G	radient	e del 0%					
de la	Vel	ocidad o	de Dise	ño de la	a Rampa de Entrada (kph)					
Carretera (kph)	20	30	40	50	Para Cualquier Velocidad					
	gradi	entes de	e +3% a	+4%	gradiente de -3% a -4%					
65	1.3	1.3	-	-	0.7					
80	1.3	1.4	1.4	-	0.65					
100	1.4	1.5	1.5	1.6	0.6					
115	1	1.6	1.7	1.8	0.6					
	gradi	entes de	e +5% a	ı +6%	gradientes de -5% a -6%					
65	1.5	1.5	-	-	0.6					
80	1.5	1.7	1.9	-	0.55					
100	1.7	1.9	2.2	2.5	0.5					
115	2	2.2	2.6	3	0.5					

Fuente: (Concejo Metropolitano de Quito, 2008)

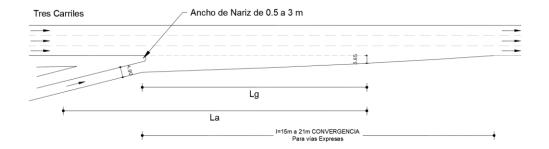


Figura 9 Rampara de entrada de un carril, diseño de entrada directa Fuente: (Concejo Metropolitano de Quito, 2008)

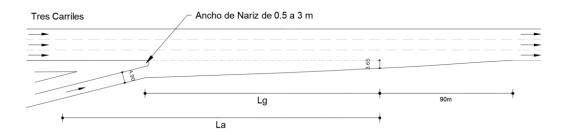


Figura 10 Rampara de entrada de un carril, diseño de entrada paralela Fuente: (Concejo Metropolitano de Quito, 2008)

En las Figuras 9 y 10, tenemos que La, es el punto de velocidad en la rampa; Lg, es la longitud requerida para entrar al flujo de tráfico. Mínimo de 90 a 150m según ancho de la nariz. La longitud de entrada de la rampa de entrada debe ser el mayor valor entre La y Lg.

Ahora se presenta los criterios de diseño para carriles de salida según El Consejo Metropolitano (2008), en la Tabla 11 y Tabla 12:

Tabla 11 Mínima longitud de deceleración para terminales de salida con gradiente del 2% o menos

<u> </u>	•									
L	ONGITUD DE I	LOS C	ARRII	LES D	E ACI	ELERA	ACIÓN	V L(m))	
Ca	rretera		Vel	ocidad	de Di	seño e	n la C	urva (l	cph)	
Velocidad	Velocidad	0	25	35	40	50	55	65	75	80
de Diseño	Promedio de	Vel	ocidad	l Prom	edio d	le Circ	ulació	n en la	Curva	a de
(kph)	Circulación,				Salida	a, V'a	(kph)			
	Va (kph)	0	22	30	35	42	50	60	65	70
50	37	70	55	50	45	-	-	-	-	-
65	50	95	90	80	70	55	45	-	-	-
80	65	130	125	115	110	95	85	70	55	-
100	75	160	150	150	140	130	125	105	90	75
105	90	175	165	160	150	145	130	115	100	85
115	95	190	180	175	170	155	150	130	120	105

Fuente: (Concejo Metropolitano de Quito, 2008)

Tabla 12 Factores de corrección por gradiente en carriles de salida

FACTORES DE CORRECCIÓN POR GRANDIENTE, PARA CARRILES DE DECELERACIÓN

	DECELERACIO	711					
Velocidad	Carriles de Deceleración						
de Diseño de la Carretera (kph)	Factor de Corrección a la Longitud Requerida para una Gradiente del 0%						
Para Cualquier	Gradientes del +3% al +4%	Gradientes del -3% al -4%					
Velocidad	0.9	1.2					
Para	Gradientes del	Gradientes del					
Cualquier	+5% al +6%	-5% al -6%					
Velocidad	0.8	1.35					

Fuente: (Concejo Metropolitano de Quito, 2008)

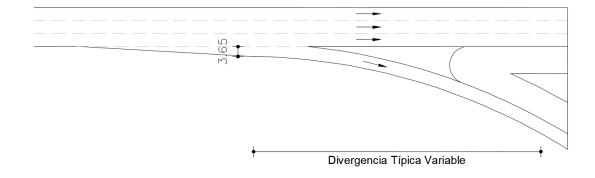


Figura 11 Diseño de salida curva

Fuente: (Concejo Metropolitano de Quito, 2008)

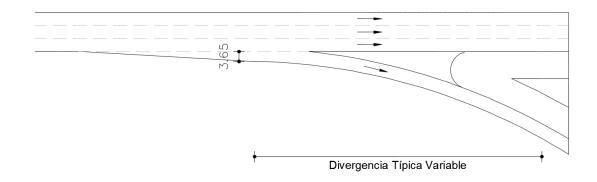


Figura 12 Diseño de salida paralela

Fuente: (Concejo Metropolitano de Quito, 2008)

2.2.9.3 Vehículo de diseño

Los aspectos clave para el diseño geométrico de vías, son las características físicas de la vía y las condiciones de distintos tipos de vehículos que se consideran para su diseño. Por esto, es apropiado examinar todos los tipos de vehículos, establecer grupos según sus generalidades, y seleccionar el vehículo con un tamaño representativo para la clase de carretera que se va a diseñar, o evaluar. Estos vehículos se usan para establecer controles de diseño de carretas, para acomodar clases de vehículos designadas y son conocidos como vehículos de diseño. Para diseño geométrico, cada vehículo de diseño tiene dimensiones físicas mayores y un radio de giro mínimo más grande que la mayoría de los vehículos de su clase. (AASHTO, 2011)

Se han establecido 4 clases generales de vehículos de diseño: automóviles de pasajeros, autobuses, camiones y vehículos recreativos. Los autos de pasajeros incluyen todos los tamaños, vehículos deportivos, furgonetas, camionetas. Los autobuses incluyen, autobuses urbanos, interurbanos, escolares y articulados. La clase de camiones incluye camiones de un vagón, niñeras, y camiones de varios vagones. Los vehículos de recreación son las casas rodantes, coches remolques destinados para acampar, coches de remolques de barco, etc. Además, las bicicletas también deben ser consideradas como vehículo de diseño siempre y cuando sea considerado tu tránsito por la vía. (AASHTO, 2011)

Además, el AASHTO (2011), presenta una guía general para saber cómo seleccionar un vehículo de diseño:

- Un automóvil de pasajeros puede ser seleccionado cuando el generador principal de tráfico es un estacionamiento o un grupo de ellos.
- Se usan camiones de dos ejes de un solo vagón, para el diseño de intersecciones de calles residenciales y vías urbanizadas.
- Se puede utilizar un camión de tres ejes para el diseño de calles colectoras y otras instalaciones donde los camiones grandes son probables.
- Un autobús urbano de tránsito puede ser usado en el diseño de intersecciones de carreteras estatales con calles de la urbanas.

Para Ecuador el Ministerio de Trasporte y Obras Públicas (2013), presenta una tabla con las características necesarias de diseño, para los vehículos considerados en el país:

	CUADRO DEMOSTRATIVOS DE TPO DE VEHICULOS MOTORIZADOS REMOLQUES Y SEMIREMOLQUES									
TIPO	DISTRIBUCIÓN MÁXIMA DE CARGA POR EIE		DESCRIPCIÓN				N GITU DI IAS PERR (metros) Ancho	AITHDAS		
2 D	2D 3 4	- -	ΙΙ	CAMIÓN DE 2 EJES PEQUEÑO	7	5,00	2,60	3,00		
2DA	2 DA 3 7		ΙĪ	CAMIÓN DE 2 EJES MEDIANOS	10	7,50	2,60	3,50		
2DB	2 D8	J.	I	CAMIÓN DE 2 EJES GRANDES	18	12,20	2,60	4,10		
3-A	7 ZO		I II	CAMIÓN DE 3 EJES	27	12,20	2,60	4,10		
4-C	4C	000	I	CAMIÓN DE 4 EJES	31	12,20	2,60	4,10		

Figura 13 Vehículos de diseño 1 de 3Fuente: (Ministerio de Transporte y Obras Públicas, 2013)

TIPO	DISTRIBUCIÓN MÁXINA DE CARGA POR EJE				PESO MÁXIMO PERMITIDO	LONGITUDES MÁXIMAS PERMITIDAS (metros)		
					[Tor.]	largo	Andro	Alto
4-0	40 12 than 43		II II	CAMÓN CONTAMBEM DIRECCIONAL Y TAMBEM POSTEROR	32	12,20	2,60	4,10
V208			I [VOLQUETA DE DOS ELES 8 m²	18	12,20	2,60	4,10
V3A			I II	VOLQUETA DE TRES EJES 10-14 m ⁵	27	12,20	2,60	4,10
vzs	(Touten)		I II	VOLQUETA IS DE 3 ELES 10m²	27	12,20	2,60	4,10
Т2	7 11		ΙΙ	TRACTO CAMIÓN DE 2 EJES	18	8,50	2,60	4,10
тз	₽ T3	 	I II	TRACTO CAMIÓN DE 3	27	8,50	2,60	4,10
53	53	600	III	SEMIREMOLQUE DE 3 E/IS	24	13,00	3.00	4,30
S2	52 P 20		II	SEMIREMOLQUE DE 2 EJES	20	13,00	3.00	4,30
31	St.		Ī	SEMIREMOLQUE DE1 EJE	11	13,00	3.00	4,30
R2	R2	-00-	1 1	REMOLQUE DE 2 E.ES	22	10,00	3.00	4,30
R3	R3 30	*0=0°	1 11	REMOLQUE DE 3 E.ES	31	10,00	3.00	430
B1	D: 11		Ī	REMOLQUE BALANCIADO DE1 EJE	11	10,00	3.00	4,30
B2		-00-	II	REMOLQUE BALANCEADO DE L EJO	20	10,00	3.00	4,30
вз	R1	-000-	III	REMOLQUE BALANCEADO DE 3 EJES	24	10,00	3.00	4,30

Figura 14 Vehículos de diseño 2 de 3

Fuente: (Ministerio de Transporte y Obras Públicas, 2013)

ПРО	DISTRIBUCIÓN MÁXIMA DE CARGA POR EJE	DESCR IPCIÓN		PESO BRUTO VEHCULAR MÁXIMO PERMITI DO (tone ladas)	MAXIM	NGITUD IAS PERN (m etros) Ancho	
251	251 7 11 11	€ o o II I	TRACTO CAMIÓN DE 2 EJES Y SEMI REMOLQUE DE 1 EJE	29	20,50	2,60	4,30
2\$2	7 11 20	o o II II	TRACTO CAMIÓN DE 2 EJES Y SEMI REMOLQUE DE 2 EJES	38	20,50	2,60	4,30
2\$3	253 7 11 24	6 o ooo I I III	TRACTO CAMIÓN DE 2 EJES Y SEMI REMOLQUE DE 3 EJES	42	20,50	2,60	4,30
351	351 7 20 11	0 ∞ o I ‼ I	TRACTO CAMIÓN DE 3 EJES Y SEMIREMOLQUE DE 1 EJE	38	20,50	2,60	4,30
3\$2	3S2 7 20 20	€∞ vo I II II	TRACTO CAMIÓN DE 3 EJES Y SEMI REMOLQUE DE 2 EJES	47	20,50	2,60	4,30
383	353 7 20 24	€ oo ooo I III III	TRACTO CAMIÓN DE 3 EJES Y SEMI REMOLQUE DE 3 EJES	48	20,50	2,60	4,30
2R2	7 11 11 11		CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE DE 2 EJES	40	20,50	2,60	4,30
2R3	7 11 11 20	— I I I II	CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE DE 3 EJES	48	20,50	2,60	4,30
3R2	7 20 11 11		CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE DE 2 EJES	48	20,50	2,60	4,30
3R3	7 20 11 20		CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE DE 3 EJES	48	20,50	2,60	4,30
2B1	7 11 11	II I	CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE BALANCEADO DE 1 EJES	29	20,50	2,60	4,30
2B2	7 11 20		CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE BALANCEADO DE 2 EJES	38	20,50	2,60	4,30
2B3	283 7 11 24	6	CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE BALANCEADO DE 3 EJES	42	20,50	2,60	4,30
3B1	381 7 20 11	———I II I	CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE B AL ANCEADO DE 1 EJES	38	20,50	2,60	4,30
3B2	7 20 20	€———I II II	CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE BALANCEADO DE 2 EJES	47	20,50	2,60	4,30
3B3	7 20 24	— I II III	CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE B ALANCEADO DE 3 EJES	48	>20,50	3.00	4,30

Figura 15 Vehículos de diseño 3 de 3

Fuente: (Ministerio de Transporte y Obras Públicas, 2013)

2.2.9.4 Señalización y dispositivos de control de tráfico.

La señalización horizontal está constituida por marcas viales y delineadores que tienen como función complementar las reglamentaciones o informaciones de otros dispositivos de tránsito o transmitir mensajes.

Los colores de las señalizaciones de pavimento longitudinales serán conforme a los siguientes conceptos básicos:

Líneas amarillas definen:

- Separación de tráfico viajando en direcciones (sentidos) opuestos.
- Restricciones.
- Borde izquierdo de la vía (en caso de tener parterre).

- Líneas blancas definen:
- La separación de flujos de tráfico en la misma dirección (el mismo sentido).
- Borde derecho de la vía (berma).
- Zonas de estacionamiento.
- Proximidad a un cruce de cebra.

Para el diseño del sistema de señalización y seguridad vial se ha tomado los estándares y recomendaciones de últimos Reglamentos Técnicos Ecuatorianos INEN y normas técnicas vigentes al año 2012 que son las siguientes:

Tabla 13 Normativa INEN que interfiere en el proyecto

	Normativa INEN que Interfiere en el Proyecto							
(1)	RTE INEN	004: Parte 1	2011	Señalización Vertical				
		(1R):2011						
(2)	RTE INEN	004: Parte 2	2011	Señalización Horizontal				
		(1R):2011						
(3)	RTE INEN	004: Parte 3:	2013	Señales de vías. Requisitos				
		2013						
(4)	RTE INEN	004: Parte 4:	2009	Alfabetos Normalizados				
		2009						
(5)	RTE INEN	004: Parte 5	2013	Semaforización				
(6)	RTE INEN	1042:2009	2009	Pintura para señalamiento de tráfico				
(7)	RTE INEN	2289:2009	2009	Demarcadores reflectivos				
(8)	RTE INEN	2473:2013	2013	Perfiles corrugados y postes de				
				acero para guardavías				

La codificación de las señales horizontales y verticales es la utilizada en los documentos del INEN que son los últimos vigente en el Ecuador cuyas letras de identificación son: R señales regulatorias, P señales preventivas, I señales informativas, D señales especiales delineadoras, T señales y dispositivos para trabajos viales, E señales escolares, SR señales riesgos.

CAPÍTULO 3

CARACTERIZACIÓN DEL TRÁFICO

3.1 Generalidades de las condiciones actuales

La intersección está ubicada en la entrada del Hipercentro de la Ciudad de Quito, siendo un sector de acumulación de usuarios, puesto que quieren dirigirse a sus centros de trabajo, colegios, escuelas, o áreas de comercio; entonces la influencia que tiene el punto de estudio, hablando de la movilidad para la ciudad, es verdaderamente importante.

Está compuesta por un corredor principal, y un secundario, la Av. Galo Plaza Lasso, y la Isaac Albéniz, respectivamente. Se podría decir que es una intersección nueva, ya que en el mes de septiembre del año 2014 se habilitó una prolongación de la Isaac Albéniz, permitiendo el cruce hacia la Av. Amazonas, tomando una parte de lo que era el antiguo Aeropuerto Mariscal Sucre, en su cabecera sur.

Las dos arterias tienen volúmenes considerables de tráfico, presentando colas de vehículos prolongadas que afectan a intersecciones cercanas, provocando demoras en tiempos de viajes e insatisfacción de los usuarios.

3.2 Tasas de crecimiento

El crecimiento poblacional es un valor que refleja el incremento de la demanda de usuarios, en este caso es el aumento de tránsito de la ciudad de Quito.

El incremento poblacional de tráfico es la tasa utilizada para la determinación del tráfico futuro, a los años a considerar para el proyecto. Las tasas de crecimiento varían dependiendo del tipo de vehículo que se esté analizando, y del ambiente donde se este se esté desenvolviendo, para este caso, por ejemplo, es lógico pensar que el crecimiento de vehículos livianos será distinto al de camiones de más de tres ejes, por el tipo de entorno que se presenta en la intersección. Entonces para presentar las tasas de crecimiento para cada tipo de vehículo considerado en este estudio se tendrán que adoptar datos estadísticos que estén acorde para cada uno de ellos.

Para la determinación de la tasa de crecimiento de vehículos livianos, los datos fueron adquiridos del Anuario 2016 (Asociación de Empresas Automotrices del Ecuador, 2017), los cuales se presentan a continuación:

Tabla 14
Tasa de crecimiento vehicular en Ecuador

TASA DE CRECIMIENTO VEHICULAR					
PERIODO	Ι%				
2001 - 2002	21.81				
2002 - 2003	-16.26				
2003 - 2004	1.82				
2004 - 2005	35.94				
2005 - 2006	11.38				
2006 -2007	2.48				
2007 - 2008	22.78				
2008 - 2009	-17.68				
2009 - 2010	42.48				
2010 - 2011	5.84				
2011 - 2012	-13.19				
2012 - 2013	-6.29				
2013 - 2014	5.49				
2014 - 2015	-32.28				
2015 - 2016	-21.84				

Fuente: (Asociación de Empresas Automotrices del Ecuador, Anuario 2016, 2017)

De la Tabla 14 se realiza un promedio para los periodos anuales que tienen valor positivo, descartando los que están fuera del rango común, resultando una tasa de crecimiento promedio de 3.91%.

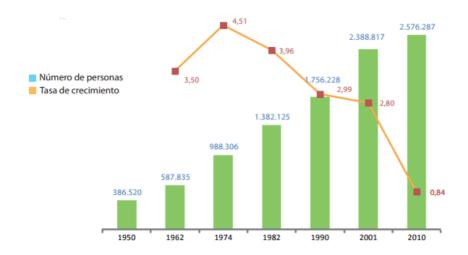

Este mismo anuario presenta la tasa de venta de combustible Diesel, lo que ayudará para conocer el porcentaje de crecimiento de vehículos pesados en el país.

Tabla 15 Tasa de venta de combustible diésel en Ecuador

TASA DE VENDA DE						
COMBUSTIBLE DIESEL						
	CANTIDAD					
PERIODO	TOTAL					
2010 - 2011	14.04					
2010 - 2011	17.07					
2011 - 2012	7.27					
2012 - 2013	5.08					
2012 2014	F					
2013 - 2014	5.55					
2014 - 2015	2.11					
2015 - 2016	1.00					
PROMEDIO	5.84					
	1 5 1 1/ 6					

Fuente: (Agencia de Regulación y Control de Hidrocarburos, 2017)

Por último, el crecimiento para el trasporte público, se lo adoptará con los valores de crecimiento poblacional, con la hipótesis de que, con una mayor población, mayor es la demanda de trasporte público, con este criterio se utilizará, lo siguientes valores:

Figura 16 Tasa de crecimiento poblacional Fuente: (Instituto Nacional de Estadisticas y Censos, 2010)

En la Figura 16 se observa que resulta un promedio de tasa de crecimiento poblacional del 2.44%.

A continuación, se presenta en la Tabla 16, las tasas de crecimiento que se aplicarán al proyecto:

Tabla 16 Tasas de crecimiento para el diseño

	1 11 11 11
TASAS DE CRECI	MIENTO
PARA EL DIS	EÑO
Livianos	3.91
Buses	2.44
Camiones	5.84

3.3 Obtención de datos de campo

En la recolección de datos de campo, específicamente, de conteos vehiculares, se emplearon aforos volumétricos de tres días de duración, utilizando cámaras de video las cuales grabaron 13 horas diarias. Se las colocaron los días lunes 6, martes 7 y miércoles 8 de febrero del 2017, desde las 6h00 a 19h00.

Figura 17 Cámara usada para conteos, Trivision Outdoor HD 1080P IP Camera

Esta cámara se la colocó en un poste cercano a la intersección, dando una vista completa de todo el comportamiento del punto de análisis, pudiendo observar todos los giros posibles, de cada uno de los vehículos, así también el comportamiento de peatones y ciclistas.

Figura 18 Instalación de cámara de video

Figura 19 Vista después de la instalación de la cámara de video.

Después de la toma de videos, se realizó un formato de tal manera que, mientras se vaya contando el número de vehículos, también se realice la clasificación de los mismos: clasificándolos por las características que los define, y agrupándolos por el número de giro utilizado.

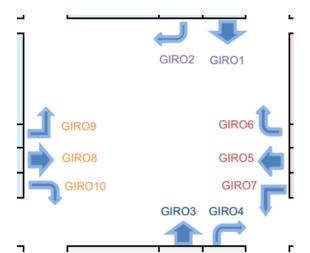


Figura 20 Numeración de posibilidades de giro en la intersección

3.4 Variación horaria de tráfico

Por el volumen de tráfico se evidencia que la intersección analizada es una importante conexión tanto trasversal como longitudinal, aportando niveles de tráfico elevados.

La variación horaria para cada sentido se ve reflejada en la Figura 21 y Figura 22, donde se observa que la hora pico en sentido norte – sur se presenta desde las 7h00 hasta las 8h00 y después desde las 15h00 hasta las 16h00. En sentido sur – norte se da la hora pico desde las 19h00 hasta las 20h00; lo que es entendible ya que todos los usuarios que salen a sus lugares de estudio, trabajo o comercio en el hipercentro del DMQ en la mañana, regresa después del horario laboral a sus hogares.

Figura 21 Variación horaria de tráfico sentido N - S y S - N

Figura 22 Variación horaria de tráfico sentido O - OCC y OCC - O

3.5 Factor de hora pico

Ya se explicó en el punto 2.2.4.3 la definición de hora pico y del factor de hora pico; entonces, aplicando la ecuación 7 se determina los diferentes factores para los 3 días de conteos.

Tabla 17 Factores de hora pico

Factor de Hora pico					
0.99					
0.85					
0.95					

3.6 Cálculo del TPDA

Para la estimación del TPDA (tráfico promedio diario anual), se tomaron datos históricos del año 2015 obtenidos del punto de intersección, otorgados por la Secretaría de Movilidad del DMQ, considerando el mes que coincide con los conteos vehiculares, en este caso es febrero, y también el factor de variación que hubo entre el 2015 y 2017.

Para usar correctamente los valores de aforos vehiculares del 2015, se tuvo que hacer un ajuste de datos en los días domingo, específicamente de los carriles centrales, ya que desde las 8h00 hasta las 14h00 estos se encuentran habilitados únicamente para ciclistas. Dicho ajuste se lo realizó considerando los aforos de los carriles habilitados en ambos sentidos, sobre la Galo Plaza, a lo largo de la semana, y promediarlos para que el valor resultante sea el más acertado para el escenario planteado.

Con los conteos del año 2015, y los aforos realizados en el 2017 para realizar el presente proyecto, se procede calcular del TPDA, considerándolo en primera instancia por cada giro, para luego sumarlos y tener el total.

3.6.1 Porcentaje de uso por giro

Para realizar la primera parte del cálculo, se determinó el porcentaje estadístico de vehículos que usarían el giro, tomando en cuenta los 3 días de conteos, para después obtener un promedio de cada uno de ellos, como se muestra a continuación:

Porcentaje de la probabilidad por Giro en lunes 6 de febrero

Tabla 18 Porcentaje de la probabilidad por Giro en lunes 6 sentido Norte - Sur

		N(ORTE - SU	R	
HORA	% GIRO 1	GIRO 1	% GIRO 2	GIRO 2	TOTAL
06:00 - 06:59	91%	2223	9%	224	2447
07:00 - 07:59	91%	3297	9%	333	3630
08:00 - 08:59	89%	3084	11%	381	3465
09:00 - 09:59	88%	2912	12%	401	3313
10:00 - 10:59	86%	2413	14%	405	2818
11:00 - 11:59	85%	2716	15%	479	3195
12:00 - 12:59	84%	2388	16%	470	2858
13:00 - 13:59	82%	2103	18%	466	2569
14:00 - 14:59	85%	2372	15%	426	2798
15:00 - 15:59	87%	2965	13%	453	3418
16:00 - 16:59	84%	2363	16%	439	2802
17:00 - 17:59	90%	2735	10%	304	3039
18:00 - 18:59	89%	2424	11%	291	2715
Total	87%		13%		

Tabla 19 Porcentaje de la probabilidad por Giro en lunes 6 sentido Sur - Norte

	SUR - NORTE						
HORA	% GIRO 3	GIRO 3	% GIRO 4	GIRO 4	TOTAL		
06:00 - 06:59	93%	1085	7%	85	1170		
07:00 - 07:59	92%	1854	8%	151	2005		
08:00 - 08:59	89%	2086	11%	260	2346		
09:00 - 09:59	88%	2144	12%	280	2424		
10:00 - 10:59	88%	2073	12%	275	2348		
11:00 - 11:59	88%	2201	12%	301	2502		
12:00 - 12:59	89%	2415	11%	311	2726		
13:00 - 13:59	88%	2657	12%	373	3030		
14:00 - 14:59	87%	2380	13%	360	2740		
15:00 - 15:59	88%	2397	12%	335	2732		
16:00 - 16:59	90%	2532	10%	290	2822		
17:00 - 17:59	83%	2741	17%	572	3313		
18:00 - 18:59	85%	2867	15%	503	3370		
Total	88%		12%				

Tabla 20 Porcentaje de la probabilidad por Giro en lunes 6 sentido Oriente - Occidente

<u> </u>	ORIENTE - OCCIDENTE						
HORA	% GIRO 5	GIRO 5	% GIRO 6	GIRO 6	% GIRO 7	GIRO 7	TOTAL
06:00 - 06:59	50%	140	9.29%	26	40.71%	114	280
07:00 - 07:59	39%	195	7.85%	39	52.92%	263	497
08:00 - 08:59	42%	229	9.19%	50	48.71%	265	544
09:00 - 09:59	43%	223	16.63%	86	40.23%	208	517
10:00 - 10:59	52%	292	17.23%	97	30.91%	174	563
11:00 - 11:59	45%	228	18.66%	95	36.54%	186	509
12:00 - 12:59	48%	257	15.98%	85	35.71%	190	532
13:00 - 13:59	48%	226	16.67%	78	35.04%	164	468
14:00 - 14:59	51%	250	15.07%	74	34.01%	167	491
15:00 - 15:59	48%	267	15.38%	86	36.85%	206	559
16:00 - 16:59	48%	218	17.84%	81	34.14%	155	454
17:00 - 17:59	48%	265	18.87%	104	33.03%	182	551
18:00 - 18:59	54%	217	17.04%	68	28.57%	114	399
Total	47%		15%		37%		

Tabla 21 Porcentaje de la probabilidad por Giro en lunes 6 sentido Occidente - Oriente

			OCCIDEN	NTE - OR	RIENTE		
HORA	% GIRO 8	GIRO 8	% GIRO 9	GIRO 9	% GIRO 10	GIRO 10	TOTAL
06:00 - 06:59	48%	171	50.00%	178	1.97%	7	356
07:00 - 07:59	45%	235	47.25%	249	8.16%	43	527
08:00 - 08:59	48%	308	43.67%	283	8.80%	57	648
09:00 - 09:59	44%	277	47.85%	300	7.97%	50	627
10:00 - 10:59	45%	270	47.85%	289	7.45%	45	604
11:00 - 11:59	43%	259	51.51%	307	5.03%	30	596
12:00 - 12:59	43%	278	50.47%	325	6.37%	41	644
13:00 - 13:59	41%	297	52.27%	380	6.88%	50	727
14:00 - 14:59	41%	246	54.49%	328	4.65%	28	602
15:00 - 15:59	43%	309	51.60%	372	5.55%	40	721
16:00 - 16:59	41%	251	53.93%	329	4.92%	30	610
17:00 - 17:59	44%	317	52.79%	379	3.06%	22	718
18:00 - 18:59	43%	274	50.08%	317	6.64%	42	633
Total	44%		50%		6%		

• Porcentaje de la probabilidad por Giro en martes 7 de febrero

Tabla 22 Porcentaje de la probabilidad por Giro en martes 7 sentido Norte - Sur

	NORTE - SUR					
HORA	% GIRO 1	GIRO 1	% GIRO 2	GIRO 2	TOTAL	
06:00 - 06:59	90%	1899	10%	205	2104	
07:00 - 07:59	91%	3320	9%	310	3630	
08:00 - 08:59	87%	2798	13%	427	3225	
09:00 - 09:59	86%	2481	14%	403	2884	
10:00 - 10:59	86%	2838	14%	475	3313	
11:00 - 11:59	85%	2901	15%	527	3428	
12:00 - 12:59	84%	2176	16%	410	2586	
13:00 - 13:59	85%	1876	15%	323	2199	
14:00 - 14:59	87%	2276	13%	337	2613	
15:00 - 15:59	85%	2588	15%	443	3031	
16:00 - 16:59	83%	2301	17%	486	2787	
17:00 - 17:59	84%	2600	16%	502	3102	
18:00 - 18:59	85%	2223	15%	394	2617	
Total	86%		14%			

Tabla 23
Porcentaje de la probabilidad por Giro en martes 7 sentido Sur - Norte
SUR - NORTE

		SU	K - NOKI	Ŀ					
HORA	% GIRO 3	GIRO 3	% GIRO 4	GIRO 4	TOTAL				
06:00 - 06:59	90%	936	10%	100	1036				
07:00 - 07:59	90%	1622	10%	187	1809				
08:00 - 08:59	89%	1942	11%	231	2173				
09:00 - 09:59	92%	1883	8%	168	2051				
10:00 - 10:59	88%	1733	12%	233	1966				
11:00 - 11:59	88%	1903	12%	262	2165				
12:00 - 12:59	88%	2437	12%	326	2763				
13:00 - 13:59	87%	1909	13%	286	2195				
14:00 - 14:59	87%	1979	13%	306	2285				
15:00 - 15:59	89%	2425	11%	315	2740				
16:00 - 16:59	89%	2347	11%	299	2646				
17:00 - 17:59	90%	2853	10%	328	3181				
18:00 - 18:59	91%	3191	9%	312	3503				
Total	89%		11%						

Tabla 24 Porcentaje de la probabilidad por Giro en martes 7 sentido Oriente - Occidente

		ORIENTE - OCCIDENTE										
HORA	% GIRO 5	GIRO 5	% GIRO 6	GIRO 6	% GIRO 7	GIRO 7	TOTAL					
06:00 - 06:59	51%	140	10.83%	30	38.63%	107	277					
07:00 - 07:59	40%	205	9.90%	51	50.29%	259	515					
08:00 - 08:59	40%	240	8.86%	53	51.00%	305	598					
09:00 - 09:59	43%	200	10.87%	51	46.48%	218	469					
10:00 - 10:59	51%	276	12.08%	65	36.62%	197	538					
11:00 - 11:59	49%	270	15.91%	88	35.26%	195	553					
12:00 - 12:59	48%	313	14.35%	93	37.35%	242	648					
13:00 - 13:59	45%	174	19.18%	75	36.32%	142	391					
14:00 - 14:59	48%	214	18.22%	82	34.22%	154	450					
15:00 - 15:59	47%	284	18.91%	114	34.00%	205	603					
16:00 - 16:59	48%	235	16.29%	80	35.85%	176	491					
17:00 - 17:59	47%	248	16.38%	87	36.91%	196	531					
18:00 - 18:59	56%	203	13.22%	48	30.85%	112	363					
Total	47%		14%		39%							

Tabla 25
Porcentaje de la probabilidad por Giro en martes 7 sentido Occidente - Oriente
OCCIDENTE - ORIENTE

			OCCIDEN	NTE - OR	RIENTE		
HORA	% GIRO 8	GIRO 8	% GIRO 9	GIRO 9	% GIRO 10	GIRO 10	TOTAL
06:00 - 06:59	46%	197	47.29%	201	6.35%	27	425
07:00 - 07:59	44%	246	48.21%	269	7.71%	43	558
08:00 - 08:59	46%	301	44.60%	293	9.59%	63	657
09:00 - 09:59	47%	285	45.38%	275	7.59%	46	606
10:00 - 10:59	37%	191	56.76%	294	6.37%	33	518
11:00 - 11:59	42%	267	48.91%	314	9.50%	61	642
12:00 - 12:59	40%	375	53.89%	499	5.62%	52	926
13:00 - 13:59	40%	215	55.41%	297	4.48%	24	536
14:00 - 14:59	42%	246	50.60%	293	6.91%	40	579
15:00 - 15:59	41%	294	54.14%	392	5.25%	38	724
16:00 - 16:59	42%	263	51.51%	325	6.81%	43	631
17:00 - 17:59	43%	287	52.12%	344	4.39%	29	660
18:00 - 18:59	42%	253	51.25%	308	6.66%	40	601
Total	43%		51%		7%		

• Porcentaje de la probabilidad por Giro en miércoles 8 de febrero

Tabla 26 Porcentaje de la probabilidad por Giro en miércoles 8 sentido Norte - Sur

		N(ORTE - SU	R	
HORA	% GIRO 1	GIRO 1	% GIRO 2	GIRO 2	TOTAL
06:00 - 06:59	92%	2002	8%	185	2187
07:00 - 07:59	91%	3516	9%	340	3856
08:00 - 08:59	91%	3255	9%	330	3585
09:00 - 09:59	87%	2739	13%	426	3165
10:00 - 10:59	86%	2692	14%	435	3127
11:00 - 11:59	84%	2481	16%	477	2958
12:00 - 12:59	83%	2333	17%	464	2797
13:00 - 13:59	83%	1847	17%	383	2230
14:00 - 14:59	85%	2543	15%	465	3008
15:00 - 15:59	89%	3172	11%	378	3550
16:00 - 16:59	85%	2284	15%	418	2702
17:00 - 17:59	82%	2545	18%	553	3098
18:00 - 18:59	82%	2121	18%	463	2584
Total	86%		14%		

Tabla 27

<u>Porcentaje de la probabilidad por Giro en miércoles 8 sentido Sur - Norte SUR - NORTE</u>

	SUR - NORTE									
HORA	% GIRO 3	GIRO 3	% GIRO 4	GIRO 4	TOTAL					
06:00 - 06:59	92%	1168	8%	101	1269					
07:00 - 07:59	92%	2074	8%	169	2243					
08:00 - 08:59	90%	2284	10%	256	2540					
09:00 - 09:59	88%	2038	12%	273	2311					
10:00 - 10:59	87%	2030	13%	313	2343					
11:00 - 11:59	87%	2287	13%	343	2630					
12:00 - 12:59	88%	2454	12%	336	2790					
13:00 - 13:59	88%	2525	12%	353	2878					
14:00 - 14:59	89%	2442	11%	294	2736					
15:00 - 15:59	83%	1598	17%	321	1919					
16:00 - 16:59	92%	2354	8%	216	2570					
17:00 - 17:59	92%	3116	8%	259	3375					
18:00 - 18:59	92%	3013	8%	250	3263					
Total	89%		11%							

Tabla 28 Porcentaje de la probabilidad por Giro en miércoles 8 sentido Oriente -Occidente

			ORIENTE	E - OCCI	DENTE		
HORA	% GIRO 5	GIRO 5	% GIRO 6	GIRO 6	% GIRO 7	GIRO 7	TOTAL
06:00 - 06:59	52%	134	8.88%	23	39.38%	102	259
07:00 - 07:59	42%	222	9.52%	50	48.19%	253	525
08:00 - 08:59	45%	252	9.09%	51	45.99%	258	561
09:00 - 09:59	41%	200	16.39%	79	42.12%	203	482
10:00 - 10:59	47%	256	16.18%	89	37.27%	205	550
11:00 - 11:59	48%	225	17.13%	80	34.69%	162	467
12:00 - 12:59	45%	247	24.31%	132	30.20%	164	543
13:00 - 13:59	50%	246	16.60%	82	33.60%	166	494
14:00 - 14:59	43%	223	19.26%	99	37.35%	192	514
15:00 - 15:59	46%	243	14.66%	78	39.66%	211	532
16:00 - 16:59	46%	204	12.56%	56	41.70%	186	446
17:00 - 17:59	47%	248	18.39%	98	35.08%	187	533
18:00 - 18:59	49%	169	17.00%	59	34.29%	119	347
Total	46%		15%		38%		

Tabla 29 Porcentaje de la probabilidad por Giro en miércoles 8 sentido Occidente -Oriente

			OCCIDEN	TE - OF	RIENTE		
HORA	% GIRO 8	GIRO 8	% GIRO 9	GIRO 9	% GIRO 10	GIRO 10	TOTAL
06:00 - 06:59	41%	154	53.68%	204	5.79%	22	380
07:00 - 07:59	45%	252	48.23%	273	7.24%	41	566
08:00 - 08:59	48%	296	44.84%	278	7.42%	46	620
09:00 - 09:59	42%	223	51.03%	272	7.13%	38	533
10:00 - 10:59	46%	264	46.68%	267	7.17%	41	572
11:00 - 11:59	40%	223	7.97%	44	51.63%	285	552
12:00 - 12:59	45%	316	17.46%	124	38.03%	270	710
13:00 - 13:59	41%	266	51.63%	332	7.00%	45	643
14:00 - 14:59	39%	232	54.65%	329	6.81%	41	602
15:00 - 15:59	47%	240	45.44%	234	7.96%	41	515
16:00 - 16:59	46%	268	45.56%	267	8.70%	51	586
17:00 - 17:59	42%	261	52.74%	327	5.16%	32	620
18:00 - 18:59	42%	219	54.65%	288	3.80%	20	527
Total	43%		44%		13%		

[•] Promedio estadístico del uso de cada giro dentro de la intersección

Tabla 30 Promedio estadístico de los 10 Giros que comprenden la intersección

1 Tomcu	Tomedio estadistico de los 10 offos que comprenden la interseccion									
GIRO	GIRO	GIRO	GIRO	GIRO	GIRO	GIRO	GIRO	GIRO	GIRO	
1	2	3	4	5	6	7	8	9	10	
86%	14%	89%	11%	47%	15%	38%	43%	48%	8%	

3.6.2 Semana tipo para 2015

Estos porcentajes son aplicados al volumen total de una semana promedio del mes de febrero del 2015 ya que ese fue el mes en el que se hicieron los aforos vehiculares.

Tabla 31 Volumen de semana tipo, febrero 2015, sentido Norte — Sur carril derecho

Volumen de ser	ուսուս ալ	oo, icor	CIU 201.	o, sciini	10 1 101 11	Dui	arrii uci
PROMEDIOS DIARIOS	D	L	M	Mi	J	V	S
00:00 - 00:59	302	61	126	120	146	184	401
01:00 - 01:59	219	30	59	62	79	119	307
02:00 - 02:59	201	23	51	42	59	71	248
03:00 - 03:59	154	30	56	56	70	74	185
04:00 - 04:59	92	57	121	127	130	123	128
05:00 - 05:59	129	134	487	519	510	509	196
06:00 - 06:59	238	687	1114	1308	1286	1259	514
07:00 - 07:59	486	910	1310	1593	1509	1633	1200
08:00 - 08:59	830	883	1254	1465	1499	1516	1240
09:00 - 09:59	991	886	1333	1539	1567	1528	1317
10:00 - 10:59	1180	969	1386	1602	1598	1642	1385
11:00 - 11:59	1229	985	1405	1584	1499	1654	1443
12:00 - 12:59	1234	942	1355	1506	1459	1531	1483
13:00 - 13:59	1176	876	1306	1422	1447	1535	1376
14:00 - 14:59	1088	874	1385	1457	1524	1614	1236
15:00 - 15:59	834	970	1393	1546	1569	1660	1260
16:00 - 16:59	779	937	1382	1530	1532	1600	1165
17:00 - 17:59	739	905	1307	1464	1482	1599	1061
18:00 - 18:59	711	807	1114	1282	1254	1366	1028
19:00 - 19:59	717	692	987	1114	1132	1271	1028
20:00 - 20:59	584	575	804	900	910	1123	917
21:00 - 21:59	445	431	572	683	700	973	762
22:00 - 22:59	301	271	352	389	438	676	587
23:00 - 23:59	143	169	215	252	286	519	374
Total	14801	14101	20872	23561	23683	25776	20837

Tabla 32 Volumen de semana tipo, febrero 2015, sentido Norte — Sur carril central

Volumen de ser	nana tip	<u>ıana tipo, febrero 2015, sentido Norte – Sur carril (</u>							
PROMEDIOS	D	L	M	Mi	J	V	S		
DIARIOS	205	C 0	00	00	104	151	250		
00:00 - 00:59	205	68	98	90	124	151	259		
01:00 - 01:59	155	43	61	54	66	84	189		
02:00 - 02:59	147	30	40	41	51	60	149		
03:00 - 03:59	94	32	70	55	67	80	122		
04:00 - 04:59	81	72	132	132	133	148	141		
05:00 - 05:59	120	209	567	628	613	612	195		
06:00 - 06:59	282	1166	1339	1624	1602	1563	618		
07:00 - 07:59	384	1406	1589	1959	1862	1978	1444		
08:00 - 08:59	830	1429	1479	1768	1829	1884	1564		
09:00 - 09:59	991	1309	1444	1706	1775	1760	1440		
10:00 - 10:59	1180	1367	1471	1729	1715	1814	1472		
11:00 - 11:59	1229	1320	1379	1530	1524	1707	1457		
12:00 - 12:59	1234	1166	1245	1400	1403	1487	1401		
13:00 - 13:59	1176	1046	1181	1280	1351	1405	1250		
14:00 - 14:59	401	1119	1298	1439	1448	1515	1085		
15:00 - 15:59	681	1250	946	1495	1550	1636	853		
16:00 - 16:59	697	1174	833	1532	1164	1542	965		
17:00 - 17:59	651	1176	876	1314	1432	1558	701		
18:00 - 18:59	700	884	935	975	1187	1251	775		
19:00 - 19:59	703	842	848	954	983	1115	917		
20:00 - 20:59	598	643	684	754	797	1005	867		
21:00 - 21:59	429	485	467	549	568	794	737		
22:00 - 22:59	271	322	290	320	372	519	496		
23:00 - 23:59	139	187	174	208	261	369	300		
Total	13377	18746	19444	23531	23875	26036	19394		

Tabla 33 Volumen de semana tipo, febrero 2015, sentido Sur — Norte carril derecho

volumen de ser	nana uj	90, tebr	ero 201:	s, senuc	10 Sur –	Norte (carrii der
PROMEDIOS DIARIOS	D	L	M	Mi	J	V	S
00:00 - 00:59	344	105	138	129	176	221	448
01:00 - 01:59	262	49	68	69	93	158	342
02:00 - 02:59	230	31	43	62	77	100	310
03:00 - 03:59	165	30	50	50	63	62	212
04:00 - 04:59	103	55	95	96	95	93	144
05:00 - 05:59	99	145	343	344	347	356	157
06:00 - 06:59	201	586	830	909	909	884	403
07:00 - 07:59	391	1037	1157	1357	1284	1338	754
08:00 - 08:59	759	1080	1255	1482	1495	1504	1141
09:00 - 09:59	900	1229	1319	1581	1570	1584	1218
10:00 - 10:59	1125	1254	1369	1573	1558	1607	1317
11:00 - 11:59	1214	1287	1396	1607	1474	1605	1396
12:00 - 12:59	1302	1306	1473	1666	1555	1628	1471
13:00 - 13:59	1348	1290	1463	1590	1631	1647	1465
14:00 - 14:59	1096	1244	1419	1521	1578	1657	1243
15:00 - 15:59	781	1269	1406	1566	1584	1691	1225
16:00 - 16:59	778	1276	1438	1538	1611	1713	1206
17:00 - 17:59	817	1313	1441	1656	1689	1712	1204
18:00 - 18:59	770	1352	1458	1738	1740	1644	1134
19:00 - 19:59	763	1355	1364	1623	1634	1720	1063
20:00 - 20:59	648	1178	1086	1220	1242	1326	889
21:00 - 21:59	428	718	713	845	855	1049	708
22:00 - 22:59	290	441	444	550	560	743	597
23:00 - 23:59	188	256	246	330	366	573	455
Total	14999	19888	22010	25098	25184	26614	20499

Tabla 34 Volumen de semana tipo, febrero 2015, sentido Sur — Norte carril central

Volumen de ser	nana tipo, febrero 2015, sentido Sur – Norte ca							
PROMEDIOS	D	L	M	Mi	J	V	S	
DIARIOS	212	02	100	112	120	216	41.7	
00:00 - 00:59	312	82	108	113	139	216	415	
01:00 - 01:59	264	35	51	50	86	135	356	
02:00 - 02:59	249	25	33	38	58	73	321	
03:00 - 03:59	145	22	29	30	44	49	183	
04:00 - 04:59	79	38	62	57	65	65	96	
05:00 - 05:59	77	105	209	219	233	235	132	
06:00 - 06:59	142	427	510	574	594	608	275	
07:00 - 07:59	183	665	701	844	825	839	491	
08:00 - 08:59	759	734	737	860	967	917	748	
09:00 - 09:59	900	704	737	862	905	920	738	
10:00 - 10:59	1125	697	763	906	934	916	803	
11:00 - 11:59	1214	777	924	975	964	1063	931	
12:00 - 12:59	1302	902	1018	1120	1139	1213	1009	
13:00 - 13:59	1348	944	1041	1176	1183	1255	1116	
14:00 - 14:59	600	870	954	1071	1067	1136	958	
15:00 - 15:59	585	866	1004	1115	1166	1273	931	
16:00 - 16:59	578	895	1093	1171	1209	1203	956	
17:00 - 17:59	648	1097	1236	1399	1381	1289	1020	
18:00 - 18:59	570	1188	1250	1486	1470	1244	906	
19:00 - 19:59	585	1126	1126	1334	1343	1331	829	
20:00 - 20:59	517	1026	932	1062	1079	1116	688	
21:00 - 21:59	370	665	610	717	751	893	601	
22:00 - 22:59	247	366	354	447	473	645	495	
23:00 - 23:59	140	193	207	358	468	660	520	
Total	12939	14449	15684	17983	18539	19291	15514	

Tabla 35 Volumen de semana tipo, febrero 2015, sentido Oriente-Occidente

Volumen de sei	mana t	ipo, fel	brero 2	2015, s	entido	Orient	te-Occide
PROMEDIOS	D	L	M	Mi	J	V	S
DIARIOS							
00:00 - 00:59	44	13	27	21	25	25	55
01:00 - 01:59	34	8	8	11	10	21	40
02:00 - 02:59	33	4	9	6	8	15	31
03:00 - 03:59	20	6	13	11	10	11	27
04:00 - 04:59	14	14	20	22	24	21	19
05:00 - 05:59	17	28	147	142	144	137	47
06:00 - 06:59	53	313	428	436	463	467	135
07:00 - 07:59	129	474	580	650	598	666	327
08:00 - 08:59	164	503	600	728	762	820	389
09:00 - 09:59	244	492	562	660	655	677	445
10:00 - 10:59	295	482	595	703	641	689	501
11:00 - 11:59	312	497	538	628	592	653	527
12:00 - 12:59	309	523	590	642	680	687	549
13:00 - 13:59	276	465	549	611	657	668	467
14:00 - 14:59	220	478	555	535	687	679	387
15:00 - 15:59	191	521	564	641	649	717	375
16:00 - 16:59	196	453	516	613	612	667	328
17:00 - 17:59	193	480	506	578	563	617	286
18:00 - 18:59	202	392	392	474	463	480	304
19:00 - 19:59	180	297	302	333	338	369	246
20:00 - 20:59	128	214	222	247	259	277	207
21:00 - 21:59	81	170	143	166	181	217	146
22:00 - 22:59	58	83	87	134	107	143	106
23:00 - 23:59	35	44	43	49	54	80	66
Total	3429	6955	7993	9039	9179	9799	6006

3.6.3 Aportación de aforos del año 2015 para cada uno de los giros analizados

Para determinar la cantidad de vehículos que en el 2015 utilizaron los giros que se observaron en la Figura 20, se sumaron los conteos de los carriles que intervienen en el giro y se multiplicó por el promedio del porcentaje obtenido en la Tabla 30. Por ejemplo: para los conteos tomados del Giro 1, intervienen los carriles derecho y central del sentido Norte – Sur (Tabla 31 y Tabla 30), los cuales son sumados y multiplicados

por el porcentaje probabilístico de giro, en este caso es el 86% del total, los resultados de cada uno de los giros se muestran en las siguientes tablas.

Tabla 36 Volumen probabilístico del Giro 1

volumen proba	Volumen probabilistico del Giro 1 Volumen Probabilistico del Giro 1									
		PE	RÍODO FI	EB-15						
	D	L	M	Mi	J	V	S			
00:00 - 00:59	438	111	193	182	233	289	570			
01:00 - 01:59	323	63	103	100	125	175	428			
02:00 - 02:59	301	46	79	71	95	113	342			
03:00 - 03:59	214	53	108	96	118	133	264			
04:00 - 04:59	149	111	218	223	227	234	231			
05:00 - 05:59	215	296	910	990	969	968	338			
06:00 - 06:59	449	1600	2117	2531	2493	2435	977			
07:00 - 07:59	750	2000	2502	3066	2909	3117	2282			
08:00 - 08:59	1432	1996	2360	2790	2873	2935	2421			
09:00 - 09:59	1710	1895	2396	2800	2885	2839	2380			
10:00 - 10:59	2038	2017	2466	2875	2860	2984	2466			
11:00 - 11:59	2122	1990	2403	2688	2609	2901	2503			
12:00 - 12:59	2131	1820	2245	2509	2470	2605	2490			
13:00 - 13:59	2030	1659	2147	2332	2416	2538	2267			
14:00 - 14:59	1285	1720	2316	2500	2566	2701	2003			
15:00 - 15:59	1308	1917	2019	2625	2692	2845	1824			
16:00 - 16:59	1274	1823	1912	2642	2327	2712	1839			
17:00 - 17:59	1200	1796	1885	2397	2515	2725	1520			
18:00 - 18:59	1218	1460	1768	1948	2107	2259	1556			
19:00 - 19:59	1226	1324	1584	1785	1826	2060	1679			
20:00 - 20:59	1020	1051	1285	1428	1473	1837	1540			
21:00 - 21:59	754	791	897	1063	1095	1525	1294			
22:00 - 22:59	493	512	554	612	699	1031	935			
23:00 - 23:59	243	307	336	397	472	767	582			
Total	24325	28355	34803	40652	41055	44727	34730			

Tabla 37 Volumen probabilístico del Giro 2

	Vo	olumen Pro	obabilístic	o del Giro	2		
-		PER	ÍODO FEI	3-15			
	D	L	M	Mi	J	${f v}$	\mathbf{S}
00:00 - 00:59	41	8	17	16	20	25	55
01:00 - 01:59	30	4	8	8	11	16	42
02:00 - 02:59	28	3	7	6	8	10	34
03:00 - 03:59	21	4	8	8	10	10	25
04:00 - 04:59	13	8	17	17	18	17	17
05:00 - 05:59	18	18	67	71	70	70	27
06:00 - 06:59	33	94	152	179	176	172	70
07:00 - 07:59	66	124	179	218	206	223	164
08:00 - 08:59	113	121	171	200	205	207	170
09:00 - 09:59	135	121	182	210	214	209	180
10:00 - 10:59	161	133	189	219	219	225	189
11:00 - 11:59	168	135	192	217	205	226	197
12:00 - 12:59	169	129	185	206	200	209	203
13:00 - 13:59	161	120	179	194	198	210	188
14:00 - 14:59	149	119	189	199	208	221	169
15:00 - 15:59	114	133	190	211	215	227	172
16:00 - 16:59	107	128	189	209	209	219	159
17:00 - 17:59	101	124	179	200	203	219	145
18:00 - 18:59	97	110	152	175	172	187	140
19:00 - 19:59	98	95	135	152	155	174	141
20:00 - 20:59	80	79	110	123	124	153	125
21:00 - 21:59	61	59	78	93	96	133	104
22:00 - 22:59	41	37	48	53	60	92	80
23:00 - 23:59	20	23	29	34	39	71	51
Total	2024	1928	2854	3222	3238	3524	2849

Tabla 38 Volumen probabilístico del Giro 3

<u> </u>		olumen Pro	obabilístic	o del Giro	3		
		PER	ÍODO FEI	3-15			
	D	L	M	Mi	J	V	\mathbf{S}
00:00 - 00:59	582	166	218	214	279	388	767
01:00 - 01:59	467	75	105	106	159	259	620
02:00 - 02:59	426	50	68	88	119	153	560
03:00 - 03:59	275	46	69	71	95	98	350
04:00 - 04:59	161	83	139	136	142	140	213
05:00 - 05:59	156	222	490	500	515	525	257
06:00 - 06:59	305	901	1190	1317	1335	1325	603
07:00 - 07:59	510	1512	1650	1955	1874	1934	1106
08:00 - 08:59	1348	1611	1769	2081	2188	2151	1678
09:00 - 09:59	1600	1718	1826	2170	2199	2225	1737
10:00 - 10:59	1998	1733	1894	2202	2213	2242	1883
11:00 - 11:59	2158	1834	2061	2294	2166	2370	2067
12:00 - 12:59	2314	1962	2213	2475	2393	2523	2203
13:00 - 13:59	2395	1984	2224	2457	2500	2578	2293
14:00 - 14:59	1507	1879	2108	2303	2350	2482	1955
15:00 - 15:59	1214	1897	2140	2381	2444	2633	1916
16:00 - 16:59	1204	1929	2248	2407	2505	2590	1921
17:00 - 17:59	1301	2141	2377	2714	2727	2666	1975
18:00 - 18:59	1190	2257	2406	2864	2852	2565	1812
19:00 - 19:59	1198	2204	2212	2627	2644	2711	1681
20:00 - 20:59	1035	1958	1792	2027	2062	2169	1401
21:00 - 21:59	708	1228	1176	1388	1427	1725	1163
22:00 - 22:59	477	717	709	886	918	1233	970
23:00 - 23:59	291	399	402	611	741	1096	866
Total	24821	30506	33489	38275	38846	40783	31996

Tabla 39 Volumen probabilístico del Giro 4

voidinen probak		olumen Pro	obabilístic	o del Giro	4		
-		PER	ÍODO FEI	3-15			
	D	L	M	Mi	J	${f v}$	\mathbf{S}
00:00 - 00:59	38	12	15	14	20	25	50
01:00 - 01:59	29	6	8	8	10	18	38
02:00 - 02:59	26	3	5	7	9	11	35
03:00 - 03:59	18	3	6	6	7	7	24
04:00 - 04:59	11	6	11	11	11	10	16
05:00 - 05:59	11	16	38	38	39	40	18
06:00 - 06:59	22	65	93	101	101	99	45
07:00 - 07:59	44	116	129	151	143	149	84
08:00 - 08:59	85	120	140	165	167	168	127
09:00 - 09:59	100	137	147	176	175	177	136
10:00 - 10:59	125	140	153	175	174	179	147
11:00 - 11:59	135	144	156	179	164	179	156
12:00 - 12:59	145	146	164	186	173	182	164
13:00 - 13:59	150	144	163	177	182	184	163
14:00 - 14:59	122	139	158	170	176	185	139
15:00 - 15:59	87	142	157	175	177	189	137
16:00 - 16:59	87	142	160	172	180	191	135
17:00 - 17:59	91	146	161	185	188	191	134
18:00 - 18:59	86	151	163	194	194	183	127
19:00 - 19:59	85	151	152	181	182	192	119
20:00 - 20:59	72	131	121	136	139	148	99
21:00 - 21:59	48	80	80	94	95	117	79
22:00 - 22:59	32	49	49	61	62	83	67
23:00 - 23:59	21	29	27	37	41	64	51
Total	1673	2219	2455	2800	2809	2969	2287

Tabla 40 Volumen probabilístico del Giro 5

volumen probabil		olumen Pro	obabilístic	o del Giro	5		
		PER	ÍODO FEI	3-15			
	D	L	M	Mi	J	V	\mathbf{S}
00:00 - 00:59	21	6	12	10	12	11	26
01:00 - 01:59	16	4	4	5	5	10	19
02:00 - 02:59	16	2	4	3	4	7	14
03:00 - 03:59	10	3	6	5	5	5	12
04:00 - 04:59	7	7	9	10	11	10	9
05:00 - 05:59	8	13	69	67	68	64	22
06:00 - 06:59	25	147	201	204	217	219	63
07:00 - 07:59	60	222	272	305	280	312	153
08:00 - 08:59	77	236	281	341	357	384	183
09:00 - 09:59	114	231	264	309	307	317	209
10:00 - 10:59	138	226	279	329	300	323	235
11:00 - 11:59	146	233	252	294	277	306	247
12:00 - 12:59	145	245	276	301	319	322	257
13:00 - 13:59	129	218	257	286	308	313	219
14:00 - 14:59	103	224	260	251	322	318	181
15:00 - 15:59	89	244	264	301	304	336	176
16:00 - 16:59	92	212	242	288	287	313	154
17:00 - 17:59	91	225	237	271	264	289	134
18:00 - 18:59	95	184	184	222	217	225	142
19:00 - 19:59	84	139	141	156	159	173	115
20:00 - 20:59	60	100	104	116	121	130	97
21:00 - 21:59	38	80	67	78	85	102	68
22:00 - 22:59	27	39	41	63	50	67	50
23:00 - 23:59	16	21	20	23	25	38	31
Total	1608	3261	3748	4238	4304	4595	2816

Tabla 41 Volumen probabilístico del Giro 6

Volumen Probabilístico del Giro 6											
		PER	ÍODO FEI	3-15							
PROMEDIOS DIARIOS	D	L	M	Mi	J	V	S				
00:00 - 00:59	7	2	4	3	4	4	8				
01:00 - 01:59	5	1	1	2	1	3	6				
02:00 - 02:59	5	1	1	1	1	2	5				
03:00 - 03:59	3	1	2	2	2	2	4				
04:00 - 04:59	2	2	3	3	4	3	3				
05:00 - 05:59	2	4	22	21	21	20	7				
06:00 - 06:59	8	47	64	65	69	70	20				
07:00 - 07:59	19	71	86	97	89	99	49				
08:00 - 08:59	24	75	89	108	113	122	58				
09:00 - 09:59	36	73	84	98	98	101	66				
10:00 - 10:59	44	72	89	105	95	103	75				
11:00 - 11:59	46	74	80	93	88	97	78				
12:00 - 12:59	46	78	88	96	101	102	82				
13:00 - 13:59	41	69	82	91	98	99	69				
14:00 - 14:59	33	71	83	80	102	101	58				
15:00 - 15:59	28	78	84	95	97	107	56				
16:00 - 16:59	29	67	77	91	91	99	49				
17:00 - 17:59	29	71	75	86	84	92	43				
18:00 - 18:59	30	58	58	71	69	71	45				
19:00 - 19:59	27	44	45	50	50	55	37				
20:00 - 20:59	19	32	33	37	39	41	31				
21:00 - 21:59	12	25	21	25	27	32	22				
22:00 - 22:59	9	12	13	20	16	21	16				
23:00 - 23:59	5	7	6	7	8	12	10				
Total	511	1036	1190	1346	1367	1459	894				

Tabla 42 Volumen probabilístico del Giro 7

volumen probabil		olumen Pro	babilístic	o del Giro	7		
		PER	ÍODO FEI	3-15			
PROMEDIOS DIARIOS	D	L	M	Mi	J	V	S
00:00 - 00:59	17	5	10	8	9	9	21
01:00 - 01:59	13	3	3	4	4	8	15
02:00 - 02:59	13	2	3	2	3	6	12
03:00 - 03:59	8	2	5	4	4	4	10
04:00 - 04:59	5	5	8	8	9	8	7
05:00 - 05:59	6	11	56	54	55	52	18
06:00 - 06:59	20	120	164	167	177	179	51
07:00 - 07:59	49	181	222	249	229	254	125
08:00 - 08:59	63	192	229	278	291	313	149
09:00 - 09:59	93	188	215	252	250	259	170
10:00 - 10:59	113	184	227	269	245	263	191
11:00 - 11:59	119	190	205	240	226	250	201
12:00 - 12:59	118	200	225	245	260	263	210
13:00 - 13:59	105	178	210	234	251	255	178
14:00 - 14:59	84	183	212	204	262	260	148
15:00 - 15:59	73	199	215	245	248	274	143
16:00 - 16:59	75	173	197	234	234	255	125
17:00 - 17:59	74	183	194	221	215	236	109
18:00 - 18:59	77	150	150	181	177	183	116
19:00 - 19:59	69	113	115	127	129	141	94
20:00 - 20:59	49	82	85	94	99	106	79
21:00 - 21:59	31	65	55	63	69	83	56
22:00 - 22:59	22	32	33	51	41	55	41
23:00 - 23:59	13	17	17	19	21	31	25
Total	1311	2658	3055	3455	3509	3746	2296

Tabla 43 Volumen probabilístico del Giro 8

volumen probabil		olumen Pro	obabilístic	o del Giro	8		
		PER	ÍODO FEI	3-15			
PROMEDIOS DIARIOS	D	L	M	Mi	J	V	S
00:00 - 00:59	19	6	11	9	11	11	24
01:00 - 01:59	15	4	3	5	4	9	17
02:00 - 02:59	14	2	4	3	3	6	13
03:00 - 03:59	9	3	6	5	4	5	11
04:00 - 04:59	6	6	9	9	10	9	8
05:00 - 05:59	7	12	64	61	62	59	20
06:00 - 06:59	23	135	185	188	200	202	58
07:00 - 07:59	56	205	250	281	258	287	141
08:00 - 08:59	71	217	259	314	329	354	168
09:00 - 09:59	105	212	243	285	283	292	192
10:00 - 10:59	127	208	257	303	277	297	216
11:00 - 11:59	135	215	232	271	255	282	227
12:00 - 12:59	133	226	254	277	293	296	237
13:00 - 13:59	119	201	237	264	284	288	201
14:00 - 14:59	95	206	240	231	296	293	167
15:00 - 15:59	82	225	243	277	280	310	162
16:00 - 16:59	85	195	223	265	264	288	142
17:00 - 17:59	83	207	218	249	243	266	123
18:00 - 18:59	87	169	169	205	200	207	131
19:00 - 19:59	78	128	130	144	146	159	106
20:00 - 20:59	55	92	96	106	112	119	89
21:00 - 21:59	35	73	62	72	78	94	63
22:00 - 22:59	25	36	38	58	46	62	46
23:00 - 23:59	15	19	19	21	23	35	28
Total	1480	3001	3450	3901	3962	4229	2592

Tabla 44 Volumen probabilístico del Giro 9

volumen probabil		olumen Pro	babilístic	o del Giro	9		
		PER	ÍODO FEI	3-15			
PROMEDIOS DIARIOS	D	L	M	Mi	J	V	S
00:00 - 00:59	21	6	13	10	12	12	27
01:00 - 01:59	17	4	4	5	5	10	19
02:00 - 02:59	16	2	4	3	4	7	15
03:00 - 03:59	10	3	6	5	5	5	13
04:00 - 04:59	7	7	10	11	12	10	9
05:00 - 05:59	8	14	71	69	70	66	23
06:00 - 06:59	26	152	207	211	224	226	65
07:00 - 07:59	62	230	281	315	290	322	158
08:00 - 08:59	80	244	291	352	369	397	188
09:00 - 09:59	118	238	272	320	317	328	215
10:00 - 10:59	143	234	288	340	310	333	243
11:00 - 11:59	151	241	260	304	287	316	255
12:00 - 12:59	150	253	285	311	329	333	266
13:00 - 13:59	133	225	266	296	318	323	226
14:00 - 14:59	106	231	269	259	333	329	187
15:00 - 15:59	92	252	273	310	314	347	182
16:00 - 16:59	95	219	250	297	296	323	159
17:00 - 17:59	94	232	245	280	273	299	138
18:00 - 18:59	98	190	190	230	224	232	147
19:00 - 19:59	87	144	146	161	164	179	119
20:00 - 20:59	62	103	107	119	125	134	100
21:00 - 21:59	39	82	69	80	88	105	70
22:00 - 22:59	28	40	42	65	52	69	51
23:00 - 23:59	17	21	21	24	26	39	32
Total	1660	3368	3870	4377	4445	4745	2908

Tabla 45 Volumen probabilístico del Giro 10

volumen probabil		lumen Pro	babilístic	o del Giro	10		
		PER	ÍODO FEI	3-15			
PROMEDIOS DIARIOS	D	L	M	Mi	J	V	S
00:00 - 00:59	4	1	2	2	2	2	5
01:00 - 01:59	3	1	1	1	1	2	3
02:00 - 02:59	3	0	1	1	1	1	3
03:00 - 03:59	2	1	1	1	1	1	2
04:00 - 04:59	1	1	2	2	2	2	2
05:00 - 05:59	1	2	12	12	12	12	4
06:00 - 06:59	4	26	36	37	39	39	11
07:00 - 07:59	11	40	49	55	50	56	28
08:00 - 08:59	14	42	51	61	64	69	33
09:00 - 09:59	21	41	47	56	55	57	37
10:00 - 10:59	25	41	50	59	54	58	42
11:00 - 11:59	26	42	45	53	50	55	44
12:00 - 12:59	26	44	50	54	57	58	46
13:00 - 13:59	23	39	46	51	55	56	39
14:00 - 14:59	19	40	47	45	58	57	33
15:00 - 15:59	16	44	47	54	55	60	32
16:00 - 16:59	17	38	43	52	52	56	28
17:00 - 17:59	16	40	43	49	47	52	24
18:00 - 18:59	17	33	33	40	39	40	26
19:00 - 19:59	15	25	25	28	28	31	21
20:00 - 20:59	11	18	19	21	22	23	17
21:00 - 21:59	7	14	12	14	15	18	12
22:00 - 22:59	5	7	7	11	9	12	9
23:00 - 23:59	3	4	4	4	5	7	6
Total	289	586	673	761	773	825	506

3.6.4 Cálculo de coeficientes de variación anual horario

Obtenidos los volúmenes de vehículos que utilizarán el sentido del giro analizado en el año 2015, se debe hacer una comparación entre los datos obtenidos en el 2017 para los días de conteos, con el fin de calcular el coeficiente de variación que hay entre un año y el otro, y así completar la semana tipo 2017. El cálculo no es más que la

división de los datos del 2017 versus los del 2015, como se muestra a continuación en la Figura 23.

Estos coeficientes se expandieron para las horas faltantes en la mañana y en la noche, tomando como dato de referencia el valor de la hora más cercana; es decir, para las 20h00 se tomó como coeficiente de variación el de las 18h00, asumiendo que no existe una variación considerable en el rango de las horas faltantes.

Una vez obtenidos los coeficientes de variación, estos se aplicaron para completar la semana típica de febrero del 2017 para cada uno de los giros, de la siguiente manera:

| PRIFECT | Comparison | Compar

Figura 23 Explicación de la determinación del coeficiente de variación

Como consecuencia de ese cálculo se tiene los siguientes resultados:

Tabla 46 Volumen de semana tipo, febrero 2015, Giro 1

v olumen de s	VOLUMEN DE TRÁFICO GALO PLAZA E ISAAC ALBENIZ FECHA: FEBREO DE 2017											
			GIRO	1								
DÍA	L	M	MI	J	V	S	D					
HORA	06/02/17	07/02/17	08/02/17	09/02/17	10/02/17	11/02/17	12/02/17					
00:00 - 00:59	155	173	144	239	297	584	449					
01:00 - 01:59	87	93	79	128	180	439	331					
02:00 - 02:59	63	70	56	97	116	351	308					
03:00 - 03:59	74	97	76	121	136	271	219					
04:00 - 04:59	154	196	177	233	240	237	153					
05:00 - 05:59	411	816	783	994	993	347	220					
06:00 - 06:59	2223	1899	2002	2557	2498	1002	461					
07:00 - 07:59	3297	3320	3516	3998	4283	3136	1031					
08:00 - 08:59	3084	2798	3255	3733	3813	3145	1861					
09:00 - 09:59	2912	2481	2739	3414	3359	2816	2024					
10:00 - 10:59	2413	2838	2692	3131	3266	2699	2231					
11:00 - 11:59	2716	2901	2481	3040	3379	2916	2472					
12:00 - 12:59	2388	2176	2333	2644	2789	2665	2281					
13:00 - 13:59	2103	1876	1847	2362	2481	2216	1985					
14:00 - 14:59	2372	2276	2543	2890	3042	2256	1448					
15:00 - 15:59	2965	2588	3172	3623	3828	2455	1760					
16:00 - 16:59	2363	2301	2284	2610	3041	2063	1429					
17:00 - 17:59	2735	2600	2545	3324	3601	2009	1585					
18:00 - 18:59	2424	2223	2121	2814	3016	2077	1627					
19:00 - 19:59	2197	1991	1943	2438	2750	2242	1637					
20:00 - 20:59	1746	1615	1554	1967	2452	2056	1362					
21:00 - 21:59	1312	1128	1158	1462	2037	1727	1007					
22:00 - 22:59	850	697	667	933	1377	1249	659					
23:00 - 23:59	509	422	432	630	1024	777	325					
Total	41554	39575	40598	49382	54001	41736	28866					

Tabla 47 Volumen de semana tipo, febrero 2015, Giro 2

Tabla 48 Volumen de semana tipo, febrero 2015, Giro 3

Tabla 49 Volumen de semana tipo, febrero 2015, Giro 4

Tabla 50 Volumen de semana tipo, febrero 2015, Giro 5

Tabla 51 Volumen de semana tipo, febrero 2015, Giro 6

Tabla 52 Volumen de semana tipo, febrero 2015, Giro 7

Tabla 53 Volumen de semana tipo, febrero 2015, Giro 8

Tabla 54 Volumen de semana tipo, febrero 2015, Giro 9

Tabla 55 Volumen de semana tipo, febrero 2015, Giro 10

3.6.5 Determinación del TPDA

Con los datos de las semanas tipo, tanto del 2015 y 2017, más el volumen anual del 2015 ya se puede determinar el TPDA aplicando los siguientes criterios:

- Conteos Totales del 2015. Es la suma de los volúmenes mensuales vehiculares del 2015 en el sentido de análisis multiplicado por el porcentaje de giro probabilístico.
- Total de Vehículos Febrero 2015. Responde a la suma de todos los vehículos de febrero 2015 multiplicado por el porcentaje de giro probabilístico.
- TPDA 2015. Es la división del volumen total anual para 365 días.
- MADT Febrero/15. Es la obtención del tráfico promedio mensual por medio de la división del volumen total mensual de febrero del 2015 para 28 días.
- Factor de Corrección. Es la división entre el TPDA 2015 y el MADT de febrero/15.
- ADT. El tráfico promedio diario al dividir el volumen total de la semana típica para 7 días.
- TPDA 2017. Se obtiene el tráfico promedio diario anual al multiplicar el ADT por el Factor de Corrección.

Tabla 56 TPDA 2017, Giros del 1 al 5

	TPDA 2017										
Giro	1	2	3	4	5						
Conteos Totales 2015	13,303,054	1,089,867	12,766,343	932,774	1,294,537						
Total Vehículos	1,010,816	81,128	953,084	68,848	98,276						
Febrero 2015											
TPDA 2015	36,447	2,986	34,976	2,556	3,547						
MADT Febrero/15	36,101	2,897	34,039	2,459	3,510						
Factor de Corrección	1.01	1.03	1.03	1.04	1.01						
ADT	42,245	6,872	37,825	4,674	3,226						
TPDA 2017	42,650	7,082	38,867	4,858	3,260						

Tabla 57 TPDA 2017, Giros del 6 al 10

TPDA 2017					
Giro	6	7	8	9	10
Conteos Totales 2015	411,113	1,055,344	1,191,555	1,336,875	232,564
Total Vehículos Febrero 2015	31,210	80,117	90,458	101,490	17,655
TPDA 2015	1,126	2,891	3,265	3,663	637
MADT Febrero/15	1,115	2,861	3,231	3,625	631
Factor de Corrección	1.01	1.01	1.01	1.01	1.01
ADT	1,024	2,550	3,736	4,254	556
TPDA 2017	1,034	2,576	3,775	4,299	562

Con estos valores calculados de TPDA 2017, se puede saber que:

- En el sentido Norte Sur tenemos un TPDA de 49,732 vehículos
- En el sentido Sur Norte tenemos un TPDA de 43,725 vehículos
- En el sentido Oriente Occidente tenemos un TPDA de 6,871 vehículos
- En el sentido Occidente Oriente tenemos un TPDA de 8,636 vehículos

Resumiendo todo lo calculado en la Figura 24

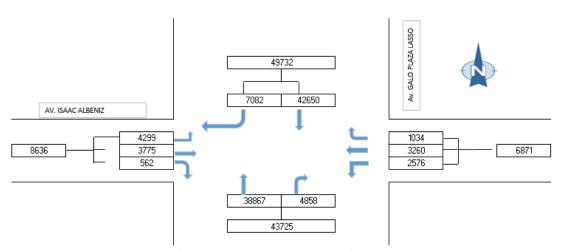


Figura 24 Valores de TPDA 2017

3.7 Variación diaria de tráfico

La Figura 25 y Figura 26 demuestra que, para toda la semana, el día con mayor demanda de tráfico es el viernes, para todos los sentidos. También se puede apreciar que en los sentidos N-S y S-N, hay una diferencia promedio entre los volúmenes diarios de tráfico de aproximadamente 6600 vehículos, y de 1800 en las direcciones O - OCC y OCC - O.



Figura 25 Variación diaria de tráfico sentidos N-S y S-N

Figura 26 Variación diaria de tráfico sentidos O-OCC y OCC-O

3.8 Composición vehicular

De los aforos vehiculares tomados por medio de cámaras de video, se analizó la composición del tráfico que interviene en la intersección, para un primer análisis, el conteo se lo clasificó en Autos, Camionetas/Vans, Buses, Camiones de dos ejes, Camiones de 3 o más ejes, Motos, y Biarticulados (Trole).

La Figura 27 y Figura 28 muestra en porcentajes el volumen de los diferentes tipos de vehículos que usan la intersección, y evidencia que la mayoría de usuarios son vehículos livianos, con estos valores se presenta la importancia que se tiene que dar a cada uno para las consideraciones de tráfico.

En ambas vías se representa casi el 90% de vehículos livianos, el 4% de buses para la Av. Galo Plaza y el 0.94% para la Isaac Albéniz; para camiones de dos ejes el 1.85% lo lleva la Galo Plaza y el 3.86% de su volumen la Isaac Albéniz: el 0.11% ocupan los

camiones de más de dos ejes, las motos el 6.67% y 5.56% para la Av. Galo Plaza y la Isaac Albéniz respectivamente, y por último el Trole aporta con el 0.12% del total del volumen para la Av. Galo Plaza.

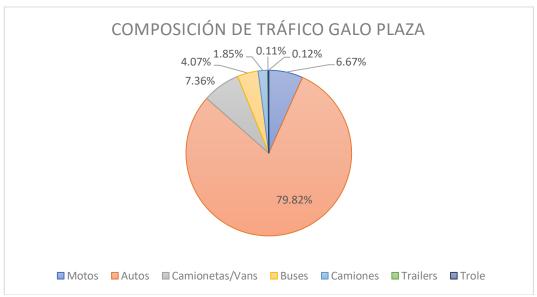


Figura 27 Composición del tráfico porcentual para la Av. Galo Plaza

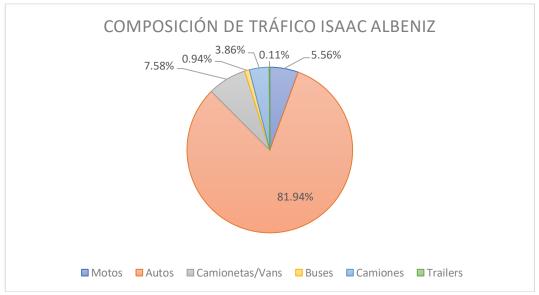


Figura 28 Composición del tráfico porcentual para la Isaac Albéniz

3.9 Volumen de la hora de diseño

Para el cálculo del DHV, se utilizó un K=0.091%, tomado de la Tabla 3; y utilizando la ecuación 6 se tiene los siguientes resultados:

Tabla 58 Volumen de la hora de diseño total

SENTIDO	# GIRO	DHV	TOTAL SENTIDO	% DE GIRO
		Con 0.091%		
		TPDA		
NORTE - SUR	1	3881	4526	85.76%
NURIE - SUR	2	645	4320	14.24%
SUR - NORTE	3	3537	3979	88.89%
SUK - NUKIE	4	442	3979	11.11%
ORIENTE -	5	297		47.45%
	6	94	625	15.05%
OXIDENTE	7	234		37.50%
OXIDENTE -	8	344		43.71%
ORIENTE -	9	391	786	49.78%
ORIENTE	10	51		6.51%

Se caracterizó por Livianos, Buses y Camiones, agrupando la composición porcentual del volumen de tráfico de la sección 3.8. y se llegó al siguiente resumen:

Tabla 59 Composición del tráfico en livianos, buses y camiones

-				
	# de Giro	LIVIANOS	BUSES	CAMIONES
	GIRO 1	95.84%	1.55%	2.61%
	GIRO2	88.30%	9.57%	2.13%
	GIRO 3	93.07%	4.69%	2.23%
	GIRO 4	98.21%	0.45%	1.34%
	GIRO 5	96.63%	0.37%	3.00%
	GIRO 6	87.23%	2.13%	10.64%
	GIRO 7	97.81%	0.31%	1.88%
	GIRO 8	97.96%	0.34%	1.70%
	GIRO 9	97.43%	0.32%	2.25%
	GIRO 10	93.48%	2.17%	4.35%

Usando la Tabla 59, y multiplicándolo por el DHV mostrado en la Tabla 58, se calculó el volumen de diseño para cada tipo de vehículo considerado, y el porcentaje que aporta para cada uno de los giros que integran la intersección, lo que está representado en la Tabla 60, Tabla 61 y Tabla 62.

Tabla 60 Volumen de la hora de diseño, para vehículos livianos

		· · · · · · · · · · · · · · · · · · ·		
# de Giro	DHV	Livianos	Total Livianos	% Giro
GIRO 1	3881	3720	4289	86.73%
GIRO2	645	569	4209	13.27%
GIRO 3	3537	3292	3726	88.35%
GIRO 4	442	434	3720	11.65%
GIRO 5	297	287		47.93%
GIRO 6	94	82	598	13.73%
GIRO 7	234	229		38.34%
GIRO 8	344	337		43.96%
GIRO 9	391	381	765	49.79%
GIRO 10	51	48		6.25%

Tabla 61 Volumen de la hora de diseño, para buses

# de Giro	DHV	Buses	Total Buses	% Giro
GIRO 1	3881	60		13.96%
GIRO2	645	372	432	86.04%
GIRO 3	3537	182	104	98.93%
GIRO 4	442	2	184	1.07%
GIRO 5	297	1		28.89%
GIRO 6	94	2	4	52.07%
GIRO 7	234	1		19.05%
GIRO 8	344	1		33.03%
GIRO 9	391	1	4	35.55%
GIRO 10	51	1		31.42%

Tabla 62 Volumen de la hora de diseño, para camiones

volumen de la nora de discho, para camiones				
# de Giro	DHV	Camiones	Total Camiones	% Giro
GIRO 1	3881	101	184	55.07%
GIRO2	645	83	164	44.93%
GIRO 3	3537	87	02	93.61%
GIRO 4	442	6	93	6.39%
GIRO 5	297	9		38.15%
GIRO 6	94	10	23	42.98%
GIRO 7	234	4		18.87%
GIRO 8	344	6		34.63%
GIRO 9	391	9	17	52.19%
GIRO 10	51	2		13.18%

3.10 Tráfico futuro y tráfico generado

Para la proyección del tráfico futuro se usarán las tasas de crecimiento vistos en la sección 3.2, específicamente en la Tabla 16.

Estos índices de crecimiento se aplicarán para el Volumen de la hora de diseño, vistos en el apartado anterior, para vehículos livianos, buses y camiones.

Como el objetivo del proyecto es mejorar el nivel de servicio, a causa de que la estación del Metro de Quito estará en el punto de análisis, la proyección del mismo tendrá que ser al momento en el cual las obras de construcción estén terminadas y entregadas, esto es en el año 2020.

Con los resultados que se obtendrán después de este ejercicio, proyectando para 3 años, tendremos el crecimiento de tráfico natural, que es el incremento de vehículos según lo que reflejan las estadísticas, sin considerar ningún proyecto que afectará al tráfico de la zona.

Pero, para ser más precisos, se debe analizar el tráfico generado, que es el que atraerá los proyectos a realizarse en la zona. A continuación, se presentará los datos de proyectos futuros, otorgados por la Secretaria de Movilidad del DMQ.

3.10.1 Proyecto: Albéniz Plaza

Este es un edificio que se comprende de departamentos, oficinas y locales comerciales, y está proyectado para atraer al siguiente volumen vehicular:

Tabla 63 Vehículos Provecto Albéniz Plaza

·			
Peatones			
Departamentos	207		
Oficinas	239		
Locales Comerciales	93		
Visitantes Oficinas	16		
Visitantes Departamentos	58		
Total	613		

 Vehículos Livianos. – Por ser un edificio residencial en su mayoría, es evidente que no intervendrá otro tipo de vehículo, y todo el volumen proyectado estará destinado para livianos. El total de vehículos que atraerá el proyecto es el mostrado en la Tabla 63.

El alcance del proyecto determinó el tráfico generado que tendrá en hora pico, y se lo observa en la Figura 29 y Figura 30.

VIVI	ENDA	
VIVIE	NDA (VLE)	
ENTRAN	30%	67
SALEN	70%	156
ENTRAN A	AL PROYEC	то
DESDE NORTE	40%	27
DESDE SUR	60%	40
SALEN DE	L PROYEC	го
HACIA NORTE	40%	62
HACIA SUR	60%	94

OFICINAS Y LOC	ALES COM	ERCIALE
OFICINAS +	COMERCIO	(VLE)
ENTRAN	70%	273
SALEN	30%	117
ENTRAN	AL PROYEC	то
DESDE NORTE	40%	109
DESDE SUR	60%	164
SALEN D	EL PROYEC	ТО
HACIA NORTE	40%	47
HACIA SUR	60%	70

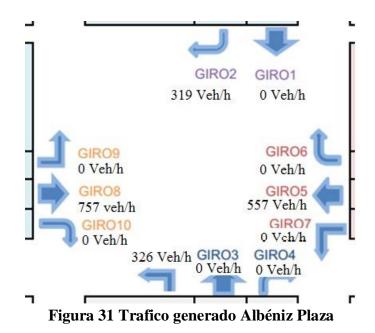

Figura 29 Distribución de porcentaje de viajes desde y hacia el proyecto Fuente: Secretaría de Movilidad del Distrito Metropolitano de Quito, Proyecto Albéniz Plaza

Figura 30 Porcentaje de vehículos que salen e ingresan del proyecto, vivienda y oficinas, en hora pico.

Fuente: Secretaría de Movilidad del Distrito Metropolitano de Quito, Proyecto Albéniz Plaza

En resumen, lo que a la intersección se refiere se tendrá un aumento de tráfico, además en el proyecto se propone la realización de un nuevo giro que va de sur a oriente. La Figura 31 muestra el volumen de vehículos que generará el proyecto a lo largo de una hora pico.

3.10.2 Proyecto: Centro Metropolitano de Convenciones de la Ciudad de Quito

El proyecto consiste en un conjunto de edificaciones, cuyas funciones es de proveer un centro para eventos de carácter nacional e internacional. El centro de convenciones se realizará en donde era la antigua terminal del aeropuerto de Quito, colindando con la Av. Amazonas, en la parte norte, y lo que será la prolongación de la Av. La Florida, como se muestra en la Figura 32.

El proyecto cuenta con 2400 plazas de estacionamiento, de las cuales 850 se ubican a nivel en el extremo sur y 1550 son subterráneas en el extremo norte.

Para el año 2020 estarían funcionando las 850 plazas de parqueo, con una ocupación promedio en condiciones normales del 70%. Para el 2025 se prevé el funcionamiento total del complejo y de todos los estacionamientos, con el mismo porcentaje de ocupación que en el 2020.

Según el estudio para el 2025, en la zona de la intersección de la Av. Galo Plaza e Isaac Albéniz, determinaron el tráfico generado por el centro de exposiciones, el cual se refleja en la Figura 33.

Figura 32 Ubicación del Proyecto Centro Metropolitano de Convenciones de la Ciudad de Quito

Fuente: Secretaría de Movilidad del Distrito Metropolitano de Quito, Proyecto Nuevo Centro de Convenciones Metropolitano de la Ciudad de Quito

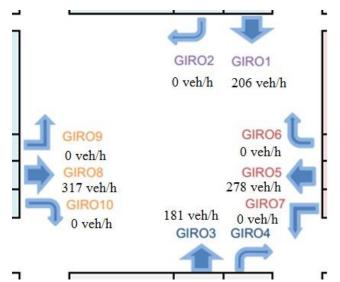


Figura 33 Tráfico Generado Proyecto Centro Metropolitano de Convenciones de la Ciudad de Quito

3.10.3 Proyecto: Anteproyecto del Corredor Labrador – Carapungo

Este proyecto tuvo como objetivo, conceptualizar integralmente el proyecto, definiendo las características operacionales y los requerimientos flota e infraestructura.

Esta consultoría se basó en analizar el trasporte público y las frecuencias que cada una de las flotas tiene en diferentes puntos de análisis.

Para el análisis de demanda de pasajeros para el 2017 es de 4637 pasajeros por hora y para el 2022 es de 4998 pasajeros hora.

3.10.4 Tráfico promedio diario anual futuro

Se presentan los valores de las proyecciones para el TPDA futuro para el año 2020, considerando el crecimiento de tráfico natural, más el crecimiento por tráfico generado.

Tabla 64 Volumen de diseño para vehículos livianos

	DHV LIVIANOS	LIVIANOS		
GIRO 1	4354	4379	5337	82.06%
GIRO2	723	957	5557	17.94%
GIRO 3	3968	3874	4361	88.83%
GIRO 4	496	487	4301	11.17%
GIRO 5	333	1157		76.80%
GIRO 6	106	92	1506	6.12%
GIRO 7	263	257		17.08%
GIRO 8	385	1452		75.10%
GIRO 9	439	428	1933	22.12%
GIRO 10	57	54		2.78%

Tabla 65 Volumen de diseño para buses

	re transcent proce			
	DHV BUSES	BUSES		
GIRO 1	4172	65	131	49.43%
GIRO2	693	66	131	50.57%
GIRO 3	3802	178	101	98.82%
GIRO 4	475	2	181	1.18%
GIRO 5	319	1		28.89%
GIRO 6	101	2	4	52.07%
GIRO 7	252	1		19.05%
GIRO 8	369	1		33.03%
GIRO 9	421	1	4	35.55%
GIRO 10	55	1		31.42%

Tabla 66 Volumen de diseño para camiones

	DHV CAMIONES	CAMIONES		
GIRO 1	4602	120	136	88.07%
GIRO2	764	16	130	11.93%
GIRO 3	4193	94	101	93.03%
GIRO 4	524	7	101	6.97%
GIRO 5	352	11		38.15%
GIRO 6	112	12	28	42.98%
GIRO 7	278	5		18.87%
GIRO 8	407	7		34.63%
GIRO 9	464	10	20	52.19%
GIRO 10	61	3		13.18%

3.11 Criterios del proyecto

Para calificar el servicio que brinda la intersección en materia de ingeniería de tránsito, se deben caracterizar tres parámetros, el tráfico de la intersección, la congestión y la seguridad vial con la que cuenta su infraestructura.

3.11.1 Tráfico

Para el análisis del tráfico de la intersección se evaluará la densidad, el flujo y el volumen, en base a los datos obtenidos.

La densidad está alrededor de 65.47 vehículos por kilómetro, como se ve en la Figura 34, y se entiende que es el número de vehículos que hay por kilómetro en la vía.

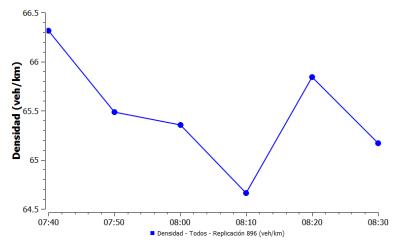


Figura 34 Densidad en condiciones actuales

El flujo permite a 5616 vehículos por hora, lo que significa que en promedio cada carril está liberando a 402 vehículos por hora, que es un valor muy bajo para la alta demanda que tiene el punto de análisis. En la Figura 35, se observa el comportamiento del flujo a lo largo de la hora de diseño.

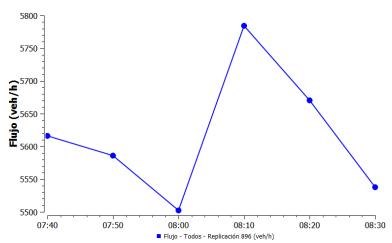


Figura 35 Flujo en condiciones actuales

La capacidad por carril, en este tipo de corredores redondean los 1000 PCUs/h, con velocidades de circulación de 50 km/h.

Por último, el volumen asignado a la intersección está dado por el volumen de la hora de diseño, en condiciones de hora pico. Bajo estos parámetros y analizando a vehículos livianos, buses y camiones, se observó, en la Tabla 58 que el corredor con más volumen es la Av. Galo Plaza, con volúmenes que redondean entre 4000 a 4500 vehículos, valor que es realmente representativo, evidenciando la gran cantidad de tráfico sobre el corredor principal.

3.11.2 Congestión

El cruce de varios ramales tienden a ser conflictivos al momento de sobrepasar la capacidad de tráfico para la cual fue diseñada, y más aún cuando los ciclos semafóricos no son capaces de solventar las largas colas generadas.

Para tratar la congestión se evaluará los tiempos de espera, la velocidad de servicio y las colas generadas.

Los tiempos de espera que tiene la condición actual de la intersección incrementan desde que empieza la hora pico hasta que termina, creando insatisfacción con el usuario.

Si bien la velocidad de circulación es de 50km/h, lo cierto es que en promedio, dentro de la intersección, los vehículos se desplazan a 7.66km/h, lo cual demuestra lo saturado que está el flujo, provocando congestión.

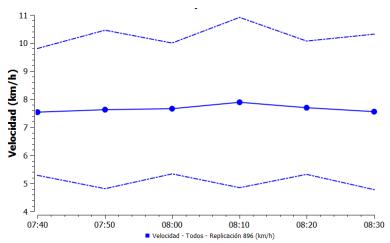


Figura 36 Promedio de velocidad de circulación

Por la mala distribución del tráfico por causa de los factores antes descritos, se generan colas que en la intersección son en promedio estadístico de 327 vehículos, actuando de la siguiente forma a lo largo del tiempo:

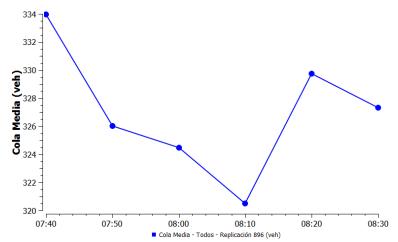


Figura 37 Cola media para condiciones actuales

3.11.3 Seguridad vial

Se evidencia la falta de señalización en el sector, contando con señalética horizontal desgastada y la vertical casi nula.

Los anchos de carril bordean a los 3.40m, lo cual está dentro de los parámetros.

Los ciclos para las fases semafóricas van cambiando, esto depende a la densidad de tráfico dada por la hora de circulación.

No existen áreas peatonales, ni condicionamientos de movilidad para el usuario.

En cuando a las condiciones de drenaje, históricamente, no tiene problema, solventando efectivamente las precipitaciones dadas.

Al tener una intersección con alta demanda, los niveles de ruido son altos, así como contaminación y malestar psicológico para el peatón y el conductor.

CAPÍTULO 4

MODELACIÓN DE LA INTERSECCIÓN

4.1 Introducción

Las capacidades de Aimsun para la modelación de la demanda de viajes se basa en la Metodología de Planificación de Cuatro Pasos. El modelo de las cuatro etapas se basa en viajes agregados por zona de trasporte. (TSS-Trasport, 2014)

Los cuatro pasos son:

- Generación / Atracción: La etapa 1 determina qué viajes se originan en cada zona y terminan en cada zona, basándose en la población y el uso de suelo de cada sector.
- Distribución: La etapa 2 coincide con los orígenes y destinos de los viajes.
- División Modal: La etapa 3 estima la opción de modo que los viajeros usan para estos viajes asignando viajes al trasporte público y privado.
- Asignación: La etapa de asignación final modela los viajes en la red de trasporte y evalúa los tiempos y costos de viaje.

Esta metodología se aplica de forma iterativa, ya que los resultados del paso cuatro proporcionan una mejor entrada para retroalimentar los pasos dos y tres. (TSS-Trasport, 2014)

Un flujo de trabajo típico para un proyecto Aimsun, según TSS (2014), puede incluir:

- Crear un nuevo proyecto con una platilla y configurar los tipos básicos de vehículos y carreteras.
- Importe una red de trasporte desde CAD, GIS, o desde otros modelos de trasporte.
- Edite la red para refinarla formando secciones de carreteras, configurando giros y cruces, creando señales de tráfico y redes de trasporte público, añadiendo objetos de visualización 2D y 3D.

- Edite los tipos de vehículo y de usuarios para segmentar la demanda de tráfico. La demanda puede ser un "estado de tráfico" simple basado en los conteos observados solamente o puede ser una demanda de tráfico basada en una matriz de demanda OD con una configuración de centroide para representar un esquema de zonificación ara la demanda en el modelo.
- Ejecute una simulación dinámica utilizando el simulador microscópico, el simulador mesoscópico, o el simulador híbrido.
- Si es necesario, los peatones pueden ser incluidos en un modelo de micro simulación con el simulador de peatones.
- El control de tráfico dinámico se puede simular con control de señal adaptativo para incluir sistemas de control de señales.
- La demanda de viajes puede modelarse para incluir la generación de viajes, distribución de viajes y la distribución modal.

Aimsun permite realizar evaluaciones de operaciones de tráfico de cualquier escala y complejidad. Algunas de las aplicaciones son:

- Evaluación y optimización de los esquemas de prioridad de señales de tránsito y de tránsito rápido de autobuses.
- Estudios de factibilidad para vehículos de alta ocupación y carriles de alta ocupación.
- Análisis de impacto del diseño de infraestructura como mejoramiento de corredores de carreteras o la construcción de las mismas.
- Análisis de impacto ambiental.
- Precios de peaje y carretera.
- Evaluación de las estrategias de gestión de la demanda de viajes.
- Optimización del plan de control de señal y evaluación de control adaptativo.
- Análisis de seguridad.
- Evaluación de políticas de velocidad.
- Análisis mediante metodología HCM.
- Gestión de la zona de estudio.

4.2 Condiciones actuales

Para las condiciones actuales se generó el modelamiento aplicando los volúmenes de tráfico calculados en el Capítulo 0, con el fin de tener evidencias para la comparación posterior, con los modelos de rediseño que se aplicarán a la intersección.

La representación de la intersección se la adecua para que se asemeje fielmente al funcionamiento actual, en las condiciones en las que se generó el conteo vehicular.

Figura 38 Representación de la intersección para el modelamiento en AIMSUN

Figura 39 Representación de giros y de flujo vehicular

Para este modelo se asignó una demanda de flujo volumétrico vehicular, generando estados de tráfico para los tipos de vehículos que se consideraron, livianos, buses y camiones.

Para la simulación se consideró la hora de máxima demanda vehicular, en condiciones de volumen de la hora de diseño.

Tabla 67 Resumen de resultados para condiciones actuales

Acsumen de resultados para condiciones actuales				
Serie Temporal	Valor	Unidades		
Cola Media - Todos	327	veh		
Vehículos Esperando para Entrar - Todos	9153	veh		
Densidad - Todos	65.47	veh/km		
Tiempo de Demora - Todos	487.69	seg/km		
Velocidad - Todos	7.66	km/h		
Velocidad - Car	7.67	km/h		
Velocidad - Truck	7.58	km/h		
Velocidad - Bus	7.6	km/h		
Flujo - Todos	5616	veh/h		

Se puede observar que las velocidades promedio para hora pico son extremadamente bajas, con un flujo vehicular muy reducido ya que circulan por la intersección solamente 5616 vehículos por hora.

El HCM (2000) establece que, para una intersección semafórica, es necesario analizar el tiempo de demora para otorgarle un nivel de servicio, definidas anteriormente en la Tabla 5. Aimsun analiza automáticamente el modelo y categoriza la intersección con su nivel de servicio.

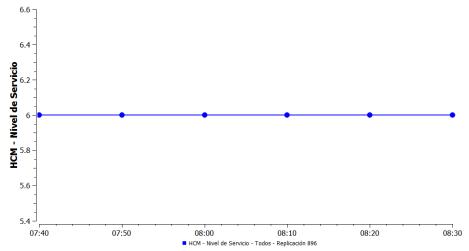


Figura 40 Nivel de servicio condiciones actuales

Level of Service A 1 B 2 C 3 D 4 E 5 E 6

Figura 41 Asignación de numeración para nivel de servicio

Por los resultados de la modelación se aprecia que la intersección tiene un nivel de servicio F, la cual es la más baja, y está en evidencia que necesita una intervención, ya que presenta dificultades para administrar el flujo vehicular, aun cuando no hay un incremento de tráfico por las razones que se expuso anteriormente.

4.3 Modelos propuestos para la solución

4.3.1 Alternativa 1

La primera alternativa para la solución de la intersección será una reforma geométrica a nivel, aumentando un Giro, como se había descrito en el proyecto "Albéniz Plaza", con el fin de descongestionar el Giro 4, solo este giro tiene un volumen de tráfico de 487 vehículos por hora, en condiciones de hora pico y sin considerar el tráfico generado por los proyectos mencionados, los vehículos que usan este sentido, algunos son para dar un giro en U y cambiar su dirección hacia el Giro 5; además se ampliará la longitud de carriles de espera para que abarquen más volumen de vehículos que quieran dar giros izquierdos, puesto que los usuarios del Giro 7 y 9 representan un volumen sumado de aproximada mente 700 vehículos hora. A su vez, al aumentar este Giro, también cambiará la fase semafórica, dando un espacio para que esta circulación se desenvuelva.

La fase semafórica para las modelaciones de la Alternativa 1 y 3 van a ser representadas aproximadamente por la fase que actualmente se utiliza en condiciones de hora pico. La Alternativa 2 se regirá por las condiciones planteadas por la Secretaría de Movilidad.

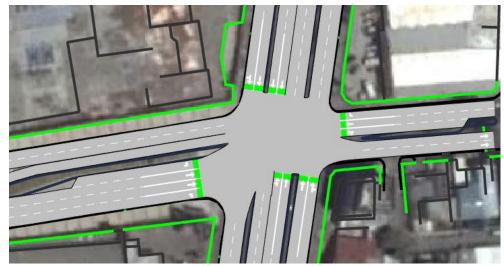


Figura 42 Alternativa 1

Figura 43 Simulación Alternativa 1

Los grupos semafóricos serán 5, representadas en las siguientes figuras:

Figura 44 Grupo Semafórico 1

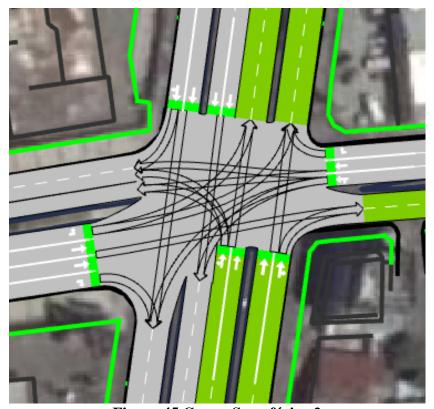


Figura 45 Grupo Semafórico 2

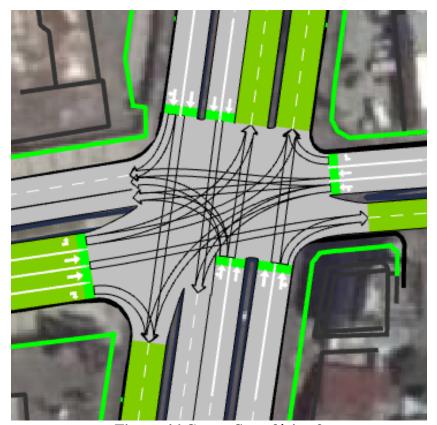


Figura 46 Grupo Semafórico 3

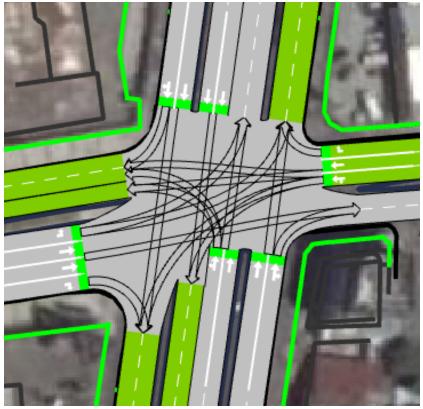


Figura 47 Grupo Semafórico 4

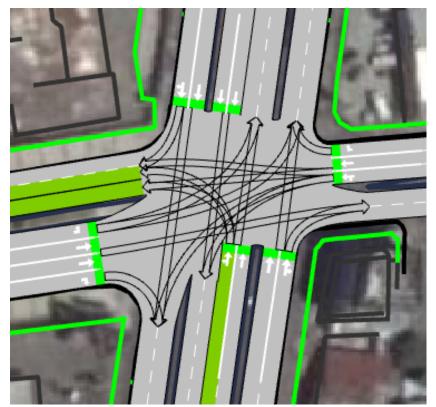


Figura 48 Grupo Semafórico 5

Los tiempos de los grupos semafóricos actuarán en los siguientes tiempos:

Figura 49 Tiempos para Grupos Semafóricos Alternativa 1

4.3.2 Alternativa 2

Esta opción se la acogió gracias a que la Secretaría de Movilidad del DMQ, realizó un anteproyecto en el corredor, desde El Labrador hasta Carapungo, con el fin de reestructurar las condiciones de diseño geométrico de la Av. Galo Plaza, para adaptar su infraestructura al uso de vehículos Biarticulados, los mismos que el Trole de Quito adquirió para solventar la gran demanda de usuarios que tienen diariamente.

Para esta alternativa, se propone que la mayor cantidad de flujo vehicular de livianos utilice un paso a desnivel propuesto, y que los buses biarticulados partan de la estación del Metro para incorporase desde la Isaac Albéniz, hacia la Galo Plaza, con carriles exclusivos.

Figura 50 Alternativa 2, Proyecto: Anteproyecto del Corredor Labrador – Carapungo

Fuente: Secretaría de Movilidad del Distrito Metropolitano de Quito, Proyecto Anteproyecto del

Figura 51 Simulación Alternativa 2

Como se mencionó anteriormente para este proyecto se acogió a los tiempos de fases semafóricas descritos en el mismo. A continuación, se representarán los grupos semafóricos con los que se trabajó:

Figura 52 Grupo Semafórico 1

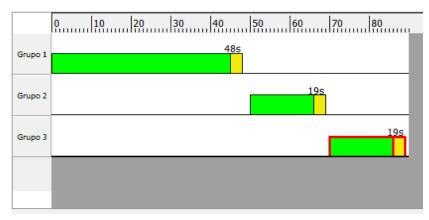


Figura 53 Grupo Semafórico 2

Figura 54 Grupo Semafórico 3

Y los tiempos para cada grupo son los siguientes:

	Tiempo de Inicio	Duración
Grupo 1	0	45
Grupo 2	50	16
Grupo 3	70	16

Figura 55 Tiempos para Grupos Semafóricos Alternativa 2

4.3.3 Alternativa 3

Como última alternativa, se plantea un paso a desnivel central, de dos carriles por sentido, sobre la Av. Galo Plaza; el aumento de un carril en la Av. Isaac Albéniz, en

sentido occidente – oriente, obteniendo así dos carriles de circulación a nivel de sur a norte y de norte a sur.

Esta alternativa procura captar la mayoría de flujo de tráfico dirigido de N-S y S-N, para reducir las colas y aumentar el flujo en la intersección, además al aumentar un carril en el sentido Occ-O, se beneficiarán los vehículos que pretendan seguir por la Albéniz, ya que la distribución se repartirá en dos carriles.

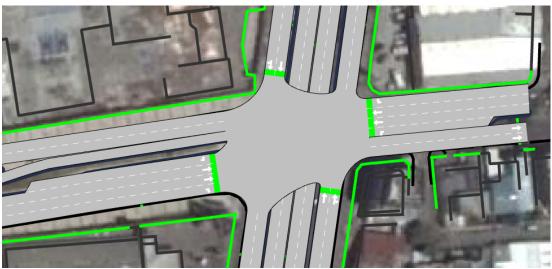


Figura 56 Alternativa 3

Figura 57 Simulación Alternativa 3

Los grupos semafóricos se los consideró de la siguiente forma:

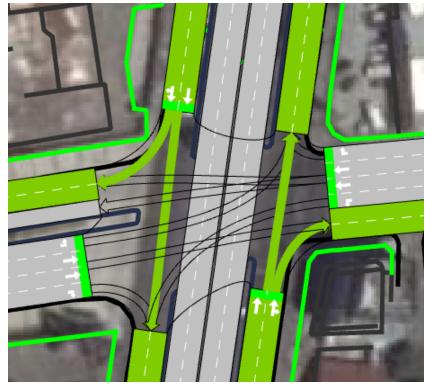


Figura 58 Grupo Semafórico 1

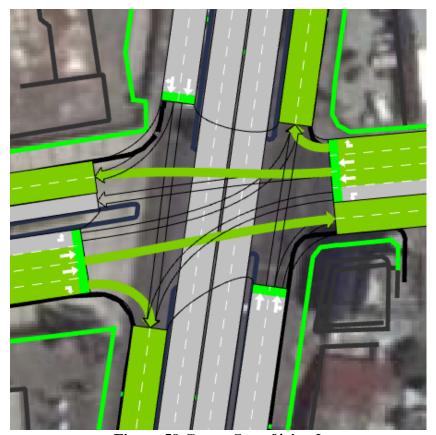


Figura 59 Grupo Semafórico 2

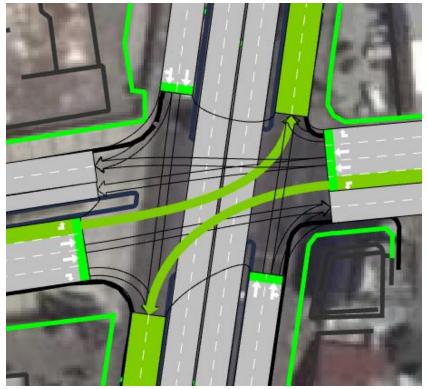


Figura 60 Grupo Semafórico 3

El siclo total de semaforización es de 131 segundo y se presenta de la siguiente forma:

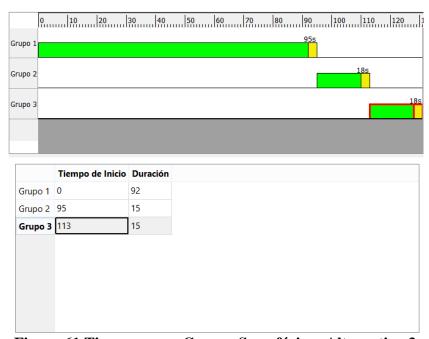


Figura 61 Tiempos para Grupos Semafóricos Alternativa 3

4.4 Resultados de la simulación

Para cada alternativa se generó un modelo, tal como se explicó en el apartado anterior, asignando la misma demanda para cada flujo de entrada, y asumiendo los mismos usuarios para la intersección, que, en este caso en particular, son vehículos livianos, buses y camiones. Las condiciones de modelación fueron para el volumen de la hora de diseño, y el comportamiento vehicular está dado por el flujo de la hora pico.

Aimsun arroja una serie de resultados para evaluar la modelación, de estos se ha escogido los más importantes para poder determinar cuál de las alternativas es la que beneficia de mejor manera a las condiciones que se tendrán a futuro. Los valores son la media estadística que se genera a lo largo de la hora de diseño, y se presentan en la Tabla 68.

- Cola Media. Es el valor de la cola de vehículos que se generan en la intersección; se evidencia como se reduce la cola media, comparando entre la alternativa 1 y 2 en un 70%, y entre la 1 y 3 en un 86%.
- Densidad. La densidad es la cantidad de vehículo por kilómetro, la que baja representativamente en la alternativa 3 con respecto a las 2 primeras, aproximadamente en un 50%. La Alternativa 2 aumenta la densidad vehícular, esto es debido a que sobre la Av. Galo Plaza existe solo un carril por sentido a nivel, para desplazar todo el flujo vehícular.

Tabla 68 Comparativa de resultados para las alternativas de diseño

Resultados Después de la Modelación					
Serie Temporal	Alternativa 1	Alternativa 2	Alternativa 3	Unidades	
Cola Media - Todos	364.99	104.68	52.76	veh	
Densidad - Todos	67.86	69.29	34.89	veh/km	
Flujo - Todos	4931	5247	10500	veh/h	
Flujo de Entrada -	4893	5239	10543	veh/h	
Todos Tiempo de Demora - Todos	621.64	446.81	87.16	seg/km	
Tiempo de Viaje - Todos	704.12	528.79	169.63	seg/km	
Tiempo Total de Viaje - Todos	432.58	372.28	202.71	h	
Vehículos Esperando para Entrar - Todos	18020	11293	958	veh	
Velocidad - Todos	6.51	7.56	31.44	km/h	

- Flujo. Es la cantidad de vehículos que circulan sobre la intersección en la hora de diseño, y se observa que la Alternativa 2 mejora con respecto a la 1 con 316 vehículos por hora, valor que no es el mejor, pero tampoco es despreciable; ahora si se compra con la Alternativa 3 que refleja un flujo promedio de 10500 veh/h, es más del doble del flujo vehicular el que aumenta, aportando una gran mejora para la intersección.
- Flujo de entrada. Es el conjunto de vehículos que están entrando por cada uno de los ramales, es de suponer que va a ser muy parecido al valor anterior, pues los vehículos partirán de cada una de las bifurcaciones para pasar por la intersección en si.
- Tiempo de demora. Es el tiempo en promedio que le toma a un vehículo recorrer un kilómetro. Para la alternativa 1, este tiempo es de 10 minutos; para la 2 es de 7 y para la 3 es de 1 minuto y medio, de nuevo la alternativa 3 da mejores resultados reduciendo en un 85% el tiempo de demora.
- Tiempo de viaje. Es el promedio del recorrido de los vehículos por kilómetros, se reduce en un 76% en la alternativa 3 con respecto a la 1.
- Vehículos esperando para entrar a la intersección. De 18000 vehículos esperando en promedio comprendiendo los dos corredores, en la alternativa 1, se deduce en 37% en la alternativa 2 y en un 94% en la alternativa 3.
- Velocidad. Es la velocidad con la que se desplazan los vehículos en la intersección, observando una mejora radical en la alternativa 3, con una velocidad promedio de 31.44 km/h.

Es evidente, por los resultados obtenidos que la mejor alternativa para su diseño es la 3, porque brinda, mejores tiempos de viaje, un flujo vehicular con condiciones muy favorables, y seguramente una experiencia para el usuario más satisfactoria.

Pero, además de analizar los datos promedios que nos da como resultado en la modelación, es bueno conocer si el nivel de servicio subió de categoría, o solo se ha logrado mejorar las características de la intersección.

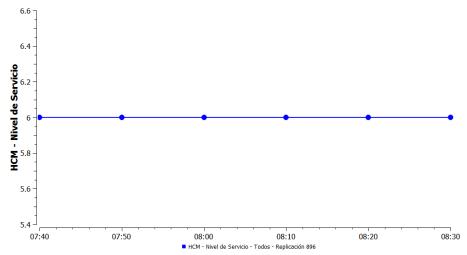


Figura 62 Nivel de servicio Alternativa 1

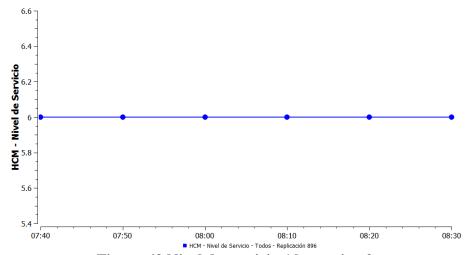


Figura 63 Nivel de servicio Alternativa 2

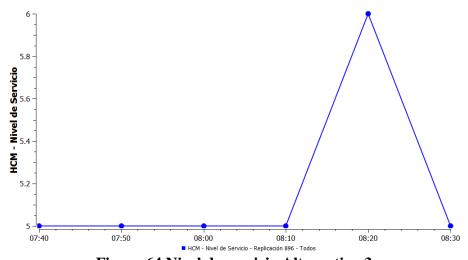


Figura 64 Nivel de servicio Alternativa 3

Con estos resultados, se observa que las primeras dos alternativas no mejoraron el nivel de servicio de la intersección manteniéndola en la categoría F; ahora si consideramos la alternativa 3, se aprecia que, a lo largo de la hora de diseño, en los primeros cuarenta minutos sube de categoría a un nivel E, para que luego, dentro de los últimos 20 minutos fluctúe entre E y F.

Ahora, si se considera que en condiciones de hora pico, la intersección, la mayor parte del tiempo permanece en un nivel E, quiere decir que a lo largo del día muy probablemente estará trabajando en niveles entre el D y E.

CAPÍTULO 5

DISEÑO GEOMÉTRICO

5.1 Generalidades

Consiste en realizar el diseño geométrico de la alternativa que mejores resultados aportó para las condiciones presentadas a lo largo del proyecto, esto es con el volumen de la hora de diseño, en condiciones de la hora pico.

Para determinar cómo se va a realizar el diseño geométrico es indispensable saber diferentes parámetros que se tendrán que usar y se detallarán en este capítulo; como anchos de vía, velocidad de diseño, etc., así como algunos parámetros para el diseño vertical.

En la reforma geométrica se ha considerado no cambiar los anchos de veredas, y solo trabajar con el espacio de vía que actualmente se dispone, que en forma global redondea los 32.17 metros de acho.

Por recomendación de la Secretaría de Movilidad del DMQ, por estar dentro del Distrito Metropolitano, y en un corredor donde la topografía es ondulada, se ha considerado un bombeo de 1.5%,

5.2 Anchos de vía

Al conocer cuáles son las condiciones que beneficia a la intersección, bajo todo el análisis que se ha explicado a lo largo del proyecto, se procede a la adaptación del modelo bajo condiciones de topografía real.

Con datos altimétricos y planimétricos se determina las distancias existentes que hay entre veredas y calzadas, ya que tales distancias reflejan la factibilidad para la distribución de carriles de la manera más adecuada.

Después del análisis se adoptan las siguientes secciones tipo:

SECCIÓN TIPO PASO DEPRIMIDO AV. GALO PLAZA Y AV. ISAAC ALBENIZ

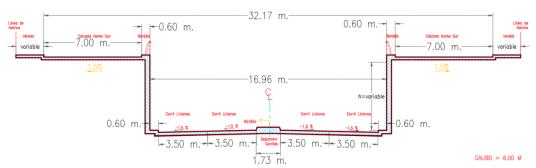


Figura 65 Sección tipo paso a desnivel

SECCIÓN TIPO AV. ISAAC ALBENIZ OCCIDENTE

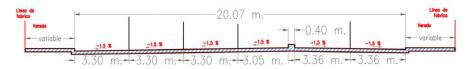


Figura 66 Sección tipo Isaac Albéniz

Para el caso de la Av. Isaac Albéniz en sentido Oriente, no se ha realizado ningún cambio a su geometría, por esta razón la sección tipo no se la ha elaborado.

5.3 Diseño vial

El elemento básico por donde se empieza a realizar el diseño de una vía es su eje, el cual se proyectará en horizontal y verticalmente.

Este eje deberá cumplir con normativa para su diseño horizontal y vertical, las que tienen como fin, proveer un diseño seguro, económico, confortable, adaptándose a las condiciones topográficas, para brindar un buen servicio a los usuarios, siempre y cuando se cumplan con lo estipulado en las mismas.

5.4 Velocidad de diseño

En el apartado 2.2.9.1, se explicó sobre este parámetro, y acorde con la normativa que rige dentro de la ciudad de Quito, (Ordenanza N° 3746, 2008), la velocidad será de 50 km/h.

5.5 Diseño vertical

Al ser una intersección, y verificar que no habrá curvas horizontales, se tendrá que detallar, cuáles son los parámetros a seguir para diseños verticales.

El AASHTO (2011), indica que para una velocidad de 50 km/h y terreno montañoso la pendiente longitudinal máxima deberá ser del 12%, se califica montañoso al diseño no por su topografía, si no por las condiciones de diseño por tener un paso deprimido.

		Metric						U.S. Customary									
Type of	,	Maxir			3 60 5	for Sp km/h		d		Max				6) for d (m)	Spec ph)	ified	
Terrain	30	40	50	60	70	80	90	100	20	25	30	35	40	45	50	55	60
Level	9	9	9	9	8	7	7	6	9	9	9	9	9	8	7	7	6
Rolling	12	12	11	10	9	8	8	7	1.2	12	11	10	10	9	8	8	7
Mountainous	14	13	(12)	12	11	10	10	9	14	13	12	12	12	11	10	10	9

Figura 67 Pendientes para colectores urbanos

Fuente: (AASHTO, A Policy on Geometric Design of Highways and Streets, 2011)

5.6 Curvas convexas

El AASHTO (2011), determina que la longitud vertical mínima para este tipo de curvas está dada por la siguiente fórmula:

$$L = \frac{A * S^2}{100 * (\sqrt{2h1} + \sqrt{2h2})^2}$$
 (13)

Donde:

- A. Es la diferencia algébrica de las pendientes
- S. Es la distancia de visibilidad de parada
- h1. La altura de visión del conductor
- h2. Altura del objeto

La distancia de visibilidad de parada dada por el AASHTO (2011), para una velocidad de 50 km/h, es de 65 m.

La altura h1, se tomará de las Normas de Diseño Geométrico de Carreteras (2003), que dice, para las condiciones de los vehículos en el país, la altura recomendada es de 1.15 m.

Para la altura h2, se asume un valor de 1.35 m, el cual es la altura de un vehículo liviano, con el fin de optimizar volúmenes de excavación.

Como resultado se tiene la siguiente ecuación:

$$L = \frac{A * S^2}{999} \tag{14}$$

Es importante mencionar, que según lo estipulado en las Normas de Diseño Geométrico de Carreteras (2003), para la velocidad de 50 km/h, el valor de K recomendado es de 7.

5.7 Curvas cóncavas

La ecuación para determinar las longitudes para este tipo de curvas está descrita de la siguiente manera. (AASHTO, 2011)

$$Lc = (2 * S) - \left(\frac{120 + 3.5 * S}{A}\right) \tag{15}$$

La nomenclatura es la misma que la sección 5.6.

Para tomar precaución y siempre velar por la calidad de servicio que la intersección otorgará al usuario, se debe considerar las longitudes mínimas permitidas, las cuales dependen de la velocidad de diseño.

$$Lmin = 0.6 * V \tag{16}$$

Con la ecuación 14, se determina que la longitud mínima de la curva vertical será de 30m.

Según las Normas de Diseño Geométrico de Carreteras (2003), el valor K recomendado para curvas cóncavas es de 10.

5.8 Paso deprimido

Está compuesto por dos carriles por sentido, de 3.50m cada uno, ancho suficiente para que el conductor de cualquier tipo de vehículo circule con comodidad; además cuenta con un parterre de 1.73, que tiene como objetivo dividir los sentidos de flujo para precautelar, alguna mala maniobra por parte del conductor.

Está considerado también, bordillos laterales de 0.60m de ancho, para que, si se da el caso, personal calificado pueda caminar libremente con el fin de dar mantenimiento a la calzada o sumideros sobre el paso deprimido; se considera un bombeo de 1.5% y un galibo máximo de 6.0 m, sin considerar el ancho de la estructura de la losa que estará a nivel para los diferentes giros considerados en el diseño.

En el diseño vertical, se cuenta con una pendiente que deprime el eje al -6.98%, pasando al 2.23% en la mitad del desnivel, y concluyendo con una pendiente de 7.35%, para salir con una gradiente del 0.52%. El paso deprimido cuenta con una longitud total de 310m, y el eje considerado para diseños verticales es de 380 m.

Las curvas convexas, tienen una longitud de 56.65 m y 59.92 m; las cóncavas llevan una longitud de 85.34 m y 70.0 m; parámetros que están dentro de normativa.

Los planos del diseño geométrico se encuentran al final de este documento en el Anexo: Planos.

5.9 Señalización

Para la realización de la señalización de la reforma geométrica se aplicaron las normas descritas en el apartado 2.2.9.4.

5.9.1 Señalización horizontal

Está compuesta por marcas y delineadores horizontales, que tienen como objetivo informar al usuario las condiciones en las que se encuentra, otorgar ordenes al conductor, y trasmitir la reglamentación usada.

Para este tipo de señalización tenemos líneas de color amarilla y blancas. Las líneas amarillas definen la separación del flujo de direcciones opuestas, restricciones y líneas de borde. Las líneas blancas separan flujos con la misma dirección, son bordes derechos, zonas de estacionamiento, etc.

Para el proyecto se utilizó los siguientes tipos de líneas:

5.9.1.1 Línea segmentada de separación de circulación opuesta (LG-1)

Es de color amarillo, se utilizan en calzadas bidireccionales para indicar donde se separan los flujos opuestos.

El ancho de esta señalización varía por la velocidad máxima, para el presente diseño se adoptó un ancho de 100mm.

Tabla 69 Relación señalización línea de separación de circulación opuesta segmentada

Velocidad máxima de la vía (km /h)	Ancho de la línea (mm)	Patrón (m)	Relación señalización brecha
Menor o igual a 50	100	12,00	3 - 9
Mayor a 50	150	12,00	3 - 9

Fuente: Norma INEN004-2:2011

5.9.1.2 Línea doble de barrera (LG-2)

Las líneas son dos líneas amarillas paralelas, de 100 mm de ancho y separadas por un espacio de 100 mm. Se utilizan en vías con doble sentido, donde la visibilidad es reducida en curvas o para impedir rebasamientos o giros.

5.9.1.3 *Línea interior de chevron (LG-3)*

Es para definir áreas neutrales donde no se permite la circulación de vehículos, el ancho de esta línea será de 600mm.

5.9.1.4 Líneas de separación de carril de circulación (LG-4)

Son las que ordenan el tráfico de igual sentido, asegurando que los vehículos utilicen el espacio asignado en el diseño del carril. Son líneas segmentadas con un ancho de línea de 100mm, longitud pintada de 3.0m y el espaciamiento será de 9.0m.

5.9.1.5 Línea de separación de carril continua (LG-5)

Se usan para impedir el cambio de carril, cuando el flujo vehicular se aproxima a una línea de pare, son de color blanco con un ancho de 100mm. Para vías principales las longitudes de estas serán de 30.0m y para secundarías de 20.0m.

5.9.1.6 Líneas de carriles en intersecciones (LG-6)

Estas líneas ayudan a facilitar la circulación de vehículos en giros con cierta dificultad dentro de una intersección, son de color blanco, con 1.0m pintado y 1.0m espaciado, con un ancho de 100mm.

5.9.1.7 *Línea de continuidad (LG-7)*

Se usan para indicar la porción asignada al tráfico que circula recto y donde la línea segmenta puede ser cruzada por otra. Tiene un ancho de 150mm, con líneas pintadas de 1.0m y espaciadas con 1.0m

5.9.1.8 Línea de borde de calzada (LG-8)

Indican donde se encuentra el borde de la calzada, se utilizan en pasos a desnivel y puentes, las líneas de borde son blanca, con un ancho de 100mm y se ubicarán en el borde de la vía.

5.9.1.9 Línea de contorno para chevron (LG-11)

Los chevrones son delineados por una línea de ancho de 100mm y espaciados entre las líneas interiores.

5.9.1.10 *L*íneas de pare (*LT-1*)

Es una línea continua de ancho, que para la velocidad del proyecto se adoptó un ancho de 400mm. Indica que los vehículos deben detenerse al aproximarse a esta.

5.9.1.11 *Línea de ceda el paso (LT-2)*

Indica la posición segura para que el auto frene, en caso de ser necesario. Es segmentada con 600mm de pintado y espaciamiento de 600mm, cuenta con un ancho de 400mm.

5.9.1.12 Línea de detención (LT-3)

Indica a los conductores donde detenerse, para percatarse, al momento de virar, del flujo vehicular. Es una línea segmentada de color blanco, con 600mm de largo y 200mm de ancho, espaciados entre si, con 600mm

5.9.1.13 Línea de cruce cebra (LT-4)

Indica la zona donde el peatón tiene derecho a cruzar, es la constitución de un grupo de bandas paralelas entre si con longitudes que varían entre 3.0 y 8.0 metros, con un ancho de 450mm.

5.9.1.14 Línea de cruce controlada por semáforos (LT-4B)

Estas líneas demarcan la zona de cruce de peatones cuando hay la existencia de un semáforo, son dos líneas blancas paralelas continuas con un ancho de 200mm, separadas entre si con 4.0m.

5.9.2 Flechas

Para las flechas se utilizó la norma INEN 004-1:2011, donde presenta las dimensiones a utilizarse, para velocidades menores o iguales a 50km/h.

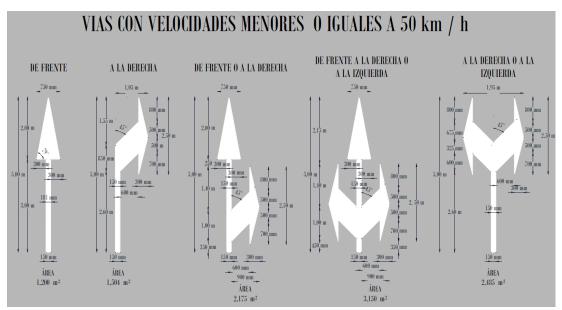
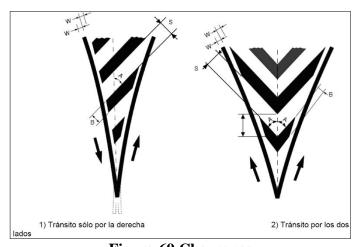



Figura 68 Flechas para velocidades menores o iguales a 50km/h Fuente: Norma INEN004-2:2011

5.9.3 Chevrones

Se utilizan para convergencias, que ayuda a los conductores a incorporarse al carril de forma segura.

Para el proyecto se utilizó un valor de W de 100mm, A igual a 45°, B con un ancho de 600mm y S de 1200mm. En la siguiente imagen se representa que es cada uno de estos valores.

Figura 69 Chevrones Fuente: Norma INEN004-2:2011

5.9.4 Señalización vertical

Para la colocación de la señalización vertical se debe seguir lo estipulado en la Norma INEN 004-1:2011, donde también se detalla los criterios para la asignación de tamaño de señales.

Para la señalización del proyecto se utilizaron las siguientes señales:

5.9.4.1 R1-1 Pare

R1 - 1

Código No.	Dimensiones (mm)	Dimensiones (mm) y serie de letras
R1 - 1A	600 x 600	200 Ca
R1 –1B	750 x 750	240 Ca
R1 – 1 C	900 x 900	280 Ca

5.9.4.2 R4-5 Altura máxima

R4-5

Código No.	Dimensiones (mm)
R4-5 A	600 x 600
R4-5 B	750 x 750
R4-5 C	900 x 900

5.9.4.3 R5-1 No Estacionar

	: 1
Α:) – I

Código No.	Dimensiones (mm)
R5-1a A	600 x 600
R5-1b B	750 x 750
R5-1c C	900 x 900

5.9.4.4 *Doble vía (R2-2)*

R2	-2

Código No.	Dimensiones (mm)	Dimensiones (mm) y serie
R2-2A	900 x 300	100 Cm
R2-2B	1350 x 450	140 Cm

5.9.4.5 Una vía izquierda (R2-11)

R2-1 I

Código No.	Dimensiones (mm)	Dimensiones (mm) y serie de letras
R2 – 1A (<i>I o D</i>)	900 x 300	100 Cm
R2 – 1B (<i>I o D</i>)	1350 x 450	140 Cm

5.9.4.6 Peatones en la vía (P6-1)

P6-1

Código No.	Dimensiones (mm)
P6-1A	600 x 600
P6-1B	750 x 750
P6-1C	900 x 900

5.9.4.7 Alineamiento horizontal (D5-1)

Código	Dimensión
No.	(mm)
D5-1A	300X900

5.9.5 Anclaje de señalización vertical

D5-1

La señal deberá estar anclada al piso, empotrada con un hormigón de 180 kg/cm2, deberá estar soldada en el extremo superior e inferior y deberá tener soldada una placa de acero que le permita anclarse mejor. Como lo indica la siguiente figura:

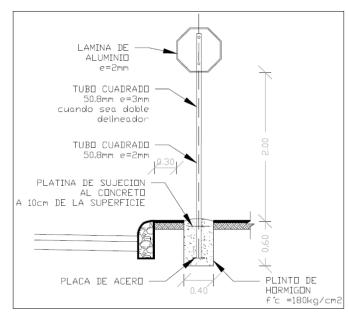


Figura 70 Anclaje de una señalética vertical

CAPÍTULO 6

CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

Aun teniendo condiciones geométricas buenas, hablando de número de carriles, anchos de carriles y veredas; la intersección está en un nivel de servicio F, por lo cual se realizó los modelamientos de tres alternativas, tratando de mejoras los criterios del proyecto, eligiendo la tercera alternativa la cual nos elevaba el nivel de servicio a E.

Es concluyente decir que la intersección con las condiciones actuales sobrepasó el máximo de su capacidad, dada la gran cantidad de densidad de tráfico que tiene el punto de análisis.

Una vez concluido el conteo vehicular se verificó que la mayor demanda de tráfico es de vehículos livianos y que los tiempos semafóricos no son suficientes para aumentar el flujo de vehículos.

En este caso se contó con aforos vehiculares del año 2015, los cuales aportaron para realizar el cálculo del TPDA del 2017.

Al obtener los resultados del TPDA del 2017, con un total de 108964 vehículos, y conocer cómo se comportar el tráfico en la semana tipo, se aprecia que los días de máxima demanda son los viernes y la hora pico está entre las 7 y 8 de la mañana.

Se realizó el análisis del tráfico actual, el crecimiento de tráfico natural y se estudió el tráfico generado, dentro de la zona del proyecto, con el fin de solucionar la congestión generada por la actual infraestructura y la gran demanda de tránsito, buscando optimizar la monitorización por medio del paso a desnivel y controladores de tráfico; logrando mejorar la velocidad de circulación, reduciendo los tiempos de espera y como consecuencia amenorando las colas de vehículos.

Después de realizar la modelación se verificó que se mejoraron las condiciones explicadas en los criterios del proyecto. Las colas de redujeron en un 84%, la densidad se redujo a 34.89 vehículos, el flujo aumento al doble, el tiempo de espera amenoró en

un 94% y la velocidad incrementó a 31.44 km/h, acercándose a su velocidad de operación que es de 50km/h.

Para mejorar las condiciones de seguridad vial se diseñaron isletas y corredores para cruces peatonales, con el fin de direccionar adecuadamente la movilidad hacia las zonas seguras otorgando una adecuada proyección visual de la dirección que se debe seguir.

El rediseño geométrico mejora la funcionalidad de la intersección, las condiciones del peatón, del conductor, y la hace más atractiva para la movilidad, reforzando la seguridad vial, otorgando áreas peatonales con anchos mínimos de dos metros, facilitando al conductor la toma de decisiones ayudado por señalización horizontal, estar plenamente informado de las acciones que puede y no realizar a causa de la señalización vertical y tener la seguridad para desplazarse por los adecuados anchos de vía.

6.2 Recomendaciones

Mientras más información histórica se tenga del sector de análisis, con relación a conteos de tráfico, más preciso será nuestro resultado.

Antes de realizar los conteos, es recomendable realizar una visita de campo y levantar información relevante, como giros involucrados en la intersección, fases semafóricas, tiempos de grupos semafóricos, comportamiento de semáforos en diferentes horas, y relacionarse con policías de tránsito que estén en la intersección para que expliquen, a su forma de ver, las condiciones de la intersección y cómo se comporta a lo largo del día.

Al dar una solución factible a la intersección, no quiere decir que la congestión en el sector se haya resulto, para esto es recomendable que se haga un estudio macro de todas las vías principales dentro del Distrito Metropolitano de Quito para que la conectividad de los ramales secundarios no sean conflictivos.

Para mejorar los tiempos de espera y velocidades, es recomendable limitar la circulación de camiones, otorgándoles horarios específicos para su movilización, los mismos que no afecten a las horas con mayor congestión, ya que este tipo de vehículos

tienen una velocidad de circulación muy por debajo del promedio de un vehículo liviano, limitando las condiciones de velocidad de circulación en el corredor.

Si bien es cierto, el paso a desnivel ayuda a que las características de tráfico mejoren razonablemente, pero hay que tomar en cuenta, que el funcionamiento óptimo de la reforma va ligado, por seguridad vial, con un buen desempeño de drenaje, el cual no está considerado en este proyecto, pero se recomienda el estudio del mismo.

Se puede ayudar al sistema con el uso de pavimento drenante, lo que no solo colabora con desalojar el agua sobre la vía, si no, también disipa de manera adecuada el ruido, y con el aporte de los muros, este va a ser aislando con una refracción perpendicular, generando al usuario confortabilidad.

Al momento de realizar los conteos, se evidenció la falta de educación vial que tienen los usuarios de las vías en el país, irrespetando leyes, tanto los peatones como los conductores; los peatones invadiendo carriles exclusivos para vehículos, además de no respetar las secciones de cruce peatonal, y los conductores realizando giros no permitidos, paradas en zonas no autorizadas y manejarse con una actitud agresiva, provocando inseguridad y malestar psicológico al usuario. Por esto se recomienda incorporar desde las escuelas, un plan de enseñanza sobre seguridad vial.

Siempre es recomendable usar normativa vigente para este tipo de proyectos; en el país no se tiene un texto guía que nos ayude con las metodologías de estimación de tráfico, por esto, se usó HCM y AASHTO para las diferentes etapas del proyecto, ayudados también por la normativa de diseño de carreteras del MTOP, y la normativa INEN, todas vigentes a la fecha de la realización del proyecto.

6.3 Referencias

- AASHTO. (1999). *Guide for the Development of Bicycle Facilities*. Washington D.C.: American Association of State Highway and Transportation.
- AASHTO. (2011). A Policy on Geometric Design of Highways and Streets. Washington D.C.: American Association of State Higway and Trasportation Officials.
- Agencia de Regulación y Control de Hidrocarburos. (2017). *Boletín 2016*. Quito: ARCH.
- Agencia Nacional de Tránsito. (2012). Ley de Trasporte Terrestre, Tránsito y Seguridad Vial. Quito.
- Asociación de Empresas Automotrices del Ecuador. (2017). *Anuario 2016*. Quito: Grupo El Comercio C.A.
- Asociación de Empresas Automotrices del Ecuador. (2017). Sector Automor en Cifras. Quito: AEADE.
- Casanova, L. (2002). Topografía Plana. Mérida: ULA.
- Concejo Metropolitano de Quito. (2008). Ordenanza Nº 3746. Quito.
- Consejo Metropilitano de Quito. (2016). *Plan de Uso y Ocupación del Suelo*. Quito: Municipio del Distrito Metropolitano de Quito.
- Instituto Nacional de Estadisticas y Censos. (2010). Fascículo Provincial Pichincha. En INEC, *Resultados del Censo 2010* (pág. 261). Quito: INEC.
- Instituto Nacional de Estadísticas y Censos. (9 de diciembre de 2016). *Ecuador en Cifras*. Obtenido de http://www.ecuadorencifras.gob.ec/el-parque-automotor-de-ecuador-crecio-57-en-cinco-anos/
- Miguel, A. d. (2000). Los Peatones Y el Tráfico Urbano. Madrid: MAPFRE.
- Ministerio de Obras Publicas Dirección de Vialidad. (2002). *Manual de Carreteras* (Vol. 3). Santiago de Chile: Gobierno de Chile.

- Ministerio de Transporte y Obras Públicas. (2003). *Normas de Diseño Geométrico de Carreteras*. Quito: Ministerio de Trasporte y Obras Públicas.
- Ministerio de Transporte y Obras Públicas. (2013). Norma para Estudio y DIseños Viales. En M. d. Públicas, *NEVI-12* (Vol. A, pág. 382). Quito, Ecuador: MTOP.
- Municipio del Distrito Metropilitano de Quito. (2009). *Plan Maestro de Movilidad* 2009 2025. Quito: Diego Corrales.
- Reyes, R. C., & Cárdenas, J. (1994). *Ingeniería de Trásito* (7ma ed.). Mexico: Alfaomega.
- T.-T. S. (2014). Manual de Usuario Aimsun. Barcelona: TSS.
- Thomson, I., & Bull, A. (2002). La congestión del tránsito urbano: causas y consecuencias económicas y sociales. *CEPAL*, 110.
- Trasportation Research Board. (2000). *Highway Capacity Manual* (Vol. 2000). Washington D.C.: National Research Council.