IMPLICACIONES EN EL DISEÑO PARA UNA ESTRUCTURA DE ANÁLISIS.

RESUMEN

En el presente capítulo se realiza un análisis completo de la estructura con mayores problemas de torsión (Caso 3 – α =0.5). Se determinan los desplazamientos y fuerzas laterales en todos los pisos de la estructura para 3, 4, 5 y 6 pisos con el método que se explica en este capítulo. Este caso se lo analiza sin considerar mampostería ni sistema de aislación; con mampostería pero sin sistema de aislación y con mampostería pero con sistema de aislación.

Se determinan los factores de amplificación torsional en cada piso de las estructuras con y sin sistema de aislamiento los que determinan el comportamiento que existe en los edificios abiertos con y sin sistema de aislamiento. Además se muestra la respuesta en el tiempo de la estructura Caso 3 – α =0.5 de tres pisos sometida al sismo 1S2 con y sin sistema de aislamiento para luego analizar su comportamiento.

Se realizó un análisis plano de estas estructuras para determinar las cargas axiales y momentos flectores; para con estos datos determinar la cantidad de acero que tiene cada columna de los pórticos fuerte, débil y centro de masa. Al realizar un diseño estructural de las columnas por flexocompresión Uniaxial se obtuvieron las armaduras longitudinales de cada columna, con esto; finalmente se analiza las variaciones que existen en la cantidad de acero que se presentan entre estructuras sin mampostería, edificios abiertos sin sistema de aislamiento y edificios abiertos con aislamiento de base.

5.1.- ANTECEDENTES

En todo el estudio realizado en los capítulos previos a este, se llegó a determinar que el caso de análisis más crítico y que presenta graves problemas de torsión es el Caso 3 - α = 0.5 por tener la característica de que su lado mayor equivale a dos veces su lado menor y además los desplazamientos obtenidos sin sistema de aislamiento reflejan que el pórtico fuerte tiene mayores valores de desplazamientos que el centro de masa.

Según todos los resultados obtenidos con y sin sistema de aislamiento nos damos cuenta de lo anteriormente dicho; pero en el presente capítulo obtendremos los valores de los desplazamientos en cada uno de los pisos de esta estructura ya que los resultados anteriores se obtuvieron los desplazamientos en el último piso.

El propósito de obtener los desplazamientos en todos los pisos es para tener una mayor visión de lo que puede suceder en esta estructura para el caso de que el sismo actúe en sentido Y; ya que de esta forma podremos determinar los factores de amplificación torsional para verificar en cuanto aumenta o disminuye el problema de torsión en esta estructura con y sin aisladores de base elastoméricos.

5.2.- ESTRUCTURA DE ANÁLISIS.

En la figura 5.1 se muestra la planta tipo de los edificios que se someterán al análisis, en los pórticos A y 1 se tiene la presencia de mampostería acoplada a la estructura . Además, se muestra la posición del centro de rigidez CR que se observa se desplaza hacia la parte superior izquierda, ya que cercano a este sitio tenemos los pórticos que tienen incorporada la mampostería (A y 1).

La altura del primer piso de las estructuras es de 4.0 m y la de los pisos superiores es de 3.0 m.

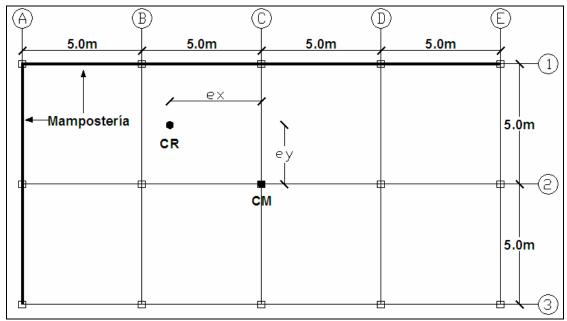


Figura 5.1 Vista en planta de las estructuras de análisis de 3, 4, 5 y 6 pisos.

Las dimensiones y la carga muerta para cada estructura se mostraron en la tabla 3.3 que se encuentra en el capítulo III.

En la figura 5.1 se muestra la tendencia del centro de rigidez CR de coordenadas e_x y e_y , para nuestro sentido de análisis es decir sentido Y el pórtico fuerte es el pórtico A mientras que el pórtico débil es el E, el centro de masa está ubicado en la intersección de los pórticos C y 2.

5.3.- SISMO DE ANÁLISIS.

Para el análisis de este caso se van a utilizar los 7 sismos artificiales correspondientes al tipo de perfil de suelo S2 para una aceleración máxima del suelo en roca igual al 40% de la aceleración de la gravedad.

Los espectros de estos acelerogramas y su promedio se indicaron en las figuras 3.21 y 3.22 en el capítulo III donde se hace referencia a los sismos utilizados para el análisis.

5.4.- EXCENTRICIDAD ESTÁTICA.

Se realizó en el Capítulo III de este proyecto la obtención de los valores de la excentricidad estática, periodo de vibración y frecuencia torsional; utilizando el método de Seguín *et al* (2008) que se describe por completo en el Capítulo II; al igual que la obtención del periodo de vibración y frecuencia torsional que se indica en el Capítulo III de este proyecto.

En la tabla 5.1 se muestran estos valores a continuación.

Tabla 5.1 Excentricidad Estática, Periodo de Vibración y Frecuencia Torsional para la estructura Caso 3.

	and of Exponential and Estation, I brindle do Visitation y I recommend to recommendate and according								
Pisos	Masa total (T s²/m.)	$e_{_{X}}$ (m.)	$e_{_{Y}}$ (m.)	Ts (s.)	Ωχ	Ωγ			
3	36.73	-4,211	2.843	0.473	1.66	1.166			
4	57.14	-3.329	2.367	0.545	1.586	1.21			
5	81.63	-2.603	1.939	0.602	1.524	1.234			
6	110.204	-2.04	1.578	0.648	1.472	1.243			

En la segunda columna se muestra la masa total del edificio, en la tercera y cuarta columna se indican los valores de las coordenadas del centro de rigidez CR (e_x, e_y) . En la quinta columna se indican los periodos fundamentales de vibración y en la sexta y séptima columna los valores de las frecuencias torsionales.

Se observa en la tabla 5.1 que los valores de la frecuencia torsional tanto en X como en Y son mayores que 1 por tal motivo se considera que las estructuras son torsionalmente rígidas. Los valores de las excentricidades estáticas en X son muy altos ya que en este sentido tenemos la dimensión más larga de las estructuras; además se observa el mismo fenómeno que se indica en el capítulo III en el cual a medida que aumenta el número de pisos la excentricidad estática disminuye.

Cabe resaltar la ubicación del centro de rigidez a medida que aumenta el número de pisos esto se mostró en el capítulo III pero es importante indicar nuevamente este fenómeno ya que la estructura Caso 3 es de fundamental importancia en el presente capítulo.

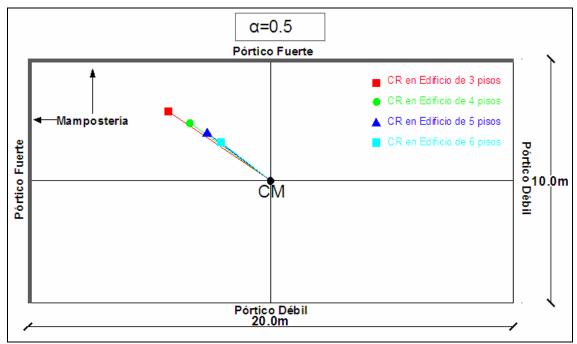


Figura 5.2 Ubicación del Centro de Rigidez CR de acuerdo al número de pisos Caso 3.

5.5 MÉTODO DE CÁLCULO DE FUERZAS Y DESPLAZAMIENTOS

Es importante determinar las fuerzas y los desplazamientos en cada piso sea para edificios sin considerar la mampostería, edificios considerando la mampostería y edificios considerando la mampostería con sistema de aislamiento; para de esta forma darnos cuenta cuales son las variaciones que pueden existir cuando se nos presenta cada uno de estos tres casos. Ya que en los capítulos anteriores se obtuvieron valores de desplazamientos pero en el último piso de cada una de las estructuras.

A continuación se describen cada uno de los pasos para obtener las fuerzas y desplazamientos en todos los pisos de cualquier estructura.

 Se analiza con un modelo de tres grados de libertad por planta, dos componentes de desplazamiento y un giro torsional, Seguín et al (2008) descrita en el capítulo II de este proyecto. La figura 5.3 describe una estructura de cuatro pisos y cual es la forma de numerar los grados de libertad para este procedimiento.

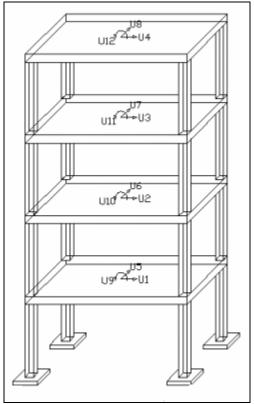


Figura 5.3 Modelo de tres grados de libertad por planta en una estructura de 4 pisos.

- Se determina la Matriz de Rigidez Espacial KE.
- Se obtiene la Matriz de Masa ME.
- Determinamos los valores y vectores propios (λ y φ) mediante la Matriz de Rigidez KE y la Matriz de Masa ME.
- En los capítulos anteriores se determinó los desplazamientos para estructuras sin mampostería, estructuras con mampostería (Edificios Abiertos) sin sistema de aislamiento y estructuras con mampostería con sistema de aislamiento de base; en el pórtico débil, centro de masa y pórtico fuerte; todos estos valores promedio se obtuvieron para el último piso de cada estructura. Con los vectores propios seleccionados encontramos cual de los tres primeros es un modo predominante en X con acoplamiento de traslación y rotación.
- Se multiplica el valor del desplazamiento en el último piso (f); por cada uno de los valores del vector que correspondan a desplazamiento en X. La estructura de la figura 5.3 es de cuatro pisos por tal motivo para obtener los

desplazamientos en el piso 1, 2 y 3 se debe multiplicar por los tres primeros valores del vector que tenga predominancia en X.

$$q_1 = f.\phi_1^{(i)}$$

 $q_2 = f.\phi_2^{(i)}$
 $q_3 = f.\phi_3^{(i)}$
(5.1)

 Una vez obtenidos los valores tendremos un vector de desplazamiento q que contendrá los desplazamiento en cada uno de los pisos.

$$q = \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{bmatrix}$$
 (5.2)

 Para determinar el valor de las fuerzas que actúan en cada piso se multiplica cada vector de desplazamiento por la matriz de rigidez lateral KL sea del pórtico débil, centro de masa o pórtico fuerte para de esta forma obtener las fuerzas en cada piso de la estructura.

$$P = KL * q \tag{5.3}$$

$$P = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix} \tag{5.4}$$

Donde P es un Vector que contiene las fuerzas en cada piso; KL es la Matriz de Rigidez Lateral del pórtico; q es el vector que contiene los desplazamientos laterales en cada piso.

5.6 FUERZAS Y DESPLAZAMIENTOS EN ESTRUCTURA CASO 3

A continuación se presentan los desplazamientos en todos los pisos de los edificios, cuando no consideramos la presencia de mampostería, en edificios abiertos sin sistema de aislamiento y en edificios abiertos con sistema de aislamiento.

5.6.1 Estructura sin mampostería acoplada

Para obtener los desplazamientos de la estructura Caso $3 - \alpha = 0.5$ sin mampostería, se utilizó el programa modelo_2gdl_paramétrico_empotrado pero sin considerar que existe excentricidad por tal motivo los desplazamientos son los mismos para pórtico débil, centro de masa y pórtico fuerte, ante la acción de los 7 sismos artificiales para suelo tipo S2. La estructura se considera simétrica ya que no se tiene la presencia de la mampostería acoplada a los pórticos A y 1. Al observar los resultados que se muestran a continuación nos damos cuenta que la estructura no tiene problemas de torsión. Para este caso no tendremos pórtico fuerte, pórtico débil y centro de masa; ya que la estructura se mueve exactamente igual en todos los pórticos para nuestro sentido de análisis Y.

Tabla 5.2 Desplazamientos laterales en último piso en edificios de 3 y 4 pisos.

3 PISOS	Desplazamientos Estructura sin mampostería			4 PISOS	Desplazamientos Estructura si mampostería		
SISMOS	Pórtico (E) (m.)	Pórtico (C) (m.)	Pórtico (A) (m.)	SISMOS	Pórtico (E) (m.)	CM (C) (m.)	Pórtico (A) (m.)
1S2	0.0696	0.0696	0.0696	1S2	0.104	0.104	0.104
2S2	0.0704	0.0704	0.0704	2S2	0.082	0.082	0.082
3S2	0.066	0.066	0.066	3S2	0.0869	0.0869	0.0869
4S2	0.0685	0.0685	0.0685	4S2	0.0894	0.0894	0.0894
5S2	0.0742	0.0742	0.0742	5S2	0.0907	0.0907	0.0907
6S2	0.0698	0.0698	0.0698	6S2	0.0879	0.0879	0.0879
7S2	0.0694	0.0694	0.0694	7S2	0.0943	0.0943	0.0943
Promedio	0.0697	0.0697	0.0697	Promedio	0.0907	0.0907	0.0907

Desplazamientos Estructura sin Desplazamientos Estructura sin **5 PISOS** 6 PISOS mampostería mampostería Pórtico Pórtico Pórtico Pórtico SISMOS Débil (E) Fuerte (A) SISMOS Débil (E) Fuerte (A) CM (C) (m.) CM (C) (m.) (m.) (m.) (m.) (m.) 0.1015 0.0822 0.0822 0.0822 1S2 0.1015 0.1015 **1S2** 0.0993 2S2 0.0977 0.0977 0.0977 2S2 0.0993 0.0993 3S2 0.0792 0.0792 0.0792 3S2 0.092 0.092 0.092 **4S2** 0.1009 0.1009 0.1009 4S2 0.1073 0.1073 0.1073 5S2 0.1008 0.1008 0.1008 5S2 0.0991 0.0991 0.0991 0.1048 6S2 0.1048 0.1048 6S2 0.1065 0.1065 0.1065 7S2 0.0997 0.0997 0.0997 7S2 0.1105 0.1105 0.1105 0.1023 0.0950 0.0950 0.0950 0.1023 0.1023 Promedio Promedio

Tabla 5.3 Desplazamientos laterales en último piso en edificios de 5 y 6 pisos.

Ahora, obtenidos los desplazamientos en el último piso de cada estructura, que han sido presentados en las tablas 5.2 y 5.3, procedemos a utilizar el método descrito en el apartado 5.5 de este capítulo, para calcular las fuerzas y los desplazamientos en todos los pisos, los resultados se muestran en las tablas 5.4 a 5.7.

Tabla 5.4 Desplazamientos y fuerzas en cada piso de la Estructura Caso $3 - \alpha = 0.5 - 3$ pisos.

		mientos Estr mampostería		Fuerzas Estructura sin mampostería			
PISOS	Pórtico (E) (m.)	Pórtico (C) (m.)	Pórtico (A) (m.)	Pórtico (E) (T.)	Pórtico (C) (T.)	Pórtico (A) (T.)	
1	0.0324	0.0324	0.0324	3.2792	3.2792	3.2792	
2	0.0548	0.0548	0.0548	3.5767	3.5767	3.5767	
3	0.0697	0.0697	0.0697	3.9503	3.9503	3.9503	

Tabla 5.5 Desplazamientos y fuerzas en cada piso de la Estructura Caso 3 - α =0.5 – 4 pisos.

		mientos Estri mampostería		Fuerzas Estructura sin mampostería			
PISOS	Pórtico (E) (m.)	Pórtico (C) (m.)	Pórtico (A) (m.)	Pórtico (E) (T.)	Pórtico (C) (T.)	Pórtico (A) (T.)	
1	0.0368	0.0368	0.0368	2.2182	2.2182	2.2182	
2	0.0628	0.0628	0.0628	4.6514	4.6514	4.6514	
3	0.0814 0.0814		0.0814	5.7744	5.7744	5.7744	
4	0.0907	0.0907	0.0907	6.088	6.088	6.088	

Desplazamientos Estructura sin Fuerzas Estructura sin mampostería mampostería **PISOS** Pórtico (E) Pórtico (C) Pórtico (A) Pórtico (E) Pórtico (C) Pórtico (A) (m.) (m.) (m.) (T.) (T.) (T.) 0.0263 0.0263 0.0263 3.2203 3.2203 3.2203 0.0475 0.0475 0.0475 3.5618 3.5618 3.5618 3 0.0682 0.0682 0.0682 3.6587 3.6587 3.6587 4 0.0845 0.0845 0.0845 3.8924 3.8924 3.8924 5 0.095 0.095 0.095 4.6525 4.6525 4.6525

Tabla 5.6 Desplazamientos y fuerzas en cada piso de la Estructura Caso $3 - \alpha = 0.5 - 5$ pisos.

Tabla 5.7 Desplazamientos y fuerzas en cada piso de la Estructura Caso $3 - \alpha = 0.5 - 6$ pisos.

		mientos Estr mampostería		Fuerzas Estructura sin mampostería			
PISOS	Pórtico (E) (m.)	Pórtico (C) (m.)	Pórtico (A) (m.)	Pórtico (E) (T.)	Pórtico (C) (T.)	Pórtico (A) (T.)	
1	0.0229	0.0229	0.0229	2.6998	2.6998	2.6998	
2	0.0418	0.0418	0.0418	3.7541	3.7541	3.7541	
3	0.0614	0.0614	0.0614	3.8656	3.8656	3.8656	
4	0.0788	0.0788	0.0788	3.9937	3.9937	3.9937	
5	0.0935	0.0935	0.0935	4.2812	4.2812	4.2812	
6	0.1023	0.1023	0.1023	4.7759	4.7759	4.7759	

Como era de esperarse, los valores de desplazamiento como de fuerzas para cada estructura, son iguales en todos sus pórticos, ya que la estructura es simétrica al no poseer el acoplamiento de mampostería en cualquiera de sus pórticos.

5.6.2 Edificios abiertos sin aislamiento

Para determinar los desplazamientos de la estructura Caso 3 - α = 0.5 considerando la presencia de la mampostería sin sistema de aislamiento, se utiliza el programa modelo_2gdl_paramétrico_empotrado, ahora ya se considera que existe excentricidad causada por la presencia de la mampostería, lo que traerá consigo que los desplazamientos para pórtico débil, centro de masa y pórtico fuerte sean distintos entre sí.

Estos desplazamientos fueron obtenidos en el Capítulo III de este proyecto; a continuación se muestra una tabla con los resultados obtenidos con cada uno de

los sismos y su respectivo promedio, los mismos que servirán para aplicar el método que se indica en el apartado 5.5; para luego obtener los desplazamientos y las fuerzas en cada piso de cada una de las estructura.

Tabla 5.8 Desplazamientos laterales para 3 y 4 pisos con mampostería.

3 PISOS	Desplazamientos Edificio Abierto sin Aislamiento			4 PISOS	Desplazamientos Edificio Abierto s Aislamiento		
SISMOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	SISMOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)
1S2	0.3312	0.0859	0.1713	1S2	0.3003	0.0785	0.1558
2S2	0.3056	0.0747	0.1584	2S2	0.3689	0.0931	0.1832
3S2	0.3382	0.0931	0.1741	3S2	0.2838	0.0788	0.1589
4S2	0.3184	0.0874	0.1644	4S2	0.3854	0.0917	0.2057
5S2	0.3272	0.0827	0.167	5S2	0.3516	0.0889	0.1773
6S2	0.3174	0.0803	0.1617	6S2	0.3572	0.0914	0.1745
7 \$2	0.295	0.0757	0.1516	7S2	0.3437	0.0875	0.1687
Promedio	0.3190	0.0828	0.1641	Promedio	0.3416	0.0871	0.1749

Tabla 5.9 Desplazamientos laterales para 5 y 6 pisos con mampostería.

5 PISOS	Desplazami	Desplazamientos Edificio Abierto sin Aislamiento			Desplazamientos Edificio Abierto s Aislamiento		
SISMOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	SISMOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)
1S2	0.3299	0.09	0.1597	1S2	0.3751	0.0956	0.2069
2S2	0.3143	0.0869	0.1614	2S2	0.3502	0.0977	0.1889
3S2	0.3091	0.0787	0.1688	3S2	0.3603	0.0984	0.1709
4S2	0.3456	0.0995	0.192	4S2	0.3758	0.0989	0.2005
5S2	0.3169	0.0894	0.1692	5S2	0.3533	0.0987	0.2038
6S2	0.3351	0.0915	0.181	6S2	0.3605	0.1052	0.2013
7S2	0.3623	0.0964	0.1834	7S2	0.3602	0.106	0.201
Promedio	0.3305	0.0903	0.1736	Promedio	0.3622	0.1001	0.1962

Utilizando los desplazamientos promedio que se muestran en las tablas 5.8 y 5.9 para 3, 4, 5 y 6 pisos, utilizamos el método para el cálculo de desplazamientos y fuerzas en cada uno de los pisos de las estructuras. Los resultados se muestran en las tablas 5.10 a 5.13.

Tabla 5.10 Desplaza<u>mientos y fuerzas en cada piso del Edificio Abierto Caso 3 – 3 pisos.</u>

		entos Edificio Aislamiento	Abierto sin	Fuerzas Edificio Abierto sin Aislamiento			
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E) (T.)	CM (C) (T.)	Pórtico Fuerte (A) (T.)	
1	0.1485	0.0385	0.0764	38.8991	5.3334	21.1545	
2	0.2511	0.0652	0.1292	64.7232	7.4303	36.2512	
3	0.319	0.0828	0.1641	109.4834 9.549		28.7732	

Tabla 5.11 Desplazamientos y fuerzas en cada piso del Edificio Abierto Caso 3 – 4 pisos.

	Desplazamie	entos Edificio Aislamiento	Abierto sin	Fuerzas Edificio Abierto sin Aislamiento			
PISOS	Pórtico Débil (E) (m.)	(E) CM (C) Fuerte (A)		Pórtico Débil (E) (T.)	CM (C) (T.)	Pórtico Fuerte (A) (T.)	
1	0.1209	0.0308	0.0619	18.8201	3.7318	15.7812	
2	0.2131	0.0544	0.1091	28.6843	7.2312	30.5291	
3	0.293	0.0747	0.15	58.2444	7.5977	30.5532	
4	0.3416	0.0871	0.1749	80.8098 8.1469		28.1892	

Tabla 5.12 Desplazamientos y fuerzas en cada piso del Edificio Abierto Caso 3 – 5 pisos.

	Desplazamie	entos Edificio Aislamiento	Abierto sin	Fuerzas Edificio Abierto sin Aislamiento			
PISOS	Débil (E) CM (C) Fuerte		Pórtico Fuerte (A) (m.)	Pórtico Débil (E) (T.)		Pórtico Fuerte (A) (T.)	
1	0.0918	0.0251	0.0482	8.8564	3.1247	11.4522	
2	0.1653	0.0452	0.0869	13.4532	6.6485	24.7698	
3	0.2374	0.0649	0.1247	33.9734	6.6768	24.5992	
4	0.294	0.0804	0.1545	42.1498	6.747	30.2845	
5	0.3305	0.0903	0.1736	64.2465	8.5003	24.9267	

Tabla 5.13 Desplazamientos y fuerzas en cada piso del Edificio Abierto Caso 3 – 6 pisos.

	Desplazami	entos Edificio Aislamiento	Abierto sin	Fuerzas Edificio Abierto sin Aislamiento			
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E) (T.)	CM (C) (T.)	Pórtico Fuerte (A) (T.)	
1	0.0812	0.0224	0.044	6.0632	2.3789	9.9546	
2	0.148	0.0409	0.0802	6.3995	6.0093	22.6105	
3	0.2176	0.0601	0.1179	23.5901	6.682	23.2367	
4	0.2793	0.0772	0.1513	28.7345	7.7838	31.1478	
5	0.3312	0.0915	0.1794	45.7201	8.0821	30.0998	
6	0.3622	0.1001	0.1962	58.9098	8.9646	27.8554	

En las tablas 5.10 a 5.13 se muestran las fuerzas en los pórticos débil, fuerte y centro de masa, ahora tomando en cuenta la mampostería. De manera general se puede decir que al momento que estamos incorporando mampostería a cualquiera de los pórticos de las estructuras, las fuerzas que se generan son

aproximadamente tres veces las fuerzas cuando no se considera la mampostería. Esta consecuencia puede llevar al colapso cuando se presenta un sismo. En especial cuando los mayores valores de fuerzas se tiene en los pórticos débiles ya que estos son los que tienen mayores valores de desplazamientos. En este caso las fuerzas en los pórticos fuertes son mayores que en el centro de masas, esto ocurre debido a las características de la estructura.

5.6.3 Edificios abiertos con aislamiento

En el siguiente caso se van a analizar los edificios abiertos pero ahora con la presencia del sistema de aislamiento de base elastomérico. Para esto previamente en el capítulo IV se utilizó el programa modelo_4gdl_elastomérico el cual se fundamenta en el modelo de 4 grados de libertad, 2 en la superestructura y 2 en el sistema de aislamiento. Los resultados que se presentan son los obtenidos en el capítulo IV pero es importante mostrarlos ya que éstos son los desplazamientos que se obtienen en el último piso de las estructuras.

Tabla 5.14 Desplazamientos laterales para 3 y 4 pisos en edificios abiertos con aislamiento

3 PISOS	Desplazamientos Edificio Abierto cor Aislamiento			4 PISOS	Desplazamientos Edificio Abierto c Aislamiento		
SISMOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	SISMOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)
1S2	0.06441	0.04112	0.01784	1S2	0.07183	0.04914	0.02644
2S2	0.05966	0.03809	0.01653	2S2	0.06653	0.04551	0.02449
3S2	0.06414	0.04096	0.01777	3S2	0.07153	0.04893	0.02634
4S2	0.0619	0.03953	0.01718	4S2	0.06904	0.04723	0.02542
5S2	0.0534	0.0341	0.01479	5S2	0.05955	0.04074	0.02193
6S2	0.0567	0.03621	0.01571	6S2	0.06324	0.04326	0.02328
7S2	0.05989	0.03824	0.01659	7S2	0.06679	0.04569	0.02459
Promedio	0.0600	0.0383	0.0166	Promedio	0.0669	0.0458	0.0246

Tabla 5.15 Desplazamientos laterales para 5 y 6 pisos en edificios abiertos con aislamiento

5 PISOS	Desplazamientos Edificio Abierto con Aislamiento			6 PISOS	Desplazamie	entos Edificio Aislamiento	Abierto con
SISMOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	SISMOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)
1S2	0.07697	0.05615	0.03534	1S2	0.08121	0.06258	0.04396
2S2	0.07129	0.05201	0.03273	2S2	0.07522	0.05797	0.04072
3S2	0.07665	0.05592	0.03519	3S2	0.08088	0.06233	0.04378
4S2	0.07298	0.05397	0.03397	4S2	0.07806	0.06015	0.04225
5S2	0.06381	0.04656	0.0293	5S2	0.06733	0.05189	0.03645
6S2	0.06776	0.04944	0.03111	6S2	0.0715	0.0551	0.0387
7S2	0.07156	0.05221	0.03286	7 \$2	0.07551	0.05819	0.04087
Promedio	0.0716	0.0523	0.0329	Promedio	0.0757	0.0583	0.0410

Utilizando los desplazamientos promedio que se muestran en las tablas 5.14 y 5.15 para 3, 4, 5 y 6 pisos, utilizamos el método para el cálculo de desplazamientos y fuerzas en cada uno de los pisos de las estructuras. Los resultados se muestran en las tablas 5.16 a 5.19.

Tabla 5.16 Desplazamientos y fuerzas en cada piso del Edificio Abierto con aislación Caso 3 – 3 pisos.

		entos Edi Aislamie	ficio Abierto ento	Fuerzas Edificio Abierto con Aislamiento			
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E) (T.)	CM (C) (T.)	Pórtico Fuerte (A) (T.)	
1	0.0279	0.0178	0.0077	2.0864	2.8093	1.751	
2	0.0472	0.0302	0.0131	3.4559	3.0647	1.8678	
3	0.0600	0.0383	0.0166	5.5165	3.4287	2.2993	

Tabla 5.17 Desplazamientos y fuerzas en cada piso del Edificio Abierto con aislación Caso 3 – 4 pisos.

		entos Edi Aislamie	ficio Abierto ento	Fuerzas Edificio Abierto con Aislamiento			
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E) (T.)	CM (C) (T.)	Pórtico Fuerte (A) (T.)	
1	0.0237	0.0162	0.0087	3.0577	1.5762	1.1192	
2	0.0418	0.0286	0.0154	3.9316	3.2941	2.3638	
3	0.0574	0.0393	0.0211	4.344	4.2633	2.9738	
4	0.0669	0.0458	0.0246	4.5499	4.463	3.0223	

Tabla 5.18 Desplazamientos y fuerzas en cada piso del Edificio Abierto con aislación Caso 3 – 5 pisos.

	•	entos Edi Aislamie	ficio Abierto ento	Fuerzas Edificio Abierto con Aislamiento			
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E) (T.)	CM (C) (T.)	Pórtico Fuerte (A) (T.)	
1	0.0199	0.0145	0.0091	1.2125	2.2446	1.7791	
2	0.0358	0.0262	0.0165	1.309	2.7453	1.9418	
3	0.0514	0.0376	0.0237	3.5101	2.947	2.0459	
4	0.0637	0.0465	0.0293	4.0772	2.9492	2.2514	
5	0.0716	0.0523	0.0329	6.0519	3.5324	2.4446	

Tabla 5.19 Desplazamientos y fuerzas en cada piso del Edificio Abierto con aislación Caso 3 – 6 pisos.

		entos Edi Aislamie	ficio Abierto ento	Fuerzas Edificio Abierto con Aislamiento			
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E) (T.)	CM (C) (T.)	Pórtico Fuerte (A) (T.)	
1	0.0170	0.0131	0.0092	1.352	1.0383	1.5075	
2	0.0309	0.0238	0.0167	2.7092	1.9907	2.9723	
3	0.0455	0.0350	0.0246	3.574	2.7622	2.9818	
4	0.0584	0.0450	0.0316	4.6317	2.9373	3.2675	
5	0.0692	0.0533	0.0375	6.8816	5.0831	3.2731	
6	0.0757	0.0583	0.0410	8.8113	6.1345	3.4243	

En las tablas 5.16 a 5.19 se indican los desplazamientos y fuerzas para las edificaciones abiertas de 3, 4, 5 y 6 pisos; pero ahora se considera la presencia de un sistema de aislación de base en cada una de las estructuras lo que notablemente disminuye son los desplazamientos en cada uno de los pisos en comparación con los datos obtenidos con edificios abiertos sin mampostería.

En lo que corresponde a fuerzas se presenta el mismo comportamiento que sucede con los desplazamientos, es decir existe una disminución de las fuerzas cuando tenemos la presencia de aisladores de base elastoméricos. Los mayores valores de fuerzas se presentan en los pórticos débiles, luego en el centro de masa y finalmente en los pórticos fuertes.

5.7 FACTORES DE AMPLIFICACIÓN TORSIONAL

Se obtienen los factores de amplificación torsional en edificios abiertos sin aislación y en edificios abiertos con aislamiento para 3, 4, 5 y 6 pisos.

5.7.1 Edificios abiertos sin aislamiento

Para obtener los factores de amplificación torsional de las estructuras sin sistema de aislamiento de base utilizamos las ecuaciones (3.8) y (3.9) que indican en el capítulo III - apartado 3.2. Estos nuevos factores de amplificación fueron calculados en base a los desplazamientos obtenidos en cada piso de cada una de las estructuras. A continuación en las tablas 5.20 a 5.23; los factores de amplificación torsional para los edificios abiertos sin aislamiento.

Tabla 5.20 Factores de Amplificación Torsional en cada piso del Edificio Abierto Caso 3 – 3 pisos.

	Abier	zamientos to sin Aisl		Factores de Amplificación Torsion sin Aislamiento	
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E)	Pórtico Fuerte (A)
1	0.1485	0.0385	0.0764	2.8571	0.9844
2	0.2511	0.0652	0.1292	2.8512	0.9816
3	0.319	0.0828	0.1641	2.8527	0.9819

Tabla 5.21 Factores de Amplificación Torsional en cada piso del Edificio Abierto Caso 3 – 4 pisos.

		zamientos to sin Aisl		Amplificaci	ores de ión Torsional lamiento
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E)	Pórtico Fuerte (A)
1	0.1209	0.0308	0.0619	2.9253	1.0097
2	0.2131	0.0544	0.1091	2.9173	1.0055
3	0.293	0.0747	0.15	2.9224	1.0080
4	0.3416	0.0871	0.1749	2.9219	1.0080

Tabla 5.22 Factores de Amplificación Torsional en cada piso del Edificio Abierto Caso 3 – 5 pisos.

	Abier	azamientos to sin Aisl	Amplificaci	ores de ón Torsional Iamiento	
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E)	Pórtico Fuerte (A)
1	0.0918	0.0251	0.0482	2.6574	0.9203
2	0.1653	0.0452	0.0869	2.6571	0.9226
3	0.2374	0.0649	0.1247	2.6579	0.9214
4	0.294	0.0804	0.1545	2.6567	0.9216
5	0.3305	0.0903	0.1736	2.6600	0.9225

Factores de Desplazamientos Edificio Amplificación Torsional Abierto sin Aislamiento sin Aislamiento **PISOS** Pórtico Pórtico CM (C) Pórtico Pórtico Débil (E) Fuerte (A) (m.) Débil (E) Fuerte (A) (m.) (m.) 0.0812 0.0224 0.044 2.6250 0.9643 0.0409 2 0.148 0.0802 2.6186 0.9609 0.2176 0.0601 0.1179 2.6206 0.9617 3 0.2793 0.0772 0.1513 2.6179 0.9598 5 0.3312 0.0915 0.1794 2.6197 0.9607 6 0.3622 0.1001 0.1962 2.6184 0.9600

Tabla 5.23 Factores de Amplificación Torsional en cada piso del Edificio Abierto Caso 3 – 6 pisos.

5.7.2 Edificios abiertos con aislamiento

Para obtener los factores de amplificación torsional de las estructuras con sistema de aislamiento de base utilizamos las ecuaciones (4.38) que indican en el capítulo IV - apartado 4.7.

Estos nuevos factores de amplificación fueron calculados en base a los desplazamientos obtenidos en cada piso de cada una de las estructuras. A continuación en las tablas 5.24 a 5.27; los factores de amplificación torsional para los edificios abiertos con sistema de aislamiento de base.

Tabla 5.24 Factores de Amplificación Torsional en cada piso del Edificio Abierto Caso 3 – 3 pisos.

		ientos Edifi n Aislamier	cio Abierto nto	Factores de Amplificación Torsional con Aislamiento		
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E)	Pórtico Fuerte (A)	
1	0.0279	0.0178	0.0077	0.1065	-0.0574	
2	0.0472	0.0302	0.0131	0.1065	-0.0574	
3	0.0600	0.0383	0.0166	0.1065	-0.0574	

Tabla 5.25 Factores de Amplificación Torsional en cada piso del Edificio Abierto Caso 3 – 4 pisos.

	Desplazami co	ientos Edifi n Aislamier		Amplificación n Aislamiento	
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E)	Pórtico Fuerte (A)
1	0.0237	0.0162	0.0087	0.0905	-0.0651
2	0.0418	0.0286	0.0154	0.0905	-0.0651
3	0.0574	0.0393	0.0211	0.0905	-0.0651
4	0.0669	0.0458	0.0246	0.0905	-0.0651

3

4

5

0.0514

0.0637

0.0716

0.0376

0.0465

0.0523

Desplazamientos Edificio Abierto Factores de Amplificación con Aislamiento **Torsional con Aislamiento PISOS** Pórtico Débil Pórtico Fuerte **Pórtico** Pórtico CM (C) Débil (E) Fuerte (A) (E) (A) (m.) (m.) (m.) 1 0.0199 0.0145 0.0091 0.0797 -0.0703 2 0.0358 0.0262 0.0165 0.0797 -0.0703

Tabla 5.26 Factores de Amplificación Torsional en cada piso del Edificio Abierto Caso 3 – 5 pisos.

Tabla 5.27 Factores de Am	plificación Torsional en cada	piso del Edificio Abierto Caso 3 - 6 pis	sos.
---------------------------	-------------------------------	--	------

0.0237

0.0293

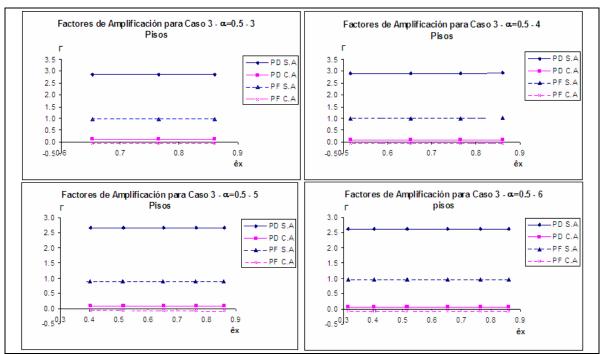
0.0329

0.0797

0.0797

0.0797

-0.0703


-0.0703 -0.0703

		ientos Edifi n Aislamier	icio Abierto nto	Factores de Amplificación Torsional con Aislamiento		
PISOS	Pórtico Débil (E) (m.)	CM (C) (m.)	Pórtico Fuerte (A) (m.)	Pórtico Débil (E)	Pórtico Fuerte (A)	
1	0.0170	0.0131	0.0092	0.0622	-0.0621	
2	0.0309	0.0238	0.0167	0.0622	-0.0621	
3	0.0455	0.0350	0.0246	0.0622	-0.0621	
4	0.0584	0.0450	0.0316	0.0622	-0.0621	
5	0.0692	0.0533	0.0375	0.0622	-0.0621	
6	0.0757	0.0583	0.0410	0.0622	-0.0621	

5.7.3 Comparación de los factores de amplificación torsional

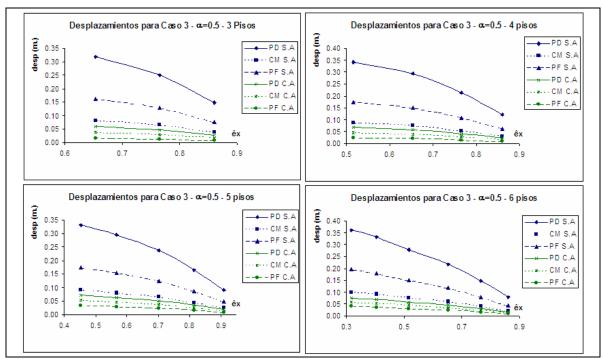
En la figura 5.6 se muestran los factores de amplificación torsional para edificios abiertos de 3, 4, 5 y 6 pisos correspondientes al Caso 3 - α = 0.5 el cual se analiza en este capítulo, con y sin sistema de aislamiento; para pórtico débil y pórtico fuerte. En la figura 5.4 los factores de amplificación están en función de la excentricidad estática normalizada.

Se aclara que cuando las estructuras no poseen mampostería incorporada ni sistema de aislamiento no existen factores de amplificación torsional ya que la estructura es completamente simétrica y no tiene problemas de torsión.

Figura 5.4 Factores de Amplificación Torsional para todas las estructuras del Caso 3 - α = 0.5.

Ahora que ya obtuvimos los factores de amplificación torsional en cada uno de los pisos de las diferentes estructuras se procedió a graficarlos en función de la excentricidad estática obtenida para cada piso. El orden en el cual se encuentran graficados los pisos es de derecha a izquierda, siendo el primer piso el punto que se grafica en el extremo derecho de cada figura, mientras que el último piso de cada estructura es el punto que se grafica al extremo izquierdo de cada gráfico.

Aparentemente el comportamiento de los pórtico fuertes y débiles sin aislamiento es lineal; pero si observamos los resultados mostrados en las tablas 5.20 a 5.23; notamos que se tiene cierta diferencia en los dos últimos decimales; pero al momento de realizar las líneas que representan a los factores de amplificación para los pórticos sin aislamiento se grafica una recta.


Si se observan los resultados de las tablas 5.24 a 5.27; los factores de amplificación son exactamente los mismos en cada uno de los pisos, esto indica que el comportamiento es lineal.

En cuanto al comportamiento que se observa para los factores de amplificación en las estructuras con base empotrada tenemos valores altos y además para pórtico fuerte la línea está en el eje Y positivo, esto indica que el desplazamiento en el pórtico fuerte es mayor que el desplazamiento en el centro de masa, éste comportamiento es fatal para estas estructuras y va a causar la falla por torsión de las mismas.

Cuando se incorpora el sistema de aislamiento el comportamiento es muy distinto, si observamos en la figura 5.4 ambos factores de amplificación para pórtico débil y fuerte se aproximan al valor de cero, esto indica que la amplificación torsional ha disminuido y el comportamiento de la estructura ante la acción de un sismo es mucho mejor que sin aislamiento de base. Además los valores que forman la línea de factores de amplificación para pórtico fuerte se encuentra en el eje Y negativo lo que indica que el desplazamiento para pórtico fuerte es menor que el desplazamiento en el centro de masa.

5.7.4 Comparación de los desplazamientos

En la figura 5.5 se presentan los valores de los desplazamientos en las estructuras de 3, 4, 5 y 6 pisos; en función de la excentricidad estática. Los desplazamientos se obtuvieron en el pórtico fuerte, centro de masa y pórtico débil en cada uno de los pisos. Los valores obtenidos son para los edificios con y sin sistema de aislamiento de base por este motivo en cada gráfica tenemos seis líneas; tres son para las estructuras sin sistema de aislamiento y tres para las mismas estructuras con sistema de aislamiento. La simbología correspondiente se la indica en cada una de las gráficas.

Figura 5.5 Desplazamientos para todas las estructuras del Caso 3 - α = 0.5.

5.8 RESPUESTA EN EL TIEMPO

Para demostrar lo que se realizó por medio de los programas modelo_2gdl_paramétrico_empotrado que analiza estructuras monosimétricas con base empotrada y el programa modelo_4gdl_elastomérico que analiza estructuras monosimétricas con sistema de aislamiento de base se encontró la respuesta en el tiempo de la estructura de 3 pisos correspondiente al Caso 3 - α = 0.5.

5.8.1 Edificio abierto de tres pisos sin aislamiento

Para el edificio abierto de 3 pisos sin sistema de aislamiento, los datos son los siguientes: $e_X=4.211\,m$ excentricidad estática; $\hat{e}_X=0.653$ excentricidad estática normalizada; $T_S=0.474\,s$., período de vibración en sentido Y.; $m=36.73\,T\,s^2/m$ la masa equivalente que es igual a la suma de las masas de cada piso; $\Omega_{\theta}^{(s)}=1.166$ que es la frecuencia torsional en sentido Y; $\xi^{(s)}=0.05$ factor de amortiguamiento de la estructura.

Se encuentra la respuesta en el tiempo, para el acelerograma 1S2 que tiene una duración de 20 s., y corresponde a un perfil de suelo S2.

Para este cálculo se utilizó el acelerograma 1S2 con una duración de 20 segundos, correspondiente al sismo de análisis indicado en el apartado 5.3 de este capítulo. Las respuestas se presentan en las figuras 5.6 y 5.7.

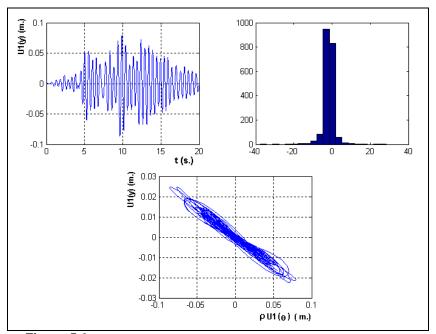


Figura 5.6 Respuesta en el tiempo de estructura con base empotrada.

En la parte superior izquierda de la figura 5.6 se muestra los desplazamiento en función del tiempo del centro de masa CM., de la estructura de análisis. Se observa que estos desplazamientos se encuentran entre 5 y 8 cm.

En la parte superior derecha de la figura 5.6 se muestra el histograma de la excentricidad dinámica. La excentricidad dinámica se obtiene dividiendo el momento de torsión con respecto al cortante; también se puede definir a la excentricidad dinámica como un coeficiente entre el momento torsor proveniente de un análisis dinámico con 3 grados de libertad por planta, calculado respecto al Centro de Rigidez CR y la fuerza cortante en esa planta.

Se aprecia en el eje de las X los valores de esta excentricidad y se ve que no son cero por que existe torsión. Lo ideal es que en el histograma tenga todos los valores concentrados en el punto cero pero esto se da en estructuras que no tienen problemas de torsión.

En la gráfica inferior de la figura 5.7, se presenta la repuesta del giro de torsión normalizado y del desplazamiento lateral, cada punto representa como se desplaza y rota la estructura.



Figura 5.7 Historia de desplazamientos en pórticos exteriores sin aisladores de base.

En la figura 5.7 se muestra la respuesta en desplazamientos de los pórticos débil, en la parte superior y pórtico fuerte en la parte inferior.

Se observa que estos desplazamientos son mayores a los desplazamientos en el centro de masa CM., debido a la torsión. Los desplazamientos máximos del pórtico débil están alrededor de los 30 cm., cantidad demasiado alta en comparación con los desplazamientos del CM. En el pórtico fuerte estos desplazamientos máximos están alrededor de los 16 cm.

5.8.2 Edificio abierto de tres pisos con aislamiento

A continuación, se incorporó a la estructura aisladores de base elastoméricos, de tal manera que el período objetivo $T^{(b)}=2.0\,s$, que el CR coincida con el CM., luego $e^{(b)}=0$. La relación de frecuencia a torsión con respecto a la frecuencia

traslacional $\Omega_{\theta}^{(b)}=1.2649$. El factor de amortiguamiento del sistema de aislación $\xi^{(b)}=0.10$; la masa del sistema de aislación se considera el 10% de la masa de la superestructura, $m^{(b)}=3.673\,T\,s^2/m$.

La respuesta en desplazamientos del sistema de aislación y de la superestructura se muestra en la figura 5.9.

Al coincidir el CM., con el CR., en el aislamiento, todos los pórticos del sistema de aislamiento que están en una misma dirección se desplazan lo mismo. En la superestructura continúa habiendo torsión; ya que los pórticos extremos no son iguales como se aprecia en la parte inferior de la figura 5.8 sin embargo estos desplazamientos son mucho más bajos a los que se tenía en la estructura con base empotrada.

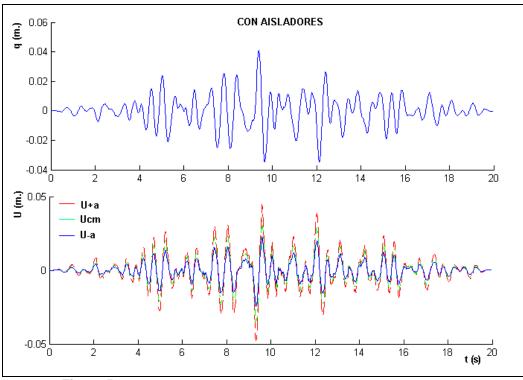


Figura 5.8 Desplazamientos en sistema de aislación y en superestructura.

Figura 5.9 Desplazamientos en pórticos exteriores de superestructura con y sin aisladores.

En efecto, en la figura 5.9 se muestran los desplazamientos laterales de los pórticos exteriores de la superestructura sin y con sistema de aislamiento, se aprecia que los desplazamientos de la estructura sin aisladores de base son mucho más altos que los desplazamientos de la estructura con aisladores de base, con lo que se reduce notablemente el problema de torsión ya que al ser los desplazamientos bajos los momentos de torsión que se van a generar son bajos.

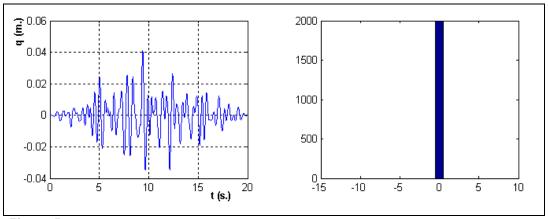


Figura 5.10 Desplazamientos en sistema de aislamiento e histograma de excentricidad dinámica.

En la figura 5.10 se aprecia a la izquierda los desplazamientos del sistema de aislación y a la derecha el histograma de la excentricidad dinámica, se aprecia que todos los valores están en un solo rango que coincide el punto 0. Esto significa que no existe torsión en el sistema de aislación. Este histograma es de desear que tengan las estructuras con y sin aislamiento.

5.9 ANÁLISIS PLANO DE PÓRTICOS

En este apartado se obtienen las cargas que actúan en cada uno de los elementos estructurales que forman los pórticos de cada una de las estructuras de 3, 4, 5 y 6 pisos. Los pórticos considerados para éste análisis fueron pórtico débil (E), centro de masa (C) y pórtico fuerte (A).

Se obtienen las cargas en los elementos para estructuras sin considerar mampostería ni sistema de aislación, estructuras con mampostería (edificios abiertos) sin sistema de aislación y estructuras con mampostería (edificios abiertos) con sistema de aislación.

Para obtener las cargas en los elementos se realizó un análisis plano de pórticos mediante el programa **plano**, Aguiar (2006) Análisis Estático de Estructuras, Capítulo 3.

El objetivo de determinar las cargas es para realizar un análisis de las columnas de primer piso de cada una de las estructuras, para de esta manera determinar la armadura longitudinal de las columnas de los pórticos débiles, centros de masa y pórticos fuerte, considerando la presencia o no de mampostería y también la presencia o no del sistema de aislación.

5.9.1 Estructura sin mampostería acoplada

Se analizó estructuras sin mampostería ni sistema de aislamiento de 3, 4, 5 y 6 pisos; las fuerzas laterales que actúan son las mismas para cada pórtico ya que las estructuras son simétricas al no tomar en cuenta la presencia de mampostería. Las fuerzas que se utilizaron para éste análisis son las que se encuentran en las tablas 5.4 a 5.7.

A continuación se presentan los valores de las fuerzas axial, cortante y momentos, en pie y cabeza de columna. Los elementos 1, 2 y 3 son las columnas de primer piso, la número 1 corresponde a la columna de la izquierda, la 2 a la columna central y la 3 a la columna del extremo derecho.

Tabla 5.28 Fuerzas en columnas de primer piso para edificio de tres pisos sin mampostería.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	0.695	3.169	8.400
'	Cabeza	-0.695	-3.169	4.275
2	Pie	9.274	6.740	9.670
2	Cabeza	-9.274	-6.740	9.274
3	Pie	9.420	3.510	8.910
3	Cabeza	-9.420	-3.510	5.150

Tabla 5.29 Fuerzas en columnas de primer piso para edificio de cuatro pisos sin mampostería.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	6.124	5.566	15.020
'	Cabeza	-6.124	-5.566	7.245
2	Pie	14.180	7.200	17.230
	Cabeza	-14.180	-7.200	11.575
3	Pie	19.940	5.940	15.570
3	Cabeza	-19.940	-5.940	8.196

Tabla 5.30 Fuerzas en columnas de primer piso para edificio de cinco pisos sin mampostería.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	5.080	5.600	15.040
'	Cabeza	-5.080	-5.600	7.360
2	Pie	19.940	7.280	17.330
	Cabeza	-19.940	-7.280	11.800
3	Pie	25.140	6.080	15.770
3	Cabeza	-25.140	-6.080	8.570

Tabla 5.31 Fuerzas en columnas de primer piso para edificio de seis pisos sin mampostería.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	8.860	6.890	18.640
	Cabeza	-8.860	-6.890	8.941
2	Pie	26.310	9.004	21.510
2	Cabeza	-26.310	-9.004	14.510
3	Pie	36.540	7.440	19.450
3	Cabeza	-36.540	-7.440	-10.310

5.9.2 Edificios abiertos sin aislamiento

Se determinaron las fuerzas para los pórticos fuerte, centro de masa y pórtico débil en edificios abiertos de 3, 4, 5 y 6 pisos sin sistema de aislamiento. Ahora tendremos fuerzas laterales distintas en cada pórtico ya que se tiene la presencia

de mampostería, por tal motivo tendremos fuerzas axiales, cortantes y momentos; distintas en cada pórtico. A continuación se presentan los valores de las fuerzas axial, cortante y momentos, en pie y cabeza de columna. Los elementos 1, 2 y 3 son las columnas de primer piso, la número 1 corresponde a la columna de la izquierda, la 2 a la columna central y la 3 a la columna del extremo derecho.

Las fuerzas que se utilizaron para éste análisis son las que se encuentran en las tablas 5.10 a 5.13.

5.9.2.1 Edificio de tres pisos

A continuación se indican las fuerzas axial, cortante y momento para pórtico débil, centro de masa y pórtico fuerte; para la edificación de tres pisos con mampostería acoplada.

Tabla 5.32 Fuerzas en columnas de primer piso para pórtico débil (E) sin aislamiento – 3 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	111.380	65.190	172.301
1	Cabeza	-111.380	-65.190	88.460
2	Pie	8.639	81.576	194.454
	Cabeza	-8.639	-81.576	131.854
3	Pie	120.759	65.932	173.810
3	Cabeza	-120.759	-65.932	89.920

Tabla 5.33 Fuerzas en columnas de primer piso para centro de masa (C) sin aislamiento – 3 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	6.870	6.706	17.730
1	Cabeza	-6.870	-6.706	9.090
2	Pie	9.240	8.520	20.192
	Cabeza	-9.240	-8.520	13.889
3	Pie	15.630	7.070	18.300
3	Cabeza	-15.630	-7.070	9.990

Tabla 5.34 Fuerzas en columnas de primer piso para pórtico fuerte (A) sin aislamiento – 3 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	38.680	26.330	69.010
1	Cabeza	-38.680	-26.330	36.310
2	Pie	9.098	32.890	77.900
	Cabeza	-9.098	-32.890	53.660
3	Pie	47.580	26.890	70.500
3	Cabeza	-47.580	-26.890	37.535

5.9.2.2 Edificio de cuatro pisos

A continuación se indican las fuerzas axial, cortante y momento para pórtico débil, centro de masa y pórtico fuerte; para la edificación de cuatro pisos con mampostería acoplada.

Tabla 5.35 Fuerzas en columnas de primer piso para pórtico débil (E) sin aislamiento – 4 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	135.840	57.000	152.540
1	Cabeza	-135.840	-57.000	75.460
2	Pie	13.730	71.860	172.630
	Cabeza	-13.730	-71.860	114.830
3	Pie	150.110	57.640	153.696
3	Cabeza	-150.110	-57.640	76.850

Tabla 5.36 Fuerzas en columnas de primer piso para centro de masa (C) sin aislamiento – 4 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	11.010	8.010	21.450
1	Cabeza	-11.010	-8.010	10.616
2	Pie	14.170	10.260	24.490
	Cabeza	-14.170	-10.260	16.590
3	Pie	24.838	8.410	22.050
3	Cabeza	-24.838	-8.410	11.590

Tabla 5.37 Fuerzas en columnas de primer piso para pórtico fuerte (A) sin aislamiento – 4 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	61.170	32.080	84.980
1	Cabeza	-61.170	-32.080	43.330
2	Pie	14.040	40.350	96.180
	Cabeza	-14.040	-40.350	65.210
3	Pie	75.120	32.600	85.940
3	Cabeza	-75.120	-32.600	44.450

5.9.2.3 Edificio de cinco piso.

A continuación se indican las fuerzas axial, cortante y momento para pórtico débil, centro de masa y pórtico fuerte; para la edificación de cinco pisos con mampostería acoplada.

Tabla 5.38 Fuerzas en columnas de primer piso para pórtico débil (E) sin aislamiento – 5 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	152.230	49.560	133.640
1	Cabeza	-152.230	-49.560	64.610
2	Pie	19.460	62.950	151.730
	Cabeza	-19.460	-62.950	100.070
3	Pie	172.780	50.140	134.600
3	Cabeza	-172.780	-50.140	65.990

Tabla 5.39 Fuerzas en columnas de primer piso para centro de masa (C) sin aislamiento - 5 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	16.770	9.490	25.558
1	Cabeza	-16.770	-9.490	12.430
2	Pie	19.890	12.220	29.252
	Cabeza	-19.890	-12.220	19.640
3	Pie	36.870	9.951	26.240
3	Cabeza	-36.870	-9.951	13.560

Tabla 5.40 Fuerzas en columnas de primer piso para pórtico fuerte (A) sin aislamiento – 5 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	85.930	35.350	94.360
1	Cabeza	-85.930	-35.350	47.030
2	Pie	19.740	44.780	107.110
	Cabeza	-19.740	-44.780	71.950
3	Pie	106.190	35.880	95.320
3	Cabeza	-106.190	-35.880	48.220

5.9.2.4.- Edificio de seis pisos.

A continuación se indican las fuerzas axial, cortante y momento para pórtico débil, centro de masa y pórtico fuerte; para la edificación de seis pisos con mampostería acoplada.

Tabla 5.41 Fuerzas en columnas de primer piso para pórtico débil (E) sin aislamiento – 6 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	195.020	51.520	139.451
'	Cabeza	-195.020	-51.520	66.640
2	Pie	25.910	65.702	158.630
	Cabeza	-25.910	-65.702	104.170
3	Pie	223.105	52.180	140.470
3	Cabeza	-223.105	-52.180	68.230

				. ,
Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	27.770	11.960	32.360
1	Cabeza	-27.770	-11.960	15.480
	Pie	26.270	15.450	37.080
2	Cabeza	-26.270	-15.450	24.690
3	Pie	55.510	12.470	33.120
3	Cabeza	-55.510	-12.470	16.770

Tabla 5.42 Fuerzas en columnas de primer piso para centro de masa (C) sin aislamiento - 6 pisos.

Tabla 5.43 Fuerzas en columnas de primer piso para pórtico fuerte (A) sin aislamiento – 6 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	133.340	44.080	118.230
1	Cabeza	-133.340	-44.080	58.100
2	Pie	26.080	56.050	134.454
	Cabeza	-26.080	-56.050	89.750
3	Pie	161.260	44.690	119.280
3	Cabeza	-161.260	-44.690	59.460

5.9.3 Edificios abiertos con aislamiento

Se determinaron las fuerzas para los pórticos fuerte, centro de masa y pórtico débil en edificios abiertos de 3, 4, 5 y 6 pisos con sistema de aislamiento. A continuación se presentan los valores de las fuerzas axial, cortante y momentos, en pie y cabeza de columna.

Los elementos 1, 2 y 3 son las columnas de primer piso, la número 1 corresponde a la columna de la izquierda, la 2 a la columna central y la 3 a la columna del extremo derecho.

Las fuerzas que se utilizaron para éste análisis son las que se encuentran en las tablas 5.14 a 5.17.

5.9.3.1 Edificio de tres pisos

A continuación se indican las fuerzas axial, cortante y momento para pórtico débil, centro de masa y pórtico fuerte; para la edificación de tres pisos con mampostería acoplada y sistema de aislamiento.

Tabla 5.44 Fuerzas en columnas de primer piso para pórtico débil (E) con aislamiento – 3 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	1.593	3.247	8.755
'	Cabeza	-1.593	-3.247	4.235
2	Pie	9.259	4.240	10.098
	Cabeza	-9.259	-4.240	6.861
3	Pie	10.334	3.573	9.224
3	Cabeza	-10.334	-3.573	5.067

Tabla 5.45 Fuerzas en columnas de primer piso para centro de masa (C) con aislamiento - 3 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	4.001	2.704	7.107
'	Cabeza	-4.001	-2.704	3.619
2	Pie	9.276	3.531	8.320
	Cabeza	-9.276	-3.531	5.802
3	Pie	8.722	3.045	7.697
3	Cabeza	-8.722	-3.045	4.484

Tabla 5.46 Fuerzas en columnas de primer piso para pórtico fuerte (A) con aislamiento – 3 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	1.545	1.664	4.506
1	Cabeza	-1.545	-1.664	2.149
	Pie	9.281	2.246	5.296
2	Cabeza	-9.281	-2.246	3.686
3	Pie	7.174	1.991	4.972
3	Cabeza	-7.174	-1.991	2.991

5.9.3.2 Edificio de cuatro pisos

A continuación se indican las fuerzas axial, cortante y momento para pórtico débil, centro de masa y pórtico fuerte; para la edificación de cuatro pisos con mampostería acoplada y sistema de aislamiento.

Tabla 5.47 Fuerzas en columnas de primer piso para pórtico débil (E) con aislamiento – 4 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	3.308	4.695	12.573
1	Cabeza	-3.308	-4.695	6.208
2	Pie	14.202	6.079	14.453
	Cabeza	-14.202	-6.079	9.865
3	Pie	17.106	5.095	13.167
3	Cabeza	-17.106	-5.095	7.214

Tabla 5.48 Fuerzas en columnas de primer piso para centro de masa (C) con aislamiento - 4 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	2.617	3.994	10.848
1	Cabeza	-2.617	-3.994	5.130
2	Pie	14.197	5.232	12.524
	Cabeza	-14.197	-5.232	8.405
3	Pie	16.419	4.363	11.378
3	Cabeza	-16.419	-4.363	6.076

Tabla 5.49 Fuerzas en columnas de primer piso para pórtico fuerte (A) con aislamiento – 4 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	1.100	2.885	7.892
1	Cabeza	-1.100	-2.885	3.648
2	Pie	14.205	3.840	9.186
	Cabeza	-14.205	-3.840	6.174
3	Pie	13.696	3.245	8.402
3	Cabeza	-13.696	-3.245	4.578

5.9.3.3 Edificio de cinco pisos

A continuación se indican las fuerzas axial, cortante y momento para pórtico débil, centro de masa y pórtico fuerte; para la edificación de cinco pisos con mampostería acoplada y sistema de aislamiento.

Tabla 5.50 Fuerzas en columnas de primer piso para pórtico débil (E) con aislamiento – 5 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	5.686	4.731	12.970
1	Cabeza	-5.686	-4.731	5.955
2	Pie	19.926	6.241	15.016
	Cabeza	-19.926	-6.241	9.948
3	Pie	25.760	5.178	13.604
3	Cabeza	-25.760	-5.178	7.107

Tabla 5.51 Fuerzas en columnas de primer piso para centro de masa (C) con aislamiento - 5 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	1.568	4.208	11.390
1	Cabeza	-1.568	-4.208	5.441
2	Pie	19.947	5.593	13.206
2	Cabeza	-19.947	-5.593	8.966
3	Pie	21.621	4.669	12.064
3	Cabeza	-21.621	-4.669	6.614

י י	en columnas de primer piso para portico idente (A) com a					
	Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)	
		Pie	1.735	2.991	8.157	
	-	Cabeza	-1.735	-2.991	3.807	
	2	Pie	19.956	4.013	9.549	
	2	Cabeza	-19.956	-4.013	6.502	
	3	Pie	18.309	3.446	8.814	
		Cabeza	-18.309	-3.446	4.971	

Tabla 5.52 Fuerzas en columnas de primer piso para pórtico fuerte (A) con aislamiento – 5 pisos.

5.9.3.4 Edificio de seis pisos

A continuación se indican las fuerzas axial, cortante y momento para pórtico débil, centro de masa y pórtico fuerte; para la edificación de seis pisos con mampostería acoplada y sistema de aislamiento.

Tabla 5.53 Fuerzas en columnas de primer piso para pórtico débil (E) con aislamiento – 6 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
1	Pie	9.165	5.847	16.040
	Cabeza	-9.165	-5.847	7.397
2	Pie	26.307	7.718	18.579
2	Cabeza	-26.307	-7.718	12.295
3	Pie	36.857	6.355	16.762
	Cabeza	-36.857	-6.355	8.657

Tabla 5.54 Fuerzas en columnas de primer piso para centro de masa (C) con aislamiento - 6 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	3.333	5.083	13.873
I	Cabeza	-3.333	-5.083	6.459
2	Pie	26.323	6.730	16.112
2	Cabeza	-26.323	-6.730	10.808
3	Pie	31.009	5.597	14.614
3	Cabeza	-31.009	-5.597	7.774

Tabla 5.55 Fuerzas en columnas de primer piso para pórtico fuerte (A) con aislamiento – 6 pisos.

Elemento	Ubicación	F. Axial (T.)	F. Cortante (T.)	Mom. Flex (Tm.)
4	Pie	18.702	8.303	22.656
1	Cabeza	-18.702	-8.303	10.555
2	Pie	26.285	10.833	26.086
2	Cabeza	-26.285	-10.833	17.245
3	Pie	46.417	8.814	23.391
3	Cabeza	-46.417	-8.814	11.867

Los resultados obtenidos nos indican que la fuerza axial, cortante y momento flector disminuyen notablemente con la presencia del sistema de aislamiento en edificios abiertos. Las fuerzas que se obtienen en edificios abiertos sin sistema de aislamiento tienen los mayores valores; cabe recalcar que las fuerzas que se obtienen en estructuras sin considerar mampostería son las que se utilizan normalmente para el diseño; pero las fuerzas reales que van a actuar cuando se presente un sismo serán las obtenidas en edificios abiertos sin sistema de aislación. Por este motivo se vuelve muy importante la presencia del sistema de aislamiento de base ya que las fuerzas se reducen y existe menor riesgo ante la acción de un sismo.

5.10 DISEÑO ESTRUCTURAL DE COLUMNAS

Para realizar el diseño estructural de las columnas se considera el método por flexocompresión Uniaxial para la obtener el valor de la armadura longitudinal, para el cálculo de estribos se los diseña por confinamiento.

5.10.1 Flexocompresión Uniaxial

Columnas axialmente cargadas no existen en la realidad debido a que alguna excentricidad siempre estará presente ya sea por pequeñas desviaciones constructivas de los ejes, y la manera de cómo es aplicada la carga a través de las losas y las vigas así como las que se generan por la convergencia de otros elementos estructurales hacia las columnas.

La combinación de una carga axial última Pu y el correspondiente momento flector último Mu es equivalente a, una carga Pu aplicada a una excentricidad de centroide plástico.

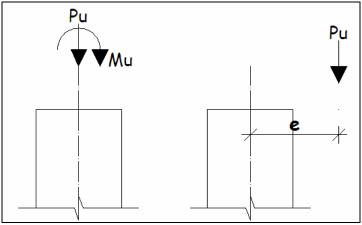


Figura 5.11 Flexocompresión Uniaxial en columnas.

5.10.2 Diagramas de interacción

El comportamiento de secciones específicas de columnas de hormigón armado es descrito claramente mediante gráficos denominados curvas o diagramas de interacción. Sobre el eje vertical se tienen los valores obtenidos para las cargas axiales resistentes y sobre el eje horizontal los correspondientes momentos flectores resistentes.

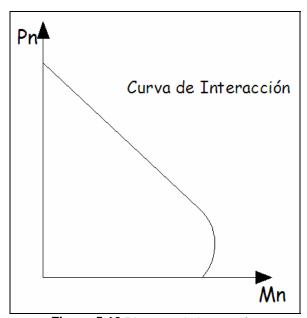


Figura 5.12 Diagrama de Interacción.

Para utilizar las curvas se debe obtener primeramente la carga axial resistente y el momento flector resistente. Con estos dos datos ingresamos a la curva, y determinamos el valor de la cuantía de armado.

Las ecuaciones que sirven para ingresar al diagrama son las siguientes:

$$x = \frac{Mu}{f'c.*b*t^2}$$
 (5.5)

$$y = \frac{Pu}{f'c*b*t} \tag{5.6}$$

Una vez obtenidos estos valores ingresamos al diagrama y determinamos la cuantía de armado para la columna.

La cantidad de acero total de la columna se obtiene con la siguiente ecuación:

$$As = \rho * b * t \tag{5.7}$$

Donde; ρ es la cuantía de armado obtenida mediante los diagramas de interacción; b es la base de la columna; t es la ancho de la columna.

5.10.3 Diseño de estribos por confinamiento

Para diseñar los estribos de las columnas se lo realizó por confinamiento, ya que los valores de las fuerzas cortantes que se muestran en el apartado 5.9 no cumplen ni siguiera con la armadura mínima.

Para obtener el área de sección de acero para los estribos de las columnas se utilizan las siguientes ecuaciones.

$$Ash1 = \left[\frac{0.3 * S * h' * f' c}{fy} \left(\frac{Ag}{Ac} - 1\right)\right]$$

$$(5.8)$$

$$Ash2 = \left[\frac{0.09 * S * h' * f' c}{fy} \right]$$
 (5.9)

Donde; S es el espaciamiento de estribos, h' es la dimensión perpendicular al sentido de análisis medido centro a centro de estribos, f'c es la última resistencia a compresión del hormigón, fy es el esfuerzo de fluencia del hacer, Ag es el área de hormigón y Ac es el área que existe centro a centro de estribos.

Por medio de estos procedimiento se realizará el diseño estructural de cada una de las columnas de primer piso para estructuras sin considerar mampostería, edificios abiertos sin aislamiento y edificios con aislamiento. Cada uno de estos casos de 3, 4, 5 y 6 pisos.

5.11 DISEÑO ESTRUCTURAL DE COLUMNAS DE PRIMER PISO

A cada uno de las columnas de primer piso de cada estructura se le realizó el análisis a Flexocompresión Uniaxial para obtener la cuantía de armado y la sección de acero de cada una. Luego se muestran los resultados obtenidos para la sección de acero en estribos por confinamiento.

5.11.1 Estructura sin mampostería acoplada

A continuación se indican los resultados obtenidos en las columnas de primer pisos en estructuras sin considerar mampostería ni sistema de aislamiento. Se debe tener en cuenta que las cargas axiales y momentos flectores son los mismos para cada uno de los pórticos es decir no tenemos pórtico débil, centro de masa y pórtico fuerte. Se indican los resultados según el número de pisos de los edificios en las tablas 5.56 a 5.59, además en las tablas se muestran los valores de base, altura, resistencia última del hormigón a compresión (se consideró 210 Kg/cm²), esfuerzo de fluencia del acero (4200 Kg/cm²), momento flector, carga axial, la coordenada en X para ingresar a los diagramas de interacción (ecuación 5.5), la coordenada en Y para ingresar a los diagramas de interacción (ecuación 5.6), el valor de la cuantía, sección de acero obtenida (ecuación 5.7) y la armadura longitudinal.

Tabla 5. 56 Cuantía de armado y sección de acero para columnas de primer piso en estructura de 3 pisos

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	Х	Y	Cuantía	As (cm2.)	Armadura
1	45	45	210	427500.0	695.0	0.022	0.002	0.010	20.250	12ф14mm
2	45	45	210	927400.0	9274.0	0.048	0.022	0.010	20.250	12ф14mm
3	45	45	210	515000.0	9420.0	0.027	0.022	0.010	20.250	12ф14mm

Tabla 5. 57 Cuantía de armado y sección de acero para columnas de primer piso en estructura de 4 pisos

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	50	50	210	724500.0	6124.0	0.028	0.012	0.010	25.000	12 ф 16mm
2	50	50	210	1157500.0	14180.0	0.044	0.027	0.010	25.000	12 ф 16mm
3	50	50	210	819600.0	19940.0	0.031	0.038	0.010	25.000	12 ф 16mm

Tabla 5. 58 Cuantía de armado y sección de acero para columnas de primer piso en estructura de 5 pisos

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	55	55	210	736000.0	5080.0	0.021	0.008	0.010	30.250	12ф18mm
2	55	55	210	1180000.0	19940.0	0.034	0.031	0.010	30.250	12ф18mm
3	55	55	210	857000.0	25140.0	0.025	0.040	0.010	30.250	12ф18mm

Tabla 5. 59 Cuantía de armado y sección de acero para columnas de primer piso en estructura de 6 pisos

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	60	60	210	894100.0	8860.0	0.020	0.012	0.010	36.000	14ф18mm
2	60	60	210	1451000.0	26310.0	0.032	0.035	0.010	36.000	14 ф 18mm
3	60	60	210	1031000.0	36540.0	0.023	0.048	0.010	36.000	14 ф 18mm

5.11.2 Edificios abiertos sin aislamiento

A continuación se indican los resultados obtenidos en las columnas de primer pisos en estructuras con mampostería pero sin sistema de aislamiento. Ahora que tenemos la presencia de mampostería tendremos cargas axiales y momentos distintos en pórtico débil, centro de masa y pórtico fuerte.

5.11.2.1 Edificio de tres pisos

Se muestran las cuantías de armado y secciones de acero en las columnas de primer piso en el edificio abierto de tres pisos, para pórtico débil, centro de masa y pórtico fuerte.

Tabla 5.60 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 3 pisos en pórtico débil (E).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	Х	Y	Cuantía	As (cm2.)	Armadura
1	45	45	210	8846000.0	111380.0	0.462	0.262	0.021	42.53	12ф20mm
2	45	45	210	13185400.0	8639.0	0.689	0.020	0.023	46.58	12ф22mm
3	45	45	210	8992000.0	120759.0	0.470	0.284	0.021	42.53	12ф20mm

Tabla 5.61 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 3 pisos en centro de masa (C).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	45	45	210	909000.0	6870.0	0.048	0.016	0.010	20.25	12ф14mm
2	45	45	210	1388900.0	9240.0	0.073	0.022	0.0115	23.28	12ф16mm
3	45	45	210	999000.0	15630.0	0.052	0.037	0.010	20.25	12ф14mm

Tabla 5.62 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 3 pisos en pórtico fuerte (A).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	X	Y	Cuantía	As (cm2.)	Armadura
1	45	45	210	3631000.0	38680.0	0.190	0.091	0.016	32.40	12ф18mm
2	45	45	210	5366000.0	9098.0	0.280	0.021	0.020	40.50	12φ20mm
3	45	45	210	3753500.0	47580.0	0.196	0.112	0.016	32.40	12ф18mm

5.11.2.2 Edificio de cuatro pisos

Se muestran las cuantías de armado y secciones de acero en las columnas de primer piso en el edificio abierto de cuatro pisos, para pórtico débil, centro de masa y pórtico fuerte.

Tabla 5.63 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 4 pisos en pórtico débil (E).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	x	Y	Cuantía	As (cm2.)	Armadura
1	50	50	210	7546000.0	135840.0	0.287	0.259	0.015	37.50	12φ20mm
2	50	50	210	11483000.0	13730.0	0.437	0.026	0.017	42.50	14ф20mm
3	50	50	210	7685000.0	150110.0	0.293	0.286	0.015	37.50	12ф20mm

Tabla 5.64 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 4 pisos en centro de masa (C).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	50	50	210	1061600.0	11010.0	0.040	0.021	0.010	25.00	12ф16mm
2	50	50	210	1659000.0	14170.0	0.063	0.027	0.0115	28.75	12ф18mm
3	50	50	210	1159000.0	24838.0	0.044	0.047	0.010	25.00	12ф16mm

Tabla 5.65 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 4 pisos en pórtico fuerte (A).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	X	Y	Cuantía	As (cm2.)	Armadura
1	50	50	210	4333000.0	61170.0	0.165	0.117	0.013	32.50	12ф18mm
2	50	50	210	6521000.0	14040.0	0.248	0.027	0.015	37.50	12ф20mm
3	50	50	210	4445000.0	75120.0	0.169	0.143	0.013	32.50	12ф18mm

5.11.2.3 Edificio de cinco pisos

Se muestran las cuantías de armado y secciones de acero en las columnas de primer piso en el edificio abierto de cinco pisos, para pórtico débil, centro de masa y pórtico fuerte.

Tabla 5.66 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 5 pisos en pórtico débil (E).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	Х	Y	Cuantía	As (cm2.)	Armadura
1	55	55	210	6461000.0	152230.0	0.185	0.240	0.016	48.40	12ф22mm
2	55	55	210	10007000.0	19460.0	0.286	0.031	0.018	54.45	14ф22mm
3	55	55	210	6599000.0	172780.0	0.189	0.272	0.016	48.40	12ф22mm

Tabla 5.67 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 5 pisos en centro de masa (C).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Υ	Cuantía	As (cm2.)	Armadura
1	55	55	210	1243000.0	16770.0	0.036	0.026	0.010	30.25	12ф18mm
2	55	55	210	1964000.0	19890.0	0.056	0.031	0.0125	37.81	12φ20mm
3	55	55	210	1356000.0	36870.0	0.039	0.058	0.010	30.25	12ф18mm

Tabla 5.68 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 5 pisos en pórtico fuerte (A).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	55	55	210	4703000.0	85930.0	0.135	0.135	0.013	37.81	12φ20mm
2	55	55	210	7195000.0	19740.0	0.206	0.031	0.015	45.38	12ф22mm
3	55	55	210	4822000.0	106190.0	0.138	0.167	0.013	37.81	12φ20mm

5.11.2.4 Edificio de seis pisos

Se muestran las cuantías de armado y secciones de acero en las columnas de primer piso en el edificio abierto de seis pisos, para pórtico débil, centro de masa y pórtico fuerte.

Tabla 5.69 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 6 pisos en pórtico débil (E).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	X	Y	Cuantía	As (cm2.)	Armadura
1	60	60	210	6664000.0	195020.0	0.147	0.258	0.0156	56.16	14ф25mm
2	60	60	210	10417000.0	25910.0	0.230	0.034	0.016	57.60	14ф25mm
3	60	60	210	6823000.0	223105.0	0.150	0.295	0.0156	56.16	14ф25mm

Tabla 5.70 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 6 pisos en centro de masa (C).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	60	60	210	1548000.0	27770.0	0.034	0.037	0.010	36.00	14ф18mm
2	60	60	210	2469000.0	26270.0	0.054	0.035	0.0115	41.4	14ф20mm
3	60	60	210	1677000.0	55510.0	0.037	0.073	0.010	36.00	14ф18mm

Tabla 5.71 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 6 pisos en pórtico fuerte (A).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	X	Y	Cuantía	As (cm2.)	Armadura
1	60	60	210	5810000.0	133340.0	0.128	0.176	0.014	50.40	14ф22mm
2	60	60	210	8975000.0	26080.0	0.198	0.034	0.015	54.00	14ф22mm
3	60	60	210	5946000.0	161260.0	0.131	0.213	0.014	50.40	14ф22mm

5.11.3 Edificios abiertos con aislamiento

A continuación se indican los resultados obtenidos en las columnas de primer pisos en estructuras con mampostería pero sin sistema de aislamiento. Ahora que tenemos la presencia de mampostería y sistema de aislamiento, tendremos cargas axiales y momentos más bajos en pórtico débil, centro de masa y pórtico fuerte, pero éstas cargas axiales y momentos son más bajos que los determinamos para edificios abiertos sin sistema de aislamiento.

5.11.3.1 Edificio de tres pisos

Se muestran las cuantías de armado y secciones de acero en las columnas de primer piso en el edificio abierto con sistema de aislamiento, de tres pisos, para pórtico débil, centro de masa y pórtico fuerte.

Tabla 5.72 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 3 pisos en pórtico débil (E).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	X	Y	Cuantía	As (cm2.)	Armadura
1	45	45	210	423500.0	1593.0	0.022	0.004	0.012	24.30	12ф16mm
2	45	45	210	686100.0	9259.0	0.036	0.022	0.013	26.33	12ф18mm
3	45	45	210	506700.0	10334.0	0.026	0.024	0.012	24.30	12φ16mm

Tabla 5.73 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 3 pisos en centro de masa (C).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	X	Y	Cuantía	As (cm2.)	Armadura
1	45	45	210	361900.0	4001.0	0.019	0.009	0.010	20.25	12ф14mm
2	45	45	210	580200.0	9276.0	0.030	0.022	0.012	24.30	12ф16mm
3	45	45	210	448400.0	8722.0	0.023	0.021	0.010	20.25	12ф14mm

Tabla 5.74 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 3 pisos en pórtico fuerte (A).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	X	Y	Cuantía	As (cm2.)	Armadura
1	45	45	210	214900.0	1545.0	0.011	0.004	0.010	20.25	12ф14mm
2	45	45	210	368600.0	9281.0	0.019	0.022	0.010	20.25	12ф14mm
3	45	45	210	299100.0	7174.0	0.016	0.017	0.010	20.25	12ф14mm

5.11.3.2 Edificio de cuatro pisos

Se muestran las cuantías de armado y secciones de acero en las columnas de primer piso en el edificio abierto con sistema de aislamiento, de cuatro pisos, para pórtico débil, centro de masa y pórtico fuerte.

Tabla 5.75 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 4 pisos en pórtico débil (E).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	50	50	210	620800.0	3308.0	0.024	0.006	0.011	27.50	12ф18mm
2	50	50	210	986500.0	14202.0	0.038	0.027	0.0120	30.00	12ф18mm
3	50	50	210	721400.0	17106.0	0.027	0.033	0.011	27.50	12ф18mm

Tabla 5.76 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 4 pisos en centro de masa (C).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	X	Y	Cuantía	As (cm2.)	Armadura
1	50	50	210	513000.0	2617.0	0.020	0.005	0.0105	26.25	12ф16mm
2	50	50	210	840500.0	14197.0	0.032	0.027	0.0110	27.50	12ф18mm
3	50	50	210	607600.0	16419.0	0.023	0.031	0.0105	26.25	12ф16mm

Tabla 5.77 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 4 pisos en pórtico fuerte (A).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	x	Y	Cuantía	As (cm2.)	Armadura
1	50	50	210	364800.0	1100.0	0.014	0.002	0.010	25.00	12ф16mm
2	50	50	210	617400.0	14205.0	0.024	0.027	0.011	27.50	12ф18mm
3	50	50	210	457800.0	13696.0	0.017	0.026	0.010	25.00	12ф16mm

5.11.3.3 Edificio de cinco pisos

Se muestran las cuantías de armado y secciones de acero en las columnas de primer piso en el edificio abierto con sistema de aislamiento, de cinco pisos, para pórtico débil, centro de masa y pórtico fuerte.

Tabla 5.78 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 5 pisos en pórtico débil (E).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	X	Y	Cuantía	As (cm2.)	Armadura
1	55	55	210	595500.0	5686.0	0.017	0.009	0.0115	34.79	12φ20mm
2	55	55	210	994800.0	19926.0	0.028	0.031	0.013	37.81	14ф18mm
3	55	55	210	710700.0	25760.0	0.020	0.041	0.0115	34.79	12ф20mm

Tabla 5.79 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 5 pisos en centro de masa (C).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	x	Y	Cuantía	As (cm2.)	Armadura
1	55	55	210	544100.0	1568.0	0.016	0.002	0.0102	30.86	12ф18mm
2	55	55	210	896600.0	19947.0	0.026	0.031	0.011	32.07	12φ20mm
3	55	55	210	661400.0	21621.0	0.019	0.034	0.0102	30.86	12ф18mm

Tabla 5.80 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 5 pisos en pórtico fuerte (A).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	x	Y	Cuantía	As (cm2.)	Armadura
1	55	55	210	380700.0	1735.0	0.011	0.003	0.010	30.25	12ф18mm
2	55	55	210	650200.0	19956.0	0.019	0.031	0.011	33.28	12ф20mm
3	55	55	210	497100.0	18309.0	0.014	0.029	0.010	30.25	12ф18mm

5.11.3.4 Edificio de seis pisos

Se muestran las cuantías de armado y secciones de acero en las columnas de primer piso en el edificio abierto con sistema de aislamiento, de seis pisos, para pórtico débil, centro de masa y pórtico fuerte.

Tabla 5.81 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 6 pisos en pórtico débil (E).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	60	60	210	739700.0	9165.0	0.016	0.012	0.012	43.20	14ф20mm
2	60	60	210	1229500.0	26307.0	0.027	0.035	0.0125	45.00	14φ20mm
3	60	60	210	865700.0	36857.0	0.019	0.049	0.012	43.20	14φ20mm

Tabla 5.82 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 6 pisos en centro de masa (C).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Υ	Cuantía	As (cm2.)	Armadura
1	60	60	210	645900.0	3333.0	0.014	0.004	0.0105	37.80	14ф18mm
2	60	60	210	1080800.0	26323.0	0.024	0.035	0.011	39.60	14ф18mm
3	60	60	210	777400.0	31009.0	0.017	0.041	0.0105	37.80	14ф18mm

Tabla 5.83 Cuantía de armado y sección de acero para columnas de primer piso en edificio abierto de 6 pisos en pórtico fuerte (A).

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	Mu (Kg-cm)	Pu (Kg.)	х	Y	Cuantía	As (cm2.)	Armadura
1	60	60	210	1055500.0	18702.0	0.023	0.025	0.010	36.00	14ф18mm
2	60	60	210	1724500.0	26285.0	0.038	0.035	0.0105	37.80	14ф18mm
3	60	60	210	1186700.0	46417.0	0.026	0.061	0.010	36.00	14ф18mm

5.11.4 Estribos en columnas

Se determinó la sección de acero para estribos por confinamiento utilizando las ecuaciones 5.8 y 5.9; el espaciamiento S es de 10 cm; y la distancia que existe entre el extremo de la columna y la varilla del estribo es de 3.5 cm.

Tabla 5.84 Estribos en columnas para edificio de tres pisos

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	f'y (Kg/cm2)	Ag (cm2.)	Ac (cm2.)	s (cm.)	h' (cm.)	Ash1 (cm2.)	Ash2 (cm2.)	Armadura
1	45	45	210	4200	2025	1444	10	38	2.293	1.710	4ф10mm
2	45	45	210	4200	2025	1444	10	38	2.293	1.710	4ф10mm
3	45	45	210	4200	2025	1444	10	38	2.293	1.710	4ф10mm

Tabla 5.85 Estribos en columnas para edificio de cuatro pisos

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	f'y (Kg/cm2)	Ag (cm2.)	Ac (cm2.)	s (cm.)	h' (cm.)	Ash1 (cm2.)	Ash2 (cm2.)	Armadura
1	50	50	210	4200	2500	1849	10	43	2.271	1.935	4φ10mm
2	50	50	210	4200	2500	1849	10	43	2.271	1.935	4ф10mm
3	50	50	210	4200	2500	1849	10	43	2.271	1.935	4ф10mm

Tabla 5.86 Estribos en columnas para edificio de cinco pisos

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	f'y (Kg/cm2)	Ag (cm2.)	Ac (cm2.)	s (cm.)	h' (cm.)	Ash1 (cm2.)	Ash2 (cm2.)	Armadura
1	55	55	210	4200	3025	2304	10	48	2.253	2.160	4ф10mm
2	55	55	210	4200	3025	2304	10	48	2.253	2.160	4ф10mm
3	55	55	210	4200	3025	2304	10	48	2.253	2.160	4ф10mm

Tabla 5.87 Estribos en columnas para edificio de seis pisos

Elemento	b (cm.)	t (cm.)	f'c (Kg/cm2)	f'y (Kg/cm2)	Ag (cm2.)	Ac (cm2.)	s (cm.)	h' (cm.)	Ash1 (cm2.)	Ash2 (cm2.)	Armadura
1	60	60	210	4200	3600	2809	10	53	2.239	2.385	4ф10mm
2	60	60	210	4200	3600	2809	10	53	2.239	2.385	4ф10mm
3	60	60	210	4200	3600	2809	10	53	2.239	2.385	4ф10mm

Es importante mencionar que el diseño de estribos se realizó por confinamiento ya que los métodos por resistencia y capacidad determinaron resultados menores a la sección mínima para estribos; por este motivo tenemos el mismo diseño de estribos según el número de pisos para estructuras sin mampostería, edificios abiertos sin aislamiento y edificios abiertos con aislamiento.

5.12.- COMPARACIÓN DE RESULTADOS.

Con los resultados obtenidos en el apartado anterior podemos realizar una comparación entre los diferentes valores de sección de acero que tenemos para las estructuras sin considerar mampostería, edificios abiertos sin aislación y edificios abiertos con aislación.

A continuación se presentan los cuadros de columnas según es número de pisos, los pórticos y el diseño estructural de las columnas.

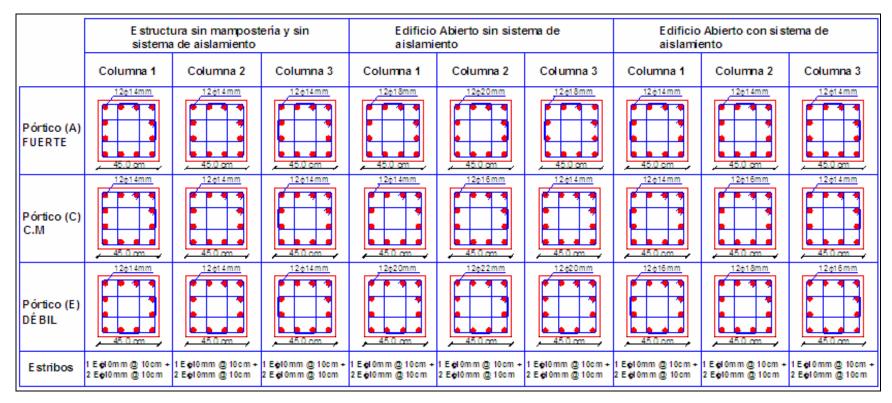


Figura 5.13 Diseño de columnas de primer piso para estructura de 3 pisos

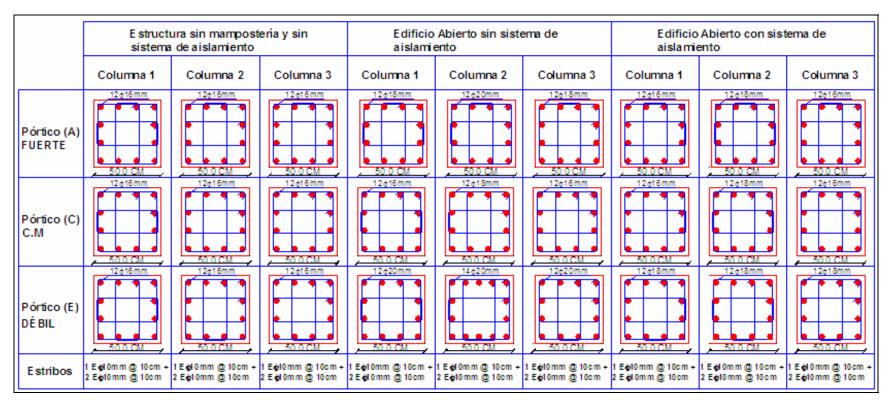


Figura 5.14 Diseño de columnas de primer piso para estructura de 4 pisos

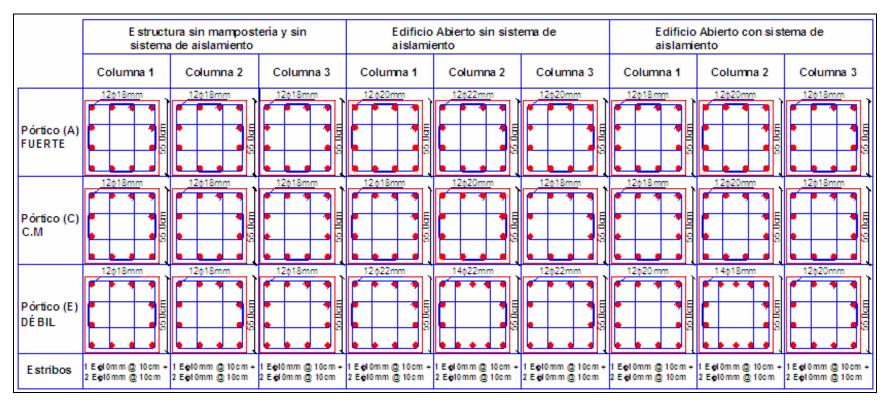


Figura 5.15 Diseño de columnas de primer piso para estructura de 5 pisos

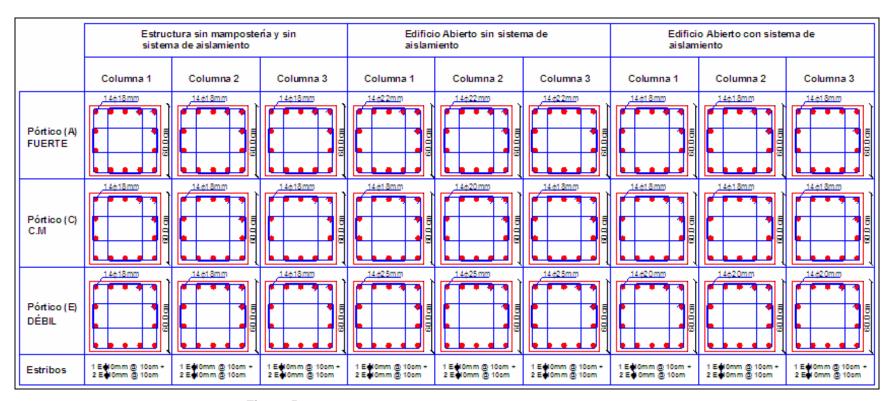


Figura 5.16 Diseño de columnas de primer piso para estructura de 6 pisos

Las figuras 5.15 a 5.18 muestran las armaduras longitudinales de las columnas con los resultados obtenidos en el apartado 5.11.

La tendencia es la misma en todas las edificaciones, es decir que se tiene el menor valor de sección de acero en las estructuras sin considerar mampostería y sin sistema de aislamiento, además en los tres pórticos A, C, y E tenemos la misma armadura; y las tres columnas tienen la misma cantidad de acero.

En los edificios abiertos sin sistema de aislación tenemos el mayor valor de sección de acero en comparación a los otros dos casos; el pórtico C (Centro de Masa) tiene el menor valor de sección de hacer, luego tenemos el pórtico A (pórtico fuerte); y con el mayor valor se tiene al pórtico E (pórtico débil), este fenómeno se produce ya que el valor de las fuerzas es mayor en el pórtico débil y el menor valor de fuerzas lo tiene el centro de masa. En lo que tiene que ver con las columnas esquineras y de borde (1 y 3); son menos armadas que las columnas centrales (2).

En los edificios abiertos con sistema de aislamiento el comportamiento es completamente distinto ya que ahora el pórtico A (pórtico fuerte) y el pórtico C (Centro de Masa) tienen un valor de sección de acero muy cercano y la diferencia está entre 1 y 2 centímetros cuadrados por tal motivo el armado es similar a excepción del edificio de tres pisos; el mayor valor de sección de acero lo sigue teniendo el pórtico E (pórtico débil). Las columnas esquineras y de borde (1 y 3) tienen menor valor de sección en comparación con las columnas centrales (2).