

CARRERA DE PETROQUÍMICA

DETERMINACIÓN DE LA DISPONIBILIDAD DE BIOMASA Y ANÁLISIS DE LAS CARACTERÍSTICAS Y COMPOSICIÓN QUÍMICA DE LA MISMA, A PARTIR DE LOS PRINCIPALES DESECHOS AGROINDUSTRIALES GENERADOS EN LA PROVINCIA DE COTOPAXI

AUTOR: ZAMBRANO HIDALGO, TEDDY JOSUÉ

DIRECTOR: MSc. LUNA ORTIZ, EDUARDO DAVID

LATACUNGA

2021

INTRODUCCIÓN

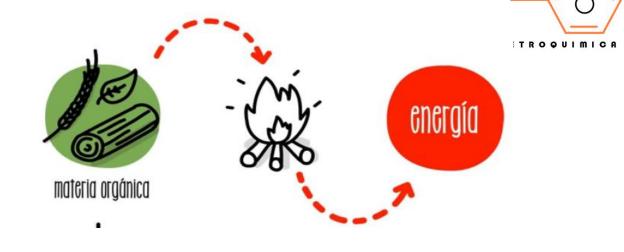
OBJETIVOS

METODOLOGÍA Y ANÁLISIS DE RESULTADOS

CONCLUSIONES

Crecimiento del medio rural a finales del siglo XX debido a impacto económico de la agricultura en Latinoamérica

El sector florícola en Cotopaxi destina 647,5 hectáreas para la producción de este cultivo



En Cotopaxi se ocupa 14 290 hectáreas para la siembra de caña de azúcar

BIOMASA

En el campo de la energía, "biomasa" se refiere a la materia orgánica que puede usarse para la generación de energía, calor o biocombustibles

Tomando en cuenta únicamente la los productos que generan más desechos, en Cotopaxi se producen alrededor de 200 000 ton/año de biomasa de origen vegetal

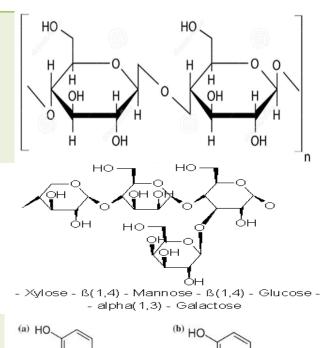
Propiedades de la Biomasa

Humedad	Indicador de la proporción de agua presente en la biomasa
Poder Calorífico	La energía contenida en la biomasa debido a la combustión
Material Volátil	Materia que se pierde en forma de gas
Carbono Fijo	Masa restante después de haber eliminado el material volátil
Cenizas	Productos de combustión compuestos por sustancias inorgánicas
Celulosa/Lignina	Define el tipo de tratamiento y los costos de producción

Celulosa

Biopolímero más abundante. Grado de polimerización: 10 000 – 15 000

Segundo biopolímero más abundante.


Grado de polimerización: 500

-3000

Hemicelulosa

Lignina

Tercer polímero más abundante. Carece de monómeros de azúcar

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA Y ANÁLISIS DE RESULTADOS

CONCLUSIONES

Objetivos

E S P E

Determinar la
disponibilidad de
biomasa y analizar las
características y
composición química de
la misma, a partir de los
principales desechos
agroindustriales
generados en la
provincia de Cotopaxi

Identificar los distintos tipos de desechos agroindustriales existentes en la provincia de Cotopaxi.

Detallar la producción de biomasa a partir de las distintas fuentes que generan residuos agroindustriales en la provincia de Cotopaxi.

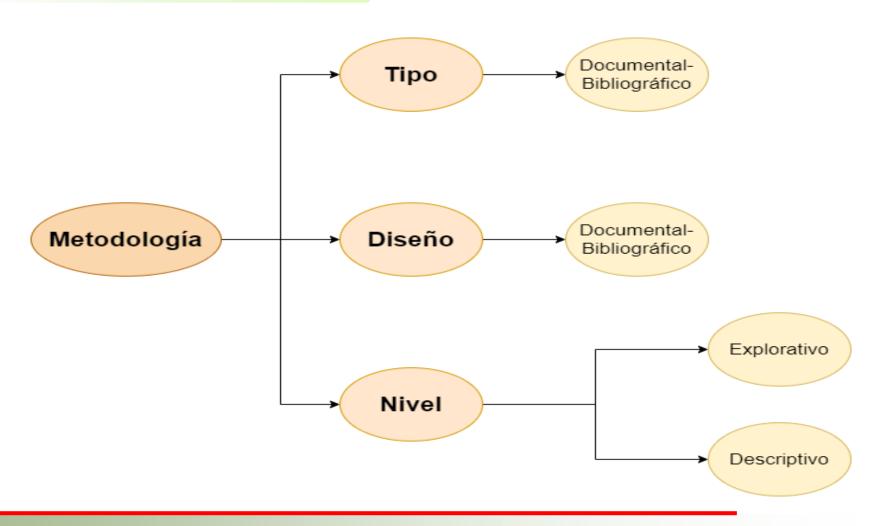
Elaborar tablas detalladas a partir de la información obtenida con criterios que permitan escoger la biomasa adecuada, que servirá como materia prima para la extracción de celulosa, hemicelulosa y lignina.

Realizar una investigación minuciosa sobre análisis hechos a la biomasa seleccionada, para determinar las características que establezcan la idoneidad de estos residuos para la biorefinación.

Sugerir el tipo de biomasa lignocelulósica óptima para la biorefinación en combustibles y químicos de valor agregado.

INTRODUCCIÓN

OBJETIVOS


METODOLOGÍA Y ANÁLISIS DE RESULTADOS

CONCLUSIONES

Metodología y Análisis de Resultados

Disponibilidad

Duaduatas	Residuos
Productos	(ton/año)
Banano	74 844,20
Cacao	62 570,80
Palma africana	24 055,46
Rosas	Sin datos
Caña de azúcar	Sin datos

Humedad

Productos	(wt %)
Banano	$8,3 \pm 0,3$
Cacao	11,07
Palma africana	5,18
Rosas	8,335
Caña de azúcar	5,4

Poder calorífico HHV

Productos	(MJ/kg)
Banano	$19,8 \pm 0,6$
Cacao	12,48
Palma africana	19
Rosas	17,9
Caña de azúcar	18,0

Materia Volátil

Productos	(wt %)
Banano	$78,8 \pm 0,4$
Cacao	61,73
Palma africana	82,58
Rosas	71,310
Caña de azúcar	80,2

Carbono Fijo

Productos	(wt %)
Banano	12,5
Cacao	10,96
Palma africana	3,45
Rosas	14,395
Caña de azúcar	11,3

Cenizas

Productos	(wt %)
Banano	$8,7 \pm 0,3$
Cacao	16,24
Palma africana	8,79
Rosas	5,960
Caña de azúcar	3,1

Análisis final (wt %)	Anál	isis	final	(wt	%)
------------------------------	------	------	-------	-----	----

Elementos	Banano	Cacao	Palma africana	Rosas	Caña de azúcar
С	$43,5 \pm 0,04$	48,70	42,08	48,5	44,86
Н	$6,3 \pm 0,03$	0,75	7	5,8	5,87
N	$1,3 \pm 0,09$	1,19	0,99	3,62	0,24
S	$0,2 \pm 0,05$	0,97	-	0,08	0,06
O	48,7	48,39	49,93	42	48,97

Fracción Lignocelulósica

	Banano	Cacao	Palma africana	Rosas	Caña de azúcar
Celulosa	$26,7 \pm 0,9$	24,24 – 35,0	23,7	28,6	47,6
Hemicelulosa	$25,8 \pm 0,9$	8,72 - 11,0	21,6	29,0	39
Lignina	$17 \pm 0,3$	14,6 – 26,38	29,2	24,9	11,2

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA Y ANÁLISIS DE RESULTADOS

CONCLUSIONES

Conclusiones

De acuerdo con los resultados obtenidos de manera bibliográfica sobre los desechos agroindustriales disponibles en la provincia de Cotopaxi, el bagazo de la caña de azúcar demostró ser el más apto para la biorefinación, aunque cuenta con un poder calorífico menor al de los residuos de palma africana y banano, posee una ventaja sobre estos desechos debido a que tiene la fracción más alta de celulosa y la más baja en lignina, sumado a esto cuenta con un pequeño porcentaje de cenizas que evita la formación de escoria y una baja humedad que contribuye a mantener un poder calorífico considerable. Vale mencionar que no se tienen datos sobre la cantidad de bagazo producido por ton/año en la provincia de Cotopaxi.

La información revisada demuestra que, los residuos de banano también pueden ser considerados como una biomasa apta para una posterior bioconversión, si bien es cierto, no tiene una fracción de celulosa tan grande como el del bagazo de caña, cuenta con un poder calorífico mayor y una humedad moderada, características que califican los desechos de banano para ser la materia prima en un proceso de biorefinación.

Conclusiones

Los desechos agroindustriales de la palma africana, cuyos datos fueron obtenidos gracias a estudios previos, son descartados, a pesar de que el análisis aproximado revele características aceptables para su conversión, es el único residuo que muestra una fracción de lignina mayor que la de celulosa lo que sugiere un aumento en el costo de producción al momento de considerar aplicar un proceso de biorefinación a este tipo de biomasa.

Para los residuos lignocelulósicos generados por las rosas la información compilada indica que cuenta con propiedades muy cercanas a la media en gran parte de los parámetros analizados, sin embargo, tiene una razón celulosa/lignina cercana a uno, lo que aumenta el costo de los procesos para digerir en su totalidad la lignicelulosa contenida en la biomasa, adicional a esto posee un poder calorífico bajo en contraste con los demás desechos.

Conclusiones

Según los estudios referenciales escogidos, la biomasa generada por el cacao señala que ésta cuenta con propiedades poco aptas para la refinación en comparación a las otras muestras revisadas, los desechos de cacao poseen el poder calorífico más bajo, mientras que la humedad y las cenizas denotan altos porcentajes en el análisis aproximado.

Aunque se conoce que las rosas y la caña de azúcar ocupan un vasto territorio para su cultivo en la provincia de Cotopaxi, no se pudo hallar información sobre la producción anual en toneladas de los desechos que estos productos generan.

GRACIAS POR SU ATENCIÓN.