

CONFIGURACIÓN DE UN TRANSMISOR DE TEMPERATURA MEDIANTE UN MÓDEM HART PARA PRÁCTICAS DE INSTRUMENTACIÓN INDUSTRIAL

AUTOR:

BASTIDAS ZURITA, MICHAEL ALEJANDRO

DIRECTOR:

ING. ALPÚSIG CUICHÁN, SILVIA EMPERATRIZ

2020

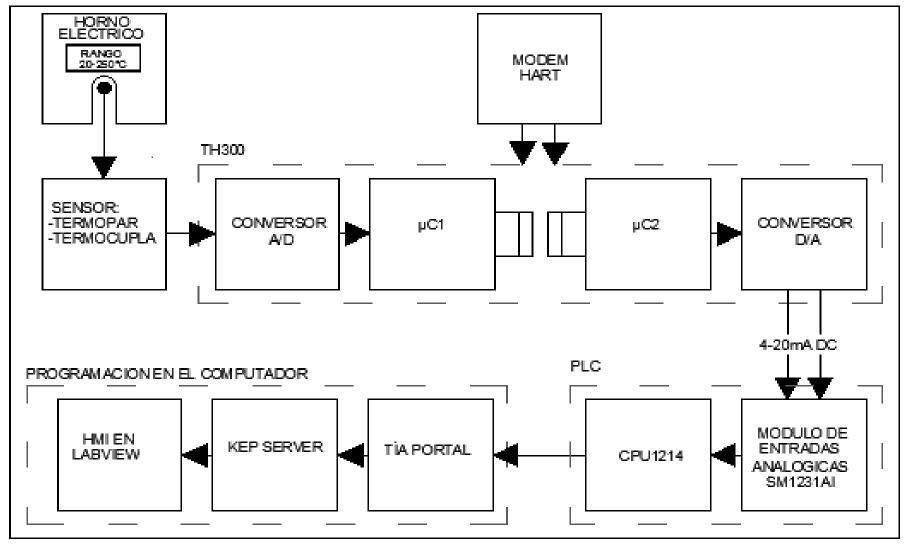
ITINERARIO

- Objetivos
- Descripción del proceso y componentes
- Protocolo de comunicación HART
- Desarrollo del proyecto
- Conclusiones y recomendaciones

OBJETIVOS

- Configurar un transmisor de temperatura mediante un Módem HART para prácticas de instrumentación industrial.
- Buscar información del requerimiento y presentaciones de un software que permita parametrizar el transmisor de temperatura TH300, mediante un módem HART.
- Realizar un HMI para monitorear la temperatura interna de un horno eléctrico utilizando una RTD de 3 hilos como elemento primario.
- Implementar un módulo con su respectiva guía técnica para que los estudiantes realicen prácticas utilizando el transmisor de temperatura TH300 y el módem HART.

DESCRIPCIÓN DEL PROCESO


Se configurará el transmisor de temperatura TH300 mediante un Módem HART, junto a PACTware en un rango de 30°C a 100°C, para que genere una salida proporcional de 4 a 20mA, utilizando como sensor una RTD o una termocupla.

La variable fisca a medir corresponde a la temperatura interna de un horno eléctrico que tiene un rango de 20°C a 250°C. También se desarrolló un HMI en el software LabVIEW, para ello KEPServerEX servirá para la comunicación entre el servidor y el cliente OPC.

La adquisición de la salida del transmisor se logrará mediante el módulo de entradas analógicas SM 1231Al conectado PLC S7 1200. El HMI elaborado es únicamente de lectura y tendrá una alarma de alta y baja temperatura al superar los 100°C o estar bajo los 30°C, como se observa en el diagrama P&ID

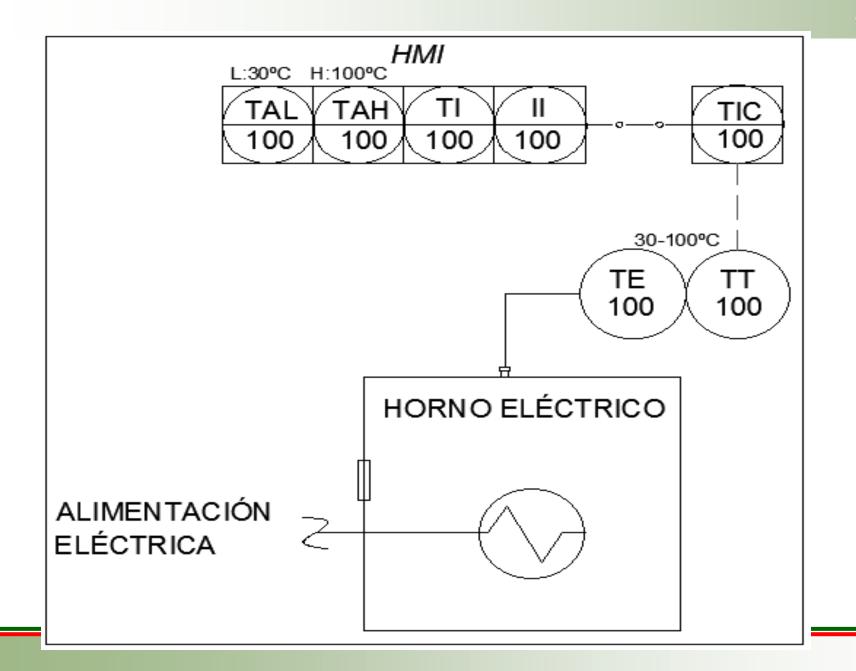


DIAGRAMA DE BLOQUES

DIAGRAMA P&ID

-SENSORES:

• PT100:

• Termopar:

-TRANSMISOR DE TEMPERATURA TH300:

- Compatible con el protocolo de comunicación HART
- Salida lineal de 4 a 20mA
- Pines de prueba para corriente
- Termopares, termorresistencias
- Alimentación de 12-30VDC

-CONTROLADORES:

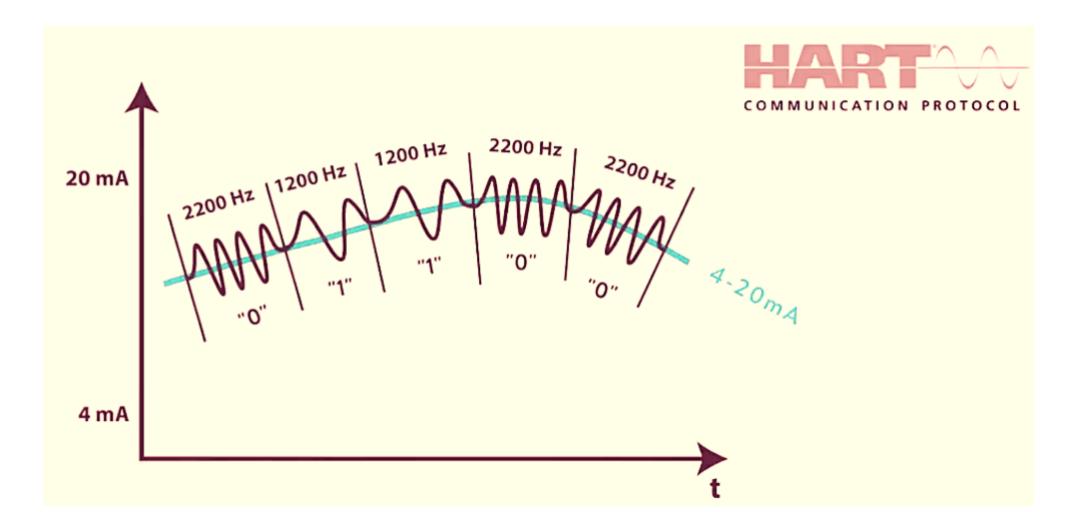
-PROCESO:

Horno eléctrico:

COMPONENTES -MÓDEM HART:

PROTOCOLO DE COMUNICACIÓN HART

Acorde a (Automatization, 2018), se pueden destacar las siguientes características de este protocolo:


- Ya tiene 30 años siendo parte de procesos de comunicación y automatización dentro de las industrias.
- Aplicación a nivel mundial, posee gran aceptación dentro de los mercados y sectores.
- Casi todos los fabricantes de instrumentación ofrecen sus productos con interfaces HART, suman ya 30 millones de productos instalados en todo el mundo compatible con HART, dentro de las industrias.
- La fundación de protocolo HART, aún en la actualidad promueve y coordina capacitaciones, actividades referentes al uso de este protocolo y a los últimos avances tecnológicos.

PROTOCOLO DE COMUNICACIÓN HART

- Compatibilidad con sistemas de 4 a 20 miliamperios, por ello es común encontrarlo en las industrias.
- Comunicación digital mediante el protocolo Bell 200, como se observa en la Figura 8, haciendo uso de la modulación FSK, Un 1L está representado por 1,2 KHz mientras que el 0L por 2,2KHz.
- Se puede leer y transferir la señal análoga sin interrumpir la señal digital.
- La señal digital puede ser utilizada para funciones de diagnóstico, alarma, errores, datos del producto, entre otros.
- Existe una gran variedad de instrumentación que hacen uso de este tipo de protocolo.

ViatorCheckBT

Software que sirve para verificar los dispositivos HART conectados vía USB o Wireless, a más de eso también permite leer la variable principal del proceso desarrollado por la compañía PEPPERL+FUCHS, compatible con Windows 7, 8, XP, 10 o Vista.

COMPROBACIÓN DEL PUERTO SERIAL CON

ViatorCheckBT

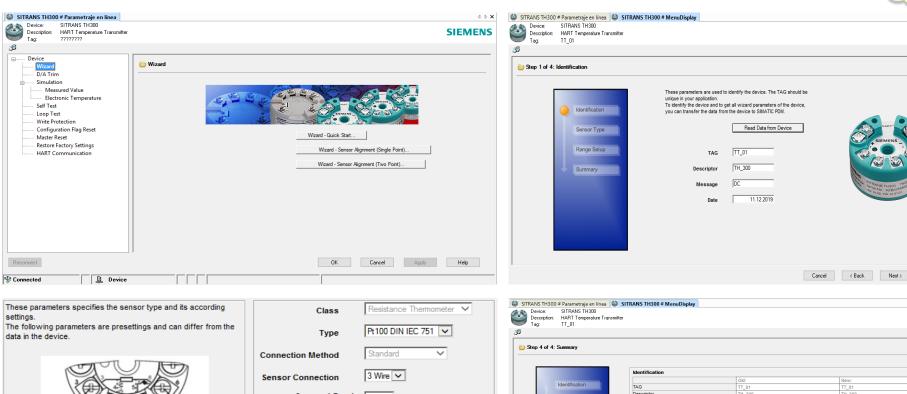
Active Com Ports			HART® E)evices	
Win Com Port	escription	HART Com Port	Tag	Device Type	е
COM3 MACTek VIA	TOR USB		0	SITRANS TH	1300
☑ Disable Port Map ☐ Show All Ports [Update Port List Start Port Wizard	Check Devi		Check All HART Devices
HART and Modem Inf	ormation		- Drimany V	/ariable Read	linge
Port HART	ormation		1 milary v	anabic read	Read Primary
ID Information					Variable
Manufacturer ID	Siemens				
Device Type	SITRANS TH	1300			
Device ID	6110016				
Device Rev	1				
Universal Rev	5				
Software Rev	4				
Hardware Rev	1				PV Limits
Tag Name	TT_01				Units deg C Upper 850
Descriptor	TH_300				Lower -200
					-200

PACTware

Software de descarga gratuita que sirve de interfaz entre el usuario y un comunicador, independientemente de que fabricante o bus de campo se use, aplica para una variedad de sistemas e interfaces de comunicaciones, entre ellas se incluye el protocolo de comunicación **HART**

Field Device Tool, es decir FDT, se encarga de estandarizar interfaces de comunicación entre dispositivos de campo y herramientas de ingeniería y gestión de archivos, es decir que aquel software que dispongan de tecnología FDT, son capaces de controlar, configurar, poner en marcha, diagnosticar y documentar dispositivos de campo independientemente de los proveedores

Device Type Manager por sus siglas en inglés, es el componente de software específico de un dispositivo, mismo que debe ser proporcionado por el fabricante de cierto dispositivo. Esta tecnología trabaja con dispositivos que integren tecnología DTM y que se encuentren conectados entre sí a través de un tipo de bus.

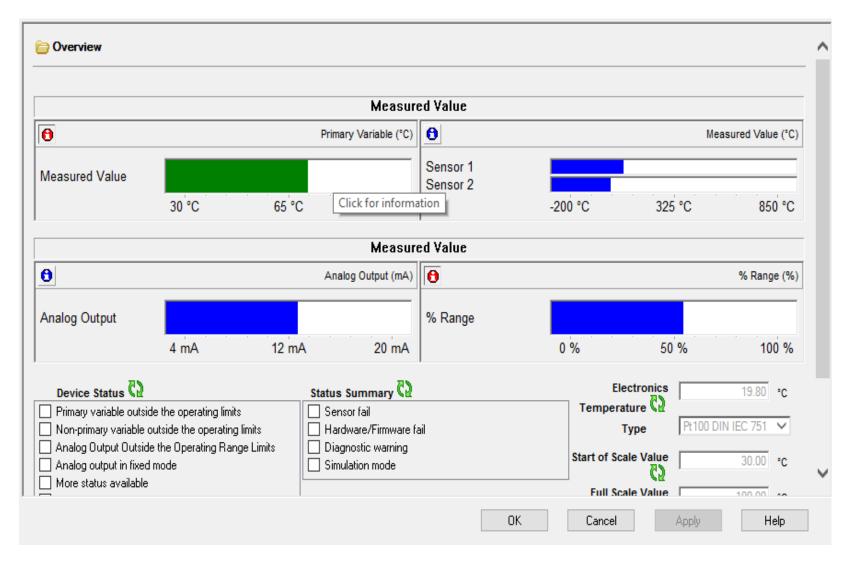

DESARROLLO

Configuración en PactWARE

QuickWizard

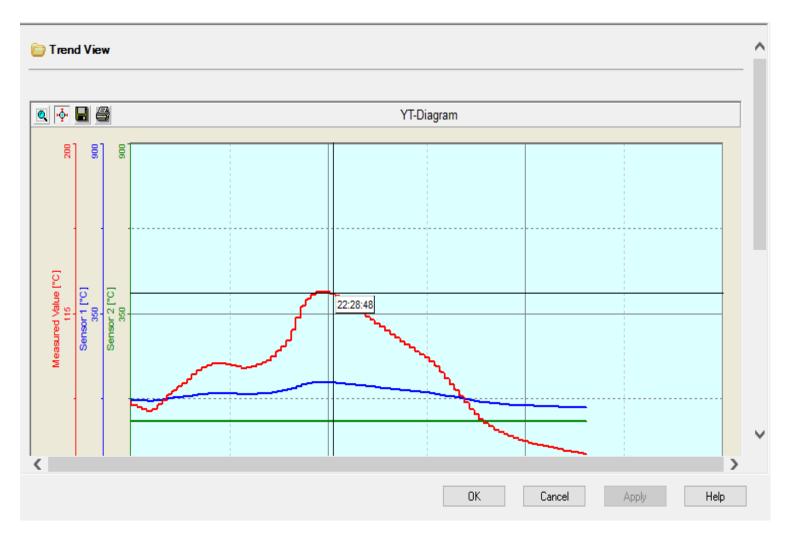
Resistance Thermometer

Themocouple


Parametrización Off-line

Name	State	Value		Unit	Minimum	Default	Maximum
Class		Resistance Thermometer	~			Resistance Thermometer	
Туре		Pt100 DIN IEC 751	~				
Sensor Factor		1.00			0.25	1.00	10.00
Sensor Connection		3 Wire	~			3 Wire	
Connection Method		Standard	~			Standard	
Damping		0.00		s	0.00	0.00	30.00
Measuring Limits							
Lower Limit		-200.00		*C		-200.00	
Upper Limit		850.00		*C		850.00	
Minimum Measuring Span		10.00		*C		10.00	
Digital Output Scal	ling						
Unit		°C	~			°C	
Start of Scale Value		30.00		°C	-200.00	-200.00	850.00
Full Scale Value		100.00		°C	-200.00	850.00	850.00
Offset Sensor 1		0.000		°C	-1000.000	0.000	1000.000
Digital Output Scal	ing						
Unit		°C	~			°C	
Start of Scale Value		30.00		*C	-200.00	-200.00	850.00
Full Scale Value		100.00		°C	-200.00	850.00	850.00
Offset Sensor 1		0.000		°C	-1000.000	0.000	1000.000
Current Output So	aling						
Control Range: Lower Limit		3.80		mΑ	3.60	3.80	23.00
Control Range: Upper Limit		20.50		mA	3.60	20.50	23.00
Fault Current		22.80		mA	3.60	22.80	23.00

Valor de medición


- Over View

Valor de medición

- Trend View

Función de diagnóstico

- FW/HW Status

Device Status 🖸	HW-FW-Error-Byte 0	
Primary variable outside the operating limits	RAM failure	
Non-primary variable outside the operating limits	ROM failure	
✓ Analog Output Outside the Operating Range Limits	☐ Error in the FLASH memory	
Analog output in fixed mode	☐ Inconsistent data in Electronic EEPROM	
More status available		
Cold start occured	HW-FW-Error-Byte 1 🗘	
Configuration changed	Sensor break	
Field device malfunctioned	Sensor short circuit	
775	Sensor outside sensor limits	
Status Summary 🖓	☐ Electronics temperature too high / too low	
Sensor fail		
Hardware/Firmware fail	HW-FW-Error-Byte 2	
☑ Diagnostic warning	Electronic EEPROM not initialized	
Simulation mode	Watchdog failure	
	HW-FW-Error-Byte 3	
	☐ Checksum error	
	Hardware defect	
	Invalid special characteristic curve	

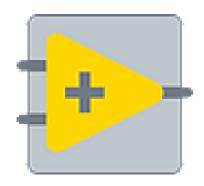
Función de diagnóstico - Operating Hours

rimary Variable			Basic Electronic Unit		
Operating Hours	7	h	Operating Hours	0	h
<-200 °C €2	0	h	< -40°C	0	h
-20050 °C 🤼	0	h	-4030°C	0	h
-50100 °C ₹ 2	7	h	-3015°C	0	h
100250 °C 🤼	0	h	-150°C	0	h
250400 °C 🤼	0	h	045°C	13	h
400550 °C ₹ 2	0	h	4560°C	0	h
550700 °C ₹2	0	h	6075°C	0	h
700850 °C ₹ 2	0	h	7585°C	0	h
>850 ℃ 🖏	0	h	> 85°C	0	h

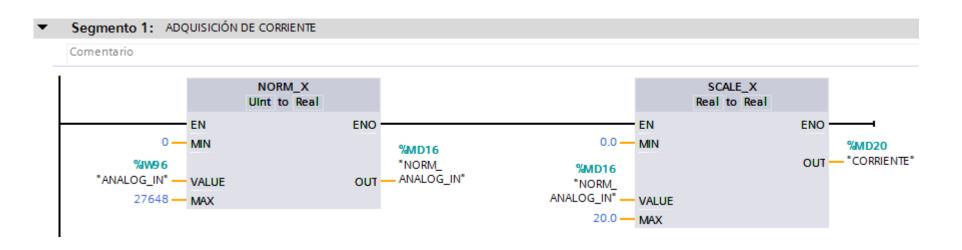
Función de diagnóstico - Max/Min Pointer

Primary Variable Minimum Value	0.00 °C		Measured Value					
Maximum Value	156.76	°C	0		Prima	ry Variable (°C)		
	,		Minimum Value Measured Value Maximum Value	1 ' '		,		
				-200 °C	325 °C	850 °C		
Sensor 1	10.10							
Minimum Value	16.12							
Maximum Value	156.76	°C						
Gensor 2								
Minimum Value	0.00	°C						
Maximum Value	0.00	°C						




Tía Portal

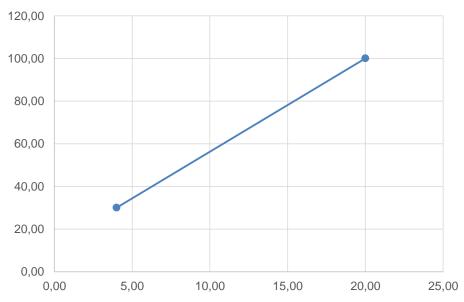
KEPServerEX


LabVIEW2019

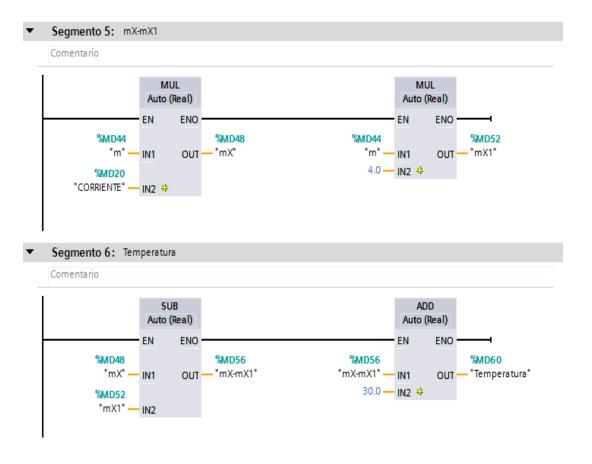
- Programación en Tía Portal

Corriente	Temperatur
(mA)	a (°C)
4,00	30,00
20,00	100,00

 $Y = mX - mX_1 + Y_1$ Donde:

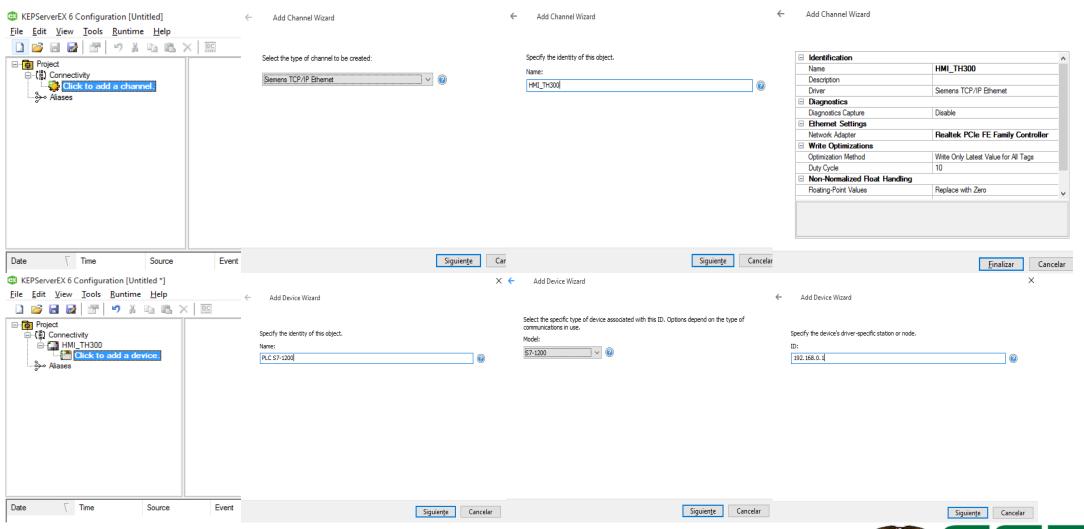

Y: Temperatura

m: pendiente


X: Δ de corriente

X1: 4mA Y1: 100°C

Temperatura [Y] vs Corriente[X]

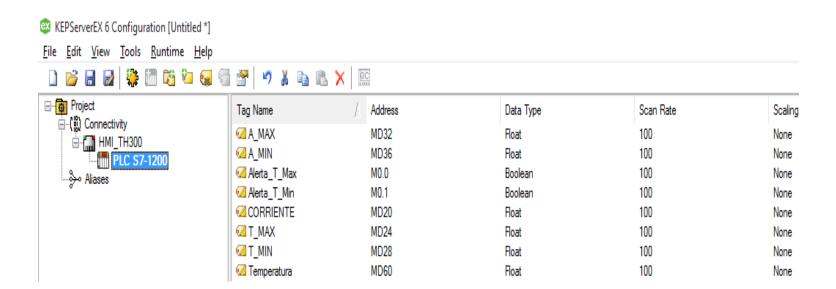

```
Segmento 7: Alarma sobre la temperatura Máxima
Comentario
    %MD60
                                                                         %MO.0
 "Temperatura"
                                                                      "Alerta_T_Max"
    Real
    %MD24
   "T_MAX"
Segmento 8: Alarma bajo la temperatura Mínima
Comentario
    %MD60
                                                                         %M0.1
 "Temperatura"
                                                                      "Alerta_T_Min"
     Real
    %MD28
    "T_MIN"
```


1	Tabla	de variables estándar						
		Nombre	Tipo de datos	Dirección	Rema	Acces	Escrib	Visibl
1	1	ANALOG_IN	Word	%IW96		\checkmark	\checkmark	\checkmark
2	41	NORM_ANALOG_IN	Real	%MD16		\checkmark	\checkmark	~
3	1	CORRIENTE	Real	%MD20		\checkmark	\checkmark	\checkmark
4	1	T_MAX	Real	%MD24		\checkmark	\checkmark	\checkmark
5	1	T_MIN	Real	%MD28		\checkmark	\checkmark	\checkmark
6	1	A_MAX	Real	%MD32		\checkmark	\checkmark	\checkmark
7	1	A_MIN	Real	%MD36		\checkmark	\checkmark	\checkmark
8	1	Y2-Y1	Real	%MD40		\checkmark	\checkmark	\checkmark
9	1	m	Real	%MD44		\checkmark	\checkmark	\checkmark
10	40	mX	Real	%MD48		\checkmark	\checkmark	\checkmark
11	40	mX1	Real	%MD52		\checkmark	\checkmark	\checkmark
12	41	mX-mX1	Real	%MD56		\checkmark	\checkmark	\checkmark
13	41	Temperatura	Real	%MD60		\checkmark	\checkmark	\checkmark
14	41	Alerta_T_Max	Bool	%M0.0		\checkmark	\checkmark	\checkmark
15	1	Alerta_T_Min	Bool	%M0.1		\checkmark	\checkmark	\checkmark

- KEPServerEX

- KEPServerEX

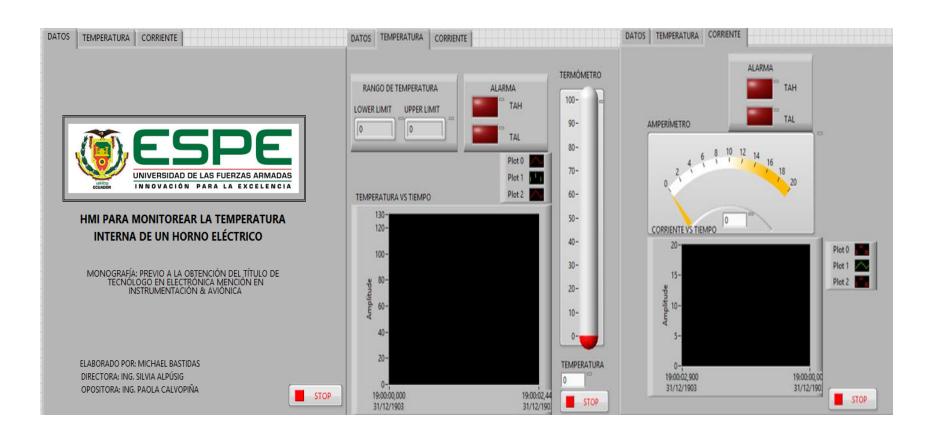
← Add Device Wizard


∃ Identification	DLC C7 1000	_
Name	PLC S7-1200	_
Description		
Channel Assignment	HMI_TH300	
Driver	Siemens TCP/IP Ethernet	
Model	S7-1200	
ID	192.168.0.1	
Operating Mode		
Data Collection	Enable	
Simulated	No	
Scan Mode		
Scan Mode	Respect Client-Specified Scan Rate	
Initial Updates from Cache	Disable	
- A		

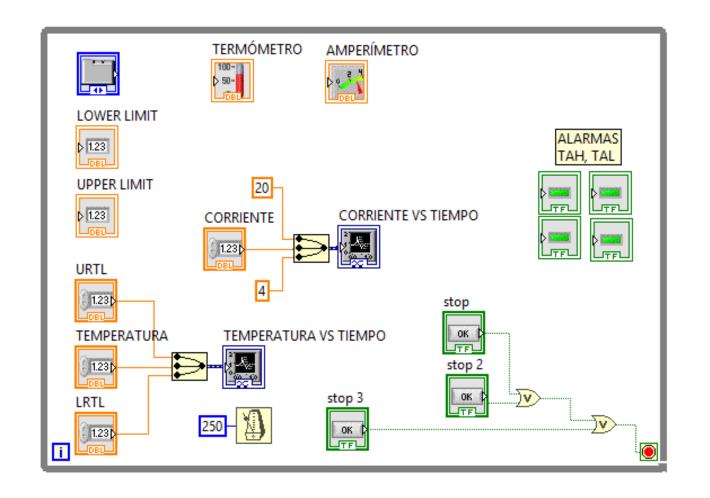
<u>F</u>inalizar Ca

Cancelar

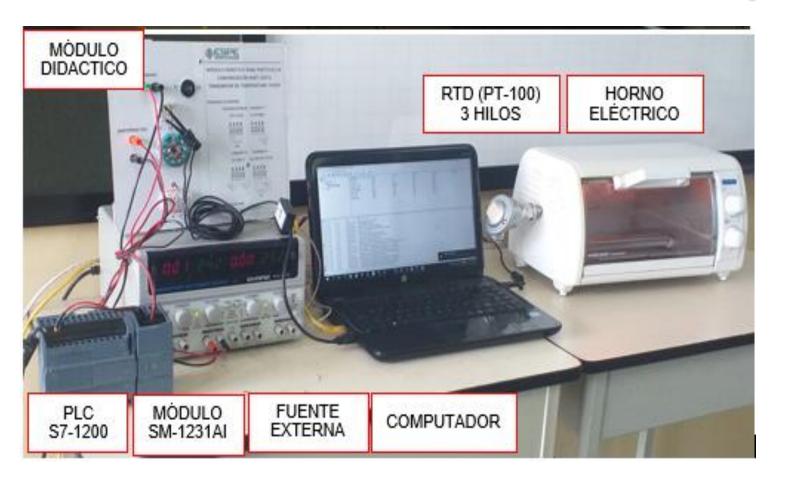
- KEPServerEX

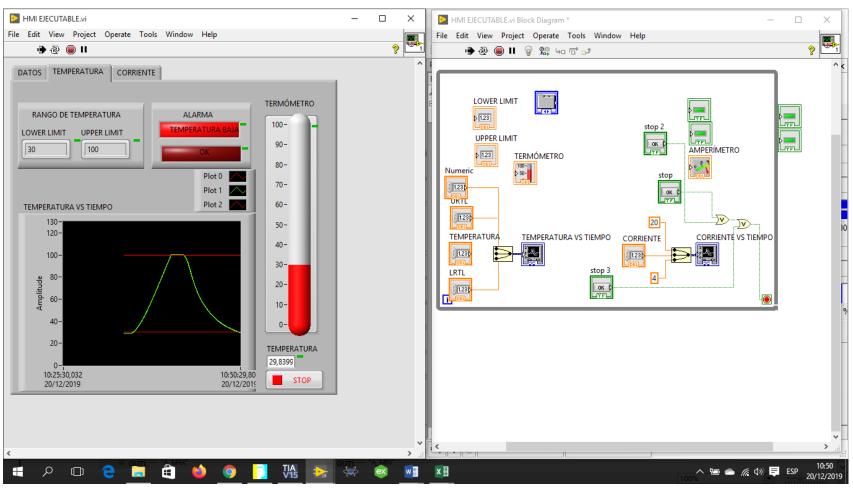


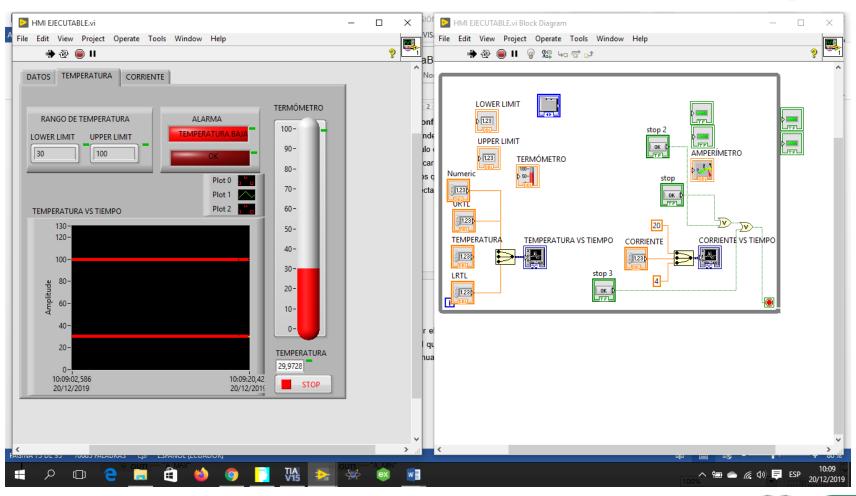
HMI - LabVIEW

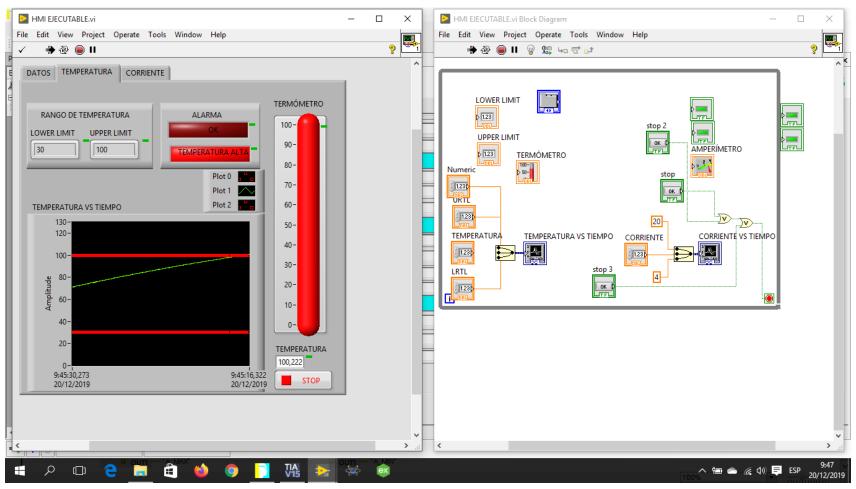


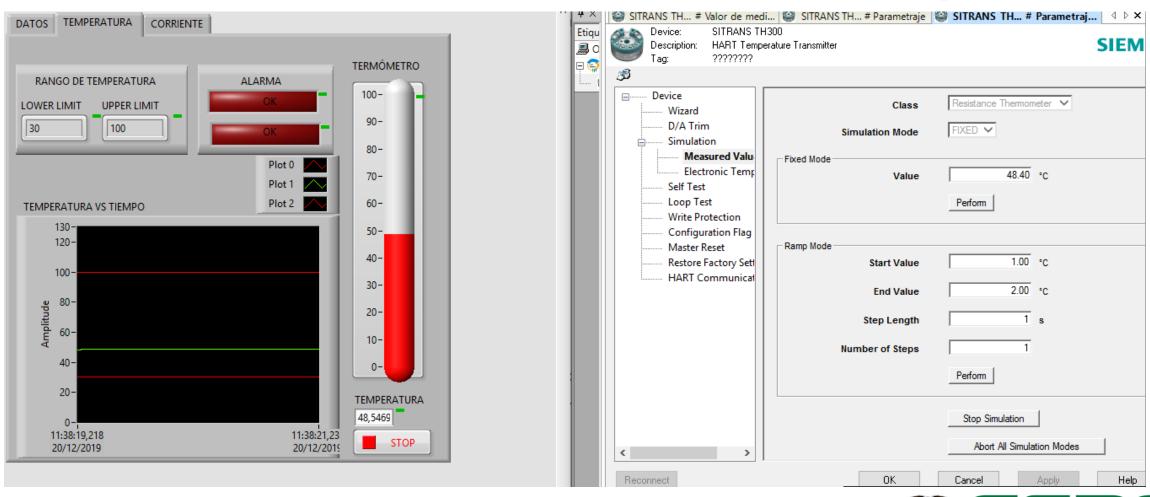
- LabVIEW




- LabVIEW







CONCLUSIONES

 El software libre PACTware permitió la comunicación entre el transmisor TH300 y el módem HART, en conjunto con la FDT específica del transmisor disponible en la página oficial de SIEMENS. En la configuración se estableció como elemento primario una PT-100 de 3 hilos en un rango de 30°C a 100°C para que suministre una señal de 4 a 20 mA respectivamente. Además se activó la notificación de alerta de ruptura de cables.

CONCLUSIONES

• El HMI se desarrolló en el software LABVIEW, la pestaña 2 muestra la temperatura interna de un horno eléctrico que varía desde 20°C a 250°C, además posee 2 indicadores de las alarmas TAH y TAL. La pestaña 3 del HMI refleja la señal de corriente que suministra el transmisor TH300 en conjunto con la RTD de 3 hilos. Señal que fue adquirida por el módulo de entradas analógicas SM1231Al conectado al PLC S7 1200. Cabe recalcar que LabVIEW y Tía Portal no son interconectabes de forma directa por lo que se utilizó el OPC KEPServerEX.

CONCLUSIONES

• Se elaboró un módulo que consta con un swtich selector de fuente, en la posición E1 permite al usuario alimentar al transmisor mediante una fuente externa mientras que en la posición E2 actúa la fuente interna del módulo previamente alimentada a 110VAC. Además consta de bornes para la conexión de un amperímetro o entrada analógica de un controlador. También figura una resistencia con sus respectivos terminales para conectar el módem HART con esta opción. Las conexiones y resultados esperados se detallan en la guía técnica entregada al encargado del laboratorio.

RECOMENDACIONES

- Usar una resistencia mayor o igual a 500Ω entre el módem HART y la fuente de alimentación, caso contrario se interrumpe la comunicación entre el módem y el puerto serial del computador.
- Antes de cerrar el software PACTware, se debe terminar la comunicación con todos los dispositivos agregados para evitar problemas con el puerto serial, caso contrario será necesario reiniciar el computador.
- Tener en cuenta la normativa ANSI 101_01 al momento de desarrollar la interfaz humano máquina para facilitar el entendimiento y funcionamiento de la lectura del transmisor TH300.
- En caso de usar una fuente externa, desconectar el cable de 110V de la fuente de energía del módulo para evitar interferencias en la señal de corriente proporcionada por el transmisor.

GRACIAS POR SU ATENCIÓN

