Sistema de Reconocimiento Automático de Micro sismos Volcánicos basado en Redes Neuronales Convolucionales

Fernando Lara

29 de septiembre de 2021

UNIVERSIDAD DE LAS FUERZAS ARMADAS

Quito, Ecuador

Fernando Lara

Sistema de Reconocimiento de Micro sismos

Agenda I

Introducción

- Trabajo de Investigación
- Marco Teórico

Preprocesamiento

Detección

- Modificación STA/LTA
- Detección con CNN

4 Clasificación

- Análisis de Frecuencia
- Redes Neuronales Convolucionales
- 5 Prototipo

2 Preprocesamiento

3 Detecciór

4 Clasificación

Prototipo

6 Conclusiones

口 同 - 王 王 の へ 2/5

• Trabajo de Investigación

• Marco Teórico

2 Preprocesamiento

3 Detección

4 Clasificación

3 Prototipo

6 Conclusiones

口 同 二 三 三 の へ 2/5

Antecedentes

Volcán Cotopaxi

Volcán Cotopaxi

Posible flujo de lahares

Fernando Lara

Sistema de Reconocimiento de Micro sismos

29 de septiembre de 2021 4 / 54

Monitorización volcánica

- Registra la actividad sísmica
- Niveles de dióxido de sulfuro (SO₂)
- 8 Registro de emisión de gases
- Anomalías térmicas.

Importancia

- Determinar niveles críticos de actividad sísmica
- Sistema de alerta temprana
- Nuevos tipos de micro eventos clasificados
- Acelerar el proceso de toma de decisiones por entidades gubernamentales

Objetivos

- Objetivo General
 - Desarrollar un sistema de reconocimiento de microsismos de baja energía basado en redes neuronales convolucionales.
- Objetivos Específicos
 - Estimar la señal de la fuente sísmica.
 - Utilizar representación en tiempo-frecuencia de señales sísmicas que resalten la presencia de eventos sísmicos.
 - Implementar el concepto de transferencia de aprendizaje para entrenar las redes neuronales convolucionales.
 - Evaluar el desempeño del sistema propuesto y comparar los nuevos resultados con anteriores propuestas

Propuesta General

- Trabajo de Investigación
- Marco Teórico

Micro sísmos

Long Period

- Formación de burbujas de magma y su colapso
- Movimientos de magma a través de conductos

Volcano Tectónico

- Fallas de cizallamiento
- Olapsos en estructuras internas

Micro sísmos

Híbridos

- Eventos conjuntos LP y VT
- Colapso de cavidades de fluidos (magma)

Tremores

• Son eventos de larga duración, eventos consecutivos

Explosiones

- Acompañan a las erupciones
- Banda de frecuencia entre 1 5*Hz* (Choque de aire)

Regional

- Originados en placas tectónicas
- Icequeake
 - Zonas superficiales a causa de fracturas de hielo
 - Banda de frecuencia hasta 10Hz

Redes neuronales convolucionales

Redes neuronales convolucionales

Capa Convolucional

• Uso de filtros, para extraer información

Redes neuronales convolucionales

Capa Pooling

• Reducir gradualmente la dimensión de la entrada

• Un red neuronal totalmente conectada. Los pesos sinápticos de todas las capas de la CNN se encuentran con descenso de gradiente estocástico, minimizando el error entre las categorías reales y las predichas.

Bases de Datos

e-Seismic Total eventos: 1187

IGEPN **OVDAS** • Registro 7000 minutos, 350 **Eventos** LP (1310) VT (304) TRE (490) TEC (1488) 60 36% 40 41% 100 150 Tiempo (s) 14% Events

Fernando Lara

Sistema de Reconocimiento de Micro sismos

Ruido

Propuesta

Introducción

Preprocesamiento

3 Detecciór

4 Clasificaciór

Prototipo

6 Conclusiones

口 母 - 三 三 の へ 15/5

Modelo del Canal

 $r[n] = s[n] \circledast h_T[n]$

Sistema de Reconocimiento de Micro sismos

Deconvolución Homomórfica

Deconvolución Homomórfica

Ganancia SNR

Análisis cambios en frecuencia

Análisis cambios en frecuencia

Preprocesamiento

- Filtro 25Hz
- e Filtro 0.5Hz
- Eliminar valor medio

Introducción

2 Preprocesamiento

4 Clasificaciór

5 Prototipo

6 Conclusiones

口 母 - 三 三 の (22/5

Introducción

2 Preprocesamiento

Detección Modificación STA/LTA Detección con CNN

5 Prototipo

STA/LTA

$$STA = \frac{1}{N_S} \sum_{n=1}^{N_S} g(r[n])$$
$$LTA = \frac{1}{N_L} \sum_{n=-N_L}^{0} g(r[n])$$
$$SL = \frac{STA}{LTA}$$

STA/LTA

Función g(r[n])

$$g(r[n]) = y = RMSE(deconv(r[n]))$$
$$g(\hat{s}[n]) = RMSE(\hat{s}[n])$$
$$y_R[m] = \sqrt{\frac{1}{N} \sum_{n=mN}^{(m+1)N-1} |\hat{s}[n]|^2}$$

Function g(r[n]) = RMSE(r[n])

Function $g(r[n]) = RMSE(\hat{s}[n])$

Implementación

Fernando Lara

Sistema de Reconocimiento de Micro sismos

Métricas

$$A_c(\%) = \frac{N_c}{N_v} \times 100$$

$$P_r(\%) = \frac{N_{TP}}{N_{TP} + N_{FP}} \times 100$$

$$S_e(\%) = rac{N_{TP}}{N_{TP} + N_{FN}} imes 100$$

$$S_p(\%) = rac{N_{TN}}{N_{TN} + N_{FP}} imes 100$$

 $BER = 1 - rac{S_p + S_e}{2 imes 100}$

Parámetros	Valores
Exactitud	99,31 %
Precisión	88,43 %
Sensibilidad	98,29 %
Especificidad	99,36 %
BER	0,01179

Introducción

2 Preprocesamiento

3 Detección

Modificación STA/LTA

Detección con CNN

5 Prototipo

口 母 - 三 三 の へ 29/5
Transferencia de Aprendizaje

Espectrograma

- Etiquetas evento/ no evento
- Duración 5 segundos

Entrenamiento

Sin solapamiento

Detección

 Saltos de 1 segundo, 4 segundos de solapamiento

Espectrograma

r[n] Con y sin Evento sismico

$\hat{s}[n]$ Con y sin Evento sismico

Modificación GoogLenet

1
,

• inception • incepti	ion inception	ANAL	YSIS RESULT					•
incept	ion inception		Name	Туре	Activations	Learnabl	es	
incepti	inception	128	Inception_5b-3x3_feduce 192 1x1x832 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	7×7×192	Weights Bias	1×1×832×192 1×1×192	*
	inception	129	inception_5b-relu_3x3_reduce ReLU	ReLU	7×7×192			
	ppp/4-3x3_s2	130	Inception_5b-3x3 384 3x3x192 convolutions with stride [1 1] and padding [1 1 1 1]	Convolution	7×7×384	Weights Bias	3×3×192×384 1×1×384	
Inception inception	ion• inception• inception	131	inception_5b-relu_3x3 ReLU	ReLU	7×7×384			
inception i	ion• inception• inception	132	Inception_5b-5x5_reduce 48 1x1x832 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	7×7×48	Weights Bias	1×1×832×48 1×1×48	
incepti	ion • inception	133	inception_5b-relu_5x5_reduce ReLU	ReLU	7×7×48			
• noepo	incection	134	Inception_5b-5x5 128 5x5x48 convolutions with stride [1 1] and padding [2 2 2 2]	Convolution	7×7×128	Weights Bias	5×5×48×128 1×1×128	
• Inception • incepti	ion inception	135	inception_5b-relu_5x5 ReLU	ReLU	7×7×128			
inception	ion	135	inception_5b-pool 3x3 max pooling with stride [11] and padding [1111]	Max Pooling	7×7×832			
incept	ion inception	137	Inception_5b-pool_proj 128 1x1x832 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	7×7×128	Weights Bias	1×1×832×128 1×1×128	
incept	ion inception	138	inception_5b-relu_pool_proj ReLU	ReLU	7×7×128			
	inception	139	Inception_5b-output Depth concatenation of 4 inputs	Depth concatenation	7×7×1024			
	pod/5-7x7_s1	140	pool5-7x7_s1 Global average pooling	Global Average Po	1×1×1024			
	pool5-drop	141	pool5-drop_7x7_s1 40% dropout	Dropout	1×1×1024			
	wueva_capa_integracion	142	Nueva_Capa_Integracion 2 fully connected layer	Fully Connected	1×1×2	Weights Bias	2×1024 2×1	
	Cotopaxi	143	prob softmax	Softmax	1×1×2			1
	· · ·	144	Cotopaxi_ClassLayer crossentropyex with classes 'Evento' and 'NoEvento'	Classification Output				¥

Fernando Lara

29 de septiembre de 2021 33 / 54

Entrenamiento GoogLenet

			Leptn concatenation or + inputs	
pool5-7x7_s1		140	pool5-7x7_s1 Global average pooling	Global Average Po
pool5-drop	1	141	pool5-drop_7x7_s1 40% dropout	Dropout
loss3-classifier	1	142	Ioss3-classifier 1000 fully connected layer	Fully Connected
output		143	prob softmax	Softmax
	v 1	144	output crossentropyex with 'tench' and 000 other classes	Classification Output

Fernando Lara

Sistema de Reconocimiento de Micro sismos

Evaluación

Evaluación

Parámetros	C2N <i>r</i> [<i>n</i>]	C2N <i>ŝ</i> [<i>n</i>]
Exactitud	88 %	91 %
Precisión	95 %	97 %
Sensibilidad	80 %	84 %
Especificidad	96 %	98 %
BER	0,11	0,08

$$P_d = 1 - \prod_{n=1}^{N_w} (1 - S_e)$$

Introducción

2 Preprocesamiento

3 Detecciór

6 Conclusiones

Introducción

2 Preprocesamiento

3 Detección

Clasificación
 Análisis de Frecuencia

• Redes Neuronales Convolucionales

5 Prototipo

Bandas de Frecuencia

Bandas de Frecuencia

Evento	Inicial	Final
LP	2,1 <i>Hz</i>	5,9 <i>Hz</i>
VT	3,5 <i>Hz</i>	10 <i>Hz</i>
Híbrido	2,1 <i>Hz</i>	7,5 <i>Hz</i>
Regional	1,7 <i>Hz</i>	8,2 <i>Hz</i>
Icequeake	4,9 <i>Hz</i>	8 <i>Hz</i>

Evento	Inicial	Final
LP	1,8 <i>Hz</i>	4,5 <i>Hz</i>
VT	4,3 <i>Hz</i>	9,2 <i>Hz</i>
Tremor	0,9 <i>Hz</i>	3,9 <i>Hz</i>
Tectónico	1,2 <i>Hz</i>	6,2 <i>Hz</i>

Evento	V. Cotopaxi	V. Llaima	Caract.
LP	2,1-5,9Hz	1,8 - 4,5 <i>Hz</i>	1-5Hz
VT	3,5 - 10Hz	4,3-9,2Hz	5 – 15 <i>Hz</i>
Tremor		0,9 - 3,9Hz	2 – 3 <i>Hz</i>
Icequake	4,9 - 8 <i>Hz</i>		1-10Hz

Espectrograma

39 / 54

Colección

Introducción

2 Preprocesamiento

3 Detección

Clasificación

• Análisis de Frecuencia

• Redes Neuronales Convolucionales

CNN SqueezeNet

Cotopaxinet Analysis date: 07-Jun-2021 22:09:22				68 i layers	0 🖌 warnin	gs errors
fre7-relu_squeeze1x1	ANAL	YSIS RESULT				G
fire7-expand1x1 fire7-expand3x3		Name	Туре	Activations	Learnable	15
fre7-relu_expand1x1 fre7-relu_expand3x3	52	fire8-relu_expand1x1 ReLU	ReLU	14×14×256		
Tre7-concat	53	fire8-expand3x3 250 3x3x04 convolutions with stride [1 1] and padding [1 1 1 1]	Convolution	14×14×256	Weights Bias	3×3×64×256 1×1×256
fre8-squeeze1x1	54	fire8-relu_expand3x3 ReLU	ReLU	14×14×256		
freil-relu_squeeze1x1	55	fire8-concat Depth concatenation of 2 inputs	Depth concatenation	14×14×512		
fre8-expand1x1 fire8-expand3x3	58	fire9-squeeze1x1 64 1x1x512 corvolutions with stride [1 1] and padding [0 0 0 0]	Convolution	14×14×64	Weights Bias	1×1×512×64 1×1×64
fre0-relu_expandix1 fre0-relu_expand0x3	67	fire9-relu_squeeze1x1 ReLU	ReLU	14×14×64		
free-sources	50	fire9-expand1x1 258 1x1x84 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	14×14×256	Weights Bias	1×1×64×256 1×1×256
fre9-relu_squeeze1x1	50	fire9-relu_expand1x1 ReLU	ReLU	14×14×256		
• free-expand1x1 • free-expand3x3	60	fire9-expand3x3 250 3x3x04 convolutions with stride [1 1] and padding [1 1 1 1]	Convolution	14×14×256	Weights Bias	3×3×64×256 1×1×256
Free-relu_expand1x1 Free-relu_expand3x3	01	fire9-relu_expand3x3 ReLU	ReLU	14×14×256		
fre9-concat	02	fire9-concat Depth consatenation of 2 inputs	Depth concatenation	14×14×512		
e drop⊕	63	drop9 50% dropout	Dropout	14×14×512		
NuevaConv10	64	NuevaConv10 2 1x1x512 convolutions with stride [1:1] and padding [0:0:0.0]	Convolution	14×14×2	Weights Bias	1×1×512×2 1×1×2
• relu_conv10	65	relu_conv10 ReLU	ReLU	14×14×2		
pool10	00	pool10 Global average pooling	Global Average Po	1×1×2		
Cologati ClassLaver	67	prob softmax	Softmax	1×1×2		
	68	Cotopaxi_ClassLayer crossentropyex with classes "LP" and "vT"	Classification Output			

Entrenamiento SqueezeNet

Matriz de Confusión

Matriz de confusión balanceado

Matriz de confusión No balanceado Matriz de confusión No balanceado (Prueba Balanceada)

Métricas CNN Clasificación

Parámetros	Balanceado	No Balanceado	No Balanceado (Conj. prueba Bal.)
Exactitud	93,8 %	97,5 %	97,5 %
Precisión	90,70 %	96,43 %	100,0 %
Sensibilidad	97,50 %	100,0 %	95,00 %
Especificidad	90,00 %	92,50 %	100,0 %
BER	0,0625	0,0375	0,0250

Prueba 4 etiquetas

		SQ	UEEZENETN	IET	
LP	503	2	2	11	97.1%
	35.0%	0.1%	0.1%	0.8%	2.9%
тс	7	576	7	4	97.0%
	0.5%	40.1%	0.5%	0.3%	3.0%
	6	4	187	0	94.9%
	0.4%	0.3%	13.0%	0.0%	5.1%
VT	8	13	0	107	83.6%
	0.6%	0.9%	0.0%	7.4%	16.4%
	96.0%	96.8%	95.4%	87.7%	95.5%
	4.0%	3.2%	4.6%	12.3%	4.5%
	3	~ ⁰	《 Target Class	2	

Introducción

2 Preprocesamiento

3 Detecciór

4 Clasificación

6 Conclusiones

口 同 一 三 三 の (45/5

Prototipo

Pantalla de Configuración

Prototipo

Pantalla de Verificación

Prototipo

Pantalla de Procesamiento I

Pantalla de Procesamiento II

Pantalla de Registros

Señales	Datos de microsismos re	conocidos				
Procesamiento	Inicio	Fin	Tipo	Duración	Archivo	Núme
Historico	0	0	ND	0	NA	0
Acerca de	34200	36000	VT	36	testCotopaxi0001	1
	54600	56400	LP	36	testCotopaxi0002	1
	9600	11600	LP	40	testCotopaxi0003	1
	36200	38300	LP	42	testCotopaxi0004	1
	20300	22400	VT	42	testCotopaxi0005	1

Introducción

2 Preprocesamiento

3 Detecciór

4 Clasificación

5 Prototipo

ロ 同 - 三 三 の (50/5

Conclusiones I

- La deconvolución homomórfica incrementa la SNR con una ganancia de 10,5*dB* (incremento 77%), mejorando la detección de microsismos y da la posibilidad de descubrir microsismos de baja energía que están ocultos en el ruido.
- La generación de los espectrogramas para detección y clasificación permite el uso de CNN, con métricas aceptadas por el IGEPN.
- Se probó con éxito la capacidad de entrenamiento con transferencia de aprendizaje con un conjunto de entrenamiento de 80 imágenes.
- El sistema de reconocimiento propuesto cumple con las métricas solicitadas por el IGEPN, y presenta métricas superiores a las del estado del arte.

Conclusiones II

- El detector MarGra propuesto basado en una modificación del clásico STA/LTA presenta una exactitud de 99,31 % y un BER de 0,01179, lo cual, se encuentra dentro de los rangos exigidos por el IGEPN.
- El detector C2N presenta una exactitud de 88,20 % cuando se generan los espectrogramas con *r*[*n*], y 91,20 % cuando se usa *ŝ*[*n*], presentando una mejora de 3,2 % al utilizar la deconvolución homomórfica. Además, al reducir el tamaño de ventana a 5*s* y utilizar solapamiento se incrementa la probabilidad de detección de microsismos de 91,20 % a 99 %.

Conclusiones III

- El proceso de entrenamiento de las CNN con un conjunto de datos no balanceado, tiene una mejora en las métricas evaluadas, teniendo un incremento de 3,7 % en la exactitud
- Las CNN tienen un alto desempeño para clasificar eventos LP, cometiendo el mayor número de errores al etiquetar eventos VT como LP, esto se ve reflejado con la métrica de precisión (90,70%, 96,43% y 100,0%).
- El sistema es robusto para clasificar múltiples etiquetas, si se mantiene el número mínimo de eventos para aplicar la técnica de transferencia de aprendizaje, en el caso probado al incrementar a 4 etiquetas (LP, TC, TR y VT) se tuvo un reducción de apenas el 2 %, frente al sistema de dos etiquetas presentado (LP - VT).

Contribuciones I

F. Lara, R. Lara-Cueva, J. Larco, E. Carrera y R. León, "A deep learning approach for automatic recognition of seismo-volcanic events at the Cotopaxi volcano," *Journal of Volcanology and Geothermal Research*, vol. 409, pág. 107142, 2021, ISSN: 0377-0273. DOI: https://doi.org/10.1016/j.jvolgeores.2020.107142, dirección: https://www.sciencedirect.com/science/article/pii/S0377027320305783.

F. Lara, R. Leon, R. Lara-Cueva, A. Tinoco y M. Ruiz, "Detection of volcanic microearthquakes based on homomorphic deconvolution and STA/LTA (En Revisión)," Journal of Volcanology and Geothermal Research, 2021, ISSN: 0377-0273.

F. Lara, R. León, R. Lara-Cueva, A. Tinoco y M. Ruiz, "A brief frequency analysis of various types of volcanic microearthquakes (En Revisión)," 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2021.

Recomendaciones

- Al mejorar la SNR se tiene un mayor número de eventos de baja energía, por lo que, es importante utilizar información de varias estaciones para garantizar que sean sismos de origen volcánico.
- Analizar las componentes de frecuencia de las bases de datos disponibles de distintos volcanes para extrapolar la metodología de clasificación de micro eventos presentada en este trabajo.
- Realizar pruebas utilizando el proceso de deconvolución predictiva y comparar el posible incremento de SNR, con la propuesta de deconvolución homomórfica.
- Evaluar el desempeño de la transferencia de aprendizaje, transfiriendo el conocimiento de una red entrenada para un volcán a otro, con lo que se podría incrementar los conjuntos de datos al combinar señales de varios volcanes para el entrenamiento.

Apéndice

口 同 - 三 三 りへで 54/5

Convolución

• La convolución se define:

$$c[m,n] = x[m,n] \otimes w[t,j] = \sum_{n} \sum_{m} x[m,n]w[t-m,j-n]$$

Pesos Sinápticos

$$(\omega^i)^{t+1} = (\omega^i)^t - \eta \frac{\partial z}{\partial (\omega^i)^t}$$

Fernando Lara

Deconvolución Homomórfica

 $\begin{aligned} R[k] &= DFT_{N}[r[n]] = \sum_{n=0}^{N-1} r[n]W_{N}^{kn} \\ R[k,m] &= \sum_{n=mN}^{(m+1)N-1} r[n]W_{N}^{k(n-mN)} \\ L[k,m] &= \ln(R[k,m]) \\ \underline{l}[n,m] &= \frac{1}{N}\sum_{k=0}^{N-1} L[k,m]W_{N}^{-kn} \\ A &= \left[\ell_{1}^{T}[j], \ell_{2}^{T}[j], \cdots, \ell_{m}^{T}[j]\right] \\ L'[k,m] &= \sum_{n=0}^{N-1} \underline{l}'[n,m]W_{N}^{kn} \\ \widehat{S}[k,m] &= \exp\left(L'[k,m]\right) \\ \widehat{S}[n,m] &= \frac{1}{N}\sum_{k=0}^{N-1} \widehat{S}[k,m]W_{N}^{-kn} \end{aligned}$

Estimación SNR

$$x_s = \begin{cases} x_r + x_e, & H_1 \\ x_r, & H_0 \end{cases}$$

 $P_e = E[x_e^2]$ y $P_r = E[x_r^2]$ *se tiene media 0

$$P_e \approx E[(x_r + x_e)^2] - E[x_r^2]$$

 $SNR \approx \frac{P_e}{P_r}$
 $SNR_{dB} \approx 10 \times \log_{10} \left(\frac{P_e}{P_r}\right)$

Fernando Lara
Periodograma de Welch

$$x^{(p)}[n] = w[n]x[n+pS]$$

$$X^{(p)}(f) = T \sum_{n=0}^{D-1} x^{(p)}[n] \exp(-j2\pi f nT)$$

$$P_{xx}^{(p)}(f) = \frac{1}{E_w} \frac{1}{D \times T} \left| X^{(p)}(f) \right|^2$$

$$P_{w}(f) = \frac{1}{T} \sum_{n=0}^{P-1} P_{xx}^{(p)}(f)$$

 $P \underset{p=0}{\checkmark}$

Funciones de g(x)

$$g(r[n]) = |r[n]|$$
$$g(r[n]) = r^{2}[n]$$
$$(r[n]) = \sqrt{r^{2}[n] + h(r[n])^{2}}$$

g

Apéndice

Espectrograma

$$\overline{x}_{i} = [x_{i,1}^{T}, x_{i,2}^{T}, ..., x_{i,j}^{T}]^{T}$$

$$S_{p,j} = g_{S}(x_{i,j})$$

$$\overline{S}_{p} = [S_{p,1}^{T}, S_{p,2}^{T}, ..., S_{p,j}^{T}]^{T}$$

$$X_{p}\{k\} = \sum_{n=0}^{N-1} x_{p}[n]e^{-j2\pi k \frac{n}{N}}$$

$$|X_p\{k\}| = \sqrt{\Re\{X_p\{k\}\}^2 + \Im\{X_p\{k\}\}^2}$$

 $S_w = \ln |X_p\{k\}|$