ESCUELA POLITÉCNICA DEL EJÉRCITO SEDE - LATACUNGA

CARRERA DE INGENIERÍA AUTOMOTRIZ

PROYECTO DE GRADO

"DISEÑO Y CONSTRUCCIÓN DE UN TABLERO DE INSTRUMENTOS ELECTRÓNICO PARA VERIFICACIÓN DEL FUNCIONAMIENTO GENERAL DEL TODO TERRENO SUZUKI LJ-80-V MODELO 1980"

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AUTOMOTRIZ

REALIZADO POR:

ROLANDO XAVIER SALAZAR PAREDES

Latacunga, Enero 2010

CERTIFICACIÓN

Se certifica que el presente trabajo fue desarrolla Paredes, bajo nuestra supervisión.	ado por Rolando Xavier Salazar
	Ing. Germán Erazo
	DIRECTOR DE PROYECTO
	Ing. Esteban López
	CODIRECTOR DE PROYECTO
	Dr. Eduardo Vázquez
	SECRETARIO ABOGADO

ESCUELA POLITÉCNICA DEL EJÉRCITO CARRERA DE INGENIERÍA AUTOMOTRÍZ

CERTIFICADO

Ing. Germán Erazo (DIRECTOR)

Ing. Esteban López (CODIRECTOR)

CERTIFICAN:

Que el trabajo titulado "DISEÑO Y CONSTRUCCIÓN DE UN TABLERO DE INSTRUMENTOS ELECTRÓNICO PARA VERIFICACIÓN DEL FUNCIONAMIENTO GENERAL DEL TODO TERRENO SUZUKI LJ-80-V MODELO 1980", realizado por el señor Rolando Xavier Salazar Paredes ha sido guiado y revisado periódicamente y cumple normas estatutarias establecidas por la ESPE, en el Reglamento de Estudiantes de la Escuela Politécnica del Ejército.

Debido a que constituye un trabajo de excelente contenido científico que coadyuvará a la publicación de conocimientos y al desarrollo profesional. **Si** recomiendan su publicación.

El mencionado trabajo consta de UN empastado y UN disco compacto el cual contiene los archivos en formato portátil de Acrobat. Autorizan al señor Rolando Xavier Salazar Paredes que lo entreguen al Ing. Juan Castro, en su calidad de Director de Carrera.

Ing. Germán Erazo

DIRECTOR

Latacunga, 15 de enero del 2010.

Ing. Esteban López

CODIRECTOR

ESCUELA POLITÉCNICA DEL EJÉRCITO

CARRERA DE INGENIERÍA AUTOMOTRIZ

DECLARACIÓN DE RESPONDABILIDAD

Yo, Rolando Xavier Salazar Paredes

DECLARO QUE:

El proyecto de grado denominado "DISEÑO Y CONSTRUCCIÓN DE UN

TABLERO DE INSTRUMENTOS ELECTRÓNICO PARA VERIFICACIÓN DEL

FUNCIONAMIENTO GENERAL DEL TODO TERRENO SUZUKI LJ-80-V

MODELO 1980" ha sido desarrollado con base a una investigación exhaustiva,

respetando derechos intelectuales de terceros, cuyas fuentes se incorporan en la

bibliografía.

Consecuentemente este trabajo es de mi autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y

alcance científico del proyecto de grado en mención.

Latacunga, 15 de enero del 2010.

Rolando Xavier Salazar Paredes

C.C. No.- 0501671994

-iv-

ESCUELA POLITÉCNICA DEL EJÉRCITO CARRERA DE INGENIERÍA AUTOMOTRIZ

AUTORIZACIÓN

Yo, Rolando Xavier Salazar Paredes

Autorizo a la Escuela Politécnica del Ejército, la publicación en la biblioteca virtual de la Institución, del trabajo "DISEÑO Y CONSTRUCCIÓN DE UN TABLERO DE INSTRUMENTOS ELECTRÓNICO PARA VERIFICACIÓN DEL FUNCIONAMIENTO GENERAL DEL TODO TERRENO SUZUKI LJ-80-V MODELO 1980", cuyo contenido, ideas y criterios son de mi exclusiva responsabilidad y autoría.

Latacunga, 15 de enero del 2010.

Rolando Xavier Salazar Paredes

C.C. Nº.- 0501671994

AGRADECIMIENTO

Agradezco a Dios por haberme brindado el coraje y capacidad para ser constante en mi anhelo de concluir este trabajo, a mis padres, a mi señora madre Lic. Hilda Paredes y a mi señor padre Oscar Salazar, por las enseñanzas y gran cariño que toda mi vida he recibido de ellos, así como la constancia que con su ejemplo me han dado, a mis hermanos que son mi razón y conciencia, a mis maestros que fueron, son el ejemplo y guía durante mi transitar en la carrera y entre ellos de manera más comedida a los Señores Director y Coodirector de mi tesis, el señor lng. Germán Erazo y el señor lng. Esteban López, quienes han sido de las pocas personas que han creído en mi capacidad y en la posibilidad de la realización de este tema de tesis, a mis amigos que de una u otra manera me ayudaron a seguir y no desmayar en la realización de esta tesis.

Rolando Xavier Salazar P.

DEDICATORIA

Dedico este trabajo a los ecuatorianos que creen que es posible un país mejor para todos, que día a día trabajan para desarrollar tecnología y adelanto en el Ecuador.

Rolando Xavier Salazar P.

ÍNDICE

CER CER DEC AUT AGR DED ÍNDI RES	ÁTULA TIFICACIÓN TIFICADO LARACIÓN DE RESPONSABILIDAD TORIZACIÓN RADECIMIENTO DICATORIA ICE UMEN SENTACIÓN		i ii iii iv v vi vii viii xvii
	I CAPÍTULO		
GEN	NERALIDADES Y MARCO TEÓRICO		
1.1	INTRODUCCIÓN 1.1.1 ANTECEDENTES 1.1.2 OBJETIVO GENERAL 1.1.3 OBJETIVOS ESPECÍFICOS 1.1.4 JUSTIFICACIÓN E IMPORTANCIA 1.1.5 ALCANCE Y METAS	2 3	1 1 2 2
1.2	ÁREA MECÁNICA 1.2.1 TALADROS 1.2.2 ELEMENTOS DE SUJECIÓN 1.2.2.1 Tornillos 1.2.2.2 Pernos 1.2.2.3 Tuercas 1.2.2.4 Remaches 1.2.3 MECANIZADO		3 3 4 4 5 6 7 8
1.3	ÁREA ELÉCTRICA 1.3.1 GENERADORES 1.3.1.1 Alternador 1.3.2 CONTROL ELÉCTRICO 1.3.2.1 Numeración de los bornes 1.3.2.2 Interpretación de esquemas		9 9 9 11 11 13
1.4	ÁREA ELECTRÓNICA 1.4.1 SENSORES 1.4.1.1 Sensores de Temperatura 1.4.1.2 Sensores de giro 1.4.1.3 Sensores de caudal y/o presión 1.4.1.4 Sensores de posición		17 17 17 18 21 24

	1.4.2	MICR	OCONTROLADORES PIC'S	25
		1.4.2.	1 Recursos comunes a todos los microcontroladores.	25
			2 Arquitectura Básica.	26
	1.4.3		TROL ELECTRÓNICO	29
		1.4.3.	1 Control mediante circuito integrado 74164	29
1.5			RMÁTICA	32
			WARE DE PROGRAMACIÓN	32
	1.5.2	SOFT	WARE DE SIMULACIÓN PROTEUS	34
			II CAPÍTULO	
DISI	EÑO DE	L SIST	TEMA ELÉCTRICO Y ELECTRÓNICO	
2.1	SELE	CCIÓN	DE SENSORES	35
			MEDIDOR DE COMBUSTIBLE	35
		2.1.2	TEMPERATURA DE REFRIGERANTE	35
			REVOLUCIONES	36
			PRESIÓN DEL MÚLTIPLE DE ADMISIÓN	37
			VELOÇÍMETRO	37
			PRESIÓN DE ACEITE	38
		2.1.7	TEMPERATURA DE ACEITE	38
2.2	SISTE	EMA EI	LÉCTRICO/ELECTRÓNICO	39
		2.2.1	PIC REVOLUCIONES (16F877A)	41
			PIC VELOCIDAD Y MARCHAS (16F877A)	42
		2.2.3	PIC T(TEMPERATURA), P(PRESIÓN), N(NIVEL),	
			V(VOLTAJE) (16F877A)	44
			PIC KILOMETRAJE (16F628A)	46
			74HC164	48
			SELECCIÓN DE CONDUCTORES	49
		2.2.7	DISEÑO DE SOFTWARE	50
			2.2.7.1 Pic Revoluciones	50
			2.2.7.2 Pic Velocidad y Marchas 2.2.7.3 Pic TPNV	52 55
			2.2.7.3 Fig TFNV 2.2.7.4 Pic Kilometraje	57
			·	31
			III CAPÍTULO	
	MONT	AJE D	E PIEZAS MECÁNICAS, TARJETAS ELECTRÓNICAS Y	
			TABLERO DE INSTRUMENTOS	
3.1	CONS		CIÓN Y ACOPLAMIENTO DE PIEZAS MECÁNICAS	59
	3.1.1		STRUCCIÓN DEL SENSOR DE VELOCIDAD	59
	3.1.2	CONS	STRUCCIÓN DEL SOPORTE DE SENSORES DE MARCHAS	60

3.2	INSTA	ALACIÓN DEL SISTEMA ELÉCTRICO	61
		SENSOR DE TEMPERATURA DE ACEITE	61
	3.2.2	SENSOR DE PRESIÓN ABSOLUTA DEL MÚLTIPLE DE ADMIS	SIÓN
			62
		SENSOR DE VELOCIDAD	62
		SENSOR DE PRESIÓN DE ACEITE	63
	3.2.5	CAJA DE CONTROL	64
3.3	DISEÑ	O Y CONSTRUCCIÓN DEL TABLERO DE INSTRUMENTOS	65
3.4		TRÚCCIÓN Y ACOPLAMIENTO DE TARJETAS	
		ΓRÓNICAS	67
		FUENTE DE ENERGÍA	67
		TARJETA DE CONTROL SECUNDARIO (74164)	68
	3.4.3	TARJETA DE CONTROL PRIMARIO (PIC'S)	68
	3.4.4	TARJETA DE DISPLAYS Y LUCES DE TABLERO	69
		IV CAPÍTULO	
PRU	EBAS Y	RESULTADOS	
4.1	PRUE	·-	71
		TEMPERATURA DE REFRIGERANTE	71
		TEMPERATURA DE ACEITE	71
		PRESIÓN DE MÚLTIPLE DE ADMISIÓN	72
		PRESIÓN DE ACEITE	73
		VOLTAJE	74
		REVOLUCIONES	74
		NIVEL DE COMBUSTIBLE	75
		VELOCIDAD	76
		MARCHAS	76
	4.1.10	KILOMETRAJE	77
4.2		LTADOS	78
	4.1.1		78
		TEMPERATURA DE ACEITE	78
		PRESIÓN DE MÚLTIPLE DE ADMISIÓN	79
		PRESIÓN DE ACEITE	79
		VOLTAJE	80
		REVOLUCIONES	80
		NIVEL DE COMBUSTIBLE	81
	4.1.8	VELOCIDAD	81
	4.1.9	MARCHAS	82
	4.1.10	KILOMETRAJE	82

V.- CAPÍTULO

CONCLUSIONES Y RECOMENDACIONES

	CONCLUSIONES RECOMENDACIONES	84
REFE	ERENCIAS BIBLIOGRÁFICAS Y ENLACES XOS	

ÍNDICE DE FIGURAS

I.- CAPÍTULO

Figura	1.1	Representación grafica de agujeros ciegos roscados	4
Figura	1.2	Tornillo de acoplado rápido y rosca triangular	5
Figura	1.3	Perno de cabeza plana con tuerca	5
Figura	1.4	Clasificación de tuercas más utilizadas	6
Figura	1.5	Remaches comunes	7
Figura	1.6	Fresado y torneado	9
Figura	1.7	Partes de alternador	9
Figura	1.8	Circuito completo del alternador	10
Figura	1.9	Circuito de carga y arranque del automóvil	13
Figura	1.10	Relés	15
Figura	1.11	Cables	15
Figura	1.12	Conmutador e interruptor	16
Figura	1.13	Fusibles de vidrio y plástico	16
Figura	1.14	Conectores individuales y en grupo	16
Figura	1.15	Sensor de temperatura del aire IAT	17
Figura	1.16	Circuito de sensor de temperatura	17
Figura	1.17	Sensores inductivos	18
Figura	1.18	Circuito de sensor inductivo	19
Figura	1.19	Circuito de sensor de efecto Hall	19
Figura		Sensor de efecto Hall	20
Figura		Circuito de sensor óptico	20
Figura	1.22	Sensor óptico	21
Figura		Circuito de sensor MAP	21
Figura	1.24	Sensor MAP por variación de voltaje	22
Figura	1.25	Sensores MAP por variación de frecuencia	22
Figura	1.26	Circuito de sensor MAF	23
Figura	1.27	Sensores MAF	23
Figura		Circuito de sensor TPS con IVS	24
Figura		Sensor TPS	24
Figura		Estructura de un microcontrolador	26
Figura		Distribución de pines del CI 74HC164	29
Figura	1.32	Diagrama de distribución de salidas del CI 74HC164	31
Figura	1.33	Programa ensamblador	32
Figura	1.34	Programa compilador	33
Figura	1.35	Placas de evaluación	34
		II CAPÍTULO	
г.	2.1		2-
Figura		Curva de comportamiento del sensor de nivel de gasolina	35
Figura		Curva de comportamiento del sensor de temperatura de refrigerante	36
Figura		Curva de comportamiento del sensor de RPM	36
Figura	2.4	Curva del sensor de presión absoluta del múltiple de admisión	37

Figura 2.5 Figura 2.6 Figura 2.7 Figura 2.8 Figura 2.9 Figura 2.10 Figura 2.11 Figura 2.12 Figura 2.13	Curva de comportamiento del sensor de presión de aceite Curva de comportamiento del sensor de temperatura de aceite. Circuito divisor de voltaje Diagrama de control Distribución de pines del Pic Revoluciones Distribución de pines del Pic Velocidad y Marchas Distribución de pines del Pic TPNV Distribución de pines del Pic Kilometraje Distribución de pines del CI 74164	38 39 39 40 41 43 45 47
Figura 2.14	Esquema de comunicación entre Pic y CI 74HC164	51
Figura 2.15	Diagrama de flujo del Pic Revoluciones	51
Figura 2.16	Diagrama de flujo del Pic Velocidad y Marchas	54
Figura 2.17	Diagrama de flujo del Pic TPNV	56
Figura 2.18	Diagrama de flujo del Pic Kilometraje	58
	III CAPÍTULO	
Figura 3.1	Rueda con huecos y optoacoplador	59
Figura 3.2	Vistas del sensor terminado	60
Figura 3.3	Muescas y fines de carrera del sensor de marchas	60
Figura 3.4	Vistas del sensor de marchas instalado	61
Figura 3.5	Sensor de temperatura de aceite instalado en el cárter	62
Figura 3.6	Sensor de presión absoluta del múltiple de admisión	62
Figura 3.7	Salida de giro para la señal de velocidad	63
Figura 3.8	Sensor de velocidad instalado	63 64
Figura 3.9 Figura 3.10	Sensor de presión de aceite instalado Caja de control electrónico	64
Figura 3.10	Tablero de instrumentos antes de ser instalado	65
Figura 3.11	Vista posterior del Tablero de instrumentos	65
Figura 3.13	Conexiones internas del tablero	66
Figura 3.14	Tablero de instrumentos instalado	66
Figura 3.15	Cables y conectores del tablero con la caja de control	67
Figura 3.16	Fuente de energía y regulación del tablero	67
Figura 3.17	Tarjetas de control secundario	68
Figura 3.18	Vista posterior de la caja de control	68
Figura 3.19	Tarjeta de control primario	69
Figura 3.20	Conexiones en la tarjeta de control primario	69
Figura 3.21	Tarjetas electrónicas de luces de tablero	70
	IV CAPÍTULO	
Figura 4.1	Pruebas del sensor de temperatura de refrigerante	71
Figura 4.2	Pruebas del sensor de temperatura de aceite	72
Figura 4.3	Mediciones en el tablero de la presión del múltiple de admisión	72

Figura 4.4	Toma de vacío en el múltiple de admisión	73
Figura 4.5	Mediciones en el tablero de la presión de aceite	73
Figura 4.6	Prueba de la presión de aceite	74
Figura 4.7	Prueba del voltaje de batería	74
Figura 4.8	Mediciones del voltaje de batería	75
Figura 4.9	Prueba de revoluciones por minuto	75
Figura 4.10	Pruebas de la medición de combustible	76
Figura 4.11	Prueba de la velocidad del todo terreno	76
Figura 4.12	Indicadores de kilometraje	77

ÍNDICE DE TABLAS

I.- CAPÍTULO

Tabla I.1	Designación de bornes secundaria del automóvil	12
Tabla I.2	Distribución de pines y tabla de verdad del CI 74HC164	30
	II CAPÍTULO	
Tabla II.1	Descripción de pines del CI 74164	48
Tabla II.2	Conductores AWG	49
	IV CAPÍTULO	
Tabla IV.1	Condición de las marchas	77
Tabla IV.2	Resultados de temperatura de refrigerante	78
Tabla IV.3	Resultados de temperatura de aceite	78
Tabla IV.4	Resultados de presión del múltiple de admisión	79
Tabla IV.5	Resultados de presión de aceite	79
Tabla IV.6	Resultados de voltaje de batería	80
Tabla IV.7	Resultados de revoluciones por minuto	81
Tabla IV.8	Resultados de velocidad del todo terreno	81

RESUMEN

La Escuela Politécnica del Ejército sede Latacunga como una institución de vanguardia implementa proyectos guiados al desarrollo de la comunidad universitaria y sociedad en general, en este caso guiado al campo automotriz del país.

La implementación de un tablero electrónico en sistemas de monitoreo automotriz obsoletos es de gran utilidad gracias a la ayuda de la gestión electrónica, disminuyendo costo, mejorando la interface de comunicación hombre – máquina y proporcionando lecturas que en la mayoría de casos no se las toma en cuenta, pero que son muy importantes.

El presente proyecto se ha dividido en cinco capítulos donde se señalan los aspectos más sobresalientes para el desarrollo del mismo.

En el capítulo I, consta toda la información teórica para la comprensión de la importancia que tiene el monitoreo del estado general de funcionamiento del vehículo, así como la evolución en cuanto a la electrónica automotriz

En el capítulo II, se da a conocer los valores de todos los sensores conocidos e implementados en el vehículo, sus lecturas, funcionamiento y conexiones, así como el diseño del sistema electrónico físico y de manejo o gestión, además de los cálculos necesarios para realizar la programación y secuencia correcta de la misma.

El capítulo III, abarca acerca de la construcción e implementación del tablero electrónico y todos sus componentes externos e internos, que se detallan uno por uno, además de indicar la ubicación y descripción de los sensores utilizados.

El capítulo IV, está dedicado a las pruebas y a los resultados de las mismas, realizadas a cada una de las secciones del tablero que se subdividen de acuerdo al sensor que envía la información.

Finalmente en el capítulo V tenemos lo que son las conclusiones, recomendaciones y anexos del proyecto.

PRESENTACIÓN

Es imprescindible para los estudiantes de los niveles inferiores conocer de los proyectos y aplicaciones que se pueden realizar en base a los conocimientos adquiridos en cátedra, que van de la mano con el desarrollo en electrónica automotriz.

La implementación que se realiza en este proyecto tiene como principal finalidad resolver los problemas de información del vehículo, ya que los automóviles que son obsoletos no poseen tableros de instrumentación que indiquen los parámetros necesarios para determinar el funcionamiento del vehículo; ya que con un tablero moderno se contribuye con el mejor monitoreo del funcionamiento del automotor y así promoviendo el mantenimiento correcto, a su vez evitando daños innecesarios.

Se presenta este tema de proyecto de importancia para el sector automotriz del país. Como un aporte al mejoramiento del parque automotor nacional y para quienes lo apliquen un medio de trabajo.

I.- CAPÍTULO

GENERALIDADES Y MARCO TEÓRICO

1.1.- INTRODUCCIÓN

La presente tesis, se ha elaborado con la finalidad de implementar los conocimientos en el campo práctico y funcional del sector automotriz con fines educativo y/o comercial, mediante el diseño y construcción de un tablero de instrumentos electrónico para verificación del funcionamiento general del todo terreno Suzuki LJ-80-V modelo 1980, para la verificación en tiempo real del motor y demás componentes de control del automotor.

1.1.1.- ANTECEDENTES

La Escuela Politécnica del Ejército forma profesionales orientados al campo automotriz en la parte mecánica, eléctrica, electrónica y considerando los avances tecnológicos que desarrollan la mayoría de constructoras en sus automóviles, hace posible que exista un desarrollo de los elementos para la seguridad del vehículo, en este caso los dispositivos electrónicos del tablero de instrumentos, que ayudan a una mejor visualización de los parámetros de funcionamiento del automóvil; generando un régimen de seguridad mayor para las personas que se encuentran en el auto y en el exterior. Esto permite que el cuidado de las partes del auto sea realizado en todo momento, aumentando así la vida útil del motor y demás mecanismos del automóvil.

En la industria automotriz se ha visto necesario que la electrónica sea añadida al funcionamiento mecánico elevando así la fiabilidad, rentabilidad y seguridad de los autos, aprovechando así la comunicación hombre – máquina que en hoy en día debe ser más estrecha y precisa para el aprovechamiento máximo de los recursos.

El Ecuador requiere del progreso tecnológico en el área automotriz, lo cual implica, que es necesario el desarrollo de aplicaciones mediante lo aprendido en cátedra.

1.1.2.- OBJETIVO GENERAL

Diseñar y construir un Tablero de Instrumentos de Control Electrónico para el monitoreo de las variables y señales del estado del funcionamiento general del todo terreno Suzuki LJ-80-V modelo 1980.

1.1.3.- OBJETIVOS ESPECÍFICOS

- Mostrar los diferentes valores y variables del funcionamiento del automóvil en el Tablero de Instrumentos.
- Utilizar los recursos tecnológicos de nuestro medio para la realización del proyecto con una interface llamativa y costos reducidos.
- Sustituir el tablero original del todo terreno por el electrónico añadiendo características y propiedades nuevas y mejoradas.
- Monitorear constante e información a tiempo real del estado del todo terreno.
- Implementar un sistema de monitoreo, en el Suzuki LJ-80-V.

1.1.4.- JUSTIFICACIÓN E IMPORTANCIA

Al momento de la conducción es necesario que exista la máxima seguridad, esto se puede encontrar en autos muy modernos pero en autos antiguos es muy escasa. La seguridad depende mucho del buen monitoreo de la operación del auto.

La tecnología que está implementada en los autos modernos ha permitido que la fiabilidad de los mismos sea superior y esto, a su vez ayuda a la prevención de accidentes de tránsito y daños mecánicos; pero se ha demostrado que un mal diseño del tablero de instrumentos produce problemas en la conducción, como lo son las distracciones al momento de conducir y peor aun a altas velocidades.

Debido a estos problemas el proyecto a desarrollarse esta guiado a la interacción que el conductor tiene con el auto, es decir, el conductor estará en conocimiento de todos los parámetros de funcionamiento correctos e incorrectos, mediante la implementación de elementos eléctricos y electrónicos que hacen que las medidas sean exactas y provean de la información del automotor a tiempo real.

Las aplicaciones de este proyecto están basadas en los conocimientos que en el transcurso de la carrera fueron impartidos, además, son las bases necesarias para la realización de cada proyecto de grado y la vida profesional. Se aplicará al funcionamiento del todo terreno Suzuki LJ-80-V modelo 1980, con lo cual el conductor tendrá la información del estado de funcionamiento del mismo.

1.1.5.- ALCANCE Y METAS

- Instalar el Tablero de Instrumentos en el todo terreno Suzuki LJ-80modelo 1980 en once meses.
- Permitir que la información producida pueda ser utilizada para la implementación en otros automóviles en plazo de un año.

1.2.- ÁREA MECÁNICA

1.2.1.- TALADROS

Tratándose de taladros o agujeros y se debe hablar sobre la producción de los mismos:

Los factores principales que caracterizan un agujero desde el punto de vista de su mecanizado son:

- Diámetro
- Calidad superficial y tolerancia
- Material de la pieza
- Material de la broca
- Longitud del agujero

- Condiciones tecnológicas del mecanizado
- Cantidad de agujeros a producir
- Sistema de fijación de la pieza en el taladro.

La casi totalidad de agujeros que se realizan en las diferentes taladradoras que existen guardan relación con la tornillería en general que se muestran en la figura 1.1, es decir la mayoría de agujeros taladrados sirven para incrustar los diferentes tornillos que se utilizan para ensamblar unas piezas con otras de los mecanismos o máquinas de las que forman parte.

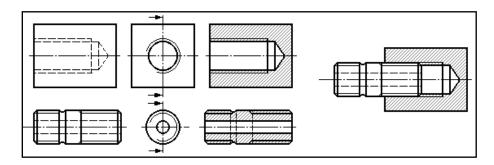


Figura 1.1 Representación gráfica de agujeros ciegos roscados

1.2.2.- ELEMENTOS DE SUJECIÓN

Los elementos de sujeción más comunes y utilizados son tres: tornillos, pernos, tuercas y remaches.

1.2.2.1.- Tornillos

Se denomina tornillo a un elemento mecánico cilíndrico dotado de cabeza, generalmente metálico, aunque pueden ser de madera o plástico, utilizado en la fijación de unas piezas con otras, que está dotado de una caña roscada con rosca triangular como se muestra en la Figura 1.2, que mediante una fuerza de torsión ejercida en su cabeza con una llave adecuada o con un destornillador, se puede introducir en un agujero roscado a su medida o atravesar las piezas y acoplarse a una tuerca.

El tornillo deriva directamente de la máquina simple conocida como plano inclinado y siempre trabaja asociado a un orificio roscado. Los tornillos permiten

que las piezas sujetas con los mismos puedan ser desmontadas cuando la ocasión lo requiera.

Figura 1.2 Tornillo de acoplado rápido y rosca triangular

Los tornillos los definen las siguientes características:

- Diámetro exterior de la caña.
- Tipo de rosca.
- Paso de la rosca.
- Sentido de la hélice de la rosca.
- Material constituyente y resistencia mecánica que tienen.
- Longitud de la caña.
- Tipo de cabeza.
- Tolerancia y calidad de la rosca

1.2.2.2.- Pernos

Se denomina perno a una pieza metálica, normalmente de acero o hierro, larga, cilíndrica, semejante a un tornillo pero de mayores dimensiones, con un extremo de cabeza redonda y otro extremo que suele ser roscado, Figura 1.3. En este extremo se enrosca una chaveta, tuerca, o remache, y permite sujetar una o más piezas en una estructura, por lo general de gran volumen.

Figura 1.3 Perno de cabeza plana con tuerca

1.2.2.3.- Tuercas

Se denomina tuerca a la pieza roscada interiormente, que se acopla a un tornillo formando una unión roscada, fija o deslizante. Las funciones que realiza una tuerca son las siguientes:

- Sujetar y fijar uniones de elementos desmontables. Se puede incorporar a la unión una arandela para mejorar la fijación y apriete de la unión.
- Convertir un movimiento giratorio en lineal.

La tuerca es un elemento que está normalizado de acuerdo con los sistemas generales de roscas que existen, Figura 1.4. La tuerca siempre debe tener las mismas características geométricas del tornillo con el que se acopla.

Figura 1.4 Clasificación de tuercas más utilizadas.

Las tuercas se fabrican en grandes producciones con máquinas y procesos muy automatizados y aunque se puede roscar una tuerca con un macho, esa práctica ya casi no se usa, porque en los comercios especializados es fácil y barato adquirir la tuerca que se desee.

Se producen los siguientes tipos de tuercas:

- Tuercas ciegas, almenadas y otras
- Tuerca hexagonal DIN 934
- Tuerca especial alt. inferior DIN 439
- Tuerca ciega DIN 1587
- Tuerca mariposa DIN 315
- Tuerca autoseguro DIN 985
- Tuerca soldable DIN 929

Tuerca almenada DIN 935

1.2.2.4.- Remaches

Un remache es un cierre mecánico consistente en un tubo cilíndrico (el vástago) que en su fin dispone de una cabeza. Las cabezas tienen un diámetro mayor que el resto del remache, para que así al introducir éste en un agujero pueda ser encajado. El uso que se le da es para unir dos piezas distintas, sean o no del mismo material.

Un remache es un tipo de roblón. Tiene forma cilíndrica, con un extra denominado cabeza de asiento, que puede, a su vez, tener distintas formas, figura 1.5.

El remache es un tipo de accesorio para unir dos piezas, que es la misma función que tiene el tornillo, con sus diferencias: el remache generalmente es un pasador con cabeza, de metal, el cual puede ser caliente (se debe calentar primero) o frío (de un metal tan blando que se remacha en frío).

Figura 1.5 Remaches comunes

El remache, además, no es reusable como el tornillo: sólo se usa una vez y se utiliza de la siguiente manera:

Las uniones remachadas constituyen, junto con la soldadura, una forma de unión permanente de piezas. Se utiliza en la industria aeronáutica, naviera y constructiva.

1.2.3.- MECANIZADO

Un mecanizado es un proceso de fabricación que comprende un conjunto de operaciones de conformación de piezas mediante remoción de material, ya sea por arranque de viruta o por abrasión, figura 1.6.

Se realiza a partir de productos semi elaborados como lingotes, tochos u otras piezas previamente conformadas por otros procesos como moldeo o forja. Los productos obtenidos pueden ser finales o semi elaborados que requieran operaciones posteriores.

Se clasifica:

Por tipo de procedimiento:

- Mecanizado por arranque de viruta.
- Mecanizado por abrasión.

Por el medio que se realiza:

- Mecanizado Manual.
- Mecanizado con máquina herramienta.- Este a su vez se clasifica en:
 - Taladrado.
 - Limado.
 - Mortajado.
 - Cepillado.
 - Brochado
 - Torneado.
 - Fresado.

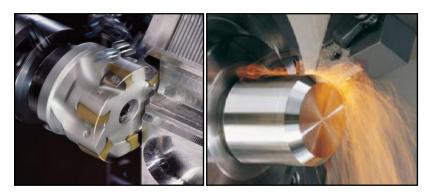


Figura 1.6 Fresado y torneado

1.3.- ÁREA ELÉCTRICA

1.3.1.- GENERADORES

Entre los generadores que son utilizados en la industria automotriz, el más importante es el alternador.

1.3.1.1.- Alternador¹

Un alternador es una máquina eléctrica capaz de transformar energía mecánica en energía eléctrica, generando una corriente alterna mediante inducción electromagnética.

Los alternadores están fundados en el principio de que en un conductor sometido a un campo magnético variable se crea una tensión eléctrica inducida cuya polaridad depende del sentido del campo y su valor del flujo que lo atraviesa.

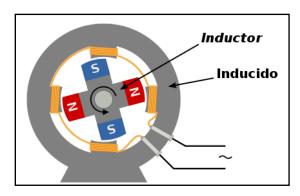


Figura 1.7 Partes del alternador

-

¹ CASTRO Miguel de Vicente, Electricidad del Automóvil - I, Segunda edición, Cáp.6, Pág. 301

Un alternador consta de dos partes fundamentales, el inductor, que es el que crea el campo magnético y el inducido que es el conductor el cual es atravesado por las líneas de fuerza de dicho campo magnético, figura 1.7.

• Inductor

El rotor, que en estas máquinas coincide con el inductor, es el elemento giratorio del alternador, que recibe la energía mecánica mediante el giro. En dicho elemento se encuentran distribuidos un número de pares de polos fijos, bien formados por imanes permanentes o bien por electroimanes alimentados con corriente continua.

La rotación del inductor hace que su campo magnético, formado por imanes fijos, se haga variable en el tiempo, y el paso de este campo variable por los polos del inducido genera en él una corriente alterna que se recoge en los terminales de la máquina.

El alternador para su funcionamiento necesita un puente rectificador de diodos el cual es el encargado de transformar la corriente alterna en corriente continua para abastecer al sistema eléctrico del automóvil y a la vez para dar carga a la batería, figura 1.8.

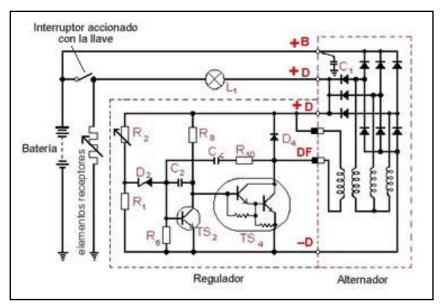


Figura 1.8 Circuito completo del alternador

El alternador debe poseer un regulador de tensión que regule el voltaje que este genera en rangos que no dañen ni al mismo alternador, la batería y los elementos eléctricos y electrónicos del automotor. Este regulador mantiene el voltaje entre los valores de 12V y 14.5V, que se considera un rango correcto de funcionamiento del alternador.

1.3.2.- CONTROL ELÉCTRICO

Se debe tener en cuenta los factores que influyen en el funcionamiento de los circuitos eléctricos en un automóvil con lo cual es indispensables conocer la distribución y normalización de cada uno de los elementos que estos poseen.

1.3.2.1.- Numeración de bornes:

Estos son los principales

Borne 30: Positivo de batería sin pasar por la llave de contacto. Indica que recibe corriente permanente desde el polo positivo (+) de la batería o, cuando el motor está funcionando desde el cable de alimentación de la red que genera el alternador. En este borne es necesario tener en cuenta que, en cualquier momento que se manipule, puede estar bajo tensión, de modo que puede provocar un cortocircuito (chispazo) sino se ha desconectado previamente el negativo de batería.

Los conductores del borne 30 son de color rojo, dando a entender con ello el mencionado peligro de manipulación. Estos conductores pueden tener también pequeñas franjas de otros colores para distinguir unos de otros.

Borne 15: Positivo de batería pasando por la llave de contacto. Indica que recibe corriente positiva a través de la llave de contacto. La característica de este borne es que su corriente se proporciona solo cuando el motor está en funcionamiento, aunque hay dispositivos que se alimentan sin estar el motor arrancado como puede ser la bobina de encendido, el sistema de ayuda de arranque en frío, centralitas, etc.

Los conductores del borne 15 son de color negro, aunque algunas veces pueden tener pequeñas franjas de otros colores para determinar la alimentación de determinados consumidores.

• <u>Borne 31</u>: Masa, retorno a batería. Todos los conductores que llevan este número se refieren a bornes que deben conectarse a masa. Los conductores del borne 31 son de color marrón.

Bornes secundarios:

Tabla I.1 Designación de bornes secundarios del automóvil

Designación de los bornes		
1 Bobina de encendido	2 Borne de cortocircuito en encendido por magneto	
4 Bobina de encendido, salida de alta tensión		
17, 19 Calentamiento previo al arranque de contacto	32 Conductor de retorno en motores	
33 Conexión principal en motores	33a Parada final (motores)	
33b Campo paralelo (motores)	33f Etapa 2ª velocidad	
33g Etapa 3ª velocidad	33h Etapa 4ª velocidad	
33L Sentido a izquierdas	33R Sentido a derechas	
49 Entrada relé intermitencias	49a Salida del relé de intermitencias	
49b Salida 2º circuito intermitencias	49c Salida 3º circuito intermitencias	
50 Conexión a excitación relé de motor de arranque	51 Tensión continua en rectificador del alternador	
52 Señales de remolque		
53 (+) del motor del limpiaparabrisas	53a Limpiaparabrisas, parada final (+)	
53b Bobina en paralelo limpiaparbrisas	53c Alimentación a lavaluneta	
53e Bobina de frenado motor limpiaparabrisas	53i Alimentación 3ª escobilla del limpiaparabrisas	
54 Luces de frenado	55 Faros antiniebla	
56 Faros principales (cruce y carretera)	56a Luces largas	
56b Luz de cruce	56c Ráfagas	

57 Luces de posición	57L. - Posición izquierda
57R Posición derecha	58 Luces de gálibo
59 Salida de alterna en motocicletas	61 Control del generador
71 (+) Claxon	72 Luz rotativa de alarma
75 Radio, encendedor	76 Altavoz
77 Centralizado puertas	
85 Salida de excitación relé	86 (+) Excitación relé
87 Salida de potencia relé	
X Positivo con el contacto activado, pero	
sin arrancar	

1.3.2.2.- Interpretación de esquemas

Esquema eléctrico del circuito de carga y arranque del automóvil, figura 1.9.

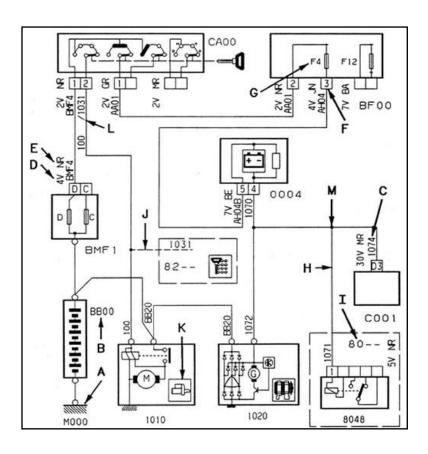


Figura 1.9 Circuito de carga y arranque del automóvil

- A.- Representación de la toma de masa
- B.- Número de componente
- **C.-** Número de cable o conductor
- D.- Número de conector
- E.- Color del conector
- F.- Número de casilla del conector
- **G.** Número de fusible
- H.- Representación de información que va hacia otra función
- I.- Número de la función implicada
- **J.-** Representación cable existente según opción
- **K.-** Símbolo del aparato.
- L.- Unión de cableado
- **M.-** Representación de un empalme (unión)

Denominación de los colores de cables y conectores:

- BA.- Blanco
- **BE.** Azul
- BG.- Beige.
- **GR.-** Gris
- JN.- Amarillo
- MR.- Marrón
- NR.- Negro.
- OR.- Naranja
- RG.- Rojo
- RS.- Rosa
- **VE.-** Verde
- VI.- Violeta
- VJ.- Verde/amarillo

El control eléctrico se lo realiza mediante diferentes dispositivos, los más usados e indispensables en un circuito eléctrico automotriz son:

• Relés.

Es un dispositivo electromecánico, que funciona como un interruptor controlado por un circuito eléctrico en el que, por medio de una bobina y un electroimán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes

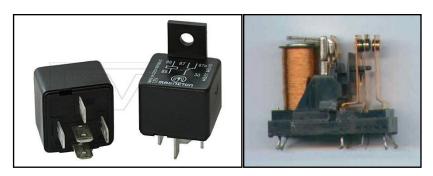


Figura 1.10 Relés

Conductores (Cables).

Se llama cable a un conductor o conjunto de ellos generalmente recubierto de un material aislante o protector. Los cables cuyo propósito es conducir electricidad se fabrican generalmente de cobre, debido a la excelente conductividad de este material

Figura 1.11 Cables

Interruptores o conmutadores.

Un interruptor eléctrico es un dispositivo utilizado para desviar o interrumpir el curso de una corriente eléctrica. Su expresión más sencilla consiste en dos contactos de metal inoxidable y el actuante. Los contactos, normalmente separados, se unen para permitir que la corriente circule.



Figura 1.12 Conmutador e interruptor

• Fusibles.

Se denomina fusible a un dispositivo, constituido por un soporte adecuado, un filamento o lámina de un metal o aleación de bajo punto de fusión que se intercala en un punto determinado de una instalación eléctrica para que se funda, cuando la intensidad de corriente supere, por un cortocircuito o un exceso de carga, un determinado valor que pudiera hacer peligrar la integridad de los conductores de la instalación.

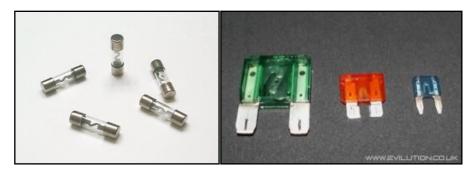


Figura 1.13 Fusibles de vidrio y plásticos.

• Conectores.

Un conector eléctrico es un dispositivo para unir circuitos eléctricos.

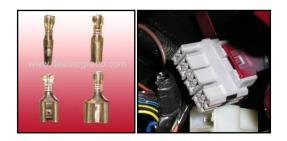


Figura 1.14 Conectores individuales y en grupo

1.4.- ÁREA ELECTRÓNICA

1.4.1.- SENSORES²

Los sensores más comunes y necesarios en el funcionamiento de un motor de combustión interna moderno son: IAT, MAP, MAF, ECT, TPS, VSS, CKP, CMP, EOT, entre otros.

1.4.1.1.- Sensores de Temperatura.

Son sensores encargados de monitorear el nivel de temperatura en distintos componentes del motor, entre los cuales están: IAT (Temperatura de ingreso de aire), WTS (Temperatura de refrigerante del motor), figura 1.15, EOT (Temperatura de aceite del motor), CHT (Temperatura de la cabeza de cilindros), etc.

Figura 1.15 Sensor de temperatura del aire IAT

Este tipo de sensores son resistencias del tipo NTC, poseen coeficiente negativo de temperatura, disminuyen su resistencia al aumentar la temperatura y este es el parámetro que la PCM recibe, lo transforma y calcula las condiciones del motor, figura 1.16.

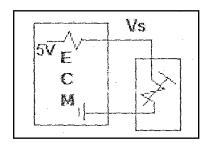


Figura 1.16 Circuito de sensor de temperatura

² PARERA Albert Martí, Inyección Electrónica motores a gasolina, Primera edición, Cáp.3, Pág. 23

1.4.1.2.- Sensores de giro.

Son sensores encargados de captar la frecuencia de giro y en algunos casos la posición referencial de diferentes elementos del motor, los más importantes son: CMP (Giro y posición del árbol de levas), CKP (Giro y posición del cigüeñal), VSS (Sensor de velocidad), etc.

Por su funcionamiento, se clasifican en:

Inductivo (reluctancia variable).

La característica de este sensor es que produce voltaje AC, que es recogida por la computadora analizando que entre más corriente AC producida por el sensor, así será la rapidez con la cual la computadora debe permitir el salto de chispa. Este sensor tiene por lo general 2 líneas, una llamada NE (terminología de Toyota) y la otra un negativo directo, Figura 1.17. Cuando tiene 3 líneas, hay dos líneas llamadas NE+ y NE- que van directo a la computadora, y un negativo directo a la masa del computador.

Figura 1.17 Sensores Inductivos

Para diferenciar este tipo de sensores, basta con desconectarlo de sus líneas y generar un movimiento constante de rotación, como un ventilador o el mismo motor, cada vez que pase por un punto o un aspa se tiene que verificar, con una lámpara de prueba, si se produce un destello suave o duro, dependiendo de la velocidad de rotación.

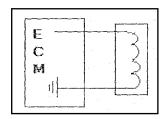


Figura 1.18 Circuito de sensor inductivo

Este elemento es en sí un imán, que atrae cuerpos ferrosos con facilidad, y se diferencia del sensor hall porque este es metálico.

Efecto Hall.

Este sensor funciona bajo el mismo principio que el distribuidor de ese tipo, está basado en un imán que capta la señal cada vez que se encuentra en un orificio, es un sensor común en la mayoría de vehículos con sistema DIS, este sensor tiene siempre 3 líneas: una positiva directa de batería, una negativa directa, y una línea que va directamente a la computadora.

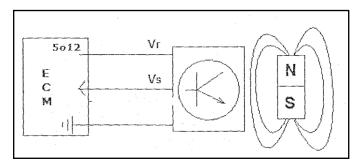


Figura 1.19 Circuito de sensor de efecto hall

Existe una confusión general entre los sensores hall y los sensores ópticos, porque tienen el mismo número de líneas, pero existen dos formas para diferenciar un sensor hall de uno óptico:

 Puesto en el vehículo, desenchufar el conector del sensor, poner llave ON y verificar, con un tester en la línea que va directamente hacia la computadora si existe un voltaje de referencia (5v) en esa línea. Si el sensor está afuera del vehículo, verificar el material del cual está hecho.
 Si esta hecho de plástico y atrae cuerpos ferrosos es un sensor hall, si es de metal es un sensor inductivo

Figura 1.20 Sensor de efecto hall

• <u>Óptico</u>

Sensor utilizado principalmente por Nissan, funciona bajo el mismo principio que el distribuidor patentado por ellos, es decir, a base de un diodo LED y una fotorresistencia, el diodo LED emite luz y la fotorresistencia recibe esa luz para convertirla en señal que se manda a la computadora cada vez que pasa por un orificio.

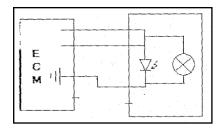


Figura 1.21 Circuito de sensor óptico

Este sensor también tiene 3 líneas: positivo directo, negativo directo y una línea de señal de posición de los cilindros directa hacia la computadora o 4 líneas: positivo directo, negativo directo, línea de señal de posición de los cilindros y línea de señal de RPM.

Este sensor es fácil de localizar, ya que se encuentra en la culata en forma como de distribuidor.

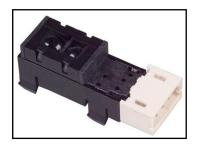


Figura 1.22 Sensor óptico

1.4.1.3.- Sensores de caudal y/o presión.

Los sensores de caudal y/o presión son aplicados generalmente a fluidos y gases en movimiento o estacionarios en el motor, los más importantes son MAP (presión absoluta del múltiple), MAF (Flujo másico de aire), EOP (presión de aceite del motor), IRP (presión del riel de inyección), etc.

De presión.

Es un sensor que mide la presión absoluta en el colector de admisión. MAP es abreviatura de Manifold Absolute Presion. El sensor MAP puede funcionar por variación de voltaje o frecuencia.

Por variación de voltaje.

El vacío generado por la admisión de los cilindros hace actuar una resistencia variable que a su vez manda información a la unidad de mando del motor, de la carga que lleva el motor.

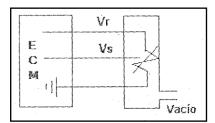


Figura 1.23 Circuito de sensor MAP

La señal que recibe la unidad de mando del sensor de presión absoluta junto con la que recibe del sensor de posición del cigüeñal (régimen del motor) le permite elaborar la señal que mandará a los inyectores.

Figura 1.24 Sensor MAP por variación de voltaje

- Por variación de frecuencia

El sensor por frecuencia tiene dos misiones fundamentales, medir la presión absoluta del colector de admisión y la presión barométrica.

Este tipo de sensores mandan información a la unidad de mando de la presión barométrica existente sin arrancar el vehículo y cuando está completamente abierta la válvula de mariposa, por lo que se va corrigiendo la señal de inyector mientras hay variaciones de altitud.

Figura 1.25 Sensores MAP por variación de frecuencia

La relación para determinar la presión absoluta a partir de la barométrica es sencilla, es decir, la presión absoluta es igual a la presión barométrica menos la succión o vacío creada por los cilindros.

• De caudal (flujo másico).

El sensor MAF o sensor del flujo de aire mide directamente el aire que ingresa por el ducto de admisión. Se encuentra colocado entre el filtro de aire y el cuerpo de la mariposa de aceleración.

La salida de la señal del MAF debe ser proporcional a la cantidad de aire ingresada. En el oscilograma se observa la forma de onda correspondiente a una aceleración brusca. El voltaje de la señal en ralentí debe ser de alrededor de 1V mientras que en una aceleración debe pasar por valores proporcionales hasta 4.5 V.

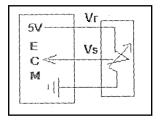


Figura 1.26 Circuito de sensor MAF

Los sensores MAF suelen tener 4 cables correspondiendo a:

- Alimentación 12V
- Masa de calefacción
- Masa del sensor MAF
- Señal del sensor MAF: 0,7V a 4V
- Algunos sensores MAF tienen 5 ó 6 cables pudiendo agregarse una alimentación de 5V y una termistancia de aire (IAT).
- Algunos MAF pueden tener solamente 3 cables (vehículos Asiáticos) en este tipo se han unificado las dos masas.

Figura 1.27 Sensores MAF

1.4.1.4.- Sensores de posición

Estos sensores lo encargados de mostrar la posición de elementos del motor que por lo general son de control, los más importantes son: TPS (posición de la mariposa de aceleración), APP (sensor del pedal del acelerador), etc.

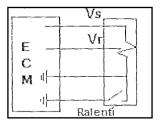


Figura 1.28 Circuito de sensor TPS con IVS

Este sensor es conocido también como TPS por sus siglas Throttle Position Sensor, está situado sobre la mariposa, y en algunos casos del sistema monopunto está en el cuerpo (el cuerpo de la mariposa es llamado también como unidad central de inyección).

Su función radica en registrar la posición de la mariposa enviando la información hacia la unidad de control.

El tipo de sensor de mariposa más extendido en su uso es el denominado potenciómetro.

Consiste en una resistencia variable lineal alimentada con una tensión de 5 volts que varía la resistencia proporcionalmente con respecto al efecto causado por esa señal.

Figura 1.29 Sensor TPS

Si no ejercemos ninguna acción sobre la mariposa entonces la señal estaría en 0 volts, con una acción total sobre ésta la señal será del máximo de la tensión, por ejemplo 4.6 volts, con una aceleración media la tensión sería proporcional con respecto a la máxima, es decir 2.3 volts.

1.4.2.- MICROCONTROLADORES PIC'S³

Un microcontrolador es un circuito integrado que contiene toda la estructura (arquitectura) de un microcomputador, o sea CPU, RAM, ROM y circuitos de entrada y salida. Los resultados de tipo práctico, que pueden lograrse a partir de estos elementos, son sorprendentes. Algunos microcontroladores más especializados poseen además convertidores análogos digital, temporizadores, contadores y un sistema para permitir la comunicación en serie y en paralelo.

Se pueden crear muchas aplicaciones con los microcontroladores. Estas aplicaciones de los microcontroladores son ilimitadas (el límite es la imaginación), entre ellas se puede mencionar: sistemas de alarmas, juego de luces, paneles publicitarios, etc. Controles automáticos para la Industria en general; entre ellos control de motores DC/AC y motores de paso a paso, control de máquinas, control de temperatura, control de tiempo, adquisición de datos mediante sensores, etc.

Las hojas de información de cada uno de los pics usados se encuentran en anexos A1, A2.

1.4.2.1.- Recursos comunes a todos los microcontroladores.

Al estar todos los microcontroladores integrados en un chip, su estructura fundamental y sus características básicas son muy parecidas. Todos deben disponer de los bloques esenciales Procesador, memoria de datos y de instrucciones, líneas de E/S, oscilador de reloj y módulos controladores de periféricos. Sin embargo, cada fabricante intenta enfatizar los recursos más idóneos para las aplicaciones a las que se destinan preferentemente.

³ REYES Carlos A., Aprenda rápidamente a programar Microcontroladores PIC, Primera edición, Cáp.2, Pág. 13

1.4.2.2 Arquitectura básica

La arquitectura básica de un microcontrolador es la de Von Neumann, se muestra en la Figura 1.30. y se caracteriza por disponer de una sola memoria principal donde se almacenan datos e instrucciones de forma indistinta. Otra arquitectura (Harvard) dispone de dos memorias independientes una, que contiene sólo instrucciones y otra, sólo datos. Ambas disponen de sus respectivos sistemas de buses de acceso y es posible realizar operaciones de acceso (lectura o escritura) simultáneamente en ambas memorias.

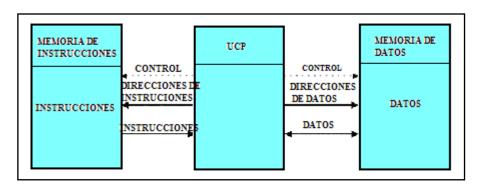


Figura 1.30 Estructura de un microcontrolador

• El procesador o CPU

Es el elemento más importante del microcontrolador y determina sus principales características, tanto a nivel hardware como software. Se encarga de direccionar la memoria de instrucciones, recibir el código OP de la instrucción en curso, su decodificación y la ejecución de la operación que implica la instrucción, así como la búsqueda de los operandos y el almacenamiento del resultado.

Existen tres orientaciones en cuanto a la arquitectura y funcionalidad de los procesadores actuales:

<u>CISC</u>: Un gran número de procesadores usados en los microcontroladores están basados en la filosofía CISC (Computadores de Juego de Instrucciones Complejo). Disponen de más de 80 instrucciones máquina en su repertorio, algunas de las cuales son muy sofisticadas y potentes, requiriendo muchos ciclos

para su ejecución. Una ventaja de los procesadores CISC es que ofrecen al programador instrucciones complejas que actúan como macros.

RISC: Tanto la industria de los computadores comerciales, como la de microcontroladores están orientándose hacia la filosofía RISC (Computadores de Juego de Instrucciones Reducido). En estos procesadores el repertorio de instrucciones máquina es muy reducido y las instrucciones son simples y, generalmente, se ejecutan en un ciclo. La sencillez y rapidez de las instrucciones permiten optimizar el hardware y el software del procesador.

<u>SISC</u>: En los microcontroladores destinados para aplicaciones muy concretas, el juego de instrucciones, además de ser reducido, es "específico", o sea, las instrucciones se adaptan a las necesidades de la aplicación prevista. Esta filosofía se ha bautizado con el nombre de SISC (Computadores de Juego de Instrucciones Específico).

Memoria

En los microcontroladores la memoria de instrucciones y datos está integrada en el propio chip. Una parte debe ser no volátil, tipo ROM, y se destina a contener el programa de instrucciones que gobierna la aplicación. Otra parte de memoria será tipo RAM, volátil, y se destina a guardar las variables y los datos. La RAM en estos dispositivos es de poca capacidad pues sólo debe contener las variables y los cambios de información que se produzcan en el transcurso del programa.

Las memorias EEPROM y FLASH son muy útiles al permitir que los microcontroladores que las incorporan puedan ser reprogramados "en circuito", es decir, sin tener que sacar el circuito integrado de la tarjeta. Así, un dispositivo con este tipo de memoria incorporado al control del motor de un automóvil permite que pueda modificarse el programa durante la rutina de mantenimiento periódico, compensando los desgastes y otros factores tales como la compresión, la instalación de nuevas piezas, etc. La reprogramación del microcontrolador puede convertirse en una labor rutinaria dentro de la puesta a punto.

• Puertos de Entrada y Salida

La principal utilidad de los pines que posee la cápsula que contiene un microcontrolador es soportar las líneas de E/S que comunican al computador interno con los periféricos exteriores.

Según los controladores de periféricos que posea cada modelo de microcontrolador, las líneas de E/S se destinan a proporcionar el soporte a las señales de entrada, salida y control.

Reloj principal

Todos los microcontroladores disponen de un circuito oscilador que genera una onda cuadrada de alta frecuencia, que configura los impulsos de reloj usados en la sincronización de todas las operaciones del sistema.

Aumentar la frecuencia de reloj supone disminuir el tiempo en que se ejecutan las instrucciones pero lleva aparejado un incremento del consumo de energía.

Recursos especiales

Los principales recursos específicos que incorporan los microcontroladores son:

- Temporizadores o "Timers".
- Perro guardián o "Watchdog".
- Protección ante fallo de alimentación o "Brownout".
- Conversor A/D.
- Conversor D/A.
- Comparador analógico.
- Modulador de anchura de impulsos o PWM.
- Puertos de E/S digitales.
- Puertos de comunicación.

1.4.3.- CONTROL ELECTRÓNICO

1.4.3.1.- Control mediante circuito integrado 74164.

Mediante el control electrónico que brinda el circuito integrado 74164 en base de comunicación serial es posible el manejo de bloques de leds y displays, etc.

• <u>Descripción del CI 74164</u>

Físicamente, se trata de un circuito integrado de 14 pines, en formato DIL, cuya capsula puede ser de diferentes materiales. De hecho, la última letra en su nombre (la "N") indica el material y forma del empaquetado, estando disponibles en plástico (N), para montaje superficial (D), y algunos encapsulados cerámicos (W, FK y J). A lo largo del artículo nos referiremos al 74LS164N, Figura 1., pero lo explicado será válido también para sus "primos", construidos con tecnologías parecidas como el 74HC164, 74HS164, etc.

Las diferencias entre uno y otro tienen que ver básicamente con la velocidad máxima de clock, cantidad de puertas que se pueden conectar a sus salidas, etc. En todo caso, siempre la hoja de datos del fabricante del circuito integrado en cuestión nos resolverá cualquier duda que se nos plantee. En el caso del integrado que nos ocupa, las salidas son ocho.

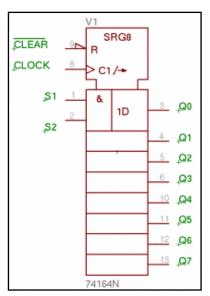


Figura 1.31 Distribución de pines del CI 74HC164

Qi (pines 3, 4, etc.): las 8 salidas del dispositivo.

CLEAR (pin 9): entrada de puesta a cero de todas las salidas. Al poner un nivel lógico bajo, todas las salidas Qi quedan a bajo.

S1 y **S2** (pin 1 y 2): entradas de datos. El dato que se almacena es el producto lógico, AND, de ambas.

CLOCK (pin 8): entrada de sincronismo. A cada flanco de subida, paso del nivel bajo al alto, el producto lógico de S1 y S2 se almacena en Q0. El valor que había en Q0 se desplaza a Q1, el de éste a Q2, el de Q2 a Q3, etc., y el de Q7 se pierde.

Un resumen de todo ello se puede ver en la siguiente tabla.

Tabla I.2 Distribución de pines y tabla de verdad del CI 74HC164

Modo de	Entradas				Salidas	
operación	CLEAR'	CLOCK	S1	S2	Q0	Q1-Q7
Puesta a cero	L	X	X	X	L	L-L
Sin cambio	Н	1	Х	Х	Q0	Q1-Q7
Desplazamiento	Н	1	L	Х	L	Q0n-Q6n
	Н	1	X	L	L	Q0n-Q6n
	Н	1	Н	Н	Н	Q0n-Q6n

^{1:} flanco descendente (transición de H a L)

• Registro de desplazamiento de carga serie.

Estos registros se denominan de carga serie porque los datos entran secuencialmente a través del primer flip-flop.

- 1. Esta construido a partir de flip-flops tipo D
- 2. La entrada de datos se hace en FF1 (entrada serie).

^{1:} flaco ascendente (transición de L a H)

X: indistinto (H o L)

Q0n-Q6n: valores de Q0-Q6 antes del flanco ascendente

- 3. La entrada de borrado (CLR) está conectada en paralelo a todos los flipflops y se activa en el nivel BAJO.
- 4. La entrada de reloj (CLK) está conectada en paralelo a los flip-flops que se accionan con el flanco positivo del tren de pulso.
- 5. Cada salida de los flip-flops tiene indicadores de salida (salida paralelo).

• Funcionamiento.

El uso del 74LS164N permite el mismo control solo con 3 líneas: una de datos conectada a las entradas A y B, una de reloj conectada a la entrada CLK, y la tercera (que se puede omitir tranquilamente) de RESET para limpiar el display. La economía de recursos es evidente.

A esta ventaja, hay que sumarle que una vez mostrado un valor en el display, el microcontrolador se desentiende del mismo (no se necesita el refresco constante de los dígitos como en el caso del multiplexado) hasta que haya que mostrar datos nuevos, ya que las salidas del 74LS164N conservan sus valores hasta que indiguemos los contrario.

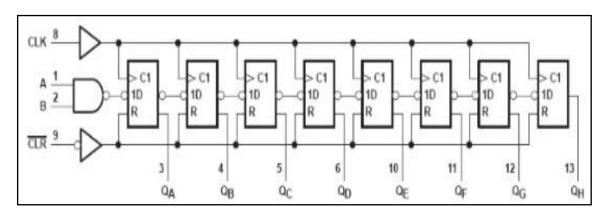


Figura 1.32 Diagrama de distribución de salidas del CI 74HC164

La Figura 1.32 ilustra este conexionado, sin línea de RESET, ya que el tiempo implicado en escribir 16 ceros en el registro de desplazamiento es insignificante (unos 32 nanosegundos a 4MHz) y nos permite ahorrarnos un pin del PIC.

La hoja de información del circuito integrado se encuentra en el anexo A.3

1.5.- ÁREA INFORMÁTICA

1.5.1.- SOFTWARE DE PROGRAMACIÓN PARA PIC'S⁴

Uno de los factores que más importancia tiene a la hora de seleccionar un microcontrolador entre todos los demás es el soporte tanto software como hardware que dispone. Las principales herramientas de ayuda al desarrollo de sistemas basados en microcontroladores son:

- Ensamblador. La programación en lenguaje ensamblador puede resultar un tanto ardua para el principiante, pero permite desarrollar programas muy eficientes, ya que otorga al programador el dominio absoluto del sistema, Figura 1.33.
- Compilador. Se inicia la programación en un lenguaje de alto nivel (como el C
 ó el Basic), observado en la Figura 1.34, que permite disminuir el tiempo de
 desarrollo de un producto.

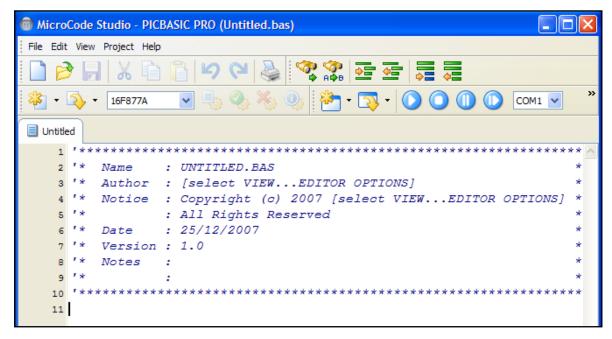


Figura 1.33 Programa ensamblador

 $^{^4}$ REYES Carlos, Aprenda rápidamente a programar PIC's , Primera edición, Cáp.1, Pág. 1

 Simulador. Son capaces de ejecutar en un PC programas realizados para el microcontrolador.

Los simuladores permiten tener un control absoluto sobre la ejecución de un programa, siendo ideales para la depuración de los mismos. Su gran inconveniente es que es difícil simular la entrada y salida de datos del microcontrolador.

Tampoco cuentan con los posibles ruidos en las entradas, pero, al menos, permiten el paso físico de la implementación de un modo más seguro y menos costoso, puesto que ahorraremos en grabaciones de chips para la prueba in-situ.

 Placas de evaluación. Se trata de pequeños sistemas con un microcontrolador ya montado y que suelen conectarse a un PC desde el que se cargan los programas que se ejecutan en el microcontrolador.

Las placas suelen incluir visualizadores LCD, teclados, LEDs, fácil acceso a los pines de E/S, etc. El sistema operativo de la placa recibe el nombre de programa monitor.

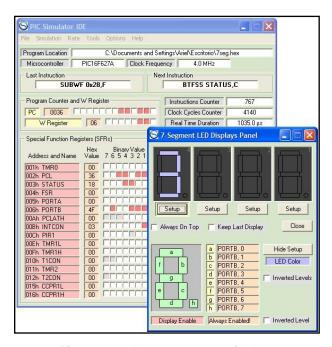


Figura 1.34 Programa compilador.

En la Figura 1.35 se presenta un monitor de algunas placas de evaluación, aparte de permitir cargar programas y datos en la memoria del microcontrolador, se puede en cualquier momento realizar ejecución paso a paso, monitorizar el estado del microcontrolador o modificar los valores almacenados en los registros o en la memoria.

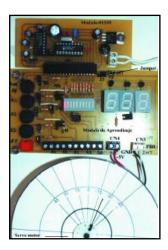


Figura 1.35 Placas de evaluación.

1.5.2.- SOFTWARE DE SIMULACIÓN PROTEUS

PROTEUS es un entorno integrado diseñado para la realización completa de proyectos de construcción de equipos electrónicos en todas sus etapas: diseño, simulación, depuración y construcción. La suite se compone de cuatro elementos, perfectamente integrados entre sí.

ISIS, la herramienta para la elaboración avanzada de esquemas electrónicos, que incorpora una librería de más de 6.000 modelos de dispositivos digitales y analógicos.

ARES, la herramienta para la elaboración de placas de circuito impreso con posicionador automático de elementos y generación automática de pistas, que permite el uso de hasta 16 capas. Con ARES el trabajo duro de la realización de placas electrónicas recae sobre el PC en lugar de sobre el diseñador.

II.- CAPÍTULO

DISEÑO DEL SISTEMA ELÉCTRICO Y ELECTRÓNICO

2.1.- SELECCIÓN DE SENSORES

De la instrumentación requerida para el todo terreno se hace uso de los sensores existentes y los deteriorados o inexistentes se construyeron o compraron nuevos.

Se detalla a continuación los sensores existentes y sus características:

2.1.1.- MEDIDOR DE COMBUSTIBLE

Eléctricamente está constituido por una resistencia variable que fluctúa de 4 Ω a 110 Ω la curva de comportamiento de este sensor se detalla en la figura 2.1.

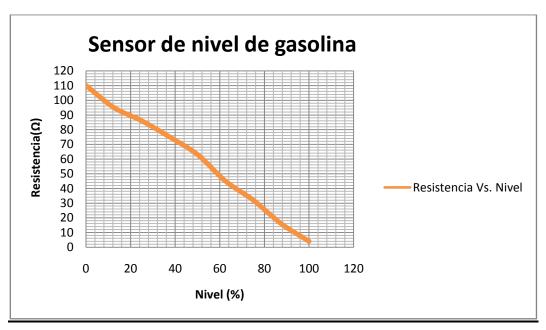


Figura 2.1 Curva de comportamiento del sensor de nivel de gasolina

2.1.2.- TEMPERATURA DE REFRIGERANTE

Eléctricamente constituye de una resistencia variable cuyos rangos de resistencia fluctúa de 35Ω a 960Ω . La curva característica de este sensor está definida en la figura 2.2.

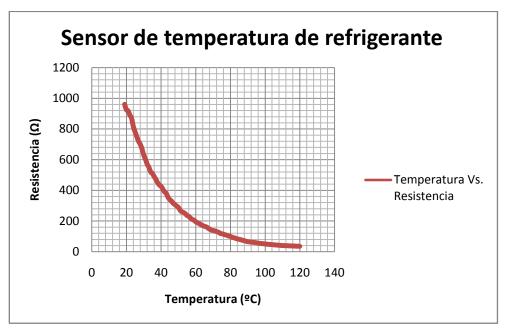


Figura 2.2 Curva de comportamiento del sensor de temperatura de refrigerante

Se detallan los sensores y acondicionadores construidos o comprados:

2.1.3.- REVOLUCIONES

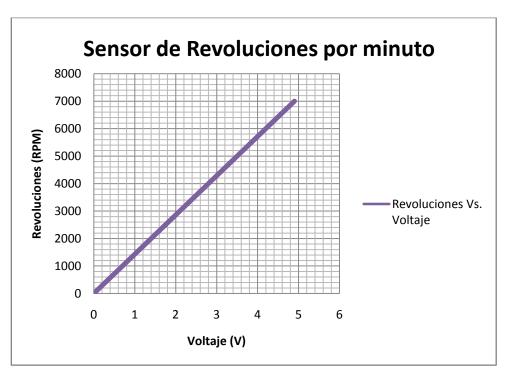


Figura 2.3 Curva de comportamiento del sensor de RPM

Es un circuito electrónico que con ayuda de un circuito integrado 2917 (el datasheet se encuentra en el anexo **A4**), que es un convertidor de frecuencia a voltaje de rangos muy altos, la curva de funcionamiento de este circuito en función de sensor se detalla en la figura 2.3.

2.1.4.- PRESIÓN DEL MÚLTIPLE DE ADMISIÓN

Constitutivamente es un sensor MAP que mide la presión absoluta del múltiple de admisión, que en este caso es utilizado con fines de diagnostico, los valores están entre 0.05V a 3.44V, el comportamiento de este sensor se detalla en la figura 2.4.

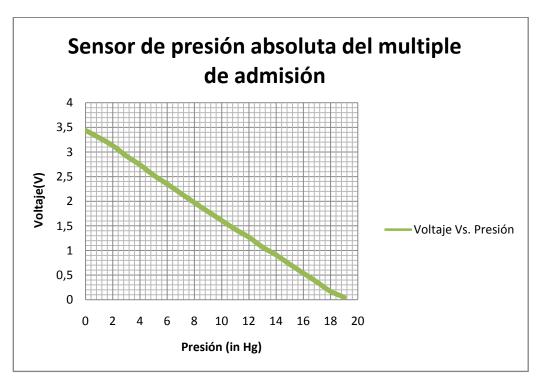


Figura 2.4 Curva del sensor de presión absoluta del múltiple de admisión

2.1.5.- VELOCÍMETRO

Consta de una rueda perforada como se detalla en el anexo **D1.** Posee 14 perforaciones para obtener 1.19 Hz a 1KM/h y 167.58 Hz a 140 KM/h de señal cuadrada.

2.1.6.- PRESIÓN DE ACEITE

Es un sensor de membrana que es colocado luego de la bomba de aceite, sus valores fluctúan de 94Ω a 315Ω . El comportamiento de este sensor se observa en la figura 2.5.

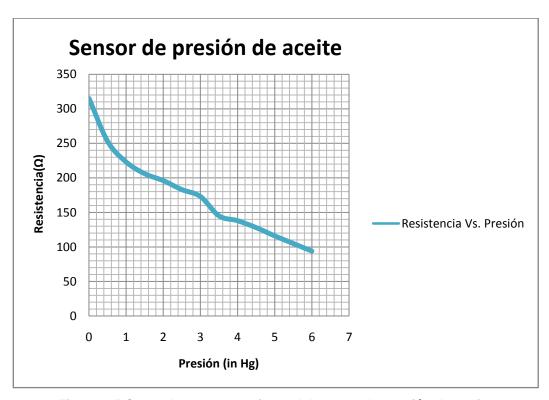


Figura 2.5 Curva de comportamiento del sensor de presión de aceite

2.1.7.- TEMPERATURA DE ACEITE

Posee una resistencia que varía de los 25Ω a 320Ω , su curva se define en la figura 2.6.

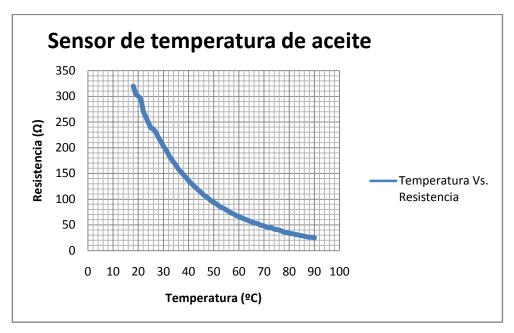


Figura 2.6 Curva de comportamiento del sensor de temperatura de aceite

2.2.- SISTEMA ELÉCTRICO/ ELECTRÓNICO

Los valores provenientes de los sensores serán procesados para poder ser mostrados en el tablero.

Los sensores forman parte independientemente de un circuito divisor de voltaje como se indica en la Figura 2.7, que a su vez se calcula para la obtención del voltaje correspondiente a cada condición de funcionamiento del motor, el circuito y la fórmula general de cálculo:

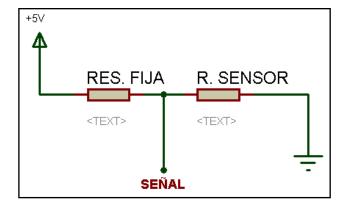


Figura 2.7 Circuito divisor de voltaje

Fórmula de cálculo de voltaje de señal de sensores:

$$Vse$$
ña $l = \frac{RES.SENSOR}{(RES.FIJA + RES.SENSOR)}xV$ alimentación

Los equivalentes que se calculan son de acuerdo a la resolución de cálculo del conversor A/D del PIC 16F877A y estos van desde 0 hasta 255 como valores decimales:

Fórmula de cálculo de valor decimal de señal de sensores:

$$Valor\ decimal = \frac{Vse\tilde{n}al}{255}$$

Los valores a detalle se muestran en las tablas de los anexos **B1**, **B2**, **B3**, **B4**, **B5**, **B6**.

Con el fin de alcanzar los objetivos planteados del proyecto se plantea el diagrama de control, para posteriormente determinar los elementos electrónicos necesarios. Este diagrama se puede observar en la figura 2.8.

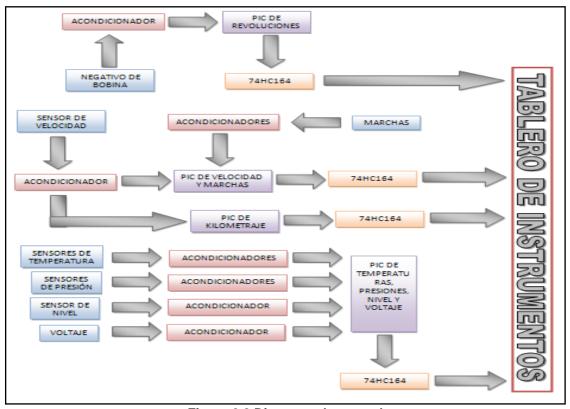


Figura 2.8 Diagrama de control

2.2.1.- PIC REVOLUCIONES (16F877A)

Este PIC tiene la función de:

- Recibir la señal analógica proveniente del circuito acondicionador de frecuencia a voltaje.
- Administra 7 integrados 74HC164.

Realiza los cálculos de:

 Equivalencia matemática para las RPM correspondientes al nivel de señal analógica.

El PIC REVOLUCIONES es un pic con la capacidad de transformar una señal analógica con una resolución 2^10, necesarios para esta aplicación.

La disposición de terminales del PIC se muestra en la figura 2.9

Figura 2.9 Distribución de pines del Pic Revoluciones

Cada terminal del PIC REVOLUCIONES es utilizado para diferentes funciones; como:

- Revoluciones.- Entrada analógica desde el acondicionador frecuencia voltaje.
- Bus.- Salida de los datos a ingresarse en todos los CI. 74HC164.
- Reset.- Envía condiciones iniciales a todos los CI. 74HC164.

- Clock_1.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el primer CI. 74HC164.
- Clock_2.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el segundo CI. 74HC164.
- Clock_3.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el tercer CI. 74HC164.
- Clock_4.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el cuarto Cl. 74HC164.
- Clock_5.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el quinto Cl. 74HC164.
- Clock_6.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el sexto CI. 74HC164.
- Clock_7.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el séptimo CI. 74HC164.

El circuito completo de revoluciones se encuentra en el anexo C1

2.2.2 PIC VELOCIDAD Y MARCHAS (16F877A)

Este PIC tiene la función de:

- Recibir la señal cuadrada del sensor óptico de velocidad.
- Administra 8 integrados 74HC164.
- Recepta las señales provenientes del mando de la caja de marchas.

Realiza los cálculos de:

 Equivalencia matemática de la frecuencia de la señal cuadrada a valor correspondiente de velocidad del todo terreno.

El PIC VELOCIDAD Y MARCHAS ha sido seleccionado principalmente por su amplia capacidad de memoria y su posibilidad de trabajar con frecuencias altas de 5MHz por tarea, lo que nos permite censar la frecuencia de entrada del sensor.

La disposición de terminales del PIC se muestra en la figura 2.10.

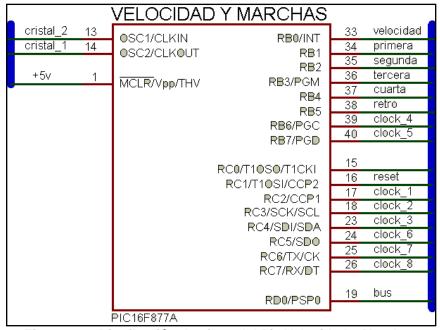


Figura 2.10 Distribución de pines del Pic Velocidad y Marchas

Cada terminal del PIC VELOCIDAD Y MARCHAS es utilizado para diferentes funciones; así:

- Velocidad.- Entrada de señal cuadrada desde sensor de velocidad.
- Bus.- Salida de los datos a ingresarse en todos los CI. 74HC164.
- Reset.- Envía condiciones iniciales a todos los CI. 74HC164.
- Primera.- Recibe la señal de funcionamiento de la primera marcha.
- Segunda.- Recibe la señal de funcionamiento de la segunda marcha.
- Tercera.- Recibe la señal de funcionamiento de la tercera marcha.
- Cuarta.- Recibe la señal de funcionamiento de la cuarta marcha.
- Retro.- Recibe la señal de funcionamiento de la marcha de retro.
- Clock_1.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el primer Cl. 74HC164.
- Clock_2.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el segundo CI. 74HC164.
- Clock_3.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el tercer CI. 74HC164.

- Clock_4.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el cuarto CI. 74HC164.
- Clock_5.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el quinto CI. 74HC164.
- Clock_6.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el sexto Cl. 74HC164.
- Clock_7.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el séptimo CI. 74HC164.
- Clock_8.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el octavo CI. 74HC164.

El circuito completo de velocidad y marchas se encuentra en el anexo C2.

2.2.3.- PIC T(TEMPERATURAS), P(PRESIONES), N(NIVEL), V(VOLTAJE) (16F877A)

Este PIC tiene la función de:

- Recibir las señales analógicas de temperaturas, presiones, nivel y voltaje provenientes del motor y demás sistemas del automóvil.
- Administra 12 integrados 74HC164.

Realiza los cálculos de:

 Equivalencia matemática de los valores analógicos a su valor correspondiente de temperatura, presión, nivel o voltaje.

El PIC TPNV ha sido seleccionado principalmente por su amplia capacidad de memoria y su posibilidad de trabajar con valores analógicos y su facilidad de manejo.

La disposición de terminales se muestra en la figura 2.11.

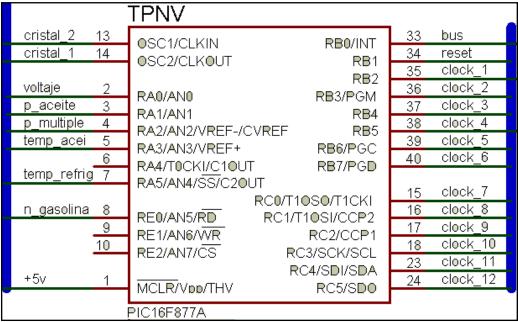


Figura 2.11 Distribución de pines del Pic TPVN

Cada terminal del PIC TPNV es utilizado para diferentes funciones; así:

- Voltaje.- Recibe la señal analógica de voltaje.
- P_aceite.- Recibe la señal analógica de presión de aceite.
- P_multiple.- Recibe la señal analógica de presión del múltiple de admisión.
- Temp_acei.- Recibe la señal analógica de temperatura de aceite de motor.
- Temp_refrig.- Recibe la señal analógica de temperatura de refrigerante.
- N_gasolina.- Recibe la señal analógica de nivel de combustible.
- Bus.- Salida de los datos a ingresarse en todos los CI. 74HC164.
- Reset.- Envía condiciones iniciales a todos los CI. 74HC164.
- Primera.- Recibe la señal de funcionamiento de la primera marcha.
- Segunda.- Recibe la señal de funcionamiento de la segunda marcha.
- Tercera.- Recibe la señal de funcionamiento de la tercera marcha.
- Cuarta.- Recibe la señal de funcionamiento de la cuarta marcha.
- Retro.- Recibe la señal de funcionamiento de la marcha de retro.
- Clock_1.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el primer CI. 74HC164.
- Clock_2.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el segundo CI. 74HC164.

- Clock_3.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el tercer CI. 74HC164.
- Clock_4.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el cuarto CI. 74HC164.
- Clock_5.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el quinto Cl. 74HC164.
- Clock_6.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el sexto Cl. 74HC164.
- Clock_7.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el séptimo CI. 74HC164.
- Clock_8.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el octavo CI. 74HC164.
- Clock_9.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el noveno CI. 74HC164.
- Clock_10.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el décimo CI. 74HC164.
- Clock_11.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el décimo primer CI. 74HC164.
- Clock_12.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el décimo segundo CI. 74HC164.

El circuito completo de temperaturas, presiones, nivel y voltaje se encuentra en el anexo **C3.**

2.2.4.- PIC KILOMETRAJE (16F628A)

Este PIC tiene la función de:

- Recibir la señal cuadrada del sensor óptico de velocidad.
- Administra 8 integrados 74HC164.

Realiza los cálculos de:

 Equivalencia matemática de la señal cuadrada en kilómetros recorridos por el todo terreno.

El PIC KILOMETRAJE ha sido seleccionado principalmente por su amplia buena de memoria y su posibilidad de calcular y almacenar valores enteros.

La disposición de terminales se muestra en la Figura 2.12.

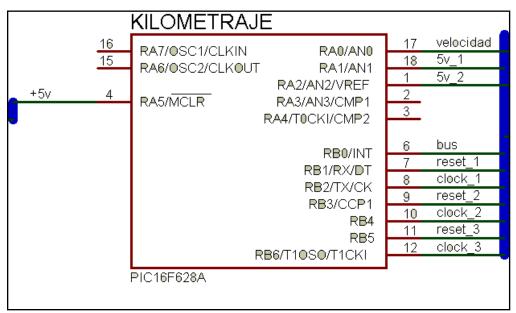


Figura 2.12 Distribución de pines del Pic Kilometraje

Cada terminal del PIC KILOMETRAJE es utilizado para diferentes funciones; así:

- Velocidad.- Entrada de señal cuadrada desde sensor de velocidad.
- 5V_1.- Emite la señal para el activado del transistor Nº1 para el barrido.
- 5V_2.- Emite la señal para el activado del transistor Nº2 para el barrido.
- Bus.- Salida de los datos a ingresarse en todos los CI. 74HC164.
- Reset_1.- Envía condiciones iniciales al primer CI. 74HC164.
- Reset_2.- Envía condiciones iniciales al segundo CI. 74HC164.
- Reset 3.- Envía condiciones iniciales al tercer CI. 74HC164.
- Clock_1.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el primer CI. 74HC164.
- Clock_2.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el segundo CI. 74HC164.

 Clock_3.- Emite señales de reloj son sincronizadas con la salida de datos por el bus, este es únicamente para el tercer CI. 74HC164.

El circuito completo de kilometraje se encuentra en el anexo C4.

2.2.5.- 74HC164

A continuación se describe la función de los pines del conversor serial a paralelo en la Tabla II.1.

Tabla II.1 Descripción de pines del CI 74164

Pin	Descripción			
Α	Bus de datos			
В	Bus de datos			
Q0	Salida 0			
Q1	Salida 1			
Q2	Salida 2			
Q3	Salida 3			
Q4	Salida 4			
Q5	Salida 5			
Q6	Salida 6			
Q7	Salida 7			
CP	Reloj			
MR	Reset maestro			
VCC	+5V			
GND	Tierra			

Se muestra a continuación en la Figura 2.13. la distribución de pines del circuito integrado 74164.

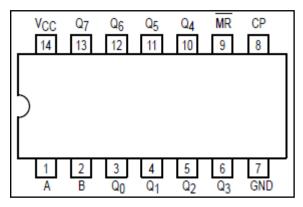


Figura 2.13 Distribución de pines del CI 74164

2.2.6.- SELECCIÓN DE CONDUCTORES

Los conductores se han seleccionado de acuerdo a la Tabla II.2. Debido a que la máxima corriente circulante por los conductores es de 0.12 amperios del censor del nivel de combustible el conductor recomendado sería 29 AWG con un diámetro de 3.3 mil.

Tabla II.2 Conductores AWG

AWG Copper Wire Table						
AWG	Diam. (mils)	Circular mils	Ohms/1000ft	Current Carrying	Fusing Current	Feet per Pound
0000	460	212000	0.050	-	-	1.56
000	410	168000	0.063	-	-	1.96
00	365	133000	0.077	-	-	2.4826
0	324.85	105531	0.096	-	-	3.1305
1	289.3	83694	0.1264	119.6	-	3.947
2	257.6	66358	0.1593	94.8	-	4.977
3	229.4	52624	0.2009	75.2	-	6.276
4	204.3	41738	0.2533	59.6	-	7.914
5	181.9	33088	0.3915	47.3	-	9.980
6	162	26244	0.4028	37.5	668	12.58
7	144.3	20822	0.5080	29.7	561	15.87
8	128.5	16512	0.6405	23.6	472	20.01
9	114.4	13087	0.8077	18.7	396	25.23
10	101.9	10384	1.018	14.8	333	31.82
11	90.7	8226	1.284	11.8	280	40.12
12	80.8	6529	1.619	9.33	235	50.59
13	72.0	5184	2.042	7.40	197	63.80
14	64.1	4109	2.575	5.87	166	80.44
15	57.1	3260	3.247	4.65	140	101.4
16	50.8	2581	4.094	3.69	117	127.9
17	45.3	2052	5.163	2.93	98.4	161.3
18	40.3	1624	6.510	2.32	82.9	203.4
19	35.9	1289	8.210	1.84	69.7	256.5
20	32.0	1024	10.35	1.46	58.4	323.4
21	28.5	812	13.05	1.16	-	407.8

22	25.3	640	16.46	.918	41.2	514.12
23	22.6	511	20.76	.728	-	648.4
24	20.1	404	26.17	.577	29.2	817.7
25	17.9	320	33.0	.458	-	1031
26	15.9	253	41.62	.363	20.5	1300
27	14.2	202	52.48	.288	-	1639
28	12.6	159	66.17	.228	14.4	2067
29	11.3	128	83.44	.181	-	2607
30	10.0	100	105.2	.144	10.2	3287
31	8.9	79	132.7	.114	-	4145
32	8.0	64	167.3	.090	-	5227
33	7.1	50.125	211.0	.072	-	6591
34	6.3	39.75	266.0	.057	5.12	8310
35	5.6	31.5	335	.045	4.28	10480
36	5.0	25.0	423	.036	3.62	13210
37	4.45	19.83	533	.028	-	16660
38	3.97	15.7	673	.022	2.5	21010
39	3.5	12.47	848	.018	-	26500
40	3.14	9.89	1070	.014	1.77	33410

2.2.7.- DISEÑO DE SOFTWARE

Para el diseño de software de los PIC se ha utilizado PIC BASIC un programa de alto nivel, que usa un lenguaje de programación muy similar al de Visual Basic.

2.2.7.1.- Pic Revoluciones

El PIC inicia y genera condiciones iniciales para funcionamiento, su primera prioridad es que la compuerta de entrada de datos de revoluciones se encuentre como entrada o alta impedancia para que no haya cortocircuitos, lo que podría dañar el pic o el integrado; define como entrada analógica a el pin de las revoluciones, coloca como salidas los pines de reset y los de reloj, los pines de reset los coloca en alto para condicionar que se pueda actuar sobre los integrados. Figura 2.14.

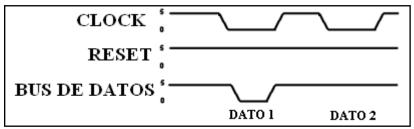


Figura 2.14 Esquema de comunicación entre Pic y Cl 74HC164

Como se puede observar es una comunicación serial a paralelo en la cual utilizando dos líneas, una del clock y otra del bus de datos se garantiza una excelente comunicación ya que se da el tiempo suficiente al PIC para que reciba el dato.

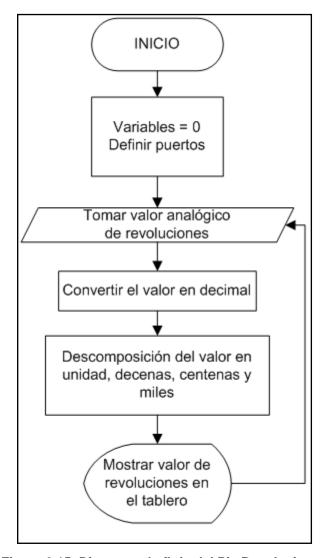


Figura 2.15 Diagrama de flujo del Pic Revoluciones

Coloca cero "0" como valor por defecto a todas las variables: unidad, decena, centena y millar; y envía los datos para que se muestren en el tablero. Lo que

realiza después es recibir la señal analógica de revoluciones y lo transforma a un dato decimal.

Después de transformado el dato de revoluciones es descompuesto en valores de unidad, decena, centena y millar, los cuales se los transforma en un valor binario equivalente al número y que a su vez se lo representará en los display y leds.

Se envía mediante el clock y el bus, los datos a los respectivos CI. Que a su vez los mostrarán en el tablero, esto se resume en el diagrama de flujo mostrado en la figura 2.15.

2.2.7.2.- Pic Velocidad y Marchas

El PIC inicia y genera condiciones iniciales para funcionamiento, su primera prioridad es que la compuerta de entrada de datos de velocidad y de marchas se encuentren como entradas o alta impedancia para que no haya cortocircuitos, lo que podría dañar el pic o los integrados; coloca como salidas los pines de reset y los de reloj, los pines de reset los coloca en alto para condicionar que se pueda actuar sobre los integrados.

CÁLCULO DE LA VELOCIDAD

Dn = Diámetro del neumático (llanta)

Dn = 69 cm

R_{RN} = Relación de giro rueda sensora vs. Llanta

 $R_{RN} = 1:1.5$

N = Número de huecos en la rueda sensora

N = 14 huecos(pulsos)

Pn = Perímetro del neumático

 $Pn = \pi * Dn$

Ecuación 1

$$Pn = \pi * 0.69$$

$$Pn = 2.167 m$$

Ls = Longitud de recorrido 1 revolución de la rueda sensora.

$$Ls = 1.5 * Pn$$

 $Ls = 1.5 * 2.167$

Ecuación 2

Ls = 3.25 m

Transformaciones de unidades

$$V1 = \frac{1 \, Km/h}{1 \, Km} * \frac{1000 \, m}{1 \, Km} * \frac{1 \, h}{3600 \, seg}$$

$$V1 = 0.277 \, m/seg$$

$$V2 = 140 \, Km/h$$

$$V2 = \frac{140 \, Km/h}{1 \, Km} * \frac{1000 \, m}{3600 \, seg}$$

$$V2 = 38.88 \, m/seg$$

Ln = Recorrido del auto con un pulso de la rueda sensora

$$\frac{\frac{N}{n}X\frac{Ls}{Ln}}{1 \text{ pulsos}} \times \frac{3.25 \text{ m}}{Ln}$$

$$Ln = 0.232 \text{ m}$$

Tn? = Tiempo de un pulso relacionado a la velocidad llevada

$$V1 = 0.277 \, m/seg$$

$$\frac{Ln}{V1e} \, X \frac{Tn1}{V1t}$$
 Ecuación 4
$$\frac{0.232 \, m}{0.277 \, m} \, X \frac{Tn1}{1 \, seg}$$

$$Tn1 = 0.837 \, seg$$

$$V2 = 38.88 \, m \, seg$$

$$\frac{Ln}{V2e} X \frac{Tn2}{V2t}$$

$$\frac{0.232 m}{38.88 m} X \frac{Tn2}{1 seg}$$

$$Tn2 = 5.967 mseg$$

Tn? = tiempo entre 1 pulso alto y 1 bajo de la rueda sensora a V=?

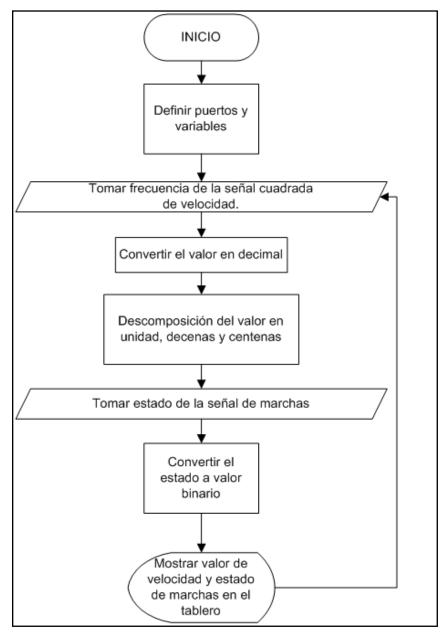


Figura 2.16 Diagrama de flujo del Pic Velocidad y Marchas

Coloca cero "0" como valor por defecto a todas las variables: unidad, decena, centena; y el valor de marchas en "neutro o cero" y envía los datos para que se muestren en el tablero. Lo que realiza después es recibir la señal cuadrada de velocidad y lo transforma a un dato decimal, a su vez chequea el estado de las marchas.

Después de transformado el dato de velocidad es descompuesto en valores de unidad, decena y centena, los cuales se los transforma en un valor binario equivalente al número y que a su vez se lo representará en los display y leds. El estado de las marchas lo analiza y transforma a su equivalente para mostrarlo en el display alfanumérico.

Se envía mediante el clock y el bus, los datos a los respectivos CI. Que a su vez los mostrarán en el tablero.

Todo el proceso anterior se resume en la figura 2.16.

2.2.7.3.- Pic TPNV

El PIC inicia y genera condiciones iniciales para funcionamiento, su primera prioridad es que la compuerta de entrada de datos de: temperatura de refrigerante, temperatura de aceite, presión de aceite, presión del múltiple de admisión, nivel de combustible y voltaje se encuentren como entradas o alta impedancia para que no haya cortocircuitos, lo que podría dañar el pic o los integrados; coloca como salidas los pines de reset y los de reloj, los pines de reset los coloca en alto para condicionar que se pueda actuar sobre los integrados. Define como entradas analógicas los pines de temperatura de refrigerante, temperatura de aceite, presión de aceite, presión del múltiple de admisión, nivel de combustible y voltaje.

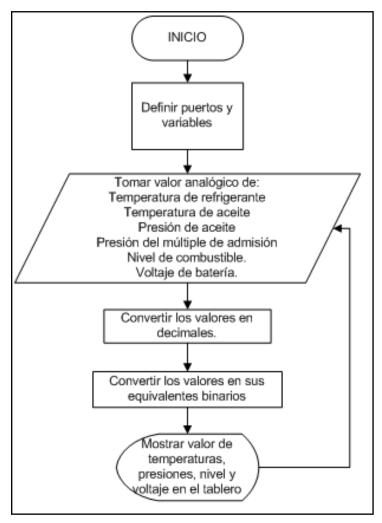


Figura 2.17 Diagrama de flujo del Pic TPNV

Coloca cero "0" como valor por defecto a todas las variables: temperatura de refrigerante, temperatura de aceite, presión de aceite, presión del múltiple de admisión, nivel de combustible y voltaje; y envía los datos para que se muestren en el tablero. Lo que realiza después es recibir las señales analógicas de cada una de las variables y las transforma a un dato decimal.

Después de transformados los datos son descompuestos en valores binarios equivalente al número y que a su vez se lo representará en los leds.

Se envía mediante el clock y el bus, los datos a los respectivos CI. Que a su vez los mostrarán en el tablero. En resumen el proceso se muestra en la figura 2.17.

2.2.7.4.- Pic Kilometraje

El PIC inicia y genera condiciones iniciales para funcionamiento, su primera prioridad es que la compuerta de entrada de datos de velocidad se encuentre como entrada o alta impedancia para que no haya cortocircuitos, lo que podría dañar el pic o los integrados; coloca como salidas los pines de reset, 5 voltios y los de reloj, los pines de reset los coloca en alto para condicionar que se pueda actuar sobre los integrados. Lee los valores que se encuentren guardados en la memoria interna del pic, los cuales son cargados a las respectivas variables.

Envía los datos para que se muestren en el tablero. Lo que realiza después es recibir las señales cuadradas de velocidad y comienza a contarlas hasta un cierto número que equivale a un kilometro de distancia recorrida, luego suma "1" al valor ya antes leído de la memoria y lo procede a guardar; luego carga las variables con los nuevos valores si ese fuera el caso.

Calculo de pulsos equivalentes a 1 km

$$\frac{KM}{Ls} = \frac{NKm}{N}$$
 Ecuación 5
$$\frac{1000 \text{ m}}{3.25 \text{ m}} X \frac{NKm}{14 \text{ pulsos}}$$

$$NKm = 4307 \text{ pulsos}$$

Después de transformados los datos son descompuestos en valores binarios equivalente al número y que a su vez se lo representará en los displays.

Activa el primer transistor correspondiente a los displays izquierdos y envía mediante el clock y el bus, los datos a los respectivos CI. Que a su vez los mostrarán en el tablero. Luego activa el segundo transistor correspondiente a los displays derechos y envía mediante el clock y el bus, los datos a los respectivos CI. Que a su vez los mostrarán en el tablero. En resumen el proceso se muestra en la figura 2.18.

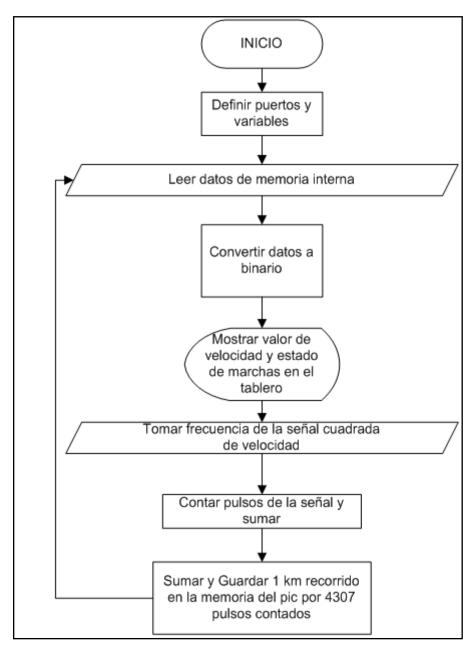


Figura 2.18 Diagrama de flujo del Pic Kilometraje

III.- CAPÍTULO

MONTAJE DE PIEZAS MECÁNICAS, TARJETAS ELECTRÓNICAS Y TABLERO DE INSTRUMENTOS

3.1.- CONSTRUCCIÓN Y ACOPLAMIENTO DE PIEZAS MECÁNICAS

3.1.1.- CONSTRUCCIÓN DEL SENSOR DE VELOCIDAD.

El sensor de velocidad se construyo a base de una placa de acero inoxidable debido a las condiciones a las que podría estar sometido, lo cual evita a que se oxide o dañe con rapidez y aumenta la eficacia de la pieza.

En la rueda se realizó 14 taladros de 3mm de diámetro y colocados equidistantes unos de otros, además de uno en el centro que se acopló en el eje y este a su vez en la carcasa del motor eléctrico.

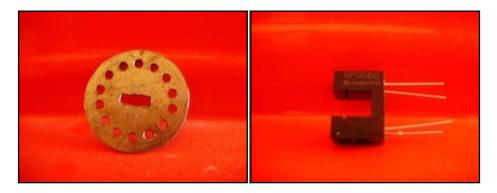


Figura 3.1 Rueda con huecos y optoacoplador

Debido a la velocidad que estará sometido, se debió adaptar a una carcasa de un motor eléctrico ya que se necesita de cojinetes como rodamientos de giro del eje y que estén centrados.

La perforación que se realizó en la carcasa del motor eléctrico fue para la colocación del optoacoplador (Sharp GP3S62), el cual fue colocado de tal forma su emisor y receptor estén calibrados con los taladros de la rueda para que puedan enviar la señal correcta.

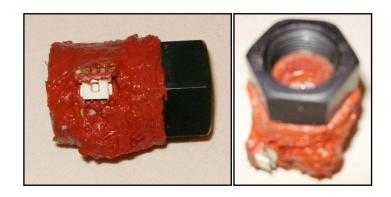


Figura 3.2 Vistas del sensor terminado

Después se acopló mediante una junta elástica (silicón) con una tuerca que se acoplara exactamente con la rosca externa de la caja de transferencia del todo terreno.

3.1.2.- CONSTRUCCIÓN del SOPORTE DE SENSORES DE MARCHAS.

Los soportes para los sensores se construyeron a base de una placa de acero inoxidable debido a las condiciones a las que podría estar sometido, lo cual evita a que se oxide o dañe con rapidez y aumenta la eficacia de las pizas.

Figura 3.3 Muescas y fines de carrera del sensor de marchas

Los sensores en este caso son fines de carrera de utilización industrial, los cuales pueden sin problemas ser utilizados para este fin por su duración y versatilidad en cuanto a ambientes en los cuales pueden funcionar.

La estructura de soporte se realizó de acuerdo a la parte posterior de la caja de cambios y al selector de marchas, que es en el cual se colocó las piezas de selección de marchas.

De estos sensores sale 5 cables hacia la tarjeta de control primario, cables de primera, segunda, tercera, cuarta y retro.

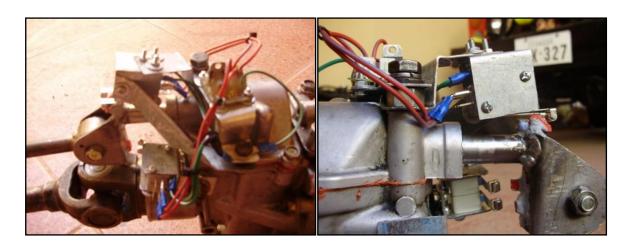


Figura 3.4 Vistas del sensor de marchas instalado

3.2.- INSTALACIÓN DEL SISTEMA ELÉCTRICO

La instalación eléctrica correspondiente al funcionamiento del tablero electrónico de instrumentos se la realizó con cable número 14 de utilización automotriz con aislamiento de caucho y de 35 láminas.

3.2.1.- SENSOR DE TEMPERATURA DE ACEITE.

El sensor de temperatura de aceite fue acoplado en la parte inferior media del cárter del motor, el cual será el encargado de proporcionar la resistencia para realizar el cálculo de la temperatura de aceite. En este sensor se colocó un cable que va hacia la tarjeta de control primario.

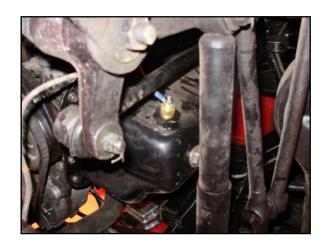


Figura 3.5 Sensor de temperatura de aceite instalado en el cárter

3.2.2.-SENSOR DE PRESIÓN ABSOLUTA DEL MÚLTIPLE DE ADMISIÓN.

Este sensor se colocó en la parte superior del múltiple de admisión del motor, el cual lleva tres cables: voltaje de referencia, voltaje de señal y masa; esta última se coloco en el motor, debido a que no presenta problemas de medición, los otros dos cables van hacia la tarjeta de control primario.

Figura 3.6 Sensor de presión absoluta del múltiple de admisión

3.2.3.- SENSOR DE VELOCIDAD.

Este sensor se colocó en la salida de giro para censar la velocidad en el todo terreno, este sensor posee 4 cables los cuales van hacia la tarjeta de control primario. Este sensor va enroscado en la caja de transferencia.

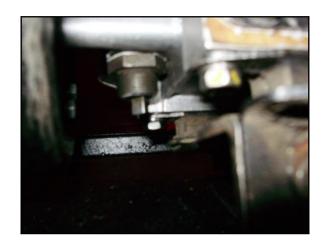


Figura 3.7 Salida de giro para señal de velocidad

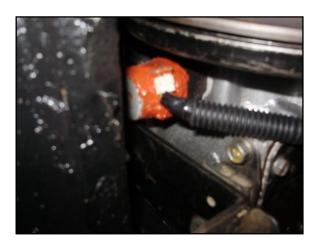


Figura 3.8 Sensor de velocidad instalado

3.2.4.- SENSOR DE PRESIÓN DE ACEITE.

Este sensor se encuentra ubicado en la parte inferior izquierda del bloque de cilindros del motor, va enroscado en el lugar donde se encontraba el sensor de presión de aceite de posiciones abierto y cerrado, este en cambio funciona con una membrana y entrega la resistencia de medida de la presión de aceite. En este sensor se colocó un cable que va a la tarjeta de control primario.

Figura 3.9 Sensor de presión de aceite instalado

3.2.5.- CAJA DE CONTROL.

La caja de control en la cual se encuentran todos los circuitos de control secundario con los integrados 74164 y la tarjeta de control primario con los PIC's, se colocó en el interior frontal del todo terreno y la cual posee las entradas de la alimentación y señales provenientes del motor y demás partes en el auto.

Figura 3.10 Caja de control electrónico

3.3.- DISEÑO Y CONSTRUCCIÓN DEL TABLERO DE INSTRUMENTOS

El tablero de instrumentos se construyó en un material llamado MDF muy parecido al triplex, pero con una mejor facilidad de maquinado. Se utilizó procedimientos de taladrado y cortado, el primero con una maquina taladradora y el segundo con una caladora.

Figura 3.11 Tablero de instrumentos antes de ser instalado

Figura 3.12 Vista posterior del Tablero de instrumentos

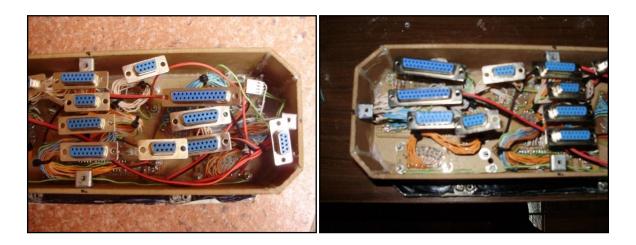


Figura 3.13 Conexiones internas del tablero

Para la construcción se siguió un diseño realizado en AUTOCAD, y que fue realizado acorde a las necesidades y recursos de espacio en el auto y tamaño de elementos.

Figura 3.14 Tablero de instrumentos instalado

Los diseños y distribución de pines en los conectores se encuentran en los Anexo **D2** y Anexo **D1** respectivamente.

Las conexiones necesarias para unir el tablero con la caja de control se realizaron con cableado UTP y conectores DB9, DB15 y DB25.

Figura 3.15 Cables y conectores del tablero con la caja de control

3.4.- CONSTRUCCIÓN Y ACOPLAMIENTO DE TARJETAS ELECTRÓNICAS

Las tarjetas electrónicas se diseñaron con el software Proteus; y la impresión de los circuitos del tablero con papel press-n-Peel o papel de trasferencia térmica y las tarjetas control se realizaron con placas perforadas. Así se tiene las siguientes tarjetas:

3.4.1.- FUENTE DE ENERGÍA

Esta tarjeta proporciona la energía necesaria para los displays, grupos de leds, pics controladores e integrados de control.

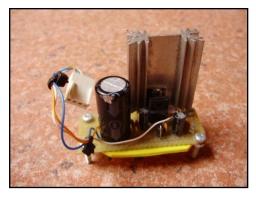


Figura 3.16 Fuente de energía y regulación del tablero

El circuito eléctrico de la fuente de energía se encuentra en el Anexo C5.

3.4.2.- TARJETAS DE CONTROL SECUNDARIO (74164)

Esta tarjeta contiene los integrados 74164, los transistores y resistencias que corresponden al control del tablero.

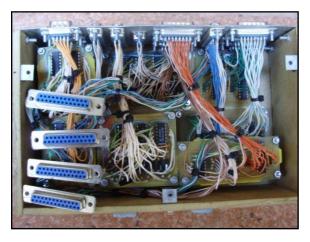


Figura 3.17 Tarjetas de control secundario

Figura 3.18 Vista posterior de la caja de control

3.4.3.- TARJETA DE CONTROL PRIMARIO (PIC'S)

En esta tarjeta se encuentran los pics de control: revoluciones, TPNV, velocidad y marchas, kilometraje; también se encuentran los circuitos acondicionadores de revoluciones y velocidad.

Figura 3.19 Tarjeta de control primario

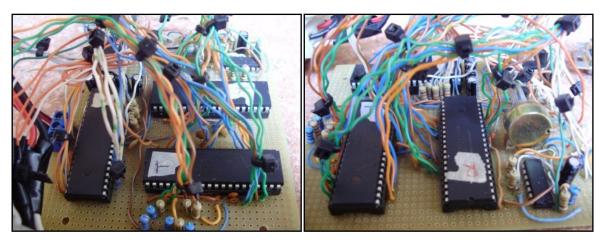


Figura 3.20 Conexiones en la tarjeta de control primario

3.4.4.- TARJETAS DE DISPLAYS Y LUCES DEL TABLERO.

Estas tarjetas son colocadas en el tablero, en las cuales están luces y displays de acuerdo a la funcionalidad, se clasifican en:

- Luces de revoluciones
- Luces de velocidad
- Displays de revoluciones
- Displays de velocidad y marchas
- Luces de direccionales
- Luces de voltaje
- Luces de presión de aceite y del múltiple de admisión.

- Luces de nivel de combustible
- Luces de temperaturas de aceite y refrigerante
- Displays de kilometraje
- Luces de iluminación e indicadoras.

Figura 3.21 Tarjetas electrónicas de luces de tablero

El diseño del ruteado de las tarjetas de las luces del tablero se encuentran en el Anexo **E2.**

IV.- CAPÍTULO

PRUEBAS Y RESULTADOS

PRUEBAS

Las pruebas y se realizaron analizando de manera individual cada señal y respectivo sensor, de la siguiente manera:

4.1.1.- TEMPERATURA DE REFRIGERANTE.

La prueba que se realizó en el sistema de medición de la temperatura de refrigerante, fue la de tomar datos de la temperatura del refrigerante en estado de motor frió y de motor a temperatura de funcionamiento con la ayuda de un termómetro.

Esta prueba se realizó por tres ocasiones, dejando que el motor tome las mismas condiciones, obteniendo valores muy similares.

Figura 4.1 Pruebas del sensor de temperatura de refrigerante

4.1.2.- TEMPERATURA DE ACEITE.

La prueba que se realizó en el sistema de medición de la temperatura de aceite, fue la de tomar datos de la temperatura del aceite en estado de motor frio y de motor a temperatura de funcionamiento con la ayuda de un termómetro.

Esta prueba se realizó por tres ocasiones, dejando que el motor tome las mismas condiciones, obteniendo valores muy similares.

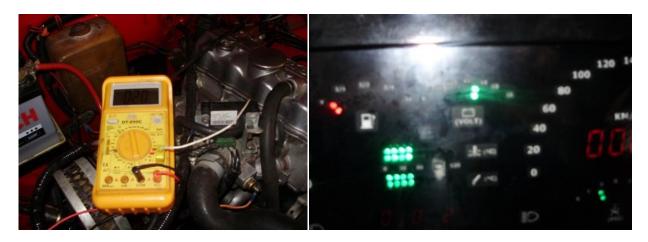


Figura 4.2 Pruebas del sensor de temperatura de aceite

4.1.3.- PRESIÓN DEL MÚLTIPLE DE ADMISIÓN.

Se realizó la prueba directamente en el múltiple de admisión en la misma toma de vacio del sensor MAP, se utilizó un vacuo metro y se tomo valores en diferente estado de aceleración del motor, lo que a su vez en un patrón parecido se observó las mediciones en el tablero de instrumentos.

Figura 4.3 Mediciones en el tablero de la presión del múltiple de admisión

Figura 4.4 Toma de vacío en el múltiple de admisión

4.1.4.- PRESIÓN DE ACEITE.

Se realizó con la ayuda del medidor propio del sensor que se utilizó ya que el medidor funciona eléctricamente, la prueba directamente en el sensor; se tomo valores en diferente estado de aceleración del motor, lo que a su vez en un patrón parecido se observó las mediciones en el tablero de instrumentos.

Figura 4.5 Mediciones en el tablero de la presión de aceite

Figura 4.6 Prueba de la presión de aceite

4.1.5.- VOLTAJE.

Se realizó con la ayuda de un voltímetro, la prueba se realizó directamente en la batería del todo terreno; se tomo valores en diferente estado de aceleración del motor, lo que a su vez en un patrón parecido se observó las mediciones en el tablero de instrumentos.

Figura 4.7 Prueba del voltaje de batería

4.1.6.- REVOLUCIONES.

Se realizó con la ayuda de un multímetro automotriz con la función de tacómetro, la prueba se realizó directamente en el negativo de la bobina de encendido; se tomo valores en diferente estado de aceleración del motor, lo que a su vez en un patrón parecido se observó las mediciones en el tablero de instrumentos.

Figura 4.8 Mediciones del voltaje de batería



Figura 4.9 Prueba de revoluciones por minuto

4.1.7.- NIVEL DE COMBUSTIBLE.

La prueba se realizó con diferentes cantidades de combustible y con la ayuda del indicador original del nivel de combustible del todo terreno; de inicio se llenó completamente el tanque de combustible y se chequeó el nivel después de drenar una cantidad x de combustible y se comparaba con el nivel que mostraba en el tablero.

Figura 4.10 Pruebas de la medición de combustible

4.1.8.- VELOCIDAD.

La prueba se realizó mediante la comparación en movimiento con otro automóvil para la comparación de la velocidad marcada en los dos autos, la prueba se realizó con distintos valores de velocidad, los cuales eran marcados por la velocidad del automóvil de prueba y luego se anotó la velocidad del otro automotor.

Figura 4.11 Prueba de la velocidad del todo terreno

4.1.9.- MARCHAS.

La prueba se realizó con el automotor quieto y en movimiento, simplemente se cambia las marchas y a su vez el indicador de las mismas debe ir cambiando de acuerdo a las condiciones que le corresponda.

Tabla IV.1 Condición de las marchas

CONDICIÓN	INDICADOR
Indicador de neutro	MARCHAS
Indicador de primera marcha	T T
Indicador de segunda marcha	2
Indicador de tercera marcha	3
Indicador cuarta marcha	14

4.1.10.- KILOMETRAJE

La prueba se realizó solamente moviendo el automotor una distancia aproximada de 1 km y esperando que el indicador sume un kilómetro más al kilometraje total del automotor. Esta prueba se realizó por tres ocasiones.

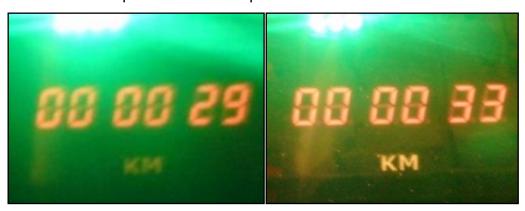


Figura 4.12 Indicadores de Kilometraje

RESULTADOS

4.2.1.- TEMPERATURA DE REFRIGERANTE.

Los datos obtenidos en la prueba son las temperatura de motor frió y la de motor en temperatura de funcionamiento, los cuales se compararon entre los medidos con el termómetro y los mostrados en el tablero de instrumentos; los resultados que se obtuvieron mediante la prueba realizada, se detallan en la tabla IV.2.

Tabla IV.2 Resultados de temperatura de refrigerante

	Tº MEDIDA	Tº MOSTRADA
Motor frío	20 °C	20 – 30 °C
Motor caliente	85 °C	80 – 90 °C

Se puede deducir que se obtuvieron valores parecidos y con un margen tolerable de diferencia.

4.2.2.- TEMPERATURA DE ACEITE.

Los datos obtenidos en la prueba son las temperatura de motor frió y la de motor en temperatura de funcionamiento, los cuales se compararon entre los medidos con el termómetro y los mostrados en el tablero de instrumentos; los resultados que se obtuvieron mediante la prueba realizada, se detallan en la tabla IV.3.

Tabla IV.3 Resultados de temperatura de aceite

	Tº MEDIDA	Tº MOSTRADA
Motor frío	18 °C	20 – 30 °C
Motor caliente	68 °C	60 – 70 °C

Se puede deducir que se obtuvieron valores parecidos y con un margen tolerable de diferencia.

4.2.3.- PRESIÓN DEL MÚLTIPLE DE ADMISIÓN.

Los datos obtenidos en la prueba de la presión absoluta del múltiple de admisión son los correspondientes a estados del acelerador, los cuales se compararon entre los medidos con el vacuómetro y los mostrados en el tablero de instrumentos; los resultados que se obtuvieron mediante la prueba realizada, se detallan en la tabla IV.4.

Tabla IV.4 Resultados de presión del múltiple de admisión

	Presión Medida	Presión Mostrada
Acelerador suelto	8 in Hg	4 psi
Acelerador ½ accionado	11 in Hg	5 – 6 psi
Acelerador ¾ accionado	7 in Hg	3 – 4 psi
Acelerador suelto repentinamente	16 in Hg	7 - 8 psi

Se puede deducir que se obtuvieron valores parecidos y con un margen tolerable de diferencia.

4.2.4.- PRESIÓN DE ACEITE.

Los datos obtenidos en la prueba de la presión de aceite son los correspondientes a estados del acelerador, los cuales se compararon entre los medidos con el medidor y los mostrados en el tablero de instrumentos; los resultados que se obtuvieron mediante la prueba realizada, se detallan en la tabla IV.5.

Tabla IV.5 Resultados de presión de aceite

	Presión Medida	Presión Mostrada
Acelerador suelto	25 psi	1.5 – 2 bares
Acelerador ½ accionado	40 psi	3 – 3.5 bares
Acelerador ¾ accionado	60 psi	3.5 – 4 bares
Acelerador suelto repentinamente	55 psi	3.5 – 4 psi

Se puede deducir que se obtuvieron valores parecidos y con un margen tolerable de diferencia.

4.2.5.- VOLTAJE.

Los datos obtenidos en la prueba de voltaje de la batería son los correspondientes a estados del acelerador, los cuales se compararon entre los medidos con el voltímetro y los mostrados en el tablero de instrumentos; los resultados que se obtuvieron mediante la prueba realizada, se detallan en la tabla IV.6.

Tabla IV.6 Resultados de voltaje de batería

	Voltaje Medido	Voltaje Mostrado
Acelerador suelto	12.3 Volts	12 - 12.5 Volts
Acelerador ½ accionado	13.1 Volts	13 – 13.5 Volts
Acelerador ¾ accionado	13.5 Volts	13.5 – 14 Volts

Se puede deducir que se obtuvieron valores parecidos y con un margen tolerable de diferencia.

4.2.6.- REVOLUCIONES.

Los datos obtenidos en la prueba de revoluciones son los correspondientes a estados del acelerador, los cuales se compararon entre los medidos con el tacómetro y los mostrados en el tablero de instrumentos; los resultados que se obtuvieron mediante la prueba realizada, se detallan en la tabla IV.7.

Tabla IV.7 Resultados de revoluciones por minuto

	Voltaje Medido	Voltaje Mostrado
Acelerador suelto	780 RPM	768 RPM
Acelerador ½ accionado	2280 RPM	2313 RPM
Acelerador ¾ accionado	3840 RPM	3791 RPM

Se puede deducir que se obtuvieron valores parecidos y con un margen tolerable de diferencia.

4.2.7.- NIVEL DE COMBUSTIBLE.

Los datos obtenidos en la prueba de nivel de combustible son los más precisos ya que los datos son correspondientes al nivel de combustible.

4.2.8.- VELOCIDAD.

Los datos obtenidos en la prueba de velocidad del todo terreno nos dieron como resultado que la velocidad marcada gracias a la señal del optoacoplador no es la velocidad real del todo terreno ya que los valores que marca no son los reales de acuerdo al comparativo realizado, esto puede producirse por la señal errónea que envíe el optoacoplador ya que no es un sensor de precisión, a su vez puede este error ser generado por la rueda de señal; ya que debido a que es un prototipo esta opción parecía la más conveniente, pero no por nada en la industria

automotriz se utilizan sensores más robustos y de mayor precio. Los valores obtenidos mediante la prueba se detallan en la tabla IV.8.

Tabla IV.8 Resultados de velocidad del todo terreno

Velocidad Medida	Velocidad Mostrada
20 KM/H	35 KM/H
40 KM/H	65 KM/H
50 KM/H	80 KM/H

Mediante estos valores se puede notar que necesita otra calibración o a su vez cambiar el sistema de sensado.

4.2.9.- MARCHAS.

Los datos obtenidos en la prueba de marchas muestran que funciona correctamente y que no existen problemas con la vibración del auto y del mecanismo.

4.2.10.- KILOMETRAJE

Los datos obtenidos en la prueba de kilometraje muestran que debido a las señales erróneas que el sensor de velocidad envía, ya que de aquí proviene la señal para realizar el cálculo de kilometraje y por ende el kilometraje que se va sensar no es el correcto por aproximadamente 150 m de distancia; es decir por suma kilometrajes antes de que se llegue a la distancia correcta, es lo que las pruebas mostraron y que debido a la vibración y fuertes saltos del todo terreno ayudan al valor erróneo que se obtiene. Pero muestra que el circuito y los cálculos realizados no están mal, las dificultades que se presentan son debidas al sensor de velocidad.

v.- CAPÍTULO

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

Después de la finalización del presente proyecto se concluye lo siguiente:

- Se diseñó y construyó un Tablero de Instrumentos de Control Electrónico para el monitoreo de las variables y señales del estado del funcionamiento general del todo terreno Suzuki LJ-80-V modelo 1980.
- Se realizó un estudio de señales donde se detalla los diferentes valores y variables del funcionamiento del automóvil en el Tablero de Instrumentos.
- Se aplicó los recursos tecnológicos de nuestro medio para la realización del proyecto con una interfaz llamativa y de costo reducido.
- Se sustituyó el tablero original del todo terreno por el electrónico añadiendo características y propiedades nuevas y mejoradas.
- Se monitoreó de manera constante la información a tiempo real del estado del todo terreno, realizando la adquisición de datos cada 10ms.
- Se construyó sensores para monitoreo, los que se implementaron y probaron en este automóvil.
- Se diseñó el software y hardware para comandar la gestión electrónica del tablero, con el fin de obtener una interpretación visual de las condiciones del todo terreno favorable para este tipo de diseño.

RECOMENDACIONES

Para el uso, aplicación y mejoramiento de la presente tesis se propone las siguientes recomendaciones:

- Utilizar CAM para el mejoramiento del acabado final del tablero, los que obliga a un previo diseño en CAD.
- Emplear diodos led brillantes, debido a que los diodos led comunes no se diferencian en el día y consumen menos energía que utilizar bombillos incandescentes.
- Adaptar en automóviles de aplicaciones similares esta tecnología en automóviles para reemplazar tableros de instrumentación deteriorados o de tecnología obsoleta.
- Tener en cuenta el problema de ruido eléctrico, que no se presenta en la simulación y es posible que se pase por alto en el diseño, el mismo que produce inconvenientes con el desempeño de los microcontroladores.
- Tomar en cuenta las limitaciones de espacio y recursos que se presenten en el medio que se va a desarrollar el proyecto.
- Desarrollar un protocolo de comunicación o a su vez utilizar un bus de comunicación que optimice y garantice el funcionamiento del sistema.
- Optimizar un sistema de obtención de la señal de velocidad y kilometraje,
 para mejorar características de desempeño de la ya empleada.

REFERENCIAS BIBLIOGRÁFICAS Y ENLACES

REYES C. (2004), "Aprenda rápidamente a programar Microcontroladores PIC", Quito: Carlos A. Reyes.

CASTRO M. (1989), "Electricidad del Automóvil – I", Barcelona: Ediciones CEAC, S.A.

PARERA A. (1990), "Inyección Electrónica motores a gasolina", Barcelona: Marcombo, S.A.

www.ing.unlpam.edu.ar/~material/tecmecanica/material_didactico.htm

http://www.emagister.com.mx/cursos_control_electrico_motores-tpsmx-314789.htm

http://www.automatas.org/hardware/**teoria_**pid.htm

http://www.emagister.com/memorias-teoria-definiciones-cursos-1028977.htm

http://www.cnc.info.pl/topics27/lm628-629-precision-motion-controler-vt1112.htm

http://www.automatas.org/hardware/**teoria_pid**.htm

http://www.x-robotics.com/motorizacion.htm

http://www.pjmicrocontroladores.wordpress.com/2007/03/02/programador-por- puerto-serie- para-pic/

http://www 1.microchip.com/downloads/en/DeviceDoc/39582b.pdf -

http://www.microchip.com/downloads/en/devicedoc/40044D.pdf

http://www.national.com/pf/**74hc164**.html

http://www.mecanicadeautos.info/index.php?id=**Sensor_TPS**

http://www.autocity.com/manualesreparacion/index.html?nivelAcceso=3&codigo=10&cat =

http://automecanico.com/auto2002/GENERALMOTORS.HTML

http://www.mecanicavirtual.org/sensores.htm

http://biblioteca.universia.net/ficha.do?id=37938678

http://ww1.microchip.com/downloads/en/DeviceDoc/51410b.pdf

LISTADO DE ANEXOS

ANEXO A. Hojas técnicas de dispositivos electrónicos.

ANEXO A.1 PIC 16F628-A

ANEXO A.2 PIC 16F877-A

ANEXO A.3 CI 74164

ANEXO A.4 CI 2917

ANEXO B. Tablas de transformación de datos de sensores

ANEXO B.1 Valores del sensor de temperatura de refrigerante

ANEXO B.2 Valores del Sensor de temperatura de aceite

ANEXO B.3 Valores del Sensor de presión del múltiple de admisión

ANEXO B.4 Valores del Sensor de presión de aceite

ANEXO B.5 Valores del Sensor de nivel de combustible

ANEXO B.6 Valores de la medición del voltaje de batería

ANEXO C. Circuitos electrónicos

ANEXO C.1 Revoluciones

ANEXO C.2 Velocidad y Marchas

ANEXO C.3 Temperatura, Presión, Nivel y Voltaje

ANEXO C.4 Kilometraje

ANEXO C.5 Fuente

ANEXO D. Planos de piezas

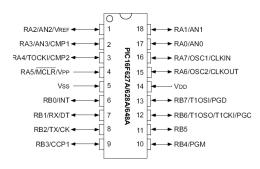
ANEXO D.1 Rueda de huecos

ANEXO D.2 Tablero de Instrumentos

ANEXO E. Ruteado y Distribución de pines

ANEXO E.1 Ruteado de las tarjetas del tablero de instrumentos

ANEXO E.2 Distribución de conectores (caja electrónica)



MICROCHIP PIC16F627A/628A/648A

18-pin FLASH-Based 8-Bit CMOS Microcontrollers

Device	Program Memory	Data Memory		1 /0	ССР	USART	Comparators	Timers
Device	FLASH (words)	SRAM (bytes)	EEPROM (bytes)	I/O	(PWM)	USAKI	Comparators	8/1 6-bit
PIC16F627A	1024	224	128	16	1	Υ	2	2/1
PIC16F628A	2048	224	128	16	1	Υ	2	2/1
PIC16F648A	4096	256	256	16	1	Υ	2	2/1

PIN DIAGRAM

		PIC16F627A	PIC16F628A	PIC16F648A	PIC16LF627A	PIC16LF628A	PIC16LF648A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	4	4	4
	FLASH Program Mem- ory (words)	1024	2048	4096	1024	2048	4096
Memory	RAM Data Memory (bytes)	224	224	256	224	224	256
	EEPROM Data Mem- ory (bytes)	128	128	256	128	128	256
	Timer module(s)	TMR0, TMR1, TMR2					
	Comparator(s)	2	2	2	2	2	2
Peripherals	Capture/Compare/ PWM modules	1	1	1	1	1	1
	Serial Communications	USART	USART	USART	USART	USART	USART
	Internal Voltage Reference	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	10	10	10	10	10	10
	I/O Pins	16	16	16	16	16	16
Features	Voltage Range (Volts)	3.0-5.5	3.0-5.5	3.0-5.5	2.0-5.5	2.0-5.5	2.0-5.5
	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC, 20-pin SSOP, 28-pin QFN					

ANEXO A.1	ESCUELA POLITÉCNICA DEL EJÉRCITO	HOJA 2 DE 3
-----------	----------------------------------	-------------

TABLE 3-2: PIC16F627A/628A/648A PINOUT DESCRIPTION

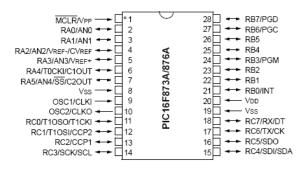
Name	Function	Input Type	Output Type	
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN	_	Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	_	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN		Analog comparator input
	VREF	_	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN		Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	T0CKI	ST	_	Timer0 clock input
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/VPP	RA5	ST	_	Input port
	MCLR	ST	_	Master clear. When configured as MCLR, this
				Voltage on MCLR/VPP must not exceed VDD
	VPP	_	_	Programming voltage input.
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port
	OSC2	_	XTAL	Oscillator crystal output. Connects to crystal
	CLKOUT	_	CMOS	In RC/INTOSC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	_	Oscillator crystal input
	CLKIN	ST		External clock source input. RC biasing
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software pro-
	INT	ST	_	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software pro-
	RX	ST	_	USART receive pin
	DT	ST	CMOS	Synchronous data I/O.
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port. Can be software pro-
	TX	_	CMOS	USART transmit pin
	CK	ST	CMOS	Synchronous clock I/O.
		TTL	CMOS	.,
				Bi-directional I/O port. Can be software pro- grammed for internal weak pull-up.

TABLE 15-2: PIC16F627A/628A/648A INSTRUCTION SET

Mnemonic, Operands		Description	Cyalaa		14-Bit Opcode	Status	Natas	
		Description	Cvcles	MSb		LSb	Affected	Notes
BYTE-ORIEN								
ADDWF	f, d	Add W and f	1	00	0111 dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101 dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001 lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001 0000	0011	Z	
COMF	f, d	Complement f	1	00	1001 dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011 dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011 dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010 dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111 dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100 dfff	ffff	z	1,2
MOVF	f, d	Move f	1	00	1000 dfff	ffff	z	1,2
MOVWF	f	Move W to f	1	00	0000 lfff	ffff		•
NOP	_	No Operation	1	00	0000 0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101 dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100 dfff		С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010 dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110 dfff	ffff	' '	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110 dfff	ffff	z	1,2
BIT-ORIENTI	ED FIL	E REGISTER OPERATIONS						
BCF	f, b	Bit Clear f	1	01	00bb bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1(2)	01	10bb bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1(2)	01	11bb bfff	ffff		3
LITERAL AND CONTROL OPERATIONS								
ADDLW	k	Add literal and W	1	11	111x kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001 kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	Okkk kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	00	0000 0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000 kkkk	kkkk	z	
MOVLW	k	Move literal to W	1	11	00xx kkkk	kkkk		
RETFIE	_	Return from interrupt	2	00	0000 0000	1001		
RETLW	k	Return with literal in W	2	11	01xx kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000 0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000 0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010 kkkk	kkkk	z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

^{2:} If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.


 $_3$: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a $_N \circ _P$.

28/40/44-Pin Enhanced Flash Microcontrollers

	Program Memory		Data	EEDDOM		10-bit	ССР	MSSP			Timoro	
Device	Bytes	# Single Word Instructions	SRAM (Bytes)	EEPROM (Bytes)	I/O	A/D (ch)	(PWM)	SPI	Master I ₂ C	USART	8/16-bit	Comparators
PIC16F873A	7.2K	4096	192	128	22	5	2	Yes	Yes	Yes	2/1	2
PIC16F874A	7.2K	4096	192	128	33	8	2	Yes	Yes	Yes	2/1	2
PIC16F876A	14.3K	8192	368	256	22	5	2	Yes	Yes	Yes	2/1	2
PIC16F877A	14.3K	8192	368	256	33	8	2	Yes	Yes	Yes	2/1	2

PIN DIAGRAM

TABLE 1-1: PIC16F87XA DEVICE FEATURES

Key Features	PIC16F873A	PIC16F874A	PIC16F876A	PIC16F877A	
Operating Frequency	DC – 20 MHz				
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	
Flash Program Memory (14-bit words)	4K	4K	8K	8K	
Data Memory (bytes)	192	192	368	368	
EEPROM Data Memory (bytes)	128	128	256	256	
Interrupts	14	15	14	15	
I/O Ports	Ports A, B, C	Ports A, B, C, D,	Ports A, B, C	Ports A, B, C, D,	
Timers	3	3	3	3	
Capture/Compare/PWM	2	2	2	2	
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART	
Parallel Communications	_	PSP	_	PSP	
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels	
Analog Comparators	2	2	2	2	
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions	

	,	_
ANEXO A.2	ESCUELA POLITÉCNICA DEL EJÉRCITO)

HOJA 2 DE 3

Name	Function	Input Type	Output Type	Description
RA0/AN0	RA0	ST		Bi-directional I/O port
	AN0	AN	_	Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	_	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN	_	Analog comparator input
	VREF	_	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN	_	Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	T0CKI	ST	_	Timer0 clock input
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/VPP	RA5	ST	_	Input port
	MCLR	ST	_	Master clear. When configured as MCLR, this
				Voltage on MCLR/VPP must not exceed VDD
	VPP	_	_	Programming voltage input.
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port
	OSC2	_	XTAL	Oscillator crystal output. Connects to crystal
	CLKOUT	_	CMOS	In RC/INTOSC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	_	Oscillator crystal input
	CLKIN	ST	_	External clock source input. RC biasing
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software pro-
	INT	ST	_	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software pro-
	RX	ST	_	USART receive pin
	DT	ST	CMOS	Synchronous data I/O.
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port. Can be software pro-
	TX	_	CMOS	USART transmit pin
	CK	ST	CMOS	Synchronous clock I/O.
RB3/CCP1	RB3	TTL		Bi-directional I/O port. Can be software pro-
	CCP1	ST	CMOS	Capture/Compare/PWM I/O

ESCUELA POLITÉCNICA DEL EJÉRCITO

HOJA 3 DE 3

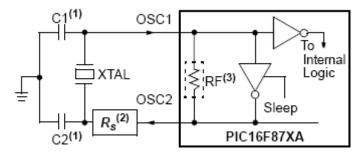
14.2 Oscillator Configurations

14.2.1 OSCILLATOR TYPES

The PIC16F87XA can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

LP Low-Power Crystal

XT Crystal/Resonator


HS High-Speed Crystal/Resonator

RC Resistor/Capacitor

14.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKI and OSC2/CLKO pins to establish oscillation (Figure 14-1). The PIC16F87XA oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKI pin (Figure 14-2).

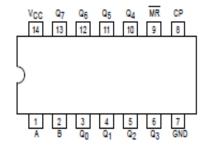
FIGURE 14-1: CRYSTAL/CERAMIC RESONATOROPERATION (HS, XT OR LP OSC CONFIGURATION)

	Ranges Tested:								
Mode	Freq.	OSC1	OSC2						
XT	455 kHz	68-100 pF	68-100 pF						
	2.0 MHz	15-68 pF	15-68 pF						
	4.0 MHz	15-68 pF	15-68 pF						
HS	8.0 MHz	10-68 pF	10-68 pF						
	16.0 MHz	10-22 pF	10-22 pF						

These values are for design guidance only.

See notes following Table 14-2.

	Resonators Used:	
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%
All resonato	ors used did not have built-in o	capacitors.


MOTOROLA

SERIAL-IN PARALLEL-OUT SHIFT REGISTER

The SN54/74LS164 is a high speed 8-Bit Serial-In Parallel-Out Shift Register. Serial data is entered through a 2-Input AND gate synchronous with the LOW to HIGH transition of the clock. The device features an asynchronous Master Reset which clears the register setting all outputs LOW independent of the clock. It utilizes the Schottky diode clamped process to achieve high speeds and is fully compatible with all Motorola TTL products.

- · Typical Shift Frequency of 35 MHz
- Asynchronous Master Reset
- · Gated Serial Data Input
- · Fully Synchronous Data Transfers
- · Input Clamp Diodes Limit High Speed Termination Effects
- ESD > 3500 Volts

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual in-Line Package.

PIN NAMES

LOADING (Note a)

		HIGH	LOW
A, B	Data Inputs	0.5 U.L.	0.25 U.L.
CP	Clock (Active HIGH Going Edge) Input	0.5 U.L.	0.25 U.L.
MR	Master Reset (Active LOW) Input	0.5 U.L.	0.25 U.L.
Q_0-Q_7	Outputs (Note b)	10 U.L.	5 (2.5) U.L.

NOTES:

a) 1 TTL Unit Load (U.L.) = 40 μA HIGH/1.5 mA LOW.

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

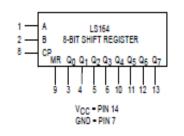
SN54/74LS164

SERIAL-IN PARALLEL-OUT SHIFT REGISTER

LOW POWER SCHOTTKY

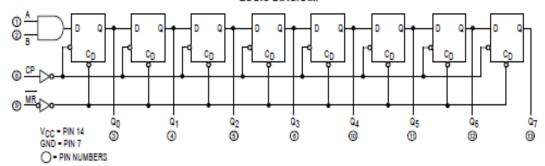
J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06



D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION


SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

SN54/74LS164

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS164 is an edge-triggered 8-bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active HIGH Enable for data entry through the other input. An unused input must be tied HIGH, or both inputs connected together.

Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into Q₀ the logical AND of the two data inputs (A•B) that existed before the rising clock edge. A LOW level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all Q outputs LOW.

MODE SELECT - TRUTH TABLE

OPERATING		INPUTS			OUTPUTS		
MODE	MR	Α	В	Q ₀	Q ₁ -Q ₇		
Reset (Clear)	_	X	X	L	L-L		
Shift				E	90 - 96 90 - 96 90 - 96 90 - 96		

L (I) = LOW Voltage Levels

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	٧
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
IOH	Output Current — High	54,74			-0.4	mA
loL	Output Current — Low	54 74			4.0 8.0	mA

H (h) = HIGH Voltage Levels

X = Don't Care

q_n = Lower case letters indicate the state of the referenced input or output one set-up time prior to the LOW to HIGH clock transition.

SN54/74LS164

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits						
Symbol	Parameter		Min	Тур	Max	Unit	Test C	conditions	
VIH	Input HIGH Voltage		2.0			٧	Guaranteed Input All Inputs	t HIGH Voltage for	
VIL	Input LOW Voltage	54			0.7	v	Guaranteed Input	t LOW Voltage for	
ļ	input covv votage	74			0.8	·	All Inputs		
v_{lK}	Input Clamp Diode Voltage	1		-0.65	-1.5	٧	V _{CC} - MIN, I _{IN} -	-18 mA	
Vон	Output HIGH Voltage	54	2.5	3.5		v	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}		
*OH	Output High Voltage	74	2.7	3.5		ľ	or V _{IL} per Truth T	able	
VoL	Output LOW Voltage	54, 74		0.25	0.4	٧	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IH} or V _{IL}	
*OL	Output COVV Voltage	74		0.35	0.5	٧	I _{OL} = 8.0 mA	per Truth Table	
le.	Innué MCM Cumoné				20	μА	V _{CC} - MAX, V _{IN}	= 2.7 V	
lн	Input HIGH Current				0.1	mA	V _{CC} - MAX, V _{IN}	- 7.0 V	
IL	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
los	Short Circuit Current (Note	1)	-20		-100	mA	V _{CC} = MAX		
loc	Power Supply Current				27	mA	V _{CC} - MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (TA = 25°C)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
fMAX	Maximum Clock Frequency	25	36		MHz	
tpHL	Propagation Delay MR to Output Q		24	36	ns	V _{CC} = 5.0 V C _L = 15 pF
tplH tpHL	Propagation Delay Clock to Output Q		17 21	27 32	ns	. ,

AC SETUP REQUIREMENTS (TA - 25°C)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tw	CP, MR Pulse Width	20			ns	
ts	Data Setup Time	15			ns	V _{CC} = 5.0 V
th	Data Hold Time	5.0			ns	VCC - 3.0 V
trec	MR to Clock Recovery Time	20			ns	

SN54/74LS164

AC WAVEFORMS

"The shaded areas indicate when the input is permitted to change for predictable output performance.

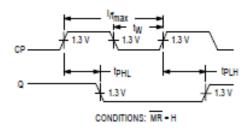


Figure 1. Clock to Output Delays and Clock Pulse Width

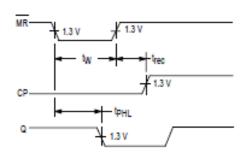


Figure 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

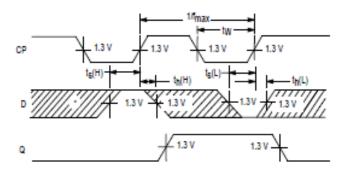


Figure 3. Data Setup and Hold Times

December 9, 2008

LM2907/LM2917 Frequency to Voltage Converter

General Description

The LM2907, LM2917 series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay, lamp, or other load when the input frequency reaches or exceeds a selected rate. The tachometer uses a charge pump technique and offers frequency doubling for low ripple, full input protection in two versions (LM2907-8, LM2917-8) and its output swings to ground for a zero frequency input.

The op amp/comparator is fully compatible with the tachometer and has a floating transistor as its output. This feature allows either a ground or supply referred load of up to 50 mA. The collector may be taken above $V_{\rm CC}$ up to a maximum $V_{\rm CE}$ of 29V.

The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input. This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.

The more versatile configurations provide differential tachometer input and uncommitted op amp inputs. With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer output.

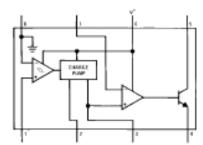
Both of these configurations are available with an active shunt regulator connected across the power leads. The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor.

Advantages

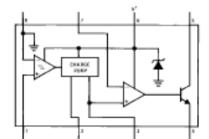
- Output swings to ground for zero frequency input
- Easy to use; V_{OUT} = f_{IN} × V_{CC} × R1 × C1

- Only one RC network provides frequency doubling
- Zener regulator on chip allows accurate and stable frequency to voltage or current conversion (LM2917)

Features

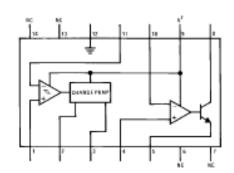

- Ground referenced tachometer input interfaces directly with variable rejuctance magnetic pickups
- Op amp/comparator has floating transistor output
- 50 mA sink or source to operate relays, solenoids, meters, or LEDs
- Frequency doubling for low ripple
- Tachometer has built-in hysteresis with either differential input or ground referenced input
- Built-in zener on LM2917
- ±0.3% linearity typical
- Ground referenced tachometer is fully protected from damage due to swings above V_{CC} and below ground

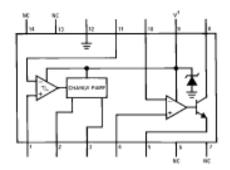
Applications


- Over/under speed sensing
- Frequency to voltage conversion (tachometer)
- Speedometers
- Breaker point dwell meters
- Hand-held tachometer
- Speed governors
- Cruise control
- Automotive door lock control
- Clutch control
- Hom control
- Touch or sound switches

Connection Diagrams

Dual-In-Line and Small Outline Packages, Top Views


Order Number LM2907M-8 or LM2907N-8 See NS Package Number M08A or N08E


Order Number LM2917M-8 or LM2917N-8 See NS Package Number M08A or N08E

ESCUELA POLITÉCNICA DEL EJÉRCITO

HOJA 2 DE 5

Order Number LM2907M or LM2907N See NS Package Number M14A or N14A

Order Number LM2917M or LM2917N See NS Package Number M14A or N14A

Ordering Information

Order Number	Package Type	Package Number	Package Marking	Supplied As
LM2907M-8	8-PIn SOIC Narrow	MOBA	LM2907M-8	Rall of 95
LM2907MX-8	8-PIn SOIC Narrow	MOBA	LM2907M-8	Reel of 2500
LM2907M	14-Pin SOIC Narrow	M14A	LM2907M	Rall of 55
LM2907MX	14-Pin SOIC Narrow	M14A	LM2907M	Reel of 2500
LM2907N-8	8-Pin Molded DIP	NOBE	LM2907N-8	Rall of 40
LM2907N	14-Pin Molded DIP	N14A	LM2907N	Rall of 25
LM2917M-8	8-PIn SOIC Narrow	MOBA	LM2917M-8	Rall of 95
LM2917MX-8	8-PIn SOIC Narrow	MOBA	LM2917M-8	Reel of 2500
LM2917M	14-Pin SOIC Narrow	M14A	LM2917M	Rall of 55
LM2917MX	14-Pin SOIC Narrow	M14A	LM2917M	Reel of 2500
LM2917N-8	8-Pin Molded DIP	N08E	LM2917N-8	Rall of 40
LM2917N	14-Pin Molded DIP	N14A	LM2917N	Rall of 25

ESCUELA POLITÉCNICA DEL EJÉRCITO

HOJA 3 DE 5

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 Supply Voltage
 28V

 Supply Current (Zener Options)
 25 mA

 Collector Voltage
 28V

 Differential Input Voltage
 28V

 Tachometer
 28V

 Op Amp/Comparator
 28V

 Input Voltage Range

Tachometer
LM2907-8, LM2917-8 ±28V
LM2907, LM2917 0.0V to +28V

0.0V to +28V Op Amp/Comparator Power Dissipation LM2907-8, LM2917-8 1200 mW LM2907-14, LM2917-14 1580 mW See (Note 1) Operating Temperature Range -40°C to +85°C Storage Temperature Range -65°C to +150°C Soldering Information Dual-In-Line Package Soldering (10 seconds) 260°C Small Outline Package Vapor Phase (60 seconds) 215°C Infrared (15 seconds) 220°C

Electrical Characteristics

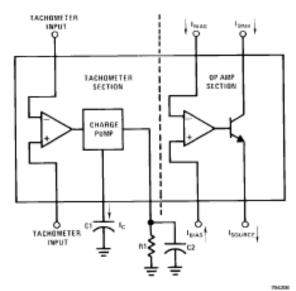
 $V_{\rm DC} = 12 V_{\rm DC}$, $T_{\rm A} = 25 ^{\circ} \rm C$, see test circuit

Symbol	Parameter	Conditions	Min	Тур	Max	Units
TACHOM	TER					
	Input Thresholds	V _{IN} = 250 mVp-p @ 1 kHz (Note 2)	±10	±25	±40	mV
	Hysteresis	V _{IN} = 250 mVp-p @ 1 kHz (Note 2)		30		mV
	Offset Voltage	V _{IN} = 250 mVp-p @ 1 kHz (Note 2)				
	LM2907/LM2917			3.5	10	mV
	LM2907-8/LM2917-8			5	15	mV
	Input Blas Current	$V_{IN} = \pm 50 \text{ mV}_{DC}$		0.1	1	μΑ
V _{OH}	Pln 2	V _{IN} = +125 mV _{DC} (Note 3)		8.3		V
V _{OL}	Pln 2	V _{IN} = -125 mV _{DC} (Note 3)		2.3		V
2, 13	Output Current	V2 = V3 = 6.0V (Note 4)	140	180	240	μА
3	Leakage Current	12 = 0, V3 = 0			0.1	μА
K	Gain Constant	(Note 3)	0.9	1.0	1.1	
	Linearity	f _{IN} = 1 kHz, 5 kHz, 10 kHz (Note 5)	-1.0	0.3	+1.0	%
OP/AMP (OMPARATOR					
Vos		V _{IN} = 6.0V		3	10	mV
BIAS		V _{IN} = 6.0V		50	500	ПА
	Input Common-Mode Voltage		0		V _{cc} -1.5V	V
	Voltage Gain			200		V/mV
	Output Sink Current	V _c = 1.0	40	50		MΑ
	Output Source Current	V _E = V _{CC} -2.0		10		mA
	Saturation Voltage	I _{SINK} = 5 mA		0.1	0.5	V
		I _{SINK} = 20 mA			1.0	V
		I _{SINK} = 50 mA		1.0	1.5	V
ZENER RE	GULATOR	-				•
	Regulator Voltage	R _{DROP} = 470Ω		7.56		V
	Series Resistance			10.5	15	Ω
	Temperature Stability			+1		mV/°C
	Total Supply Current			3.8	6	MΑ

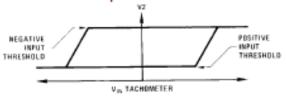
Note 1: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 101°C/W junction to ambient for LM2907-8 and LM2917-8, and 79°C/W junction to ambient for LM2907-14 and LM2917-14.

Note 2: Hysteresis is the sum $+V_{TH} - (-V_{TH})$, offset voltage is their difference. See test circuit.

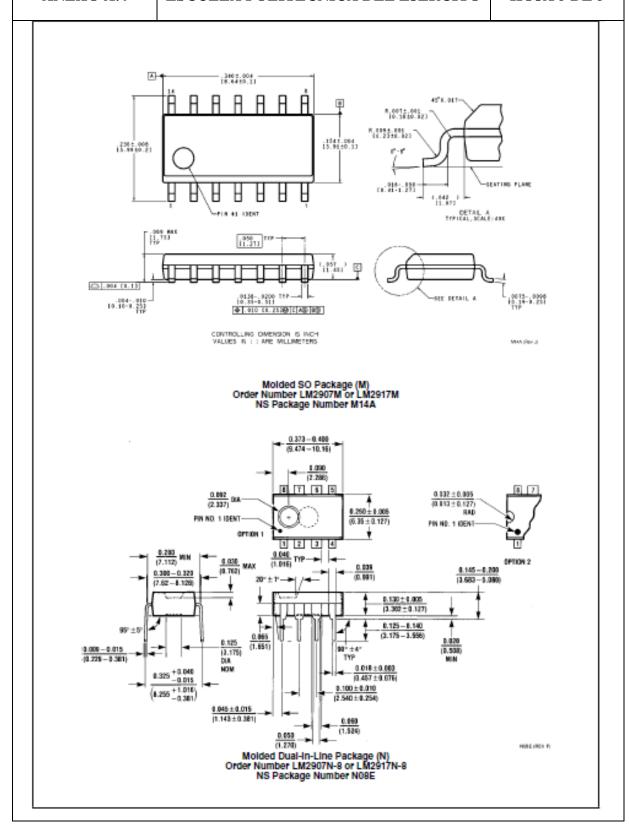
Note 3: V_{OH}^{\prime} is equal to $\% \times V_{CC} = 1$ V_{SD} , V_{CL} is equal to $\% \times V_{CC} = 1$ V_{SE} therefore $V_{OH} = V_{OL} = V_{CC}/2$. The difference, $V_{OH} = V_{CL}$, and the mirror gain, I_2/I_3 , are the two factors that cause the tachometer gain constant to vary from 1.0.


Note 4: Be sure when choosing the time constant R1 x C1 that R1 is such that the maximum anticipated output voltage at pin 3 can be reached with I₃ x R1. The maximum value for R1 is limited by the output resistance of pin 3 which is greater than 10 MΩ typically.

ESCUELA POLITÉCNICA DEL EJÉRCITO


HOJA 4 DE 5

Note 5: Nonlinearity is defined as the deviation of V_{OUT} (Θ pin 3) for $f_N = 5$ kHz from a straight line defined by the V_{OUT} Θ 1 kHz and V_{OUT} Θ 10 kHz. C1 = 1000 pF, R1 = 88k and C2 = 0.22 mFd.


Test Circuit and Waveform

Tachometer Input Threshold Measurement

mon

ESCUELA POLITÉCNICA DEL EJÉRCITO ANEXO B.1 **HOJA 1 DE 3** VALORES DEL SENSOR DE TEMPERATURA DE REFRIGERANTE Temperatura Resistencia sensor Res. Fija Voltaje señal $(^{\circ}C)$ (Ω) (Ω) Valor decimal **(V)** 4,14 4,11 4,10 4,08 4.07 4,02 3,98 3,95 3,91 3,89 3,85 3,80 3,76 3,70 3,67 3,61 3,59 3,55 3,51 3,46 3,43 3,40 3,36 3,31 3,28 3,20 3,15 3,11 3,06 3,03 2,99 2,96 2,87 2,83 2,80 2,76 2,71

56	230	200	2,67	136
•				
ANEXO B.1	ESCUELA POLITÉ	HOJA 2 DE 3		
57	219	200	2,61	133
58	210	200	2,56	131
59	205	200	2,53	129
60	195	200	2,47	126
61	189	200	2,43	124
62	183	200	2,39	122
63	176	200	2,34	119
64	170	200	2,30	117
65	166	200	2,27	116
66	162	200	2,24	114
67	155	200	2,18	111
68	147	200	2,12	108
69	141	200	2,07	105
70	138	200	2,04	104
71	136	200	2,02	103
72	131	200	1,98	101
73	128	200	1,95	100
74	120	200	1,88	96
75	117	200	1,85	94
76	114	200	1,82	93
77	110	200	1,77	90
78	107	200	1,74	89
79	102	200	1,69	86
80	100	200	1,67	85
81	94	200	1,60	82
82	91	200	1,56	80
83	87	200	1,52	77
84	83	200	1,47	75
85	81	200	1,44	74
86	78	200	1,40	72
87	74	200	1,35	69
88	72	200	1,32	68
89	68	200	1,27	65
90	65	200	1,23	63
91	64	200	1,21	62
92	62	200	1,18	60
93	61	200	1,17	60
94	60	200	1,15	59
95	58	200	1,12	57

96	56	200	1,09	56
97	54	200	1,06	54
98	53	200	1,05	53
ANEXO B.1	ESCUELA POLITÉ	CNICA DEI	L EJÉRCITO	HOJA 2 DE 3
99	52	200	1,03	53
100	50	200	1,00	51
101	49	200	0,98	50
102	48	200	0,97	49
103	47	200	0,95	49
104	46	200	0,93	48
105	45	200	0,92	47
106	44	200	0,90	46
107	43	200	0,88	45
108	42	200	0,87	44
109	41	200	0,85	43
110	40	200	0,83	43
111	40	200	0,83	43
112	39	200	0,82	42
113	39	200	0,82	42
114	38	200	0,80	41
115	38	200	0,80	41
116	37	200	0,78	40
117	37	200	0,78	40
118	36	200	0,76	39
119	36	200	0,76	39
120	35	200	0,74	38

HOJA 1 DE 2

VALORES DEL SENSOR DE TEMPERATURA DE ACEITE

Temperatura (°C)	Resistencia sensor (Ω)	Res. Fija (Ω)	Voltaje señal (V)	Valor decimal
18	320	200	3,08	157
19	305	200	3,02	154
20	300	200	3,00	153
21	294	200	2,98	152
22	271	200	2,88	147
23	260	200	2,83	144
24	249	200	2,77	141
25	239	200	2,72	139
26	236	200	2,72	138
27	230	200	2,67	136
28	220	200	2,62	134
29	212	200	2,57	131
30	203	200	2,52	128
31	196	200	2,47	126
32	187	200	·	123
33	179		2,42	120
34		200	2,36	
	172	200	2,31	118
35	166 158	200	2,27	116 113
36			2,21	
37	153	200	2,17	111
38	147	200	2,12	108
39	142	200	2,08	106
40	136	200	2,02	103
41	131	200	1,98	101
42	126	200	1,93	99
43	122	200	1,89	97
44	117	200	1,85	94
45	113	200	1,81	92
46	108	200	1,75	89
47	105	200	1,72	88
48	101	200	1,68	86
49	97	200	1,63	83
50	94	200	1,60	82
51	91	200	1,56	80
52	87	200	1,52	77
53	84	200	1,48	75
54	82	200	1,45	74

ANEXO B.2	ESCUELA POLITI	HOJA 2 DE 2		
55	79	200	1,42	72
56	76	200	1,38	70
57	73	200	1,34	68
58	71	200	1,31	67
59	68	200	1,27	65
60	66	200	1,24	63
61	64	200	1,21	62
62	62	200	1,18	60
63	60	200	1,15	59
64	58	200	1,12	57
65	56	200	1,09	56
66	54	200	1,06	54
67	53	200	1,05	53
68	51	200	1,02	52
69	49	200	0,98	50
70	48	200	0,97	49
71	46	200	0,93	48
72	45	200	0,92	47
73	44	200	0,90	46
74	42	200	0,87	44
75	41	200	0,85	43
76	40	200	0,83	43
77	38	200	0,80	41
78	36	200	0,76	39
79	35	200	0,74	38
80	34	200	0,73	37
81	33	200	0,71	36
82	32	200	0,69	35
83	31	200	0,67	34
84	30	200	0,65	33
85	29	200	0,63	32
86	28	200	0,61	31
87	27	200	0,59	30
88	26	200	0,58	29
89	26	200	0,58	29
90	25	200	0,56	28

ANEXO B.3

ESCUELA POLITÉCNICA DEL EJÉRCITO

HOJA 1 DE 1

VALORES DEL SENSOR DE PRESIÓN DEL MÚLTIPLE DE ADMISIÓN

Presión (psi)	Voltaje señal	Valor decimal
0	3,44	175,44
1	3,29	167,79
2	3,13	159,63
3	2,92	148,92
4	2,74	139,74
5	2,53	129,03
6	2,35	119,85
7	2,16	110,16
8	1,97	100,47
9	1,79	91,29
10	1,61	82,11
11	1,43	72,93
12	1,27	64,77
13	1,07	54,57
14	0,91	46,41
15	0,72	36,72
16	0,54	27,54
17	0,36	18,36
18	0,17	8,67
19	0,05	2,55

ANEXO B.4 ESCUELA POLITÉCNICA DEL EJÉRCITO HOJA 1 DE 1

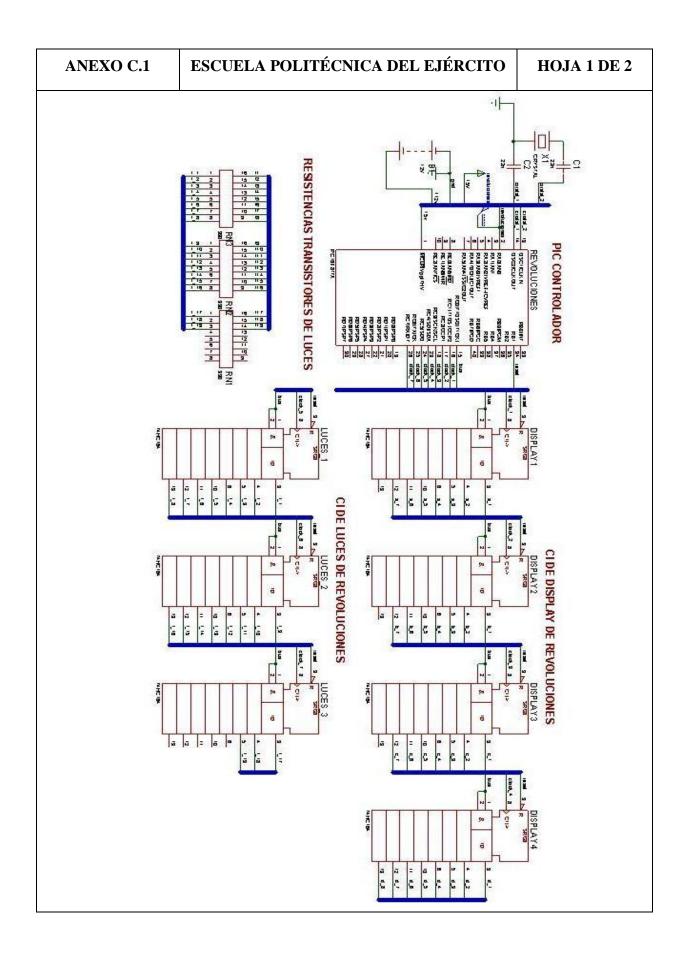
VALORES DEL SENSOR DE PRESIÓN DE ACEITE

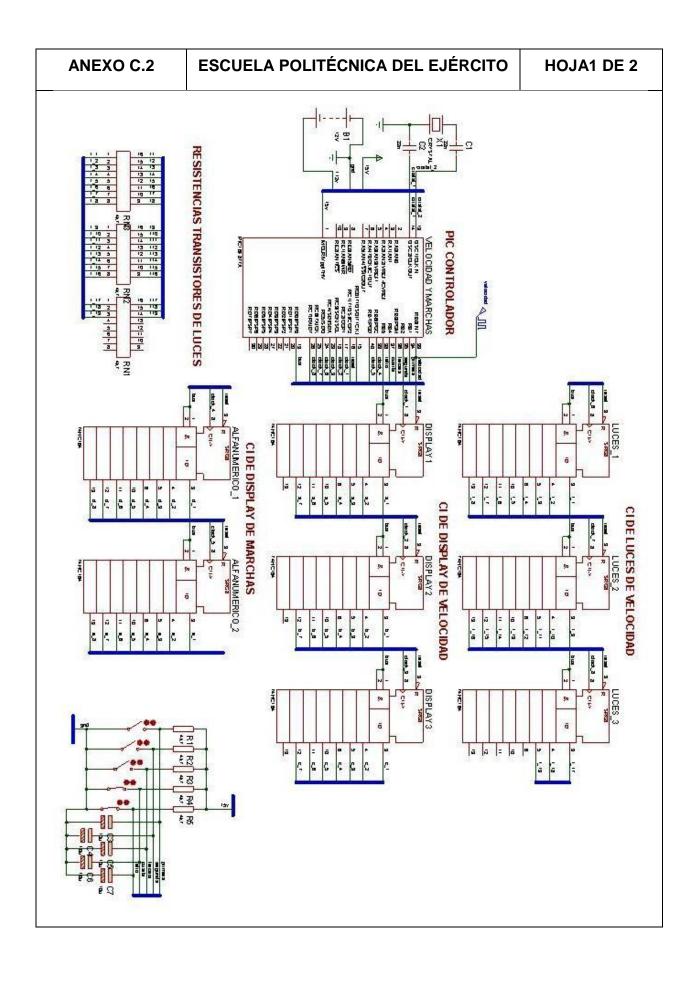
Presión	Resistencia sensor	Res. Fija	Voltaje señal	
(Bar)	(Ω)	(Ω)	(V)	Valor decimal
0,001	315	200	3,06	156
0,5	253	200	2,79	142
1	223	200	2,64	134
1,5	206	200	2,54	129
2	196	200	2,47	126
2,5	183	200	2,39	122
3	173	200	2,32	118
3,5	145	200	2,10	107
4	138	200	2,04	104
4,5	128	200	1,95	100
5	116	200	1,84	94
5,5	105	200	1,72	88
6	94	200	1,60	82

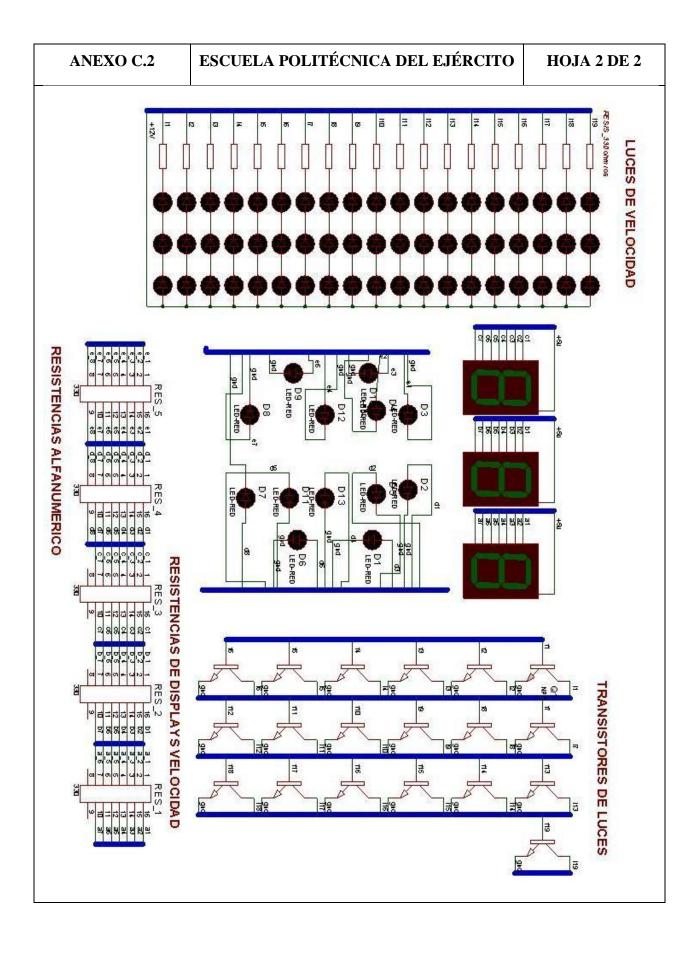
ANEXO B.5 ESCUELA POLITÉCNICA DEL EJÉRCITO HOJA 1 DE 1

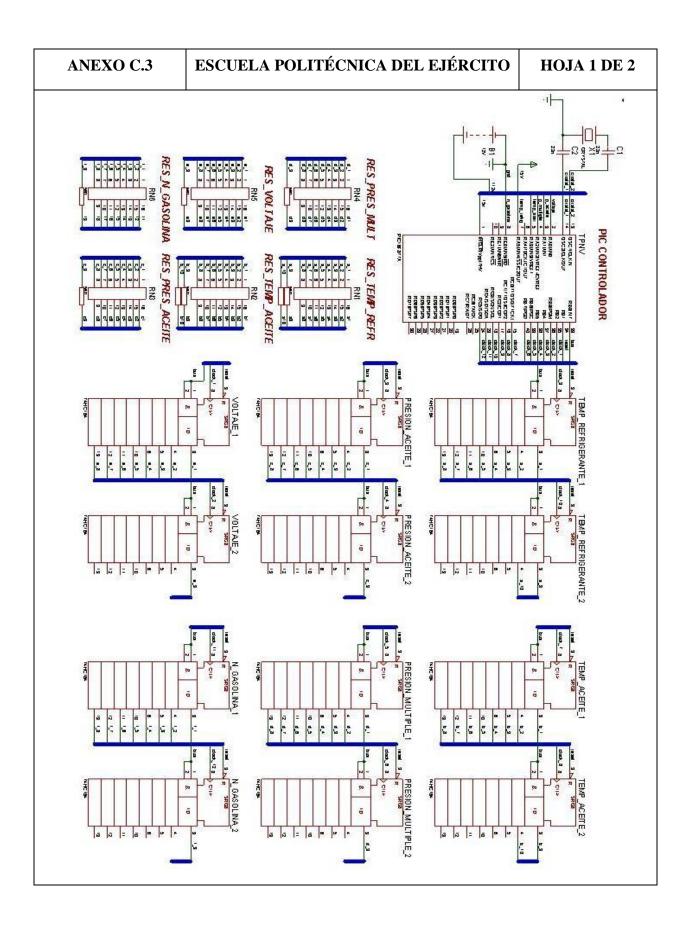
VALORES DEL SENSOR DE NIVEL DE COMBUSTIBLE

	Resistencia sensor	Res. Fija	Voltaje señal	
Nivel (%)	(Ω)	(Ω)	(V)	Valor decimal
0	110	100	2,62	134
12,5	95	100	2,44	124
25	86	100	2,31	118
37,5	75	100	2,14	109
50	63	100	1,93	99
62,5	45	100	1,55	79
75	32	100	1,21	62
87,5	16	100	0,69	35
100	4	100	0,19	10

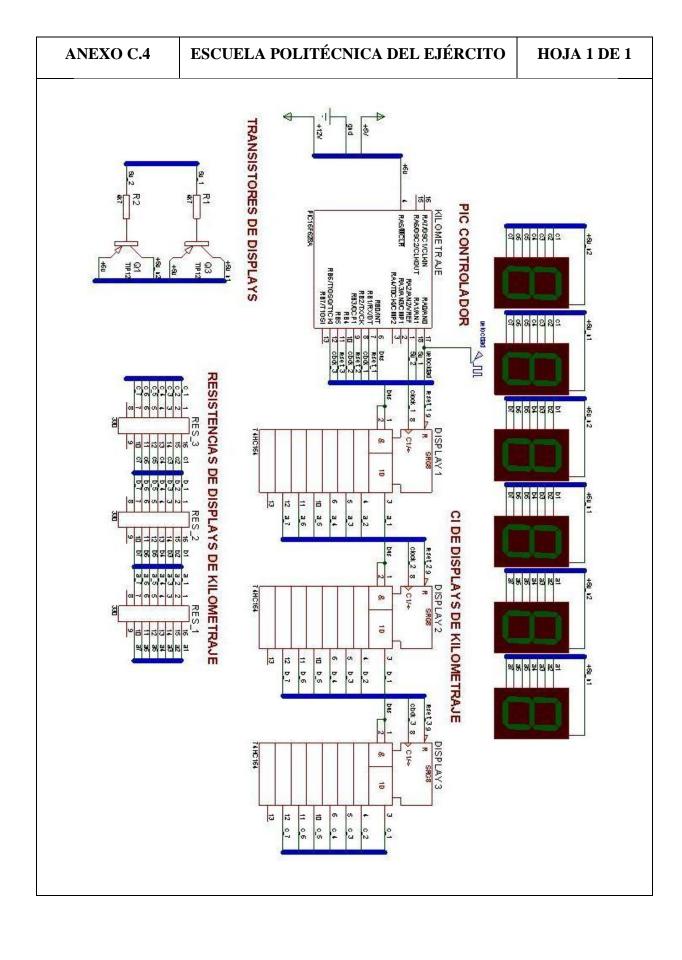

ANEXO B.6

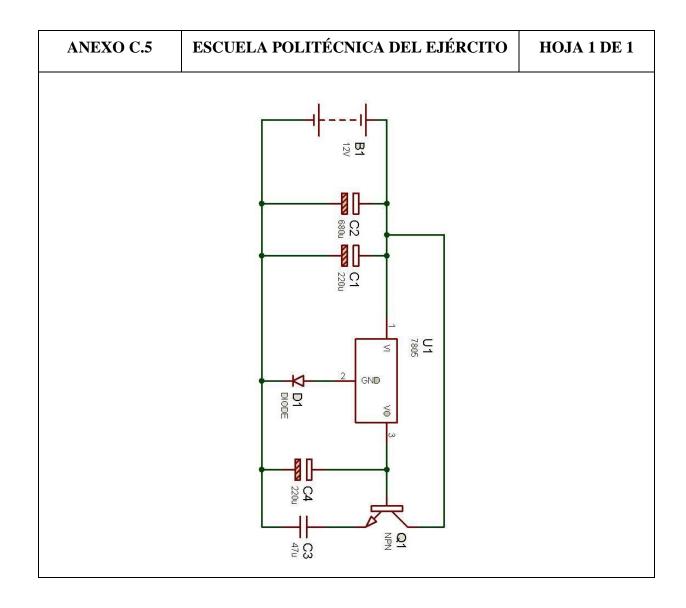

ESCUELA POLITÉCNICA DEL EJÉRCITO

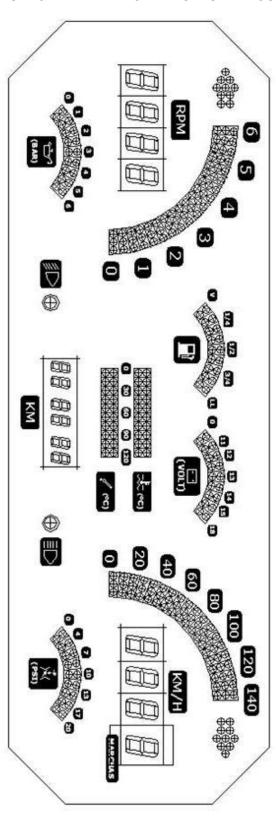

HOJA 1 DE 1

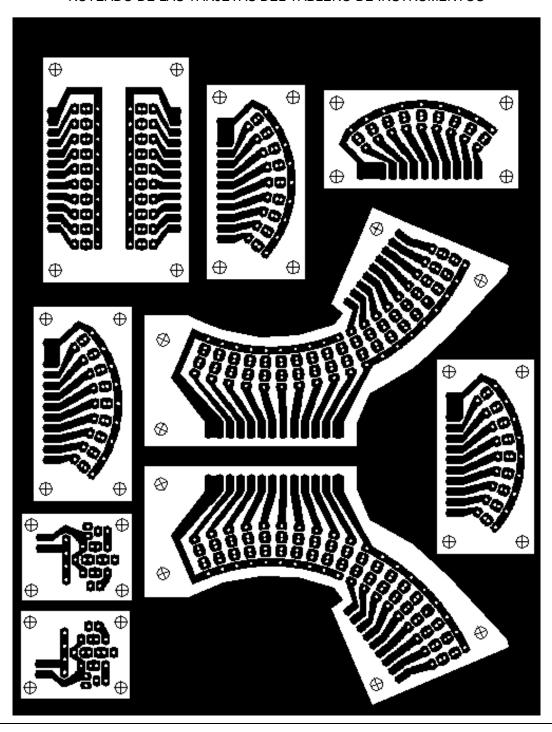

VALORES DE LA MEDICIÓN DEL VOLTAJE DE BATERIA

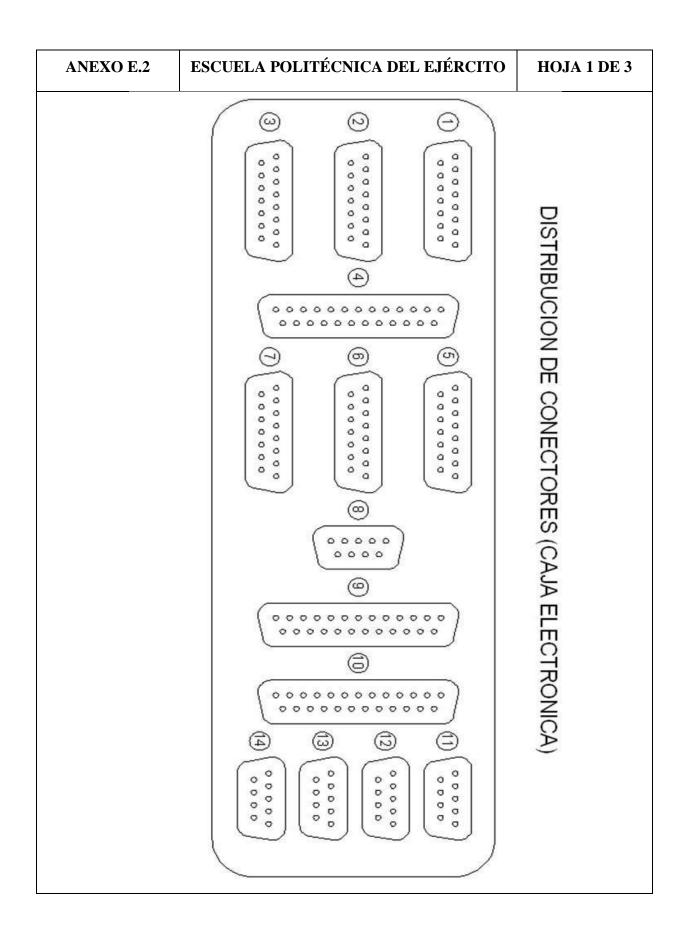
	Resistencia''sensor''	Res. Fija	Voltaje	
Voltaje	(Ω)	(Ω)	señal	Valor Decimal
18	900	300	4,5	230
17	900	300	4,25	217
16	900	300	4	204
15	900	300	3,75	191
14	900	300	3,5	179
13	900	300	3,25	166
12	900	300	3	153
11	900	300	2,75	140
10	900	300	2,5	128
9	900	300	2,25	115
8	900	300	2	102
7	900	300	1,75	89
6	900	300	1,5	77
5	900	300	1,25	64
4	900	300	1	51
3	900	300	0,75	38
2	900	300	0,5	26
1	900	300	0,25	13
0	900	300	0	0

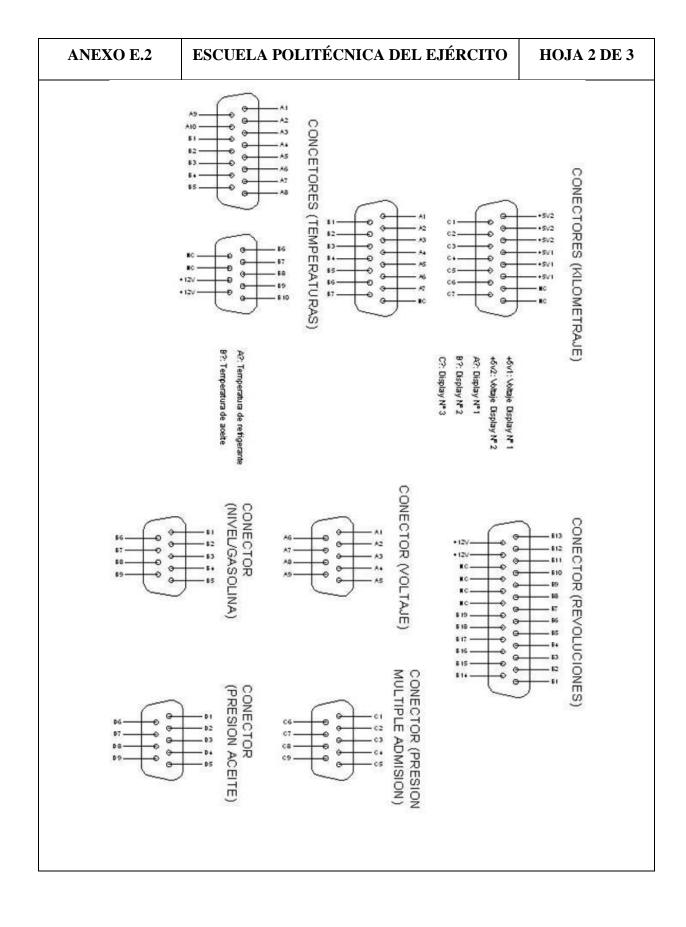











DISEÑO DEL TABLERO DE INSTRUMENTOS

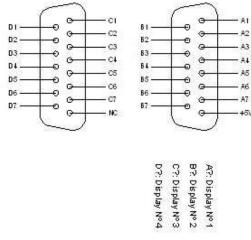
RUTEADO DE LAS TARJETAS DEL TABLERO DE INSTRUMENTOS

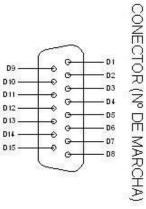
0

9

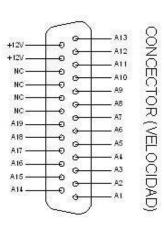
0

06


C5


CI.

C3 -


C2 CI

B7

D?: Display affanumerico

DISEÑO Y CONSTRUCCIÓN DE UN TABLERO DE INSTRUMENTOS ELECTRÓNICO PARA VERIFICACIÓN DEL FUNCIONAMIENTO GENERAL DEL TODO TERRENO SUZUKI LJ-80-V MODELO 1980.

Realizado por: Rolando Xavier Salazar Paredes

Dept. of Mechanique Automotive Eng. Escuela Politécnica del Ejército Sede Latacunga,
Quijano y Ordóñez y Márquez de Maenza S/N Latacunga, Ecuador,
Email: rolosp_raccar@hotmail.com

Resumen – La Escuela Politécnica del Ejército sede Latacunga como una institución de vanguardia implementa proyectos guiados al desarrollo de la comunidad universitaria y sociedad en general, en este caso guiado al campo automotriz del país.

La implementación de un tablero electrónico en sistemas de monitoreo automotriz obsoletos es de gran utilidad gracias a la ayuda de la gestión electrónica, disminuyendo costo, mejorando la interface de comunicación hombre – máquina y proporcionando lecturas que en la mayoría de casos no se las toma en cuenta, pero que son muy importantes.

I.- INTRODUCCIÓN

Es imprescindible para los estudiantes de los niveles inferiores conocer de los proyectos y aplicaciones que se pueden realizar en base a los conocimientos adquiridos en cátedra, que van de la mano con el desarrollo en electrónica automotriz.

La implementación que se realiza en este proyecto tiene como principal finalidad resolver los problemas de información del vehículo, ya que los automóviles que son obsoletos no poseen tableros de instrumentación que indiquen los parámetros necesarios para determinar el funcionamiento del vehículo; ya que con un tablero moderno se contribuye con el mejor monitoreo del funcionamiento del automotor y asi promoviendo el mantenimiento correcto, a su vez evitando daños innecesarios.

Se presenta este tema de proyecto de importancia para el sector automotriz del país. Como un aporte al mejoramiento del parque automotor nacional y para quienes lo apliquen un medio de trabajo.

II.- DISEÑO

El presente proyecto se realizó totalmente de forma artesanal implementando conocimientos asimilados durante el estudio en la universidad y los adquiridos en el desarrollo del presente proyecto.

Para la implementación del tablero digital es necesario elegir y describir sensores y demás elementos no existentes, necesarios para desarrollar el proyecto.

Los sensores utilizados poseen diferentes características propias que deben ser descritas:

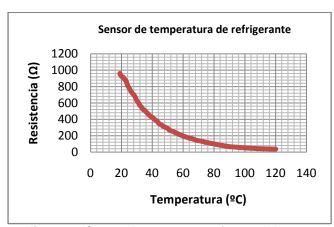


Figura 1 Curva de comportamiento del sensor de temperatura de refrigerante

La utilización de sensores debe ser proseguida por el diseño electrónico y de software para la gestión de datos recibidos de los sensores, procesamiento de información y posterior despliegue visual en el tablero de instrumentos.

El diseño electrónico se realizó en placas mediante la utilización del software PROTEUS, el cual presta la facilidad de posterior simulación del circuito diseñado.

	TPNV			
cristal_2 13	0SC1/CLKIN	RB0/INT	33	bus
cristal_1 14	OSC2/CLKOUT	RB1	34	reset
	USC2/CLNUU1	RB2	35	clock_1
voltaje 2	RA0/AN0	RB3/PGM	36	clock_2
p_aceite 3	RA1/AN1	RB3/FGIVI	37	clock_3
p_multiple 4	RA2/AN2/VREF-/C\		38	clock_4
temp_acei 5	RA3/AN3/VREE+	RB6/PGC	39	clock_5
6	RA4/T0CKI/C10UT	RB7/PGD	40	clock_6
temp_refrig 7	RA5/AN4/SS/C20U			
	RC0/T10S0/T1CKI		15	clock_7
n_gasolina 8	RE0/AN5/RD	RC1/T10SI/CCP2	16	clock_8
9	RE1/AN6/WR	RC2/CCP1	17	clock_9
10	RE2/AN7/CS	RC3/SCK/SCL	18	clock_10
	11.27/11/100	RC4/SDI/SDA	23	clock_11
+5v 1	MCLR/Vpp/THV	RC5/SD0	24	clock_12
		T(C)/ODO		
	PIC16F877A			

Figura 2 Distribución de pines del Pic TPVN

El diseño de software se realizó mediante la aplicación de diagramas de flujo y la utilización del software de programación MICROCODE, el cual permite crear archivos que se pueden grabar en un Microcontrolador PIC, a su vez también puede ser simulado el programa creado en este software en el software de simulación PROTEUS.

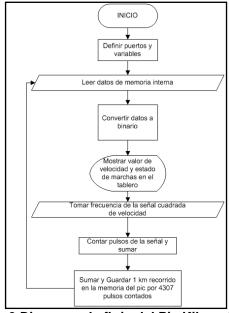


Figura 3 Diagrama de flujo del Pic Kilometraje

III.- MONTAJE ELÉCTRICO Y MECÁNICO

Las diferentes piezas y elementos que fueron construidos o implementados se montaron de acuerdo a las necesidades y espacio del que se disponía.

Los sensores de temperaturas, presiones y niveles fueron instalados en los lugares apropiados para su correcto funcionamiento. Los sensores de marchas se implementaron en el mando de la caja de cambios, las revoluciones y velocidad de igual manera.

Figura 4 Sensor de temperatura de aceite instalado en el cárter

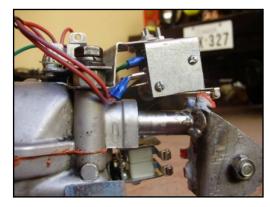


Figura 5 Vista del sensor de marchas instalado

El montaje de los elementos internos del tablero de instrumentos se realizó considerando a las condiciones de funcionamiento a las que van a ser sometidos, a su vez guardando el diseño original del todo terreno.

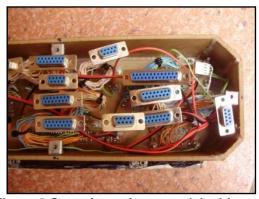


Figura 6 Conexiones internas del tablero

La gestión electrónica del tablero mediante PIC's y circuitos integrados 74164, los cuales controlan, monitorean y gestionan la información. Se distribuye la sección de control del tablero en la llamada caja electrónica que contiene todos los circuitos electrónicos de gestión.

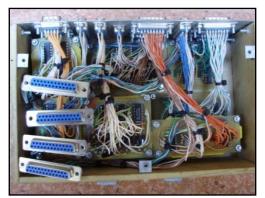


Figura 7 Tarjetas de control

El montaje del tablero se realiza de tal manera que proporcione correcta visibilidad y evite deslumbramiento al conductor.

Figura 8 Tablero de instrumentos instalado

IV. RESULTADOS

Los datos obtenidos en las distintas a las que se le sometió al proyecto dieron resultados relativamente favorables, ya que se cumplieron con las expectativas de funcionamiento del proyecto en un 95%.

Para resumir, los resultados mostrados en las diferentes secciones del tablero, luego de probados mediante diferentes medios, se muestran con qué porcentaje se asemejan el dato real del mostrado:

Temp. Refrigerante: 100% Temp. Aceite: 100%

Presión Mult. Admisión: 100%

Presión de Aceite: 100%

Voltaje: 100% Revoluciones: 100% Nivel de Combustible: 90%

Velocidad: 50% Marchas: 100% Kilometraje: 90%

V. CONCLUSIONES

- Se diseñó y construyó un Tablero de Instrumentos de Control Electrónico para el monitoreo de las variables y señales del estado del funcionamiento general del todo terreno Suzuki LJ-80-V modelo 1980.
- Se realizó un estudio de señales donde se detalla los diferentes valores y variables del funcionamiento del automóvil en el Tablero de Instrumentos.
- Se aplicó los recursos tecnológicos de nuestro medio para la realización del proyecto con una interfaz llamativa y de costo reducido.
- Se sustituyó el tablero original del todo terreno por el electrónico añadiendo características y propiedades nuevas y mejoradas.
- Se monitoreó de manera constante la información a tiempo real del estado del todo terreno, realizando la adquisición de datos cada 10ms.

VI. RECOMENDACIONES

- Utilizar CAM para el mejoramiento del acabado final del tablero, los que obliga a un previo diseño en CAD.
- Emplear diodos led brillantes, debido a que los diodos led comunes no se diferencian en el día y consumen menos energía que utilizar bombillos incandescentes.
- Adaptar en automóviles de aplicaciones similares esta tecnología en automóviles para reemplazar tableros de instrumentación deteriorados o de tecnología obsoleta.
- Tener en cuenta el problema de ruido eléctrico, que no se presenta en la simulación y es posible que se pase por alto en el diseño, el mismo que produce inconvenientes con el desempeño de los microcontroladores.

VII. REFERENCIAS

- REYES C. (2004), "Aprenda rápidamente a programar Microcontroladores PIC", Quito: Carlos A. Reyes.
- CASTRO M. (1989), "Electricidad del Automóvil – I", Barcelona: Ediciones CEAC, S.A.
- PARERA A. (1990), "Inyección Electrónica motores a gasolina", Barcelona: Marcombo. S.A.
- www.ing.unlpam.edu.ar/~material/tecmeca nica/material_didactico.htm
- http://www.emagister.com.mx/cursos_contr ol_electrico_motores-tpsmx-314789.htm
- http://www.automatas.org/hardware/teoria_ pid.htm
- http://www.emagister.com/memoriasteoria-definiciones-cursos-1028977.htm
- http://www.cnc.info.pl/topics27/lm628-629precision-motion-controler-vt1112.htm
- http://www.automatas.org/hardware/teoria_ pid.htm
- http://www.x-rbotics.com/motorizacion.htm
- SALAZAR Rolando "Diseño y construcción de un tablero de instrumentos electrónico para verificación del funcionamiento general del todo terreno suzuki lj-80-v modelo 1980"