

# Estudio e identificación de los métodos de medición de ruido y vibración en la cadena cinemática de un vehículo de turismo segmento "C"

Condo Camalle, Andy Joel

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Trabajo de Unidad de Integración Curricular, previo a la obtención del Título de Ingeniero Automotriz

Ing. Iza Tobar, Henry Heriberto Mgs.

25 de febrero del 2022

Latacunga



# DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERIA AUTOMOTRIZ

# **CERTIFICACIÓN**

Certifico que el trabajo de Unidad de Integración Curricular, "ESTUDIO E IDENTIFICACIÓN DE LOS MÉTODOS DE RUIDO Y VIBRACIÓN EN LA CADENA CINEMÁTICA DE UN VEHÍCULO DE TURISMO SEGMENTO C" fue realizado por el señor Condo Camalle, Andy Joel el mismo que ha sido revisado en su totalidad, analizado por la herramienta de verificación de similitud de contenido; por lo tanto, cumple con los requisitos teóricos, científicos, técnicos, metodológicos y legales establecidos por la Universidad de las Fuerzas Armadas ESPE, razón por la cual me permito acreditar y autorizar para que lo sustente públicamente.

Latacunga, 25 de febrero del 2022



Ing. Iza Tobar, Henry Heriberto Mgs.

C.C.: 0502005242



# DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA AUTOMOTRIZ

# REPORTE DE VERIFICACIÓN DE CONTENIDO



Trabajo de UIC-Condo Camalle Andy Joel.docx

Scanned on: 16:11 February 3, 2022 UTC



Overall Similarity Score



Results Found



| 439 |
|-----|
| 147 |
| 306 |
| 0   |
|     |





# DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA AUTOMOTRIZ

# **AUTORÍA DE RESPONSABILIDAD**

Yo, Condo Camalle, Andy Joel con cedula de ciudadanía N°1724758238, declaro que el contenido, ideas y criterios del trabajo de Unidad de Integración Curricular: "ESTUDIO E IDENTIFICACIÓN DE LOS MÉTODOS DE RUIDO Y VIBRACIÓN EN LA CADENA CINEMÁTICA DE UN VEHÍCULO TURISMO SEGMENTO C" es de mi autoría y responsabilidad, cumpliendo con los requisitos teóricos, científicos, técnicos, metodológicos y legales establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Latacunga, 25 de febrero del 2022

Condo Camalle, Andy Joel

C.C.: 1724758238



# DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA AUTOMOTRIZ

# **AUTORIZACIÓN DE PUBLICACIÓN**

Yo, Condo Camalle, Andy Joel con cedula de ciudadanía N° 1724758238, autoriza a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de Unidad de Integración Curricular: "ESTUDIO E IDENTIFICACIÓN DE LOS MÉTODOS DE RUIDO Y VIBRACIÓN EN LA CADENA CINEMÁTICA DE UN VEHÍCULO TURISMO SEGMENTO C" en el Repositorio Institucional, cuyo contenido, ideas y criterios son de mi responsabilidad.

Latacunga, 25 de febrero del 2022

Condo Camalle, Andy Joel

C.C.: 1724758238

6

**Dedicatoria** 

A Dios, por permitirme culminar con éxito mi tan anhelada carrera, darme buena

salud, fortaleza y sabiduría en todo momento, a mis padres Erika Camalle y Edgar Condo

y a mis hermanos Odalis y Elian por ser los pilares fundamentales en mi formación como

profesional, por su amor, consejos y constante motivación dándome la fuerza suficiente

para poder salir adelante. Siempre estuvieron a mi lado brindándome ese apoyo

incondicional en mis estudios, motivándome día a día a superarme para poder alcanzar

este triunfo que hoy por hoy es lo que me apasiona mi profesión, muchos de mis logros

se los debo a ellos entre los que incluye este título.

A toda mi familia que constantemente han estado brindándome su apoyo y cariño

que ha sido sumamente importante para la culminación con éxito de la carrera.

**CONDO CAMALLE, ANDY JOEL** 

# Agradecimiento

Le doy gracias a Dios por darme sus bendiciones, haberme guiado y acompañado a lo largo de la carrera, por darme la voluntad y fuerza de no haber dejado que me rinda en ningún momento y circunstancia para que fuera posible alcanzar este logro.

Agradezco a mis padres por el apoyo incondicional que siempre me brindan, por todo el sacrificio que hicieron durante estos años que ha permitido que pueda culminar mi carrera.

Agradezco a cada una de las personas que han logrado inculcarme un conocimiento tanto a nivel académico como humano.

Finalmente agradezco la ayuda y apoyo de quien ha sido mi tutor de proyecto el Ing.

Henry Heriberto Iza Tobar Mgs, Dios lo bendiga.

**CONDO CAMALLE, ANDY JOEL** 

# **Tabla de Contenidos**

| Carátula1                             |
|---------------------------------------|
| Certificación2                        |
| Reporte de Verificación de Contenido3 |
| Autoría de Responsabilidad4           |
| Autorización de Publicación5          |
| Dedicatoria8                          |
| Agradecimiento7                       |
| Tabla de contenidos8                  |
| Índice de Tablas187                   |
| Índice de Figuras18                   |
| Resumen25                             |
| Abstact26                             |
| Introducción27                        |
| Antecedentes27                        |
| Planteamiento del Problema28          |
| Justificación e Importancia29         |
| Objetivos30                           |
| Objetivo General30                    |
| Objetivos Específicos30               |
| Variables de Investigación31          |

| Variables dependientes31                   |
|--------------------------------------------|
| Variables independientes31                 |
| Hipótesis31                                |
| Fundamentación Teórica32                   |
| Vibraciones32                              |
| Definición de vibraciones32                |
| Tipos de vibraciones32                     |
| Vibración libre32                          |
| Vibración Forzada32                        |
| Vibración amortiguada32                    |
| Análisis de vibraciones32                  |
| Movimiento armónico33                      |
| Movimiento periódico34                     |
| Movimiento aleatorio34                     |
| Técnicas para el Análisis de Vibraciones35 |
| Análisis Espectral35                       |
| Análisis de la forma de onda35             |
| Análisis de Fase de Vibraciones35          |
| Equipos para medición de vibraciones35     |
| Analizador de vibraciones35                |
| Transductor 36                             |

| Ruido37                                 |
|-----------------------------------------|
| Definición de ruido37                   |
| Tipos de ruido37                        |
| Ruido Continuo37                        |
| Ruido Intermitente38                    |
| Ruido de Impacto38                      |
| Equipos para medición de ruido38        |
| Sonómetros integradores/promediadores38 |
| Analizadores de frecuencia39            |
| Analizador de intensidad sonora39       |
| Vibraciones Habituales en el vehículo40 |
| Sacudida de la carroceria40             |
| Aleteo de la dirección40                |
| Vibración del pedal del acelerador41    |
| Vibración de la palanca de cambios42    |
| Conducción incomoda43                   |
| Golpeteo43                              |
| Vibraciones del tubo de escape44        |
| Vibraciones de componentes auxiliares45 |
| Vibración de despegue o aceleración45   |
| Vibración de arranque45                 |

| Vibración durante ralentí45                  |
|----------------------------------------------|
| Vibración durante el frenado46               |
| Fuentes de ruido en el vehículo46            |
| Ruido de Motor46                             |
| Ruido de Transmisión47                       |
| Ruido de Escape y Admisión de aire47         |
| Ruido Aerodinámico48                         |
| Ruido de Rodadura48                          |
| Ruidos al interior del habitáculo49          |
| Medición de ruido interior49                 |
| Otros ruidos de funcionamiento51             |
| Excitación de carretera51                    |
| Excitación Aerodinámica51                    |
| Las proyecciones (agua, gravillas)51         |
| Ruidos parásitos51                           |
| Ruidos parásitos de origen hidráulico51      |
| Ruidos parásitos de origen mecánico52        |
| Ruidos parásitos de origen termo-mecánicos52 |
| Ruidos parásitos de origen aerodinámico52    |
| Cadena cinemática52                          |
| Definición de Cadena Cinemática52            |

| Partes de la Cadena Cinemática52                                |
|-----------------------------------------------------------------|
| Vehículos turismo de Segmento "C"54                             |
| Características54                                               |
| Metodología de desarrollo del proyecto y Resultados Obtenidos55 |
| Normativa para las pruebas55                                    |
| Normas55                                                        |
| Metodología para las pruebas56                                  |
| Caracterización de las rutas57                                  |
| Descripción de las rutas57                                      |
| Condiciones Ambientales60                                       |
| Velocidad del vehículo60                                        |
| Equipos de medición empleados60                                 |
| Diseño y construcción del Analizador de vibraciones60           |
| Componentes necesarios61                                        |
| Diseño del circuito electrónico61                               |
| Programación63                                                  |
| Diseño de carcaza y soportes de sensores63                      |
| Ensamble64                                                      |
| Diseño y construcción del Sonómetro65                           |
| Componentes necesarios65                                        |
| Disaño dal circuita alactrónica                                 |

| Programación67                             |
|--------------------------------------------|
| Diseño de carcaza y soportes de sensores67 |
| Ensamble68                                 |
| Vehículo empleado69                        |
| Caracterización de los neumáticos70        |
| Preparación del vehículo71                 |
| Revisión mecánica71                        |
| Balanceo de neumáticos72                   |
| Alineación del vehículo73                  |
| Presión de Inflado74                       |
| Instalación de los sensores75              |
| Instalación de los sensores de vibración75 |
| Instalación de los sensores de ruido78     |
| Realización de las pruebas80               |
| Resultados Obtenidos de las pruebas81      |
| Resultados del Analizador de Vibraciones81 |
| Ruta No. 1 Neumático "A" (Good Year)81     |
| Ruta No. 2 Neumático "A" (Good Year)83     |
| Ruta No. 3 Neumático "A" (Good Year)84     |
| Ruta No. 4 Neumático "A" (Good Year)86     |
| Ruta No. 1 Neumático "R" (Nexen) 87        |

| Ruta No. 2 Neumatico "B" (Nexen)89      |
|-----------------------------------------|
| Ruta No. 3 Neumático "B" (Nexen)90      |
| Ruta No. 4 Neumático "B" (Nexen)92      |
| Ruta No. 1 Neumático "C" (Sonar)93      |
| Ruta No. 2 Neumático "C" (Sonar)95      |
| Ruta No. 3 Neumático "C" (Sonar)96      |
| Ruta No. 4 Neumático "C" (Sonar)98      |
| Ruta No. 1 Neumático "D" (Anchee)99     |
| Ruta No. 2 Neumático "D" (Anchee)101    |
| Ruta No. 3 Neumático "D" (Anchee)102    |
| Ruta No. 4 Neumático "D" (Anchee)104    |
| Resultados del Sonómetro105             |
| Ruta No. 1 Neumático "A" (Good Year)105 |
| Ruta No. 2 Neumático "A" (Good Year)107 |
| Ruta No. 3 Neumático "A" (Good Year)108 |
| Ruta No. 4 Neumático "A" (Good Year)110 |
| Ruta No. 1 Neumático "B" (Nexen)111     |
| Ruta No. 2 Neumático "B" (Nexen)113     |
| Ruta No. 3 Neumático "B" (Nexen)114     |
| Ruta No. 4 Neumático "B" (Nexen)116     |
| Ruta No. 1 Neumático "C" (Sonar)117     |

| Ruta No. 2 Neumático "C" (Sonar)                      | 119 |
|-------------------------------------------------------|-----|
| Ruta No. 3 Neumático "C" (Sonar)                      | 120 |
| Ruta No. 4 Neumático "C" (Sonar)                      | 122 |
| Ruta No. 1 Neumático "D" (Anchee)                     | 123 |
| Ruta No. 2 Neumático "D" (Anchee)                     | 125 |
| Ruta No. 3 Neumático "D" (Anchee)                     | 126 |
| Ruta No. 4 Neumático "D" (Anchee)                     | 128 |
| Análisis de Resultados                                | 130 |
| Análisis de Vibraciones                               | 130 |
| Vibraciones en el interior del habitáculo, ruta No. 1 | 130 |
| Vibraciones en el motor, ruta No. 1                   | 132 |
| Vibraciones en la transmisión, ruta No. 1             | 134 |
| Vibraciones en el interior del habitáculo, ruta No. 2 | 136 |
| Vibraciones en el motor, ruta No. 2                   | 138 |
| Vibraciones en la transmisión, ruta No. 2             | 140 |
| Vibraciones en el interior del habitáculo, ruta No. 3 | 142 |
| Vibraciones en el motor, ruta No.3                    | 144 |
| Vibraciones en la transmisión, ruta No. 3             | 146 |
| Vibraciones en el interior del habitáculo, ruta No. 4 | 148 |
| Vibraciones en el motor, ruta No. 4                   | 150 |
| Vibraciones en la transmisión, ruta No. 4             | 152 |

| Análisis de Ruidos154                               |
|-----------------------------------------------------|
| Ruidos en el interior del habitáculo, ruta No. 1154 |
| Ruidos en el motor, ruta No. 1156                   |
| Ruidos en la transmisión, ruta No. 1158             |
| Ruidos en el interior del habitáculo, ruta No. 2160 |
| Ruidos en el motor, ruta No. 2162                   |
| Ruidos en la transmisión, ruta No. 2164             |
| Ruidos en el interior del habitáculo, ruta No. 3166 |
| Ruidos en el motor, ruta No.3168                    |
| Ruidos en la transmisión, ruta No. 3170             |
| Ruidos en el interior del habitáculo, ruta No. 4172 |
| Ruidos en el motor, ruta No. 4174                   |
| Ruidos en la transmisión, ruta No. 4176             |
| Conclusiones y Recomendaciones178                   |
| Conclusiones178                                     |
| Recomendaciones179                                  |
| Bibliografía180                                     |
| Anexos183                                           |

# Índice de Tablas

| Tabla 1 Rutas recorridas para las pruebas                                       | 57            |
|---------------------------------------------------------------------------------|---------------|
| Tabla 2 Velocidad del vehículo por ruta                                         | 60            |
| Tabla 3 Especificaciones técnicas del vehículo empleado                         | 69            |
| Tabla 4 Características de los neumáticos empleados                             | 70            |
| Tabla 5 Actividades realizadas durante la revisión mecánica del vehículo emple  | <i>ado</i> 71 |
| Tabla 6 Reporte de alineación del vehículo empleado                             | 73            |
| Tabla 7 Presión de inflado de los neumáticos para la realización de las pruebas | 74            |

# Índice de Figuras

| Figura 1 Movimiento armónico                 | 33 |
|----------------------------------------------|----|
| Figura 2 Movimiento periódico                | 34 |
| Figura 3 Movimiento aleatorio                | 34 |
| Figura 4 Analizador de vibraciones           | 36 |
| Figura 5 Transductor de vibraciones          | 37 |
| Figura 6 Sonómetro integrador                | 38 |
| Figura 7 Analizador de frecuencia            | 39 |
| Figura 8 Analizador de intensidad sonora     | 39 |
| Figura 9 Sacudida de carroceria              | 40 |
| Figura 10 Mecanismo de aleteo de dirección   | 41 |
| Figura 11 Vibración del pedal de aceleración | 42 |
| Figura 12 Vibración de la palanca de cambios | 42 |
| Figura 13 Conducción incomoda                | 43 |
| Figura 14 Golpeteo                           | 44 |
| Figura 15 Vibraciones del tubo de escape     | 44 |
| Figura 16 Fases de un motor 4T               | 46 |
| Figura 17 Flujo de aire                      | 47 |
| Figura 18 Fuentes de ruido aerodinámico      | 48 |
| Figura 19 Ruido por rodadura                 | 49 |
| Figura 20 Equipo y puntos de medición        | 50 |
| Figura 21 Motor                              | 53 |
| Figura 22 Transmisión                        | 53 |
| Figura 23 Ruta No. 1 (Asfalto)               | 58 |
| Figura 24 Ruta No. 2 (Adoquín)               | 58 |

| Figura 25 | Ruta No.3 (Empedrado)                                                     | 59 |
|-----------|---------------------------------------------------------------------------|----|
| Figura 26 | Ruta No. 4 (Suelo natural)                                                | 59 |
| Figura 27 | Diseño del esquema eléctrico en Proteus                                   | 62 |
| Figura 28 | Diseño de la PCB en Proteus                                               | 62 |
| Figura 29 | Carcasa de protección para el analizador de vibraciones                   | 63 |
| Figura 30 | Carcasa de protección para el sensor de vibraciones                       | 64 |
| Figura 31 | Analizador de vibraciones ensamblado                                      | 64 |
| Figura 32 | Diseño del esquema eléctrico en Proteus                                   | 66 |
| Figura 33 | Diseño de la PCB en Proteus                                               | 66 |
| Figura 34 | Carcasa de protección para el sonómetro                                   | 67 |
| Figura 35 | Carcasa de protección para el sensor de ruido                             | 68 |
| Figura 36 | Sonómetro ensamblado6                                                     | 68 |
| Figura 37 | Vehículo empleado                                                         | 69 |
| Figura 38 | Revisión mecánica y reemplazo de amortiguadores                           | 72 |
| Figura 39 | Balanceo de neumáticos                                                    | 72 |
| Figura 40 | Alineación del vehículo empleado                                          | 74 |
| Figura 41 | Calibración de la presión de inflado de los neumáticos                    | 75 |
| Figura 42 | Proceso de instalación de los sensores                                    | 76 |
| Figura 43 | Ubicación del primer sensor de vibración en el interior del habitáculo    | 76 |
| Figura 44 | Ubicación del segundo sensor de vibración en la tapa de motor             | 77 |
| Figura 45 | Ubicación del tercer sensor de vibración en la base de la transmisión     | 77 |
| Figura 46 | Ubicación del primer sensor de ruido según la normativa ISO BS 6086       | 78 |
| Figura 47 | Ubicación del segundo sensor de ruido en la sección del depurador de aire | 79 |
| Figura 48 | Ubicación del tercer sensor de ruido en la base de la caja de cambios     | 79 |
| Figura 49 | Inicio de las pruebas en las distintas rutas                              | 80 |
| Figura 50 | Vibración en el interior del habitáculo, neumático "A" ruta No. 1         | 81 |

| Figura | 51 | Vibración en el motor, neumático "A" ruta No. 1                   | .82 |
|--------|----|-------------------------------------------------------------------|-----|
| Figura | 52 | Vibración en la transmisión, neumático "A" ruta No. 1             | .82 |
| Figura | 53 | Vibración en el interior del habitáculo, neumático "A" ruta No. 2 | .83 |
| Figura | 54 | Vibración en el motor, neumático "A" ruta No. 2                   | .83 |
| Figura | 55 | Vibración en la transmisión, neumático "A" ruta No. 2             | .84 |
| Figura | 56 | Vibración en el interior del habitáculo, neumático "A" ruta No. 3 | .84 |
| Figura | 57 | Vibración en el motor, neumático "A" ruta No. 3                   | .85 |
| Figura | 58 | Vibración en la transmisión, neumático "A" ruta No. 3             | .85 |
| Figura | 59 | Vibración en el interior del habitáculo, neumático "A" ruta No. 4 | .86 |
| Figura | 60 | Vibración en el motor, neumático "A" ruta No. 4                   | .86 |
| Figura | 61 | Vibración en la transmisión, neumático "A" ruta No. 4             | .87 |
| Figura | 62 | Vibración en el interior del habitáculo, neumático "B" ruta No. 1 | .87 |
| Figura | 63 | Vibración en el motor, neumático "B" ruta No. 1                   | .88 |
| Figura | 64 | Vibración en la transmisión, neumático "B" ruta No. 1             | .88 |
| Figura | 65 | Vibración en el interior del habitáculo, neumático "B" ruta No. 2 | .89 |
| Figura | 66 | Vibración en el motor, neumático "B" ruta No. 2                   | .89 |
| Figura | 67 | Vibración en la transmisión, neumático "B" ruta No. 2             | .90 |
| Figura | 68 | Vibración en el interior del habitáculo, neumático "B" ruta No. 3 | .90 |
| Figura | 69 | Vibración en el motor, neumático "B" ruta No. 3                   | .91 |
| Figura | 70 | Vibración en la transmisión, neumático "B" ruta No. 3             | .91 |
| Figura | 71 | Vibración en el interior del habitáculo, neumático "B" ruta No. 4 | .92 |
| Figura | 72 | Vibración en el motor, neumático "B" ruta No. 4                   | .92 |
| Figura | 73 | Vibración en la transmisión, neumático "B" ruta No. 4             | .93 |
| Figura | 74 | Vibración en el interior del habitáculo, neumático "C" ruta No. 1 | .93 |
| Figura | 75 | Vibración en el motor, neumático "C" ruta No. 1                   | .94 |
| Figura | 76 | Vibración en la transmisión, neumático "C" ruta No. 1             | .94 |

| Figura | <b>77</b>       | Vibración en el interior del habitáculo, neumático "C" ruta No. 2 | .95 |
|--------|-----------------|-------------------------------------------------------------------|-----|
| Figura | 78              | Vibración en el motor, neumático "C" ruta No. 2                   | .95 |
| Figura | 79              | Vibración en la transmisión, neumático "C" ruta No. 2             | .96 |
| Figura | 80              | Vibración en el interior del habitáculo, neumático "C" ruta No. 3 | .96 |
| Figura | 81              | Vibración en el motor, neumático "C" ruta No. 3                   | .97 |
| Figura | 82              | Vibración en la transmisión, neumático "C" ruta No. 3             | .97 |
| Figura | 83              | Vibración en el interior del habitáculo, neumático "C" ruta No. 4 | .98 |
| Figura | 84              | Vibración en el motor, neumático "C" ruta No. 4                   | .98 |
| Figura | 85              | Vibración en la transmisión, neumático "C" ruta No. 4             | .99 |
| Figura | 86              | Vibración en el interior del habitáculo, neumático "D" ruta No. 1 | .99 |
| Figura | 87              | Vibración en el motor, neumático "D" ruta No. 1                   | 100 |
| Figura | 88              | Vibración en la transmisión, neumático "D" ruta No. 1             | 100 |
| Figura | 89              | Vibración en el interior del habitáculo, neumático "D" ruta No. 2 | 101 |
| Figura | 90              | Vibración en el motor, neumático "D" ruta No. 2                   | 101 |
| Figura | 91              | Vibración en la transmisión, neumático "D" ruta No. 2             | 102 |
| Figura | 92              | Vibración en el interior del habitáculo, neumático "D" ruta No. 3 | 102 |
| Figura | 93              | Vibración en el motor, neumático "D" ruta No. 3                   | 103 |
| Figura | 94              | Vibración en la transmisión, neumático "D" ruta No. 3             | 103 |
| Figura | 95              | Vibración en el interior del habitáculo, neumático "D" ruta No. 4 | 104 |
| Figura | 96              | Vibración en el motor, neumático "D" ruta No. 4                   | 104 |
| Figura | 97              | Vibración en la transmisión, neumático "D" ruta No. 4             | 105 |
| Figura | 98              | Ruido en el interior del habitáculo, neumático "A" ruta No. 1     | 105 |
| Figura | 99              | Ruido en el motor, neumático "A" ruta No. 1                       | 106 |
| Figura | 10              | <b>0</b> Ruido en la transmisión, neumático "A" ruta No. 11       | 106 |
| Figura | 10 <sup>-</sup> | 1 Ruido en el interior del habitáculo, neumático "A" ruta No. 2   | 107 |
| Figura | 10              | <b>2</b> Ruido en el motor, neumático "A" ruta No. 21             | 107 |

| Figura | 103 Ruido e        | en la transmisión, neumático "A" ruta No. 2             | 108 |
|--------|--------------------|---------------------------------------------------------|-----|
| Figura | <b>104</b> Ruido e | en el interior del habitáculo, neumático "A" ruta No. 3 | 108 |
| Figura | <b>105</b> Ruido e | en el motor, neumático "A" ruta No. 3                   | 109 |
| Figura | 106 Ruido e        | en la transmisión, neumático "A" ruta No. 3             | 109 |
| Figura | <b>107</b> Ruido e | en el interior del habitáculo, neumático "A" ruta No. 4 | 110 |
| Figura | 108 Ruido e        | en el motor, neumático "A" ruta No. 4                   | 110 |
| Figura | <b>109</b> Ruido e | en la transmisión, neumático "A" ruta No. 4             | 111 |
| Figura | <b>110</b> Ruido e | en el interior del habitáculo, neumático "B" ruta No. 1 | 111 |
| Figura | <b>111</b> Ruido e | en el motor, neumático "B" ruta No. 1                   | 112 |
| Figura | <b>112</b> Ruido e | en la transmisión, neumático "B" ruta No. 1             | 112 |
| Figura | <b>113</b> Ruido e | en el interior del habitáculo, neumático "B" ruta No. 2 | 113 |
| Figura | <b>114</b> Ruido e | en el motor, neumático "B" ruta No. 2                   | 113 |
| Figura | <b>115</b> Ruido e | en la transmisión, neumático "B" ruta No. 2             | 114 |
| Figura | 116 Ruido e        | en el interior del habitáculo, neumático "B" ruta No. 3 | 114 |
| Figura | <b>117</b> Ruido e | en el motor, neumático "B" ruta No. 3                   | 115 |
| Figura | <b>118</b> Ruido e | en la transmisión, neumático "B" ruta No. 3             | 115 |
| Figura | <b>119</b> Ruido e | en el interior del habitáculo, neumático "B" ruta No. 4 | 116 |
| Figura | <b>120</b> Ruido e | en el motor, neumático "B" ruta No. 4                   | 116 |
| Figura | <b>121</b> Ruido e | en la transmisión, neumático "B" ruta No. 4             | 117 |
| Figura | <b>122</b> Ruido e | en el interior del habitáculo, neumático "C" ruta No.1  | 117 |
| Figura | <b>123</b> Ruido e | en el motor, neumático C ruta No. 1                     | 118 |
| Figura | <b>124</b> Ruido e | en la transmisión, neumático C ruta No. 1               | 118 |
| Figura | <b>125</b> Ruido e | en el interior del habitáculo, neumático "C" ruta No. 2 | 119 |
| Figura | <b>126</b> Ruido e | en el motor, neumático "C" ruta No. 2                   | 119 |
| Figura | <b>127</b> Ruido e | en la trasmisión, neumático "C" ruta No. 2              | 120 |
| Figura | <b>128</b> Ruido e | en el interior del habitáculo, neumático "C" ruta No. 3 | 120 |

| Figura | 129 | Ruido en el motor, neumático "C" ruta No. 3                   | 121 |
|--------|-----|---------------------------------------------------------------|-----|
| Figura | 130 | Ruido en la transmisión, neumático "C" ruta No. 3             | 121 |
| Figura | 131 | Ruido en el interior del habitáculo, neumático "C" ruta No. 4 | 122 |
| Figura | 132 | Ruido en el motor, neumático "C" ruta No. 4                   | 122 |
| Figura | 133 | Ruido en la transmisión, neumático "C" ruta No. 4             | 123 |
| Figura | 134 | Ruido en el interior del habitáculo, neumático "D" ruta No. 1 | 123 |
| Figura | 135 | Ruido en el motor, neumático "D" ruta No. 1                   | 124 |
| Figura | 136 | Ruido en la transmisión, neumático "D" ruta No. 1             | 124 |
| Figura | 137 | Ruido en el interior del habitáculo, neumático "D" ruta No. 2 | 125 |
| Figura | 138 | Ruido en el motor, neumático "D" ruta No. 2                   | 125 |
| Figura | 139 | Ruido en la transmisión, neumático "D" ruta No. 2             | 126 |
| Figura | 140 | Ruido en el interior del habitáculo, neumático "D" ruta No. 3 | 126 |
| Figura | 141 | Ruido en el motor, neumático "D" ruta No. 3                   | 127 |
| Figura | 142 | Ruido en la transmisión, neumático "D" ruta No. 3             | 127 |
| Figura | 143 | Ruido en el interior del habitáculo, neumático "D" ruta No. 4 | 128 |
| Figura | 144 | Ruido en el motor, neumático "D" ruta No. 4                   | 128 |
| Figura | 145 | Ruido en la transmisión, neumático "D" ruta No. 4             | 129 |
| Figura | 146 | Vibraciones en el interior del habitáculo, ruta No. 1         | 131 |
| Figura | 147 | Vibraciones en el motor, ruta No 1                            | 133 |
| Figura | 148 | Vibraciones en la transmisión, ruta No. 1                     | 135 |
| Figura | 149 | Vibraciones en el interior del habitáculo, ruta No. 2         | 137 |
| Figura | 150 | Vibraciones en el motor, ruta No. 2                           | 139 |
| Figura | 151 | Vibraciones en la transmisión, ruta No. 2                     | 141 |
| Figura | 152 | Vibraciones en el interior del habitáculo, ruta No. 3         | 143 |
| Figura | 153 | Vibraciones en el motor, ruta No. 3                           | 145 |
| Figura | 154 | Vibraciones en la transmisión, ruta No. 3                     | 147 |

| Figura | 155 | Vibraciones en el interior del habitáculo, ruta No. 4 | 149 |
|--------|-----|-------------------------------------------------------|-----|
| Figura | 156 | Vibraciones en el motor, ruta No. 4                   | 151 |
| Figura | 157 | Vibraciones en la Transmisión, ruta No. 4             | 153 |
| Figura | 158 | Ruidos en el interior del habitáculo, ruta No. 1      | 155 |
| Figura | 159 | Ruidos en el motor, ruta No. 1                        | 157 |
| Figura | 160 | Ruido en la transmisión, ruta No. 1                   | 159 |
| Figura | 161 | Ruidos en el interior del habitáculo, ruta No. 2      | 161 |
| Figura | 162 | Ruidos en el motor, ruta No. 2                        | 163 |
| Figura | 163 | Ruidos en la transmisión, ruta No 2                   | 165 |
| Figura | 164 | Ruidos en el interior del habitáculo, ruta No. 3      | 167 |
| Figura | 165 | Ruidos en el motor, ruta No. 3                        | 169 |
| Figura | 166 | Ruidos en la transmisión, ruta No. 3                  | 171 |
| Figura | 167 | Ruidos en el interior del habitáculo, ruta No. 4      | 173 |
| Figura | 168 | Ruidos en el motor, ruta No. 4                        | 175 |
| Figura | 169 | Ruido en la transmisión, ruta No. 4                   | 177 |

# Resumen

El presente trabajo de investigación se enfocó en el cumplimiento del objetivo a realizar que es el estudio e identificación de los métodos de medición de ruido y vibración en la cadena cinemática y al interior del habitáculo realizando pruebas, toma y recopilación de datos de ruidos y vibraciones generados en los elementos descritos con el uso de diferentes neumáticos, dichas pruebas se realizó en cuatro tipos de rutas con diferentes características como lo son en asfalto, adoquín, empedrado y suelo natural, todas ellas ubicadas en la ciudad de Latacunga. Para efectuar de manera correcta todas las fases del proyecto fue necesario identificar los métodos de medición de ruido y vibraciones así como los diferentes factores que intervienen en los mismos. Se tuvo que manufacturar equipos de medición que cumplan con los requerimientos necesarios para la realización del proyecto, dichos equipos fueron un analizador de vibraciones y un sonómetro con sus correspondientes sensores los cuales fueron ubicados en puntos estratégicos del automóvil empleado para efectuar las pruebas y poder obtener los valores de ruido y vibración en el interior del habitáculo, motor y transmisión los cuales forman la cadena cinemática. Los datos obtenidos fueron clasificados de acuerdo al neumático empleado, ruta y ubicación del sensor que mediante el software Matlab fueron representados de manera gráfica dándonos espectros de vibración y ruido para su posterior análisis.

#### Palabras clave:

- RUIDO
- VIBRACIÓN
- ANALIZADOR DE VIBRACIONES
- SONOMETRO
- ESPECTRO

### **Abstract**

The present research work was focused on the fulfillment of the objective to be carried out, which is the study and identification of the methods of measuring noise and vibration in the powertrain and inside the passenger compartment by testing, taking and collecting data on noise and vibration generated in the elements described with the use of different tires, such tests were conducted in four types of routes with different characteristics such as asphalt, cobblestone, cobblestone and natural soil, all of them located in the city of Latacunga. In order to correctly carry out all phases of the project, it was necessary to identify the noise and vibration measurement methods as well as the different factors involved. Measuring equipment had to be manufactured to meet the necessary requirements for the realization of the project, such equipment was a vibration analyzer and a sound level meter with their corresponding sensors which were placed at strategic points of the car used to perform the tests and to obtain the values of noise and vibration inside the passenger compartment, engine and transmission which form the powertrain. The data obtained were classified according to the tire used, route and location of the sensor, which were represented graphically by means of Matlab software, giving us vibration and noise spectra for subsequent analysis.

# Keywords:

- NOISE
- VIBRATION
- VIBRATION ANALYZER
- SONOMETER
- SPECTRUM

# Capítulo I

#### 1. Introducción

#### 1.1. Antecedentes

El ruido es una sensación auditiva inarticulada generalmente desagradable para el conductor, los pasajeros y el entorno.

El sonido se considera a las vibraciones dispersadas a través del aire en forma de ondas sonoras, la fuente de dichas vibraciones tienden a ser cuerpos sólidos, que para el objeto de estudio se lo consideraría al neumático (Oponeo, 2019).

Los neumáticos son considerados una de las fuentes principales que generan ruido en los vehículos debido a la interacción que tienen con la carretera. Debido a esta razón, resulta adecuado incidir en los factores que influyen directamente en esta interacción.

Los factores que influyen en esta interacción dependen básicamente del tipo de carretera, la velocidad, condiciones ambientales y evidentemente la geometría y banda de rodadura del neumático utilizado (Wang, 2020).

El ruido al interior del habitáculo es seriamente afectado por el neumático, la carretera y el sistema de suspensión del vehículo. Además, hay que considerar que en un motor de combustión interna se da la conversión del movimiento alternativo de los pistones la cual es una de las fuentes de vibraciones que en muchos de los casos son perceptibles al interior del habitáculo (Gómez, 2018).

Cabe recalcar que aparte de los ruidos de carroceria que ocurren dentro del habitáculo, tanto ruidos como vibraciones muchas de las veces provienen del exterior por lo que interactúan con la estructura del vehículo de alguna manera, dichos ruidos y vibraciones provienen de la excitación aerodinámica, carroceria, guarnecidos, cadena

cinemática, excitación del neumático, granulometría y el estado de la carretera. (Gómez, 2018)

Hoy en día, el éxito de reducción de ruidos y vibraciones al interior del habitáculo ha sido notable y ha ido mejorando cada día, el confort acústico dentro del habitáculo es uno de los factores fundamentales para la calidad de los vehículos que ofrecen las distas marcas automovilísticas, por lo que es importante determinar la incidencia del tipo de neumático en cuanto a ruido y vibraciones. (Wang, 2020)

#### 1.2. Planteamiento del Problema

Con el pasar de los años, el mundo automovilístico se ha ido desarrollando a pasos agigantados. En la actualidad se han desarrollado cadenas cinemáticas cada vez más silenciosas, a consecuencia de esto ha ocasionado que el ruido producido por la interacción de los neumáticos con la carretera ya no pueda ser enmascarado por la cadena cinemática. (Elsevier Inc., 2020)

Por lo tanto, el ruido producido por los neumáticos es un ámbito de estudio cada vez más importante en la industria automotriz, a la misma vez que es una gran preocupación para las grandes marcas de fabricantes de vehículos así como para los proveedores de componentes. (Elsevier Inc., 2020)

En cuanto a los conductores, estos cada vez se tornan preocupados por los diferentes ruidos y vibraciones en el interior del habitáculo, lo cual hace indispensable analizar y determinar la incidencia de los diferentes factores que influyen en la producción de ruidos y vibraciones que son perceptibles al interior del habitáculo.

Al momento de establecer un método adecuado para la medición de ruidos y vibraciones en el interior del habitáculo tanto como en la cadena cinemática se piensa que basta con tomar datos sin tomar en cuenta los siguientes aspectos:

- No seleccionar los dispositivos adecuados que serán empleados en la medición de ruidos y vibraciones.
- Incorrecta selección de lugares específicos en los que se montarán los dispositivos de medición.
- La interacción del neumático con la carretera

Para evitar los inconvenientes anteriormente mencionados se establecerá un método adecuado en el que se definirá los espacios correspondientes en los que irán montados los dispositivos de medición tanto en el interior del habitáculo como en la cadena cinemática.

De acuerdo a las mediciones que se van a realizar, se desarrollará el periodo de pruebas variando el tipo de neumático, carretera velocidad del vehículo con el fin de establecer que neumático tiene más incidencia en la interacción con la carretera.

# 1.3. Justificación e Importancia

El ruido producido por la interacción de los neumáticos con la carretera se ha vuelto un problema difícil de tratar en la mayoría de vehículos.

El presente proyecto de investigación tiene como finalidad determinar la incidencia que tienen los neumáticos en el comportamiento de la cadena cinemática y en el interior del habitáculo ya que estos son afectados por ruidos y vibraciones generados por la interacción del neumático con la carretera.

Con los métodos y equipos adecuados para la medición de ruido y vibraciones se desarrollará una serie de pruebas variando los tipos de neumáticos, el tipo de carretera, distancia recorrida, y la velocidad del vehículo para la obtención, tabulación y representación gráfica de datos reales de los ruidos y vibraciones que se presentan en el periodo de pruebas tanto en la cadena cinemática como en el interior del habitáculo.

Los resultados gráficos determinarán cuál de los neumáticos tiene menos incidencia en la generación de ruidos y vibraciones.

# 1.4. Objetivos

# 1.4.1. Objetivo General

Determinar los métodos de medición del ruido y vibración del neumático.

# 1.4.2. Objetivos Específicos

- Determinar las variables que afectan la generación del ruido y vibraciones.
- Determinar los elementos de la cadena cinemática que son afectados por ruidos y vibraciones.
- Caracterizar el ruido y vibraciones tanto en la cadena cinemática como al interior del habitáculo.
- Determinar los métodos más efectivos para la medición de ruidos y vibraciones.
- Manufacturar dispositivos capaces de realizar dichas mediciones y que a la vez puedan ser fijados en espacios adecuados en el vehículo.

- Realizar las respectivas pruebas con las distintas variables como tipo de neumáticos, superficie de carretera, y velocidad.
- Obtener, tabular y representar gráficamente los datos de Frecuencia (Hz)
   e intensidad de sonido (dB) que se obtuvieron mediante las pruebas
   realizadas.
- Analizar la incidencia de cada neumático empleado en la generación de ruido y vibraciones en la cadena cinemática y al interior del habitáculo.

# 1.5. Variables de Investigación

# 1.5.1. Variables dependientes

Ruido y vibraciones

# 1.5.2. Variables independientes

• Métodos y equipos de medición

# 1.6. Hipótesis

El utilizar un método adecuado para la medición de ruidos y vibraciones generados por el neumático influirá en la determinación de cuanta incidencia tiene cada neumático en la generación de ruidos y vibraciones que afectan a la cadena cinemática y al interior de habitáculo.

# Capitulo II

#### 2. Fundamentación Teórica

### 2.1. Vibraciones

### 2.1.1. Definición de vibraciones

Una vibración se puede definir como el movimiento oscilatorio repetitivo de un sistema alrededor de su posición equilibrada. La vibración es generada al momento de que su posición equilibrada es desplazada tratando de regresar a su posición original bajo fuerzas tales como: restitución, gravitación y elasticidad (Galarza, 2014).

# 2.1.2. Tipos de vibraciones

### 2.1.2.1. Vibración libre

Son aquellas vibraciones que ejecuta un sistema cuando es separado de su posición equilibrada. La frecuencia que corresponde a la vibración libre es denominada frecuencia natural (AISLAMANIA, 2020).

### 2.1.2.2. Vibración Forzada

Vibración forzada es la denominación que se le da al movimiento vibratorio que genera un sistema mecánico al ser forzado por una alteración externa. A la frecuencia de vibración que está asociada con un sistema animado periódicamente se la denomina frecuencia forzada (AISLAMANIA, 2020).

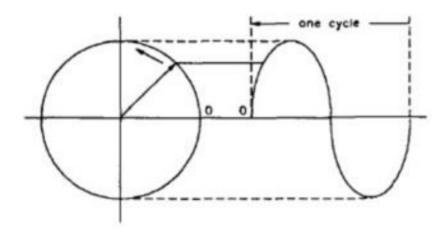
# 2.1.2.3. Vibración amortiguada

Es aquella vibración en la que debido a características de disipación va perdiendo energía cada ciclo del sistema, por ende, la amplitud oscilatoria disminuye (AISLAMANIA, 2020).

#### 2.1.3. Análisis de vibraciones

Es necesario utilizar un medio de obtención de datos para poder medir la frecuencia y amplitud de una vibración y que estas puedan ser analizadas. Una de las

mejores soluciones que se obtiene es transformar las vibraciones mecánicas en señales eléctricas.


Es necesario tener en cuenta los tipos de movimientos que generan los elementos de estudio con el fin de entender el análisis de vibraciones, estos movimientos pueden ser armónicos, periódicos y/o aleatorios. (Galarza, 2014)

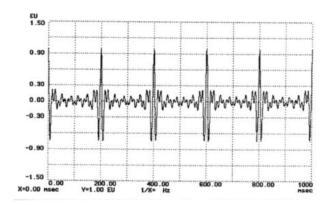
### 2.1.3.1. Movimiento armónico

Es una forma simple de oscilación que se caracteriza por una sinusoide. Todo movimiento armónico es periódico, lo que quiere decir que se trata de una repetición cíclica. En un sistema lineal, se podría generar un movimiento armónico debido al desbalanceo en equipos rotativos. Debido a la existencia de varias variables como desperfectos en engranajes, holguras, defectos en cojinetes, entre otros; no es posible la generación de sinusoides con mucha frecuencia (Taylor, 2003).

Figura 1

Movimiento armónico.




*Nota.* Representación del trazo de una onda sinusoidal, lo que muestra que el movimiento lineal tiende a ser armónico. Tomado de (The *Vibration Analysis Handbook* (p.1), por J. Taylor, 2003).

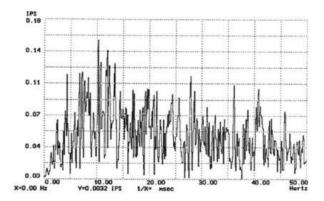
# 2.1.3.2. Movimiento periódico

Es un tipo de movimiento que se repite en intervalos de tiempo exactamente iguales, es decir, se repite periódicamente. (Taylor, 2003)

Figura 2

Movimiento periódico




Nota. Representación de la onda producida por el movimiento periodico. (Tomado de The Vibration Analysis Handbook (p.2), por J. Taylor, 2003.)

# 2.1.3.3. Movimiento aleatorio

Este tipo de movimiento es cualquier movimiento que no se repite, ocurre de manera extraña. (Taylor, 2003)

Figura 3

Movimiento aleatorio



Nota. Representación de una onda generada por el movimiento aleatorio. Tomado de (The Vibration Analysis Handbook (p.2), por J. Taylor, 2003).

# 2.1.4. Técnicas para el Análisis de Vibraciones

## 2.1.4.1. Análisis Espectral

Tiene como objeto descomponer una señal vibratoria en diversos componentes dentro del dominio del tiempo. El análisis se puede llevar a cabo mediante software, en donde su tarea es encontrar una determinada señal, por ejemplo ruido. (Galarza, 2014)

# 2.1.4.2. Análisis de la forma de onda

Del artículo publicado en Es el estudio de los datos de las formas de ondas que permiten buscar ciertas pautas con el fin de indicar una condición de defecto. Estas formas de ondas muestran el cambio de vibración de una fracción de segundo a otra con gran precisión (Jimenez, 2020).

### 2.1.4.3. Análisis de Fase de Vibraciones

El análisis de diferencias de fase a velocidad de giro de máquina, tomando en cuenta entre las vibraciones horizontales, verticales y axiales de los distintos apoyos del sistema denominado motor-máquina, permite establecer movimientos relativos entre ellos, y diferenciar de mejor manera los problemas generados por vibraciones a frecuencias 1 x rpm como son: desbalanceo, desalineamiento, eje doblado y resonancia (Galarza, 2014).

# 2.1.5. Equipos para medición de vibraciones

Es necesario obtener datos de mediciones para poder desarrollar conclusiones del sistema bajo prueba, se requiere emplear dispositivos capaces de transformar las vibraciones en magnitudes.

# 2.1.5.1. Analizador de vibraciones

Son dispositivos usados para medir vibraciones y oscilaciones en una variedad de máquinas, con ayuda de estos dispositivos las mediciones proporcionan parámetros

como la aceleración de la vibración, velocidad de vibración y variación de vibración (Gracía, 2021).

Figura 4

Analizador de vibraciones



Nota. Analizador de vibraciones 2130, marca CSITechnologies, de IME. Tomado de https://www.reporteroindustrial.com/temas/Analizador-de-vibraciones-2130-CSITechnologies,-para-inspeccionar-equipos-criticos-de-forma-rapida+10092763

# 2.1.5.2. Transductor

También llamados sensores de vibración, son el medio por el cual se permite transformar una vibración mecánica a una señal eléctrica, estos dispositivos pueden ser empleados para medición de velocidad lineal, desplazamiento, proximidad o aceleración. Existen diferentes tipos de transductores utilizados para la medición de la vibración, estos pueden ser transductores de aceleración, de desplazamiento y de velocidad (Galarza, 2014).

Figura 5

Transductor de vibraciones



Nota. Transductor de vibraciones PCB-686B01, marca CSITechnologies, de IME. Tomado de https://www.pce-iberica.es/instrumentos-de-medida/sistemas/transductores-vibracion.htm

## 2.2. Ruido

#### 2.2.1. Definición de ruido

Se define ruido como una sensación auditiva inarticulada que generalmente es desagradable, puede entenderse como todo sonido no deseado que es molesto para el oído (Wikipedia, 2021).

# 2.2.2. Tipos de ruido

Existen distintos tipos de ruido, estos tipos varían en torno a las características que los mismos presentan.

## 2.2.2.1. Ruido Continuo

Se da cuando su nivel de presión sonora es periódicamente constante, es decir, a lo largo de la jornada de trabajo del objeto en estudio (Julio Garavito, 2018).

## 2.2.2.2. Ruido Intermitente

Es el que llega hasta el nivel ambiental de forma intermitente alcanzando de nuevo el nivel superior debido a la producción de caídas bruscas, durante un segundo debe mantenerse antes que se produzca una nueva caída (Julio Garavito, 2018).

## 2.2.2.3. Ruido de Impacto

Se trata de un aumento bruco del ruido en un lapso inferior a 35 milisegundos y con una duración de menos de 500 milisegundos (Julio Garavito, 2018).

## 2.2.3. Equipos para medición de ruido

En el campo de la automoción es necesario emplear una gran variedad de equipos de medición para una gran variedad de propósitos en cuento a las mediciones de ruido.

# 2.2.3.1. Sonómetros integradores/promediadores

Es un sonómetro que está conformado por un micrófono, un flector de nivel que posee constantes de tiempo de respuesta lenta o rápida, además de una red de ponderación, este tipo de equipo permite ajustar mediciones realizadas (Villa, 2012).

Figura 6
Sonómetro integrador



Nota. Sonómetro integrador HT15 series. Tomado de

https://www.directindustry.es/prod/ht/product-18971-519366.html

## 2.2.3.2. Analizadores de frecuencia

Este tipo de equipos es una herramienta fundamental debido a la importancia del espectro frecuencial, es una herramienta potente cuando se trata de identificar fuentes de ruido (Villa, 2012).

Figura 7

Analizador de frecuencia



Nota. Tomado de https://www.instrumentacionhoy.com/analizadores-de-espectro-con-capacidad-de-tiempo-real/

#### 2.2.3.3. Analizador de intensidad sonora

Se trata de un analizador que permite hacer mediciones de potencia acústica durante condiciones de ruido de fondos elevados. A través de un mapeado de intensidad sonora es permitido la identificación de fuentes sonoras (Villa, 2012).

Figura 8

Analizador de intensidad sonora



Nota. Tomado de https://acoustiblok.com.mx/instrumentos-para-medir-el-ruido/

## 2.3. Vibraciones Habituales en el vehículo

#### 2.3.1. Sacudida de la carroceria

Se entiende como el movimiento vertical del vaivén, puede tratarse de los neumáticos como del rebote de la estructura del vehículo producido durante la marcha del mismo cuando este pasa en línea recta, este movimiento se produce a consecuencia de las irregularidades presentadas en la carretera (MOTORGIGA, s.f.)

El mecanismo que genera esta sacudida es un neumático desequilibrado y con desviación lo que ocasiona una fuerza vibratoria durante el tiempo que funciona el vehículo.

Figura 9
Sacudida de carroceria



Nota. En la figura se puede observar los puntos susceptibles en una sacudida de carroceria. Tomado de (Galarza, 2014)

# 2.3.2. Aleteo de la dirección

Esta condición se obtiene cuando el volante de dirección vibra en la dirección de giro, suele suceder a más de 80 km/h con vibraciones constantes.

El mecanismo que genera dichas vibraciones es un neumático desequilibrado y con desviación lo que ocasiona una fuerza vibratoria cuando el vehículo este en movimiento (Galarza, 2014) .

Figura 10

Mecanismo de aleteo de dirección



Nota. En la figura se puede observar el mecanismo que provoca el aleteo en la dirección de un vehículo. Tomado de https://talleractual.com/tecnica/suspension-y-direccion/6770-el-sistema-de-direccion-con-asistencia

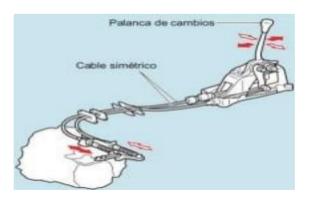
# 2.3.3. Vibración del pedal del acelerador

Se trata de una vibración producida a altas velocidades del motor. Las vibraciones del motor causa la vibración en el cable del acelerador, estas vibraciones son transmitidas al pedal por lo cual este también vibra (Galarza, 2014).

Figura 11

Vibración del pedal de aceleración




Nota. En la figura se puede observar golpeteos, contrapresiones y vibraciones. Tomado de https://www.motor.es/noticias/acelerador-activo-bosch-advierte-vibrando-201625568.html

# 2.3.4. Vibración de la palanca de cambios

Ocurren vibraciones en la palanca de cambios generalmente cuando el motor se encuentra en altas revoluciones. Suele ocurrir en caja de cambios manuales(Dr. Coche, 2021).

Figura 12

Vibración de la palanca de cambios



Nota. En la figura se puede observar el mecanismo por el que se produce vibraciones. Tomado de https://es.slideshare.net/vwz6471/cajas-de-cambio-mecanica-1-147117912

## 2.3.5. Conducción incomoda

Se trata de la transmisión de las irregularidades de la carretera a todo el vehículo, Se presentan una serie de vibraciones causadas por la superficie de la carretera con baches o irregularidades, también se debe a vibraciones causadas por los neumáticos o la suspensión.

Figura 13

Conducción incomoda



Nota. Conducción incomoda, sacudidas por el mal estado de la calzada. Tomado de https://docplayer.es/40612060-Tecnico-de-diagnostico-suspension-y-direccion-muelle-barra-detorsion-brazo-de-suspension-toyota-motor-corporation-all-right-reserved.html

# 2.3.6. Golpeteo

Se trata de un impacto longitudinal en el neumático dando el desarrollo de vibraciones percibidas en el volante, asientos y piso. Este impacto es transmitido a los brazos de la suspensión ocasionando que los bujes se compriman transmitiendo asi ruido o vibración a la carroceria (Galarza, 2014).

Figura 14

Golpeteo



Nota. Golpeteo por impacto longitudinal. Tomado de (Galarza, 2014)

# 2.3.7. Vibraciones del tubo de escape

Existen dos tipos de vibraciones capaces de afectar al tubo de escape, pueden ser las ondas de presión sonora procedente de puertos de escape así como la vibración producida por el motor (Coche Español, s.f.).

Figura 15

Vibraciones del tubo de escape



Nota. Tradicional escape de un vehículo. Tomado de https://www.ventos.site/como/como-detener-las-vibraciones-del-escape/

## 2.3.8. Vibraciones de componentes auxiliares

Existe una serie de componentes auxiliares como ménsulas, soportes de alternador, bomba de dirección o compresor de aire que están hechos de materiales que son insuficientemente rígidos por lo cual vibraran debido a la misma vibración del motor, dicha vibración se transmite a través de los soportes del motor hacia la carroceria (Galarza, 2014).

# 2.3.9. Vibración de despegue o aceleración

Al momento de arrancar el vehículo la carroceria, tablero de instrumentos y volante vibran ligeramente, también tiende a vibrar la palanca de cambios y asientos. Al poner los pies en el piso del vehículo son perceptibles vibraciones pequeñas, dichas vibraciones se generan en la primera velocidad, con la aleta de aceleración abierta. (Galarza, 2014)

#### 2.3.10. Vibración de arrangue

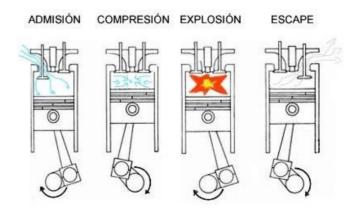
Se experimenta ciertas vibraciones en la carroceria y asientos cuando se procede a arrancar y para inmediatamente al momento que el vehículo se encuentra en marcha (Galarza, 2014).

## 2.3.11. Vibración durante ralentí

Este tipo de vibraciones son idénticas a las generadas en un ralentí deficiente, se paran al subir las revoluciones del motor, los elementos que perciben dichas vibraciones tienden a ser el tablero de instrumentos, volante, palanca de cambios, asientos y por supuesto la carroceria (Galarza, 2014).

## 2.3.12. Vibración durante el frenado

Cuando se produce el frenado vibran de manera brusca el tablero de instrumentos, volante y asientos, además que en el pedal de freno se percibe vibraciones con la misma frecuencia de los elementos anteriormente mencionados (Galarza, 2014).


#### 2.4. Fuentes de ruido en el vehículo

#### 2.4.1. Ruido de Motor

El proceso de combustión origina el ruido de motor, este ruido también es generado por fuerzas mecánicas asociadas a la dinámica.

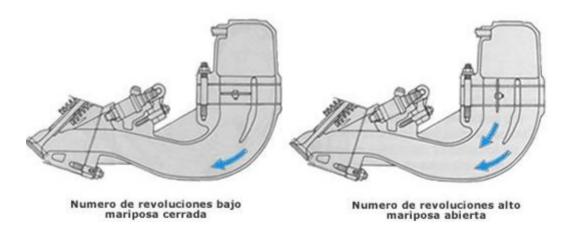
Un motor de combustión transforma la energía que se libera durante la combustión en trabajo mecánico. Esta transformación de energía ocasiona que el motor vibre, convirtiendo al mismo en una fuente de ruido (DEPARTO, 2020).

Fases de un motor 4T



Nota. En la figura se presentan los 4 tiempos que realiza un motor de combustión interna.

Tomado de https://sites.google.com/site/queesunamaquinatermica/combustion-interna/4-1-el-motor-de-4-tiempos


## 2.4.2. Ruido de Transmisión

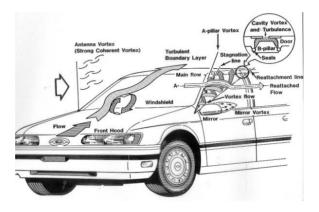
Según (Villa, 2012), el ruido de transmisión es directamente proporcional a la velocidad, esto quiere decir que aumenta entre 6 y 8 dB cada vez que se dobla la velocidad.

## 2.4.3. Ruido de Escape y Admisión de aire

Este ruido es generado a cortes periódicos en el flujo de aire a través de las mismas válvulas de admisión, lo que ocasiona pulsos de presión en los tubos de admisión, dichos pulsos se convierten en ruido. Este ruido aumenta entre 10 y 15 dB desde el reposo hasta la máxima aceleración (Villa, 2012).

Figura 17
Flujo de aire




Nota. Se muestra un colector de admisión variable en el cual se observa el flujo de aire dentro del mismo. Tomado de https://sites.google.com/site/combust5sergiosofian/4-dispositivos-para-el-control-de-emisiones-de-escape/4-1-modificacion-anticontaminante-en-el-motor

## 2.4.4. Ruido Aerodinámico

Son aquellos ruidos ocasionados por el vehículo al desplazarse a través del flujo de aire. Este ruido se crea en los conductos de ventilación al interior del habitáculo, sin embargo el más molestoso es el generado externamente alrededor del vehículo (Cavazos, 2017).

Figura 18

Fuentes de ruido aerodinámico



Nota. Diferentes fuentes de ruido aerodinámico presentados en el vehículo. Tomado de (Villa, 2012)

## 2.4.5. Ruido de Rodadura

El ruido de rodadura es posible descomponer en tres maneras:

- Por la propia fricción del neumático sobre la carretera: depende de la superficie de carretera por la que circula el vehículo y el compuesto de goma del neumático (Fidalgo, 2017).
- Por el aire que queda atrapado en la geometría de la banda de rodadura: el diseño geométrico influye demasiado en su sonoridad, ya que este debe ser capaz de evacuar el agua y el aire (Fidalgo, 2017).

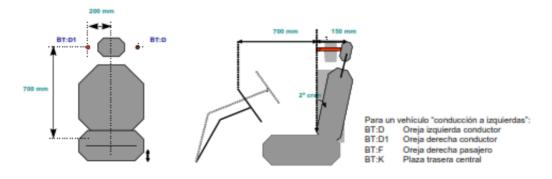
 Por resonancia: debido a que el neumático es un elemento hueco ocasiona que el mismo se convierta en una caja de resonancia (Fidalgo, 2017).

Figura 19
Ruido por rodadura



Nota. Tipos de ruido producido por los neumáticos. Tomado de https://www.carlider.es/Es-normal-que-mis-neumaticos-hagan-ruido\_es\_1\_90\_0.html

#### 2.5. Ruidos al interior del habitáculo


## 2.5.1. Medición de ruido interior

Según la norma ISO BS 6086 establece una serie de parámetros para efectuar la medición de ruido al interior del habitáculo, los parámetros son los siguientes:

- La medición del nivel de presión acústica, con decibelios ponderados 'A'
   análisis de 1/3 octava si es posible.
- La medición de niveles de ruido en más de una ubicación y al menos uno en la posición de la oreja del conductor y un punto en la parte trasera del vehículo.

- Los micrófonos en posición horizontal y apuntando con su dirección de máxima sensibilidad en la dirección que un ocupante normalmente mira hacia adelante.
- Los micrófonos a no menos de 160 mm de distancia de la caja o quarnecido.
- Los micrófonos deben montarse de tal forma que no resulten afectados por las vibraciones del vehículo.
- Los test se efectuarán con el vehículo parado (al ralentí y a plena carga, durante 5 segundos), y a varias velocidades constantes en el rango de 60-120 km/h, y por último en plena aceleración desde el 45% del máximo poder de aceleración hasta el 90% con la transmisión en la marcha más alta sin exceder de 120km/h. Muchos fabricantes hacen aceleraciones de plena carga desde casi el ralentí hasta cerca de su velocidad máxima de giro motor en 2 marchas (segunda y tercera) como sus test estándar de ruido interior en aceleración (prestación).

Figura 20
Equipo y puntos de medición



Nota. Ejemplo del procedimiento de medida de ruido al interior del habitáculo. Tomado de (Gómez, 2018)

#### 2.5.2. Otros ruidos de funcionamiento

#### 2.5.2.1. Excitación de carretera

La interacción neumático-carretera es la principal causa de las vibraciones transmitidas al interior del habitáculo, estas vibraciones son transmitidas por órganos de unión al suelo la radiación de ruido por vía aérea.

# 2.5.2.2. Excitación Aerodinámica

El aire es un medio exterior que constantemente está en contacto con el vehículo, es considerado una fuente de excitación más aun en altas velocidades, el flujo de aire alrededor de la carrocería genera varias turbulencias las mismas que son perceptibles al interior del habitáculo en forma de ruido y vibraciones (Gómez, 2018).

## 2.5.2.3. Las proyecciones (agua, gravillas)

Este ruido que es perceptible en el interior del habitáculo es debido al impacto de los proyectiles sobre el fondo del vehículo y los neumáticos. Al hablar de proyectiles es netamente referido al agua o gravilla bajo el vehículo en el momento del paso de este sobre caminos de tierra, pedregosos y grandes charcos de agua.

## 2.5.3. Ruidos parásitos

#### 2.5.3.1. Ruidos parásitos de origen hidráulico

- Armónico: Vibraciones transmitidas al interior del habitáculo originadas por circuitos hidráulicos, bomba. Generalmente es debido a la bomba del circuito de ABS.
- Transitorio: Se trata del golpe de cañón que es perceptible al interior del habitáculo. Este golpe hace referencia al choque interno en el amortiguador resultado de bajar la acera.
- Banda Ancha: Ruido silbante del amortiguador, es debido a una turbulencia por el paso del fluido hidráulico en la válvula en una situación estabilizada (Galarza, 2014).

## 2.5.3.2. Ruidos parásitos de origen mecánico

Dentro del habitáculo son perceptibles alguno ruidos de choques anormales entre piezas, estos choques pueden ser: defecto de apriete de un tornillo, golpeteo de escape, ruidos de frotamientos mecánicos por insuficiente engrase, desgaste de materiales en contacto (Gómez, 2018).

## 2.5.3.3. Ruidos parásitos de origen termo-mecánicos

El mejor ejemplo son los ruidos de frenos, es debido a una inestabilidad del sistema pastilla/disco/estribo/soporte.

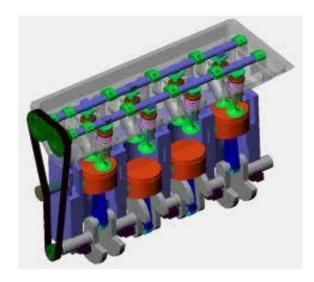
# 2.5.3.4. Ruidos parásitos de origen aerodinámico

La propagación de estos ruidos es de manera aérea. Por lo general se tratan de silbidos aerodinámicos que pueden tener un origen externo, entre estos silbidos están: silbido de antena de radio, junta de parabrisas mal pegado, aletas de un alternador o ventilador, silbido de correa de accesorios o distribución, entre otros (Galarza, 2014).

#### 2.6. Cadena cinemática

#### 2.6.1. Definición de Cadena Cinemática

La cadena cinemática de un vehículo se denomina al conjunto de elementos capaces de producir movimiento y proporcionar fuerza de tracción trasladándolo hacia las ruedas motrices (Wikipedia, 2021).

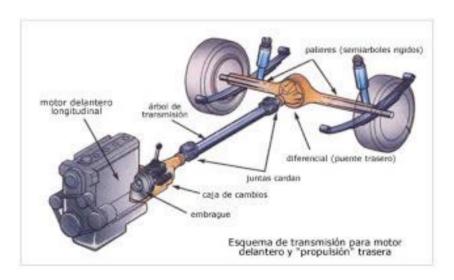

# 2.6.2. Partes de la Cadena Cinemática

Según (Expósito, 2015) la cadena cinemática es considerada una generalización del concepto mecanismo. Dicha cadena consta de dos partes principales:

 Motor: es el encargado de transformar energía química proporcionada por la combustión en energía mecánica.

Figura 21

Motor




Nota. Diagrama representativo de un motor de 4T de 4 cilindros. Tomado de (Expósito, 2015)

 Transmisión: conjunto encargado de transmitir la energía mecánica producida del motor hasta las ruedas motrices.

Figura 22

Transmisión



Nota. Esquema de transmisión para motor delantero y propulsión trasera. Tomado de (Expósito, 2015)

# 2.7. Vehículos turismo de Segmento "C"

La clasificación más grande de los vehículos corresponde al segmento "C" el mismo que abarca ciertos automóviles que tienen espacio para personas adultas, y para máximo 2 niños cuando es el caso de los monovolúmenes de siete plazas.

Dentro de esta clasificación pueden existir otras divisiones en base a la carroceria del vehículo, puede ser el caso de los Hatchback que en este segmento se denominan compactos grandes, otro caso son los monovolúmenes (sedan) que reciben el nombre de monovolumen mediado y por último los todoterreno que reciben el nombre de todoterreno compacto.

#### 2.7.1. Características

- Suelen medir de 4 a 3 metros cuando se tratan de Hatchback y monovolumen, en el caso de los todoterreno pueden alcanzar de 4 a 5 metros de longitud.
- Sus motores por lo general son de 4 cilindros con cilindrada de 1.4 y 2.0
   litros. En ciertos deportivos la cilindrada puede llegar a los 3.2 litros.
- Su potencia oscila de 70 KW a 90 CV y los 150 KW A 140 CV.
- Son vehículos que llegan a desenvolverse muy bien en la ciudad sin desperdiciar que son cómodos en las autopistas.
- Bastante sencillos de maniobrar y conducir.
- Pueden estar equipados con motores diesel, gasolina, híbridos o eléctricos.

## Capítulo III

3. Metodología de desarrollo del proyecto y Resultados Obtenidos

#### 3.1. Normativa para las pruebas

Con el fin de identificar los factores que originan los ruidos y vibraciones comunes que se presentan en los vehículos, se debe realizar una serie de ensayos los cuales se rigen bajo normas que establecen procedimientos y requisitos previos a la realización de dichos ensayos, las entidades y organizaciones encargadas de establecer las normas son la UNE, INEN, ASTM, ISO, etc.

#### 3.1.1. Normas

- ISO 10816: Esta norma establece generalidades en cuanto a las condiciones y procedimientos para medir y evaluar las vibraciones, únicamente utilizando mediciones sobre partes de una máquina que no se mantengan en rotación
- UNE-EN 1032:1997: Esta norma está relacionada con las vibraciones mecánicas, establece los detalles para el ensayo de maquinaria móvil permitiendo determinar los valores en cuanto a la emisión de vibraciones de cuerpo completo.
- UNE-EN ISO 2247:2000: Esta norma es la encargada de especificar los métodos empleados para el desarrollo de ensayos de vibración en embalajes o unidades de carga.
- NTE INEN 2665: Esta norma específica los métodos empleados en la realización de ensayos para la medición de ruido emitido por los vehículos cuando estos aceleran.

NTE INEN 2666: Esta norma establece los procedimientos de ensayo así
como el ambiente y la instrumentación necesaria para la medición de los
niveles de presión sonora producida por los vehículos cuando se
encuentran en estado estacionario.

# 3.2. Metodología para las pruebas

Para la realización de este proyecto de investigación se ha establecido una metodología con el fin de llegar con éxito a su finalización, dicha metodología se describe a continuación:

- Trazado de las distintas rutas establecidas para el desarrollo de la investigación, es necesario establecer la distancia de recorrido, condiciones ambientales y velocidad empleada correspondiente a cada ruta basándose en el plan de desarrollo vial integral de la provincia de Cotopaxi.
- Diseño y construcción de los equipos de medición, en este caso será necesario utilizar un sonómetro y un analizador de vibraciones.
- Análisis y reconocimiento de las especificaciones técnicas del vehículo que va a ser empleado, así como también la caracterización de los diferentes neumáticos a ser empleados.
- Preparación y revisión mecánica del vehículo en la cual intervendrán procesos de: verificación del estado de la suspensión del vehículo, balanceo y alineación de neumáticos, verificación de la presión de inflado de los neumáticos y por ultimo instalación de los sensores de vibración y sonido.

 Finalmente se realizan las pruebas conjuntamente con la toma y almacenamiento de datos para posteriormente realizar la representación gráfica de los mismos correspondientemente a cada prueba realizada.

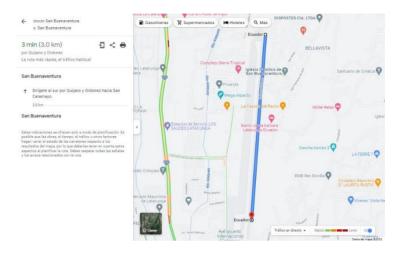
#### 3.3. Caracterización de las rutas

# 3.3.1. Descripción de las rutas

Cada ruta a seguir están situadas en la ciudad de Latacunga, dichas rutas deben tener una determinada distancia de recorrido, menor afluencia de vehículos y peatones, en la Tabla 1 se especifican las diferentes rutas a ser recorridas para la realización de las pruebas.

Tabla 1

Rutas recorridas para las pruebas

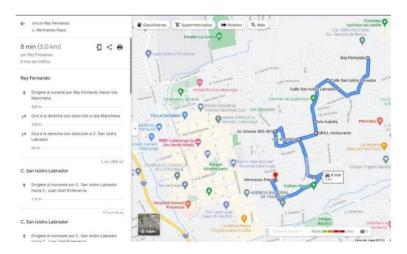

| Nro. de ruta | Tipo de terreno Distancia |      |
|--------------|---------------------------|------|
| 1            | Asfalto 3 Km              |      |
| 2            | Adoquín                   | 3 Km |
| 3            | Empedrado 3 Km            |      |
| 4            | Suelo natural             | 3 Km |

Nota. La tabla se especifica el tipo de terreno y distancia recorrida en cada una de las rutas.

La primera ruta sobre la cual se realizó las pruebas se encuentra al norte de la ciudad como referencia junto al Aeropuerto Internacional Cotopaxi, esta ruta cuenta con una longitud de 3 km como se muestra en la Figura 23.

Figura 23

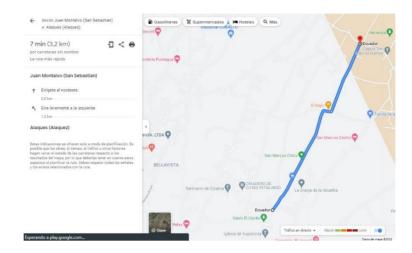
Ruta No. 1 (Asfalto)




Nota. La figura muestra la primera ruta empleada

La segunda ruta empleada, se encuentra en el centro de la ciudad, tiene una longitud de 3 km que va desde La Central Plaza hasta Rey Fernando como se muestra en la Figura 24.

Figura 24

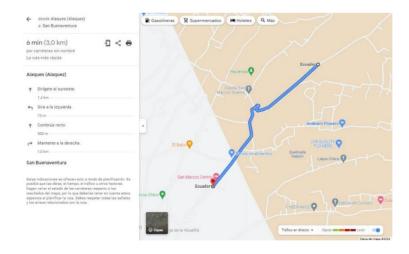

Ruta No. 2 (Adoquín)



Nota. La figura muestra la segunda ruta empleada.

La tercera ruta empleada se encuentra al noroeste de la ciudad por el sector de San Marcos Chico, posee una longitud de 3 km como se muestra en la Figura 25.

Figura 25
Ruta No.3 (Empedrado)




Nota. La figura muestra la tercera ruta empleada.

La cuarta ruta empleada se encuentra al noreste de la ciudad, con una longitud de 3 Km, desde San Buenaventura hasta Alaquez como se muestra en la Figura 26.

Figura 26

Ruta No. 4 (Suelo natural)



Nota. La figura muestra la cuarta ruta empleada.

## 3.3.2. Condiciones Ambientales

Se ha tomado en consideración que durante el periodo de realización de las pruebas las condiciones ambientales no han tenido una variación considerable desde el inicio hasta el final de las mismas.

#### 3.3.3. Velocidad del vehículo

Se estableció una velocidad adecuada del vehículo según cada ruta debido a los diferentes tipos de terrenos que caracterizan a cada una de ellas, en la Tabla 2 se muestra dichas velocidades.

Tabla 2

Velocidad del vehículo por ruta

| No. de ruta | Tipo de terreno Velocidad |                     |  |
|-------------|---------------------------|---------------------|--|
| 1           | Asfalto 70 Km/h           |                     |  |
| 2           | Adoquín                   | 40 Km/h             |  |
| 3           | Empedrado                 | npedrado 20-30 Km/h |  |
| 4           | 4 Suelo natural           |                     |  |

Nota. La tabla se muestra las distintas velocidades del vehículo empleadas para la realización de las pruebas, dependiendo del tipo de terreno de cada ruta.

# 3.4. Equipos de medición empleados

## 3.4.1. Diseño y construcción del Analizador de vibraciones

Como se indicó en el capítulo dos son dispositivos usados para medir vibraciones y oscilaciones en una variedad de máquinas, con ayuda de estos dispositivos las mediciones proporcionan parámetros como la aceleración de la vibración, velocidad de vibración y variación de vibración

Para la realización de este proyecto de investigación se optó por el diseño y construcción de un analizador de vibraciones con la capacidad de integrar varios sensores los mismos que facilitan la medición y obtención de datos de las vibraciones en los diferentes puntos del vehículo como los son el neumático, suspensión, la cadena cinemática e interior del habitáculo.

## 3.4.1.1. Componentes necesarios

- Arduino uno: El Arduino Uno es una placa de micro controlador de código abierto basado en el micro chip ATmega328P y desarrollado por Arduino cc. La placa está equipada con conjuntos de pines E/S digitales y analógicas que puedan conectarse a varias placas de expansión y otros circuitos.
- Modulo micro SD: Permite conectar a un micro controlador una tarjeta de memoria, de forma que se pueden almacenar grandes cantidades de datos.
- Pantalla LCD 16x2: Permite visualizar algún mensaje
- Módulo 12C: Permite manejar la pantalla LCD de una manera sencilla.
- Led: Se trata de un diodo conformado por un chip semiconductor dopado con impurezas que crean una unión PN.
- Sensores de vibración: Proporciona una señal analógica al captar una vibración sobre su superficie.
- Fusible: Protege al sistema de los picos altos de voltaje.
- Placa de cobre: Placa sobre la cual estará el diseño de las pistas del circuito electrónico y sobre la cual se montaran los componentes.

# 3.4.1.2. Diseño del circuito electrónico

Se empelo el software Proteus 8.8, en el cual se realizó el diseño y distribución de cada uno de los componentes del analizador de vibraciones, es decir el esquema eléctrico para la posterior realización de la PCB la cual va a ser impresa en la placa de cobre

dándole así un mejor aspecto estético y a la vez permitiendo tener una circuitería compacta.

Figura 27
Diseño del esquema eléctrico en Proteus

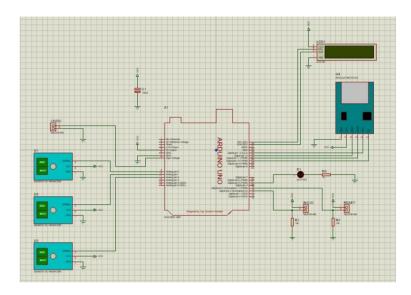
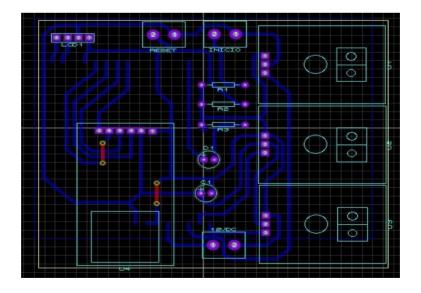
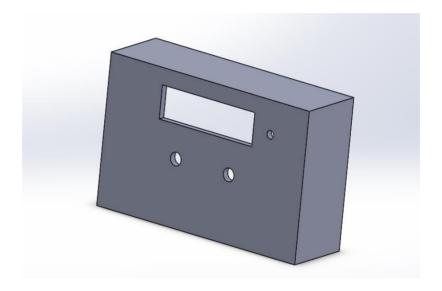




Figura 28

Diseño de la PCB en Proteus



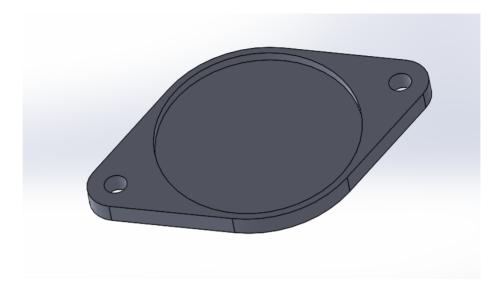
# 3.4.1.3. Programación


Para la realización del código de programación que se adapte a las condiciones requeridas para este proyecto de investigación se empelo el software de programación Arduino 1.8.9, dicho código se detalla en el Anexo 1.

# 3.4.1.4. Diseño de carcaza y soportes de sensores

Con el fin de precautelar el buen funcionamiento y procurar que el analizador de vibraciones no se encuentre a la intemperie, se diseñó en software CAD (SolidWorks) una carcasa la cual está impresa en 3D.

Figura 29


Carcasa de protección para el analizador de vibraciones



De igual manera que para el analizador de vibraciones, con el fin de evitar que el sensor de vibraciones se encuentre a la intemperie y pueda sufrir algún daño debido a las condiciones del lugar en el vehículo que será instalado se diseñó en el mismo software CAD (SolidWorks) una carcasa superior e inferior con las cuales el sensor se encuentra sellado al vacío permitiéndole funcionar correctamente.

Figura 30

Carcasa de protección para el sensor de vibraciones



# 3.4.1.5. Ensamble

Todo el procedimiento y figuras del ensamble de los componentes para la conformación del analizador de vibraciones se detallan en el Anexo 2.

Figura 31

Analizador de vibraciones ensamblado



## 3.4.2. Diseño y construcción del Sonómetro

Como se indicó en el capítulo dos se trata de un analizador que permite hacer mediciones de potencia acústica durante condiciones de ruido de fondos elevados. A través de un mapeado de intensidad sonora es permitida la identificación de fuentes sonoras

Al igual que el analizador de vibraciones, para la realización de este proyecto de investigación se optó por el diseño y construcción de un sonómetro con la capacidad de integrar varios sensores los mismos que facilitan la medición y obtención de datos del sonido en los diferentes puntos del vehículo como los son el neumático, suspensión, la cadena cinemática e interior del habitáculo.

## 3.4.2.1. Componentes necesarios

Los componentes empleados para la construcción del sonómetro se tratan de los mismos componentes empleados en el analizador de vibraciones con la diferencia de que en este caso fue necesario emplear el uso de:

- Arduino nano
- Módulos de sonido (Sensor de ruido)

#### 3.4.2.2. Diseño del circuito electrónico

Se empelo el software Proteus 8.8, en el cual se realizó el diseño y distribución de cada uno de los componentes del sonómetro, es decir el esquema eléctrico para la posterior realización de la PCB la cual va a ser impresa en la placa de cobre dándole así un mejor aspecto estético y a la vez permitiendo tener una circuitería compacta.

**Figura 32**Diseño del esquema eléctrico en Proteus

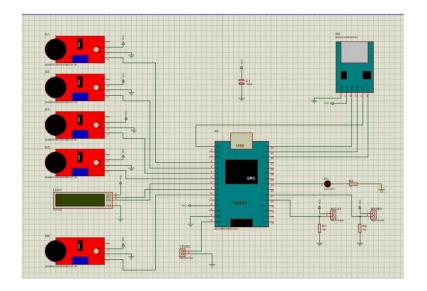
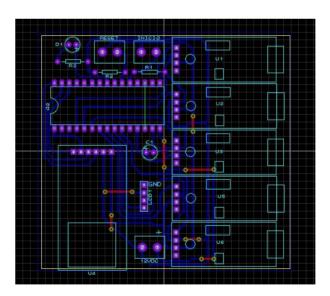
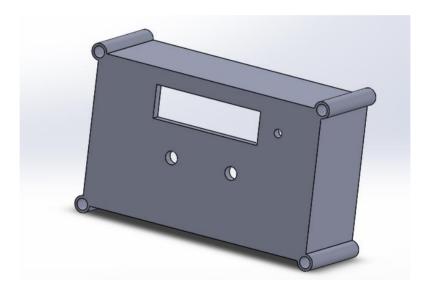




Figura 33

Diseño de la PCB en Proteus



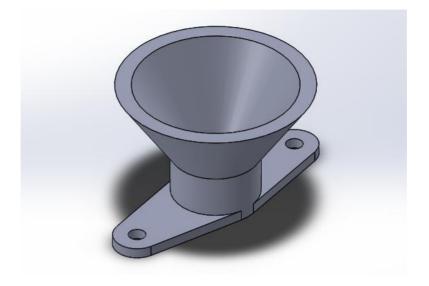
# 3.4.2.3. Programación


Para la realización del código de programación que se adapte a las condiciones requeridas para este proyecto de investigación se empelo el software de programación Arduino 1.8.9, dicho código se detalla en el Anexo 3.

# 3.4.2.4. Diseño de carcaza y soportes de sensores

Con el fin de precautelar el buen funcionamiento y procurar que el sonómetro no se encuentre a la intemperie, se diseñó en software CAD (SolidWorks) una carcasa la cual está impresa en 3D.

Figura 34


Carcasa de protección para el sonómetro



De igual manera que para el sonómetro, con el fin de evitar que el sensor de ruido se encuentre a la intemperie y pueda sufrir algún daño debido a las condiciones del lugar en el vehículo que será instalado se diseñó en el mismo software CAD (SolidWorks) una carcasa superior e inferior con las cuales el sensor se encuentra sellado al vacío permitiéndole funcionar correctamente.

Figura 35

Carcasa de protección para el sensor de ruido



# 3.4.2.5. Ensamble

Todo el procedimiento del ensamble de los componentes para la conformación del sonómetro se realiza de la misma manera que para el analizador de vibraciones.

Figura 36
Sonómetro ensamblado



# 3.5. Vehículo empleado

Se desarrolló las pruebas y obtención de datos de ruido y vibraciones empleando un vehículo de turismo segmento "C" de uso común dentro de la ciudad, el vehículo se trata de un Volkswagen Gol 2002 1.8 cc Hatchback.

Las especificaciones técnicas del vehículo empleado se muestran en la Tabla 3.

 Tabla 3

 Especificaciones técnicas del vehículo empleado

| Especificaciones técnicas del vehículo |  |  |  |  |
|----------------------------------------|--|--|--|--|
| Valor                                  |  |  |  |  |
| Volkswagen                             |  |  |  |  |
| Gol                                    |  |  |  |  |
| Hatchback                              |  |  |  |  |
| 1800 CC                                |  |  |  |  |
| 2002                                   |  |  |  |  |
| 1475                                   |  |  |  |  |
| 1030                                   |  |  |  |  |
|                                        |  |  |  |  |

Nota. La Tabla 5 indica las especificaciones técnicas del vehículo empleado en las pruebas.

Figura 37
Vehículo empleado



# 3.6. Caracterización de los neumáticos

Los diferentes neumáticos empleados para la realización de las pruebas poseen diferentes patrones de la banda de rodadura y por ende distintas características que los diferencian el uno del otro, en la Tabla 4 se muestra las características correspondientes a cada uno de los diferentes neumáticos empleados.

 Tabla 4

 Características de los neumáticos empleados.

| Tipo | Fabricante | Código de<br>Ilanta | Capas de la<br>banda de<br>rodadura                                                                | Tipo de<br>patrón de la<br>banda de<br>rodadura | Ilustración |
|------|------------|---------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|
| Α    | Good Year  | 195 / 55<br>R15     | Banda de<br>rodadura: 1<br>Poliéster, 2<br>Acero, 2<br>Poliamida.<br>Pared lateral:<br>2 Poliéster | Patrón<br>asimétrico                            |             |
| В    | Nexen      | 195 / 55<br>R15     | Banda de<br>rodadura: 1<br>Poliéster, 2<br>Acero, 1<br>Nylon<br>Pared lateral:<br>1 Poliéster      | Patrón<br>direccional<br>"V"                    |             |
| С    | Sonar      | 195 / 55<br>R15     | Banda de<br>rodadura: 1<br>Poliéster, 2<br>Acero, 1<br>Nylon.<br>Pared lateral:<br>1 Poliéster     | Patrón<br>asimétrico                            |             |
| D    | Anchee     | 195 / 55<br>R15     | Banda de<br>rodadura: 1<br>Poliéster, 2<br>Acero, 1<br>Nylon.<br>Pared lateral:<br>1 Poliéster     | Patrón<br>simétrico                             |             |

## 3.7. Preparación del vehículo

Este procedimiento es de vital importancia para la realización de las pruebas en las rutas ya antes establecidas empleando los diferentes tipos de neumáticos, es muy importante que el vehículo empleado se encuentre en óptimas condiciones de funcionamiento.

#### 3.7.1. Revisión mecánica

Esta verificación se desarrolla siguiendo una serie de actividades con el fin de prevenir inconvenientes durante el periodo de realización de las pruebas, además de mantener la seguridad y eficiencia del vehículo durante el periodo mencionado. En la Tabla 5 se muestra las actividades realizadas durante la revisión mecánica

Tabla 5

Actividades realizadas durante la revisión mecánica del vehículo empleado

| Actividades                                                   |  |  |  |  |
|---------------------------------------------------------------|--|--|--|--|
| Revisión del sistema de suspensión                            |  |  |  |  |
| Revisión del sistema de frenos (pastillas y zapatas)          |  |  |  |  |
| Revisión de fluidos (aceite, refrigerante, líquido de frenos, |  |  |  |  |
| combustible)                                                  |  |  |  |  |
| Revisión de la presión de inflado de los neumáticos empleados |  |  |  |  |

Durante la revisión mecánica se pudo constatar que el vehículo se encontraba con unos amortiguadores con excesivo desgaste, por lo cual fue necesario reemplazar los mismos por unos nuevos a gas. En cuanto al resto de revisiones que se realizó al vehículo empleado se determinó que se encuentran sus elementos en buen estado para la realización de las pruebas de este proyecto de investigación.

Figura 38

Revisión mecánica y reemplazo de amortiguadores



# 3.7.2. Balanceo de neumáticos

Una vez culminada la revisión mecánica se procede a corregir el desequilibrio que presentan tanto aros como cada tipo de neumáticos debido al uso continuo que venía presentando el vehículo. El procedimiento se realiza con ayuda de equipo automotriz especializado.

Figura 39

Balanceo de neumáticos



#### 3.7.3. Alineación del vehículo

En este procedimiento se corrige los ángulos de la geometría de la dirección corrigiendo dichos ángulos a los valores determinados por el fabricante del vehículo mostrado en la Tabla 6. La corrección de los ángulos se realiza con ayuda de equipo de alineación automotriz.

**Tabla 6**Reporte de alineación del vehículo empleado

|           | Reporte de alineación de Vehículo |           |         |                  |       |        |
|-----------|-----------------------------------|-----------|---------|------------------|-------|--------|
|           | Ángulos                           |           | Inicial | Especificaciones |       | Final  |
|           | Ángulos                           |           |         | Min.             | Max.  | Final  |
| Delantera | Ángulo de<br>avance               | Izquierdo | 0.4°    | 7.2°             | 8.2°  | 0.4°   |
|           |                                   | Derecho   | 2.4°    | 7.2°             | 8.2°  | 2.4°   |
|           | Inclinación de ruedas             | Izquierdo | 0.6°    | -0.2°            | 0.5°  | 0.6°   |
|           |                                   | Derecho   | -0.3°   | -1.5°            | -0.9° | -0.3°  |
|           | Convergencia                      | Izquierdo | 0.65°   | -0.20°           | 0.15° | -0.10° |
|           |                                   | Derecho   | 0.60°   | -0.20°           | 0.15° | -0.15° |
|           |                                   | Total     | 1.25°   | -0.40°           | 0.35° | -0.25° |
| Trasera   | Inclinación de ruedas             | Izquierdo | 1.3°    | -1.8°            | -0.8° | 1.3°   |
|           |                                   | Derecho   | 0.8°    | -1.8°            | -0.8° | 0.8°   |
|           | Convergencia                      | Izquierdo | -1.30°  | 0.00°            | 0.15° | -1.30° |
|           |                                   | Derecho   | 0.10°   | 0.00°            | 0.15° | 0.10°  |
|           |                                   | Total     | -1.20°  | 0.00°            | 0.35° | -1.20° |
|           | Angulo Dire                       | eccional  | -0.7°   | 0.3              | 3°    | -0.7°  |

Nota. Tomado de Tecnicentro Sagoquiza

Cabe mencionar que ciertos ángulos no son tomados en consideración debido a que el software de alineación empleado nos proporciona datos adicionales ya que esta calibrado para las distintas variantes del modelo de vehículo empleado.

Figura 40

Alineación del vehículo empleado



### 3.7.4. Presión de Inflado

Con el fin de obtener una correcta toma de datos es necesario calibrar correctamente la presión de inflado de los cuatro neumáticos empleados ya que se trata de un factor importante para la realización de las pruebas. En la Tabla 7 se muestra la presión de inflado inicial y la presión de inflado con la que se realizó la pruebas (final) la misma que es recomendada por el fabricante del vehículo.

**Tabla 7**Presión de inflado de los neumáticos para la realización de las pruebas

| Naumática               | Presión de inflado (Psi) |       |  |  |
|-------------------------|--------------------------|-------|--|--|
| Neumáticos <sub>-</sub> | Inicial                  | Final |  |  |
| Delantero Derecho       | 30                       | 32    |  |  |
| Delantero Izquierdo     | 36                       | 32    |  |  |
| Posterior Derecho       | 32                       | 34    |  |  |
| Posterior Izquierdo     | 32                       | 34    |  |  |

Figura 41

Calibración de la presión de inflado de los neumáticos



#### 3.8. Instalación de los sensores

#### 3.8.1. Instalación de los sensores de vibración

Para la realización de las pruebas se colocó tres sensores (asegurados con cinta aislante o correas plásticas de ser el caso) con el fin de obtener datos de vibraciones en el interior de habitáculo tanto como en la cadena cinemática. El primer sensor se colocó en el interior del habitáculo en el centro del tablero del vehículo (Figura 43); el segundo sensor se colocó en el compartimiento de motor, en la tapa de motor (Figura 44) y por último el tercer sensor se colocó en la base de la transmisión (Figura 45), estos dos últimos sensores se colocan en los puntos mencionados con el fin de analizar las vibraciones en la cadena cinemática.

Figura 42

Proceso de instalación de los sensores



Figura 43

Ubicación del primer sensor de vibración en el interior del habitáculo

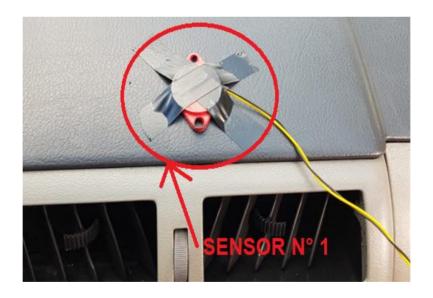



Figura 44

Ubicación del segundo sensor de vibración en la tapa de motor



Figura 45

Ubicación del tercer sensor de vibración en la base de la transmisión



#### 3.8.2. Instalación de los sensores de ruido

Al igual que con los sensores de vibración detallados con anterioridad, para las mediciones del ruido se colocó 3 sensores, el primero se coloca en el interior del habitáculo de acuerdo a las especificaciones de la norma ISO BS 6086 (Figura 46) que en este caso se colocó en posición horizontal y apuntando con su dirección de máxima sensibilidad en la dirección que el ocupante normalmente mira hacia adelante; el segundo de igual manera que el sensor de vibración se coloca en el compartimiento de motor específicamente en una sección del depurador de aire (Figura 47); por último se colocó el tercer sensor en la base de la transmisión (Figura 48), de igual manera que con los sensores de vibración estos dos últimos sensores se colocan en los puntos mencionados con el fin de analizar el ruido en la cadena cinemática.

Figura 46

Ubicación del primer sensor de ruido según la normativa ISO BS 6086



Figura 47

Ubicación del segundo sensor de ruido en una sección del depurador de aire



Figura 48

Ubicación del tercer sensor de ruido en la base de la caja de cambios



### 3.9. Realización de las pruebas

Para la realización de las pruebas en base a una investigación preliminar se estableció que no es necesario cambiar los cuatro neumáticos del vehículo empleado con un solo tipo de neumáticos, de preferencia se optó por realizar las pruebas con los diferentes tipos de neumáticos en una sola de las ruedas delanteras direccionales, específicamente la del lado del conductor.

Al finalizar las pruebas en las cuatro rutas ya antes establecidas con el primer tipo de neumático, se realizó el cambio de tipo de neumático y nuevamente se procedió con las pruebas en las cuatro rutas, este mismo método se realizó con los dos tipos de neumáticos restantes.

Al finalizar cada ruta fue necesario ir recopilando todos los valores medidos tanto de vibración como de ruido y almacenarlos de manera adecuada, es necesario reiniciar ambos equipos de medición al iniciar las pruebas en cada una de las rutas.

Figura 49
Inicio de las pruebas en las distintas rutas



### 3.10. Resultados Obtenidos de las pruebas

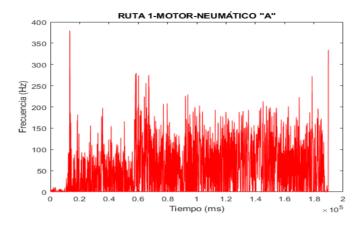
Con la realización de las pruebas se obtuvo los datos de las mediciones tanto de frecuencia de vibración (Hz) como de intensidad de sonido (dB) mediante los equipos de medición descritos con anterioridad, dichos datos fueron tabulados y representados de manera gráfica mediante Matlab (versión gratuita).

#### 3.10.1. Resultados del Analizador de Vibraciones

## 3.10.1.1.Ruta No. 1 Neumático "A" (Good Year)

En la prueba realizada en la ruta No. 1 con el neumático "A" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 15, 11, 9 Hz y los valores de las vibraciones mínimas son 3, 2, 1 Hz.

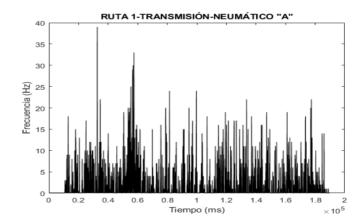
Figura 50


Vibración en el interior del habitáculo, neumático "A" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "A" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 380, 334, 280 Hz y los valores de las vibraciones mínimas son 11, 15, 19 Hz.

Figura 51

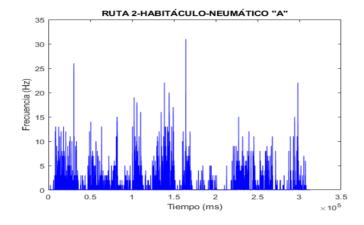

Vibración en el motor, neumático "A" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "A" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 39, 33, 30 Hz y los valores de las vibraciones mínimas son 4, 2, 1 Hz.

Figura 52

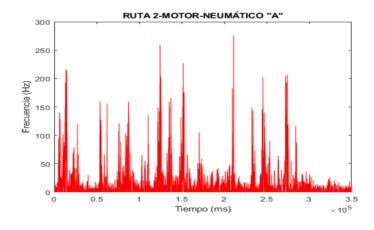
Vibración en la transmisión, neumático "A" ruta No. 1




# 3.10.1.2.Ruta No. 2 Neumático "A" (Good Year)

En la prueba realizada en la ruta No. 2 con el neumático "A" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 31, 26, 22 Hz y los valores de las vibraciones mínimas son 5, 3, 2 Hz.

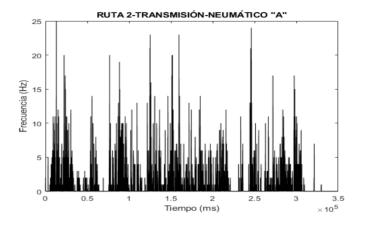
Figura 53


Vibración en el interior del habitáculo, neumático "A" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "A" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 256, 279, 216 Hz y los valores de las vibraciones mínimas son 32, 19, 12 Hz.

Figura 54

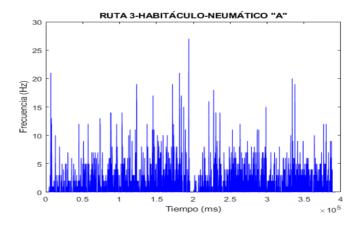

Vibración en el motor, neumático "A" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "A" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 25, 24, 23 Hz y los valores de las vibraciones mínimas son 3, 2, 1 Hz.

Figura 55

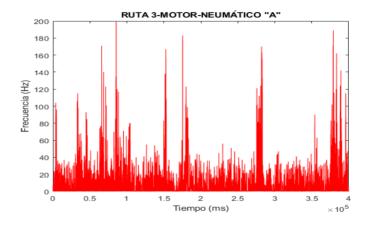
Vibración en la transmisión, neumático "A" ruta No. 2




# 3.10.1.3.Ruta No. 3 Neumático "A" (Good Year)

En la prueba realizada en la ruta No. 3 con el neumático "A" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 27, 21, 20 Hz y los valores de las vibraciones mínimas son 5, 3, 2 Hz.

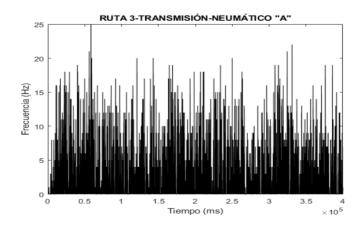
Figura 56


Vibración en el interior del habitáculo, neumático "A" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "A" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 189, 183, 167 Hz y los valores de las vibraciones mínimas son 32, 25, 19 Hz.

Figura 57

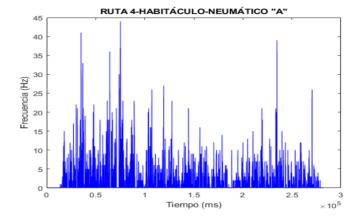

Vibración en el motor, neumático "A" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "A" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 25, 21, 22 Hz y los valores de las vibraciones mínimas son 7, 6, 4 Hz.

Figura 58

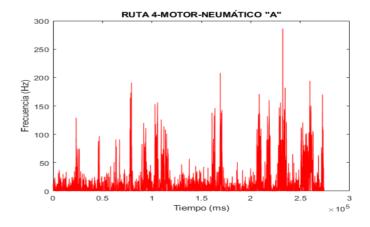
Vibración en la transmisión, neumático "A" ruta No. 3




### 3.10.1.4.Ruta No. 4 Neumático "A" (Good Year)

En la prueba realizada en la ruta No. 4 con el neumático "A" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 44, 41, 39 Hz y los valores de las vibraciones mínimas son 4, 3, 2 Hz.

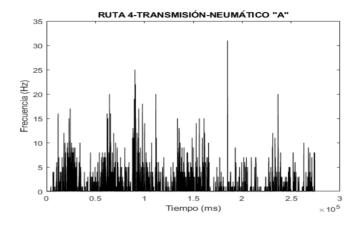
Figura 59


Vibración en el interior del habitáculo, neumático "A" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "A" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 286, 208, 191 Hz y los valores de las vibraciones mínimas son 13, 10, 5 Hz.

Figura 60

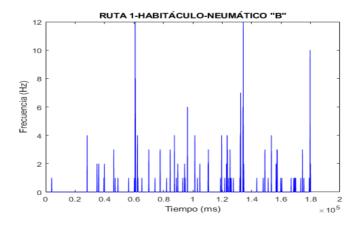

Vibración en el motor, neumático "A" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "A" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 25, 21, 22 Hz y los valores de las vibraciones mínimas son 7, 6, 4 Hz.

Figura 61

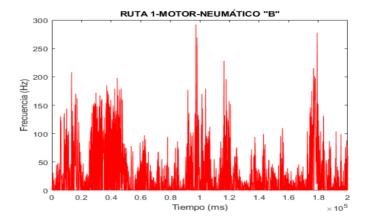
Vibración en la transmisión, neumático "A" ruta No. 4




# 3.10.1.5.Ruta No. 1 Neumático "B" (Nexen)

En la prueba realizada en la ruta No. 1 con el neumático "B" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 12,10, 7 Hz y los valores de las vibraciones mínimas son 4, 3, 2 Hz.

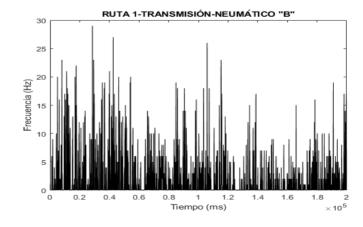
Figura 62


Vibración en el interior del habitáculo, neumático "B" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "B" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 292, 297, 269 Hz y los valores de las vibraciones mínimas son 19, 16, 11 Hz.

Figura 63

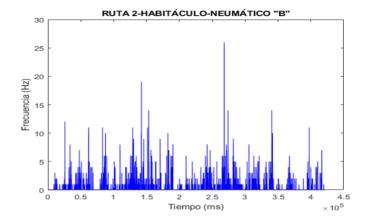

Vibración en el motor, neumático "B" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "B" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 29, 27, 26 Hz y los valores de las vibraciones mínimas son 4, 3, 2 Hz.

Figura 64

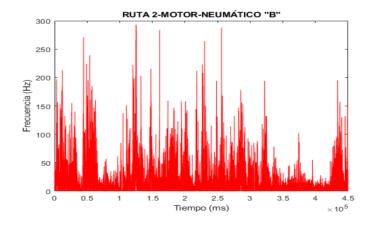
Vibración en la transmisión, neumático "B" ruta No. 1




## 3.10.1.6.Ruta No. 2 Neumático "B" (Nexen)

En la prueba realizada en la ruta No. 2 con el neumático "B" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 26, 19, 14 Hz y los valores de las vibraciones mínimas son 3, 2, 1 Hz.

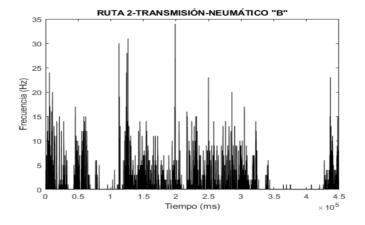
Figura 65


Vibración en el interior del habitáculo, neumático "B" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "B" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 290, 298, 271 Hz y los valores de las vibraciones mínimas son 23, 16, 5 Hz.

Figura 66

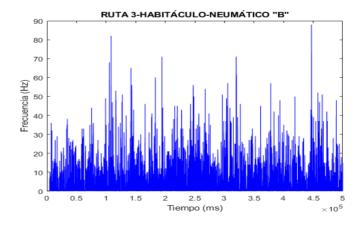

Vibración en el motor, neumático "B" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "B" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 34, 31, 30 Hz y los valores de las vibraciones mínimas son 3, 2, 1 Hz.

Figura 67

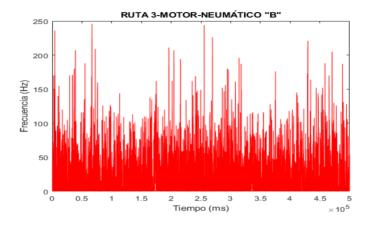
Vibración en la transmisión, neumático "B" ruta No. 2




# 3.10.1.7.Ruta No. 3 Neumático "B" (Nexen)

En la prueba realizada en la ruta No. 3 con el neumático "B" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 88, 82, 71 Hz y los valores de las vibraciones mínimas son 20, 12, 8 Hz.

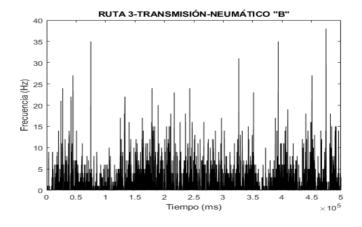
Figura 68


Vibración en el interior del habitáculo, neumático "B" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "B" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 246, 244, 236 Hz y los valores de las vibraciones mínimas son 27, 24, 18 Hz.

Figura 69

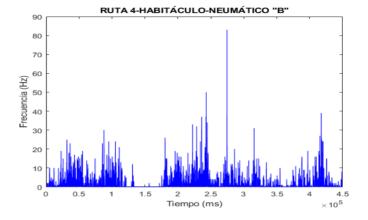

Vibración en el motor, neumático "B" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "B" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 38, 35, 31 Hz y los valores de las vibraciones mínimas son 5, 4, 3 Hz.

Figura 70

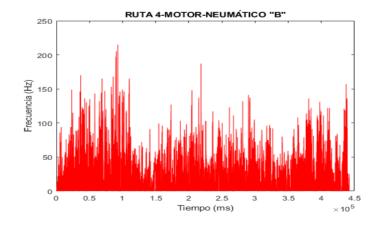
Vibración en la transmisión, neumático "B" ruta No. 3




### 3.10.1.8.Ruta No. 4 Neumático "B" (Nexen)

En la prueba realizada en la ruta No. 4 con el neumático "B" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 83, 50, 39 Hz y los valores de las vibraciones mínimas son 11, 6, 4 Hz.

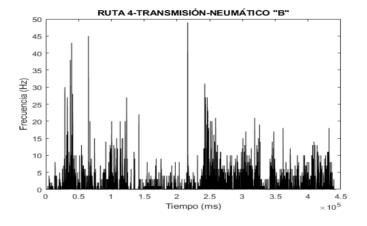
Figura 71


Vibración en el interior del habitáculo, neumático "B" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "B" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 215, 205, 187 Hz y los valores de las vibraciones mínimas son 24, 18, 20 Hz.

Figura 72

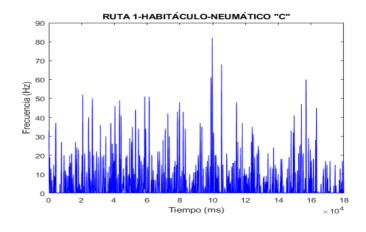

Vibración en el motor, neumático "B" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "B" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 49, 15, 43 Hz y los valores de las vibraciones mínimas son 5, 4, 3 Hz.

Figura 73

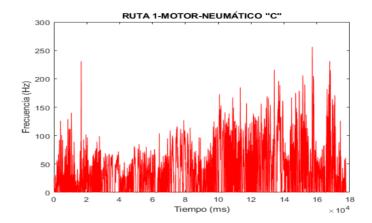
Vibración en la transmisión, neumático "B" ruta No. 4




# 3.10.1.9.Ruta No. 1 Neumático "C" (Sonar)

En la prueba realizada en la ruta No. 1 con el neumático "C" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 82, 68, 60 Hz y los valores de las vibraciones mínimas son 7, 4, 2 Hz.

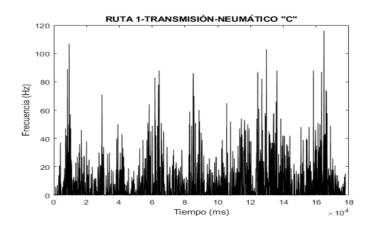
Figura 74


Vibración en el interior del habitáculo, neumático "C" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "C" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 256, 231, 216 Hz y los valores de las vibraciones mínimas son 32, 24, 16 Hz.

Figura 75

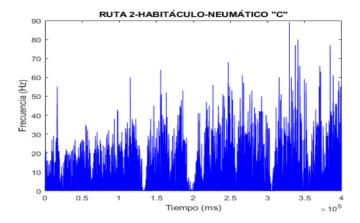

Vibración en el motor, neumático "C" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "C" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 116, 107, 103 Hz y los valores de las vibraciones mínimas son 6, 5, 4 Hz.

Figura 76

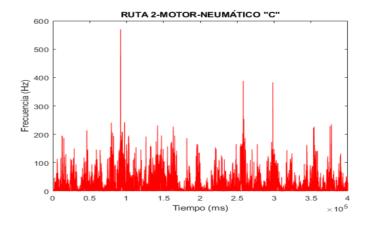
Vibración en la transmisión, neumático "C" ruta No. 1




## 3.10.1.10. Ruta No. 2 Neumático "C" (Sonar)

En la prueba realizada en la ruta No. 2 con el neumático "C" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 89, 80, 77 Hz y los valores de las vibraciones mínimas son 5, 4, 3 Hz.

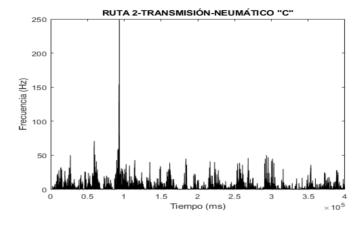
Figura 77


Vibración en el interior del habitáculo, neumático "C" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "C" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 570, 388, 383 Hz y los valores de las vibraciones mínimas son 28, 23, 10 Hz.

Figura 78

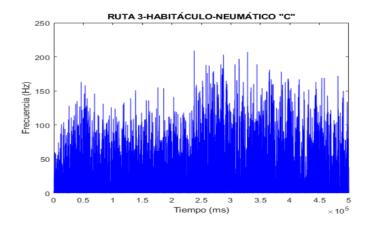

Vibración en el motor, neumático "C" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "C" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 249, 71, 50 Hz y los valores de las vibraciones mínimas son 9, 7, 4 Hz.

Figura 79

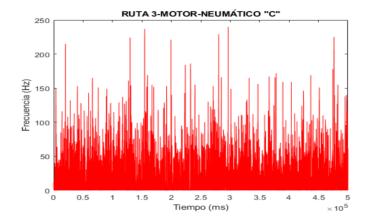
Vibración en la transmisión, neumático "C" ruta No. 2




3.10.1.11. Ruta No. 3 Neumático "C" (Sonar)

En la prueba realizada en la ruta No. 3 con el neumático "C" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 209, 207, 203 Hz y los valores de las vibraciones mínimas son 46, 32, 17 Hz.

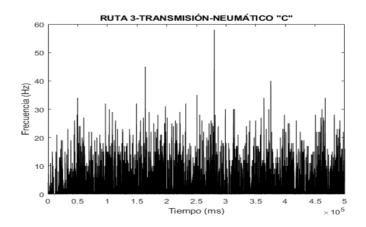
Figura 80


Vibración en el interior del habitáculo, neumático "C" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "C" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 240, 237, 229 Hz y los valores de las vibraciones mínimas son 32, 29, 15 Hz.

Figura 81

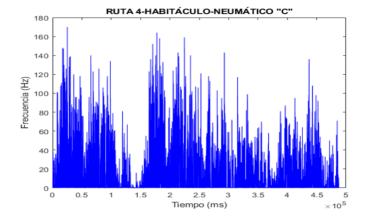

Vibración en el motor, neumático "C" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "C" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 58, 45, 40 Hz y los valores de las vibraciones mínimas son 12, 9, 6 Hz.

Figura 82

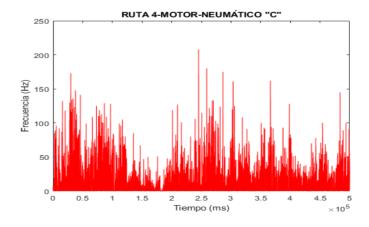
Vibración en la transmisión, neumático "C" ruta No. 3




## 3.10.1.12. Ruta No. 4 Neumático "C" (Sonar)

En la prueba realizada en la ruta No. 4 con el neumático "C" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 170, 164, 159 Hz y los valores de las vibraciones mínimas son 12, 6, 3 Hz.

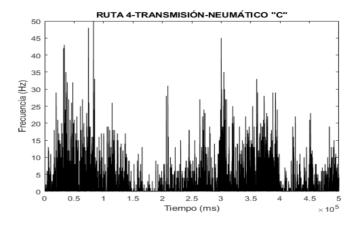
Figura 83


Vibración en el interior del habitáculo, neumático "C" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "C" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 208, 180, 173 Hz y los valores de las vibraciones mínimas son 25, 21, 11 Hz.

Figura 84

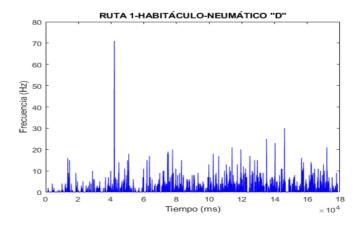

Vibración en el motor, neumático "C" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "C" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 50, 48, 45 Hz y los valores de las vibraciones mínimas son 5, 3, 2 Hz.

Figura 85

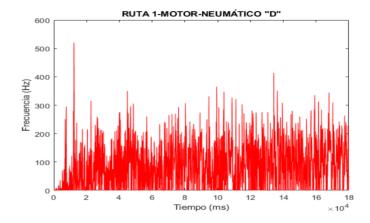
Vibración en la transmisión, neumático "C" ruta No. 4




3.10.1.13. Ruta No. 1 Neumático "D" (Anchee)

En la prueba realizada en la ruta No. 1 con el neumático "D" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 71, 30, 25 Hz y los valores de las vibraciones mínimas son 4, 3, 2 Hz.

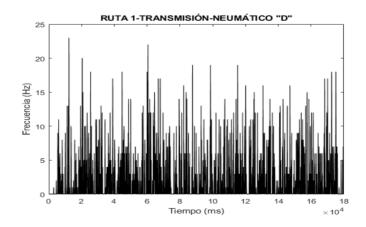
Figura 86


Vibración en el interior del habitáculo, neumático "D" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "D" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 520, 414, 350 Hz y los valores de las vibraciones mínimas son 22, 11, 9 Hz.

Figura 87

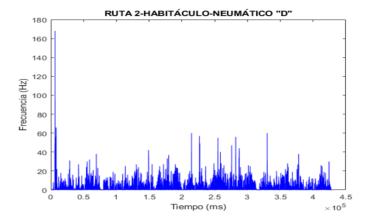

Vibración en el motor, neumático "D" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "D" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 23, 22, 20 Hz y los valores de las vibraciones mínimas son 5, 3, 2 Hz.

Figura 88

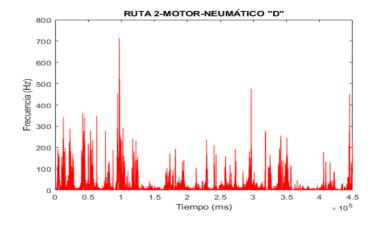
Vibración en la transmisión, neumático "D" ruta No. 1




## 3.10.1.14. Ruta No. 2 Neumático "D" (Anchee)

En la prueba realizada en la ruta No. 2 con el neumático "D" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 168, 66, 60 Hz y los valores de las vibraciones mínimas son 11, 9, 5 Hz.

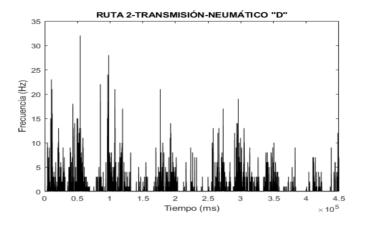
Figura 89


Vibración en el interior del habitáculo, neumático "D" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "D" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 715, 454, 415 Hz y los valores de las vibraciones mínimas son 30, 24, 14 Hz.

Figura 90

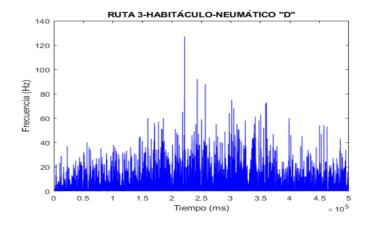

Vibración en el motor, neumático "D" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "D" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 32, 28, 24 Hz y los valores de las vibraciones mínimas son 5, 3, 2 Hz.

Figura 91

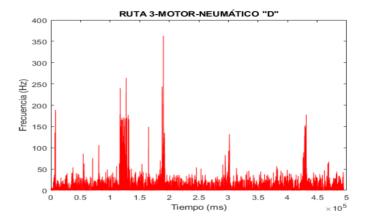
Vibración en la transmisión, neumático "D" ruta No. 2




3.10.1.15. Ruta No. 3 Neumático "D" (Anchee)

En la prueba realizada en la ruta No. 3 con el neumático "D" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 127, 92, 88 Hz y los valores de las vibraciones mínimas son 11, 9, 8 Hz.

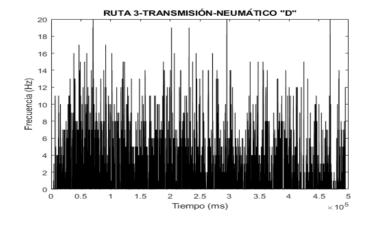
Figura 92


Vibración en el interior del habitáculo, neumático "D" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "D" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 363, 264, 244 Hz y los valores de las vibraciones mínimas son 30, 26, 14 Hz.

Figura 93

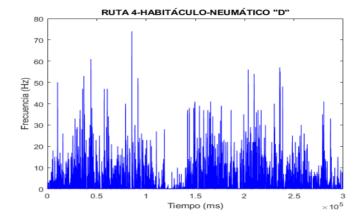

Vibración en el motor, neumático "D" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "D" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 32, 28, 24 Hz y los valores de las vibraciones mínimas son 5, 3, 2 Hz.

Figura 94

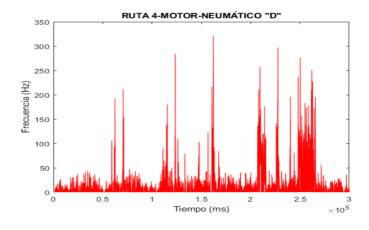
Vibración en la transmisión, neumático "D" ruta No. 3




## 3.10.1.16. Ruta No. 4 Neumático "D" (Anchee)

En la prueba realizada en la ruta No. 4 con el neumático "D" en cuanto al interior del habitáculo, se pudo determinar que los valores de vibración máxima (picos) son de 74, 61, 57 Hz y los valores de las vibraciones mínimas son 10, 7, 5 Hz.

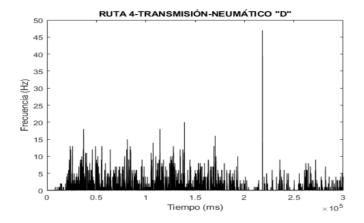
Figura 95


Vibración en el interior del habitáculo, neumático "D" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "D" en cuanto al motor, se pudo determinar que los valores de vibración máxima (picos) son de 321, 297, 284 Hz y los valores de las vibraciones mínimas son 28, 20, 17 Hz.

Figura 96


Vibración en el motor, neumático "D" ruta No. 4

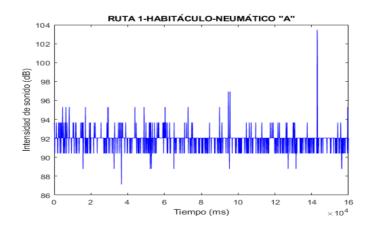


En la prueba realizada en la ruta No. 4 con el neumático "D" en cuanto a la transmisión, se pudo determinar que los valores de vibración máxima (picos) son de 47, 20, 18 Hz y los valores de las vibraciones mínimas son 4, 3, 1 Hz.

Figura 97

Vibración en la transmisión, neumático "D" ruta No. 4

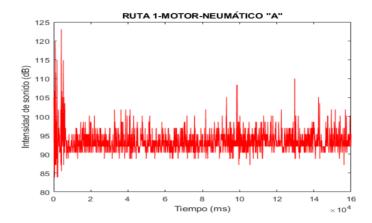



#### 3.10.2. Resultados del Sonómetro

# 3.10.2.1.Ruta No. 1 Neumático "A" (Good Year)

En la prueba realizada en la ruta No. 1 con el neumático "A" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 103, 96, 93, dB y los valores de ruido mínimo son 90, 88, 87 dB.

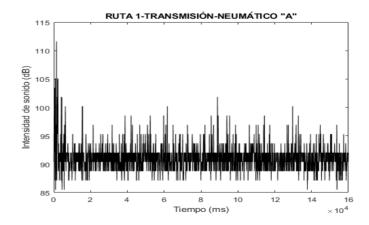
Figura 98


Ruido en el interior del habitáculo, neumático "A" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "A" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 123, 119, 114 dB y los valores de ruido mínimo son 88, 87, 83 dB.

Figura 99

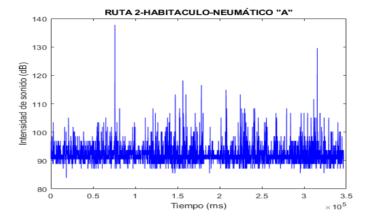

Ruido en el motor, neumático "A" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "A" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 111, 105, 101 dB y los valores del ruido mínimo son 88, 87, 85 dB.

Figura 100

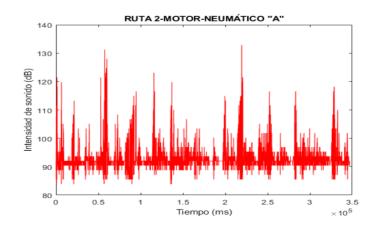
Ruido en la transmisión, neumático "A" ruta No. 1




# 3.10.2.2.Ruta No. 2 Neumático "A" (Good Year)

En la prueba realizada en la ruta No. 2 con el neumático "A" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 137, 129, 118 dB y los valores de ruido mínimo son 87, 85, 83 dB.

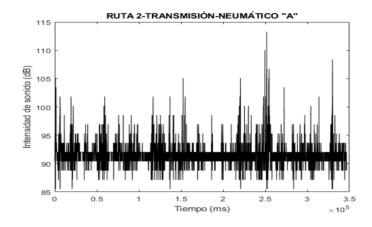
Figura 101


Ruido en el interior del habitáculo, neumático "A" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "A" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 132, 131, 128 dB y los valores de ruido mínimo son 87, 85, 83 dB.

Figura 102

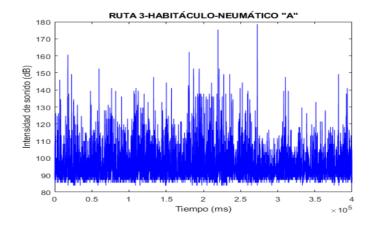

Ruido en el motor, neumático "A" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "A" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 113, 110, 108 dB y los valores del ruido mínimo son 88, 87, 85 dB.

Figura 103

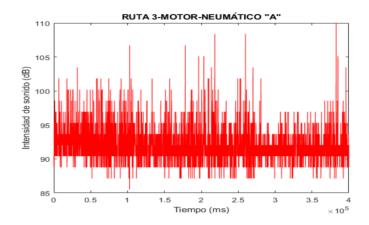
Ruido en la transmisión, neumático "A" ruta No. 2




3.10.2.3.Ruta No. 3 Neumático "A" (Good Year)

En la prueba realizada en la ruta No. 3 con el neumático "A" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 178, 172 dB y los valores de ruido mínimo son 87, 85, 83 dB.

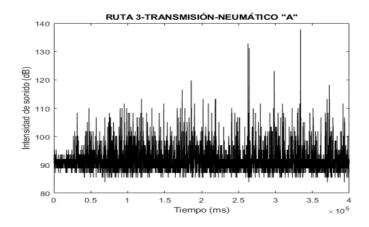
Figura 104


Ruido en el interior del habitáculo, neumático "A" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "A" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 110, 108, 106 dB y los valores de ruido mínimo son 88, 87, 85 dB.

Figura 105

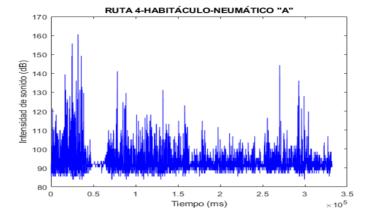

Ruido en el motor, neumático "A" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "A" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 137, 132, 131 dB y los valores del ruido mínimo son 87, 85, 83 dB.

Figura 106

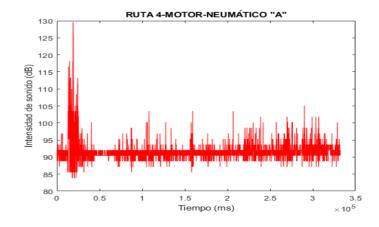
Ruido en la transmisión, neumático "A" ruta No. 3




## 3.10.2.4.Ruta No. 4 Neumático "A" (Good Year)

En la prueba realizada en la ruta No. 4 con el neumático "A" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 161, 155, 149 dB y los valores de ruido mínimo son 87, 85, 83 dB.

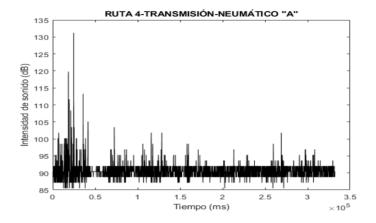
Figura 107


Ruido en el interior del habitáculo, neumático "A" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "A" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 129, 118, 113 dB y los valores de ruido mínimo son 88, 85, 83 dB.

Figura 108

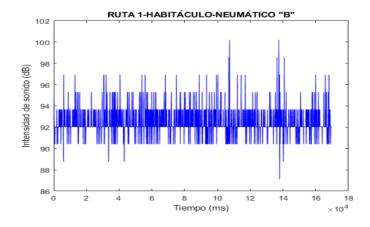

Ruido en el motor, neumático "A" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "A" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 131, 119, 113 dB y los valores del ruido mínimo son 88, 87, 85 dB.

Figura 109

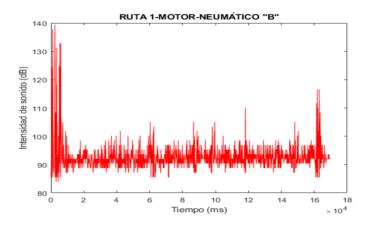
Ruido en la transmisión, neumático "A" ruta No. 4




# 3.10.2.5.Ruta No. 1 Neumático "B" (Nexen)

En la prueba realizada en la ruta No. 1 con el neumático "B" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 100, 98, 96 dB y los valores de ruido mínimo son 90, 88, 87 dB.

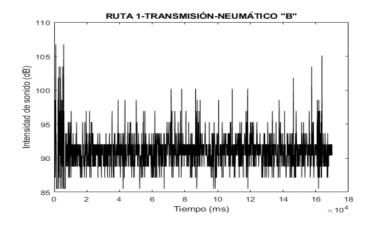
Figura 110


Ruido en el interior del habitáculo, neumático "B" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "B" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 140, 137, 132 dB y los valores de ruido mínimo son 87, 85, 83 dB.

Figura 111

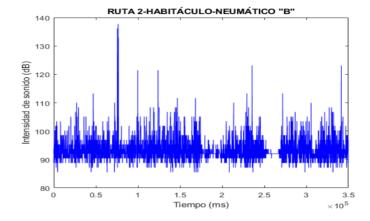

Ruido en el motor, neumático "B" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "B" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 106, 105, 103 dB y los valores del ruido mínimo son 88, 87, 85 dB.

Figura 112

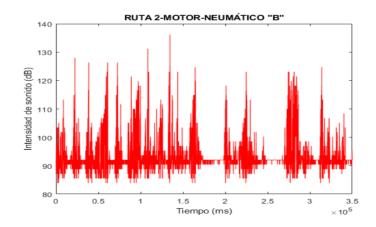
Ruido en la transmisión, neumático "B" ruta No. 1




## 3.10.2.6.Ruta No. 2 Neumático "B" (Nexen)

En la prueba realizada en la ruta No. 2 con el neumático "B" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 137, 136, 132 dB y los valores de ruido mínimo son 88, 87, 85 dB.

Figura 113


Ruido en el interior del habitáculo, neumático "B" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "B" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 133, 131, 128 dB y los valores de ruido mínimo son 87, 85, 83 dB.

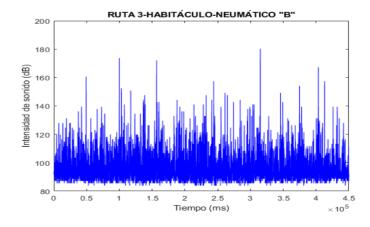

Figura 114

Ruido en el motor, neumático "B" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "B" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 126, 110, 105 dB y los valores del ruido mínimo son 88, 87, 85 dB.

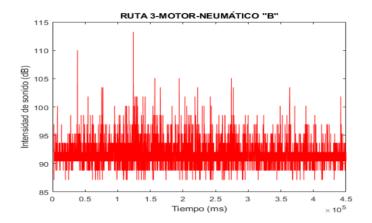
Figura 115
Ruido en la transmisión, neumático "B" ruta No. 2




# 3.10.2.7.Ruta No. 3 Neumático "B" (Nexen)

En la prueba realizada en la ruta No. 3 con el neumático "B" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 180, 173, 172 dB y los valores de ruido mínimo son 87, 85, 83 dB.

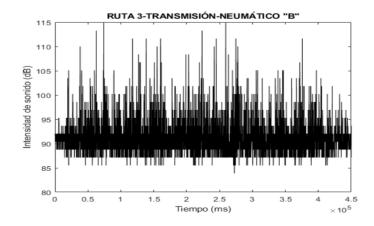
Figura 116


Ruido en el interior del habitáculo, neumático "B" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "B" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 113, 110, 105 dB y los valores de ruido mínimo son 88, 87 dB.

Figura 117

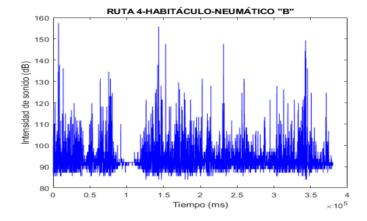

Ruido en el motor, neumático "B" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "B" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 114, 113, 111 dB y los valores del ruido mínimo son 83, 85 dB.

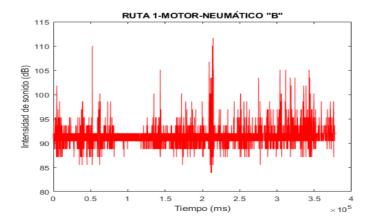
Figura 118

Ruido en la transmisión, neumático "B" ruta No. 3




## 3.10.2.8.Ruta No. 4 Neumático "B" (Nexen)

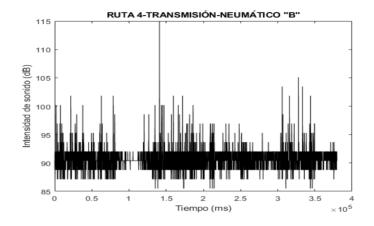
En la prueba realizada en la ruta No. 4 con el neumático "B" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 155, 174, 144 dB y los valores de ruido mínimo son 88, 85, 83 dB.


Figura 119

Ruido en el interior del habitáculo, neumático "B" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "B" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 111, 110, 105 dB y los valores de ruido mínimo son 88, 87, 83 dB.

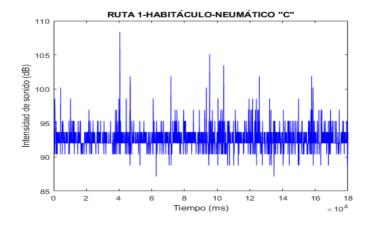

Figura 120
Ruido en el motor, neumático "B" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "B" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 114, 105, 101 dB y los valores del ruido mínimo son 87, 85 dB.

Figura 121

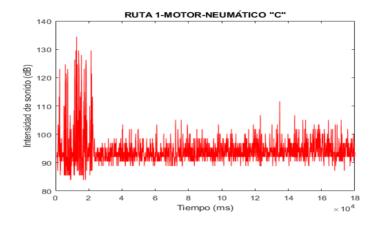
Ruido en la transmisión, neumático "B" ruta No. 4




# 3.10.2.9.Ruta No. 1 Neumático "C" (Sonar)

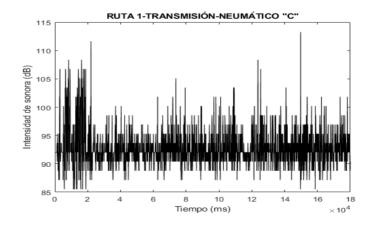
En la prueba realizada en la ruta No. 1 con el neumático "C" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 108, 105, 103 dB y los valores de ruido mínimo son 90, 88, 87 dB.

Figura 122


Ruido en el interior del habitáculo, neumático "C" ruta No.1



En la prueba realizada en la ruta No. 1 con el neumático "C" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 134, 129, 128 dB y los valores de ruido mínimo son 88, 87, 85 dB.

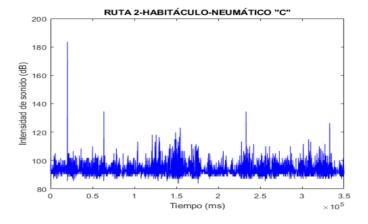

Figura 123

Ruido en el motor, neumático C ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "C" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 113, 108, 105 dB y los valores del ruido mínimo son 88, 87, 85 dB.

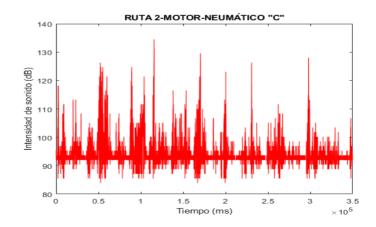
Figura 124
Ruido en la transmisión, neumático C ruta No. 1




## 3.10.2.10. Ruta No. 2 Neumático "C" (Sonar)

En la prueba realizada en la ruta No. 2 con el neumático "C" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 180, 134, 123 dB y los valores de ruido mínimo son 88, 87, 83 dB.

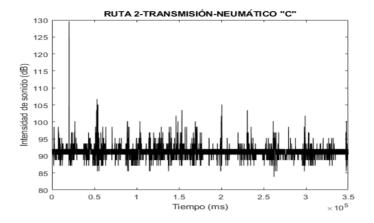
Figura 125


Ruido en el interior del habitáculo, neumático "C" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "C" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 134, 129, 126 dB y los valores de ruido mínimo son 88, 85, 83 dB.

Figura 126

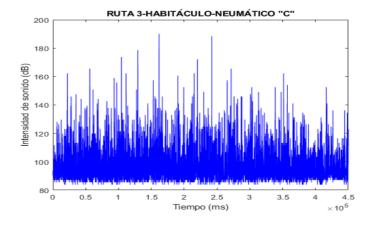

Ruido en el motor, neumático "C" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "C" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 129, 106, 105 dB y los valores del ruido mínimo son 87, 85, 83 dB.

Figura 127

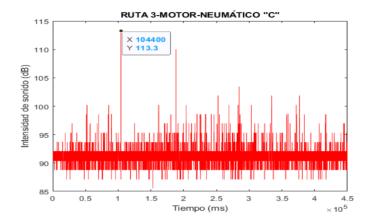
Ruido en la trasmisión, neumático "C" ruta No. 2




3.10.2.11. Ruta No. 3 Neumático "C" (Sonar)

En la prueba realizada en la ruta No. 3 con el neumático "C" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 190, 188, 178 dB y los valores de ruido mínimo son 87, 85, 83 dB.

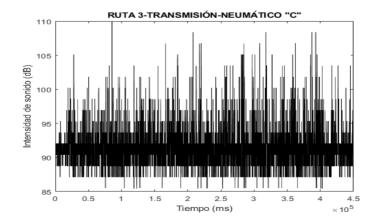
Figura 128


Ruido en el interior del habitáculo, neumático "C" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "C" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 113, 110, 110 dB y los valores de ruido mínimo son 88, 87, 85 dB.

Figura 129

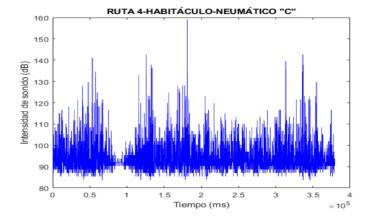

Ruido en el motor, neumático "C" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "C" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 110, 108, 106 dB y los valores del ruido mínimo son 87, 85 dB.

Figura 130

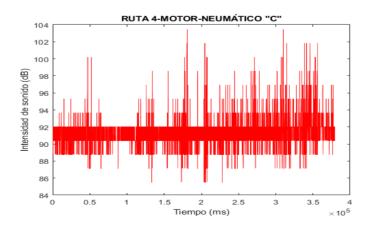
Ruido en la transmisión, neumático "C" ruta No. 3




## 3.10.2.12. Ruta No. 4 Neumático "C" (Sonar)

En la prueba realizada en la ruta No. 4 con el neumático "C" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 159, 142, 137 dB y los valores de ruido mínimo son 88, 85, 83 dB.

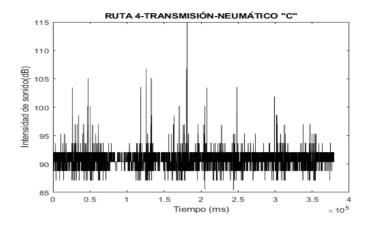
Figura 131


Ruido en el interior del habitáculo, neumático "C" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "C" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 103, 101, 100 dB y los valores de ruido mínimo son 88, 87, 85 dB.

Figura 132

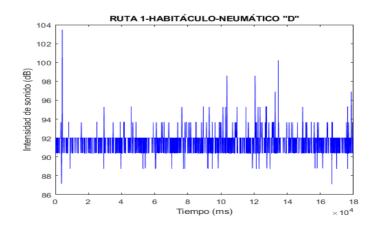

Ruido en el motor, neumático "C" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "C" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 114, 106, 103 dB y los valores del ruido mínimo son 87, 85 dB.

Figura 133

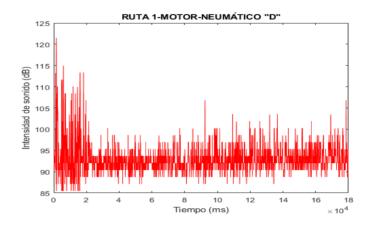
Ruido en la transmisión, neumático "C" ruta No. 4




3.10.2.13. Ruta No. 1 Neumático "D" (Anchee)

En la prueba realizada en la ruta No. 1 con el neumático "D" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 103, 100, 98 dB y los valores de ruido mínimo son 88, 87 dB.

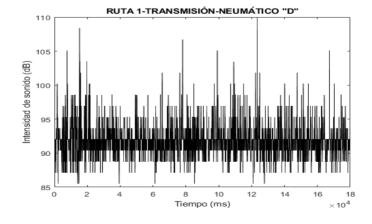
Figura 134


Ruido en el interior del habitáculo, neumático "D" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "D" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 121, 114, 113 dB y los valores de ruido mínimo son 88, 87, 85 dB.

Figura 135

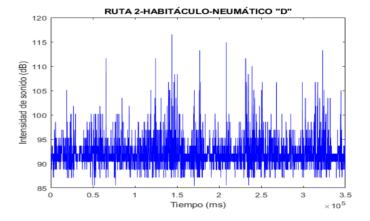

Ruido en el motor, neumático "D" ruta No. 1



En la prueba realizada en la ruta No. 1 con el neumático "D" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 110, 108, 106 dB y los valores del ruido mínimo son 88, 87, 85 dB.

Figura 136

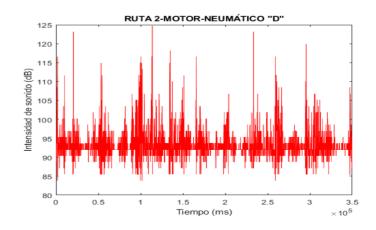
Ruido en la transmisión, neumático "D" ruta No. 1




# 3.10.2.14. Ruta No. 2 Neumático "D" (Anchee)

En la prueba realizada en la ruta No. 2 con el neumático "D" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 116, 114, 111 dB y los valores de ruido mínimo son 88, 87, 85 dB.

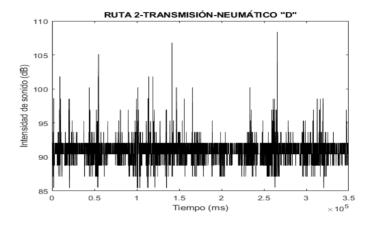
Figura 137


Ruido en el interior del habitáculo, neumático "D" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "D" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 124, 123, 116 dB y los valores de ruido mínimo son 87, 85, 83 dB.

Figura 138

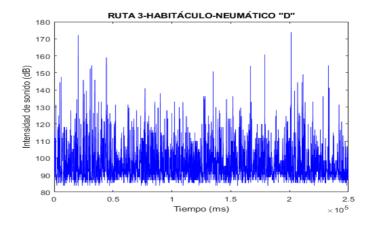

Ruido en el motor, neumático "D" ruta No. 2



En la prueba realizada en la ruta No. 2 con el neumático "D" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 108, 106, 105 dB y los valores del ruido mínimo son 87, 85 dB.

Figura 139

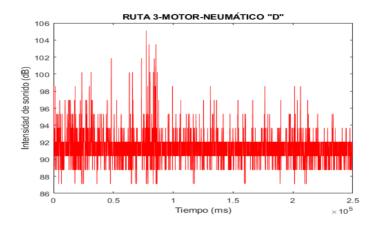
Ruido en la transmisión, neumático "D" ruta No. 2




3.10.2.15. Ruta No. 3 Neumático "D" (Anchee)

En la prueba realizada en la ruta No. 3 con el neumático "D" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 173, 179 dB y los valores de ruido mínimo son 87, 85, 83 dB.

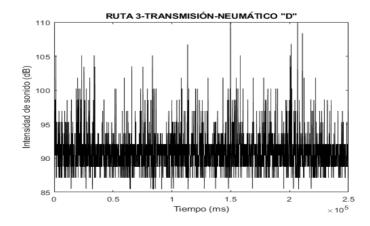
Figura 140


Ruido en el interior del habitáculo, neumático "D" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "D" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 105, 103, 101 dB y los valores de ruido mínimo son 88, 87 dB.

Figura 141

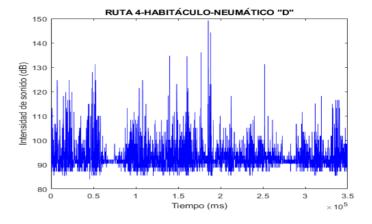

Ruido en el motor, neumático "D" ruta No. 3



En la prueba realizada en la ruta No. 3 con el neumático "D" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 110, 108, 106 dB y los valores del ruido mínimo son 87, 85 dB.

Figura 142

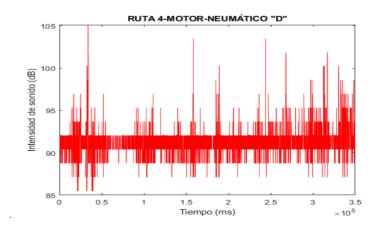
Ruido en la transmisión, neumático "D" ruta No. 3




# 3.10.2.16. Ruta No. 4 Neumático "D" (Anchee)

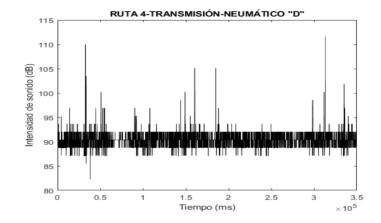
En la prueba realizada en la ruta No. 4 con el neumático "D" en cuanto al interior del habitáculo, se pudo determinar que los valores de ruido máximo (picos) son de 149, 136 dB y los valores de ruido mínimo son 87, 85 dB.

Figura 143


Ruido en el interior del habitáculo, neumático "D" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "D" en cuanto al motor, se pudo determinar que los valores de ruido máximo (picos) son de 105, 103, 101 dB y los valores de ruido mínimo son 88, 87, 85 dB.


Figura 144

Ruido en el motor, neumático "D" ruta No. 4



En la prueba realizada en la ruta No. 4 con el neumático "D" en cuanto a la transmisión, se pudo determinar que los valores de ruido máximo (picos) son de 110, 105, 100 dB y los valores del ruido mínimo son 88, 87, 82 dB.

Figura 145
Ruido en la transmisión, neumático "D" ruta No. 4



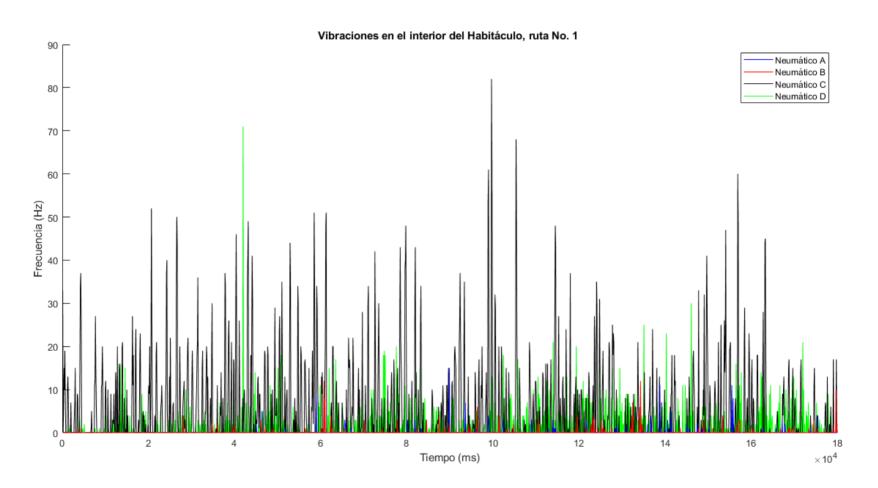
## Capitulo IV

#### 4. Análisis de Resultados

### 4.1. Análisis de Vibraciones

## 4.1.1. Vibraciones en el interior del habitáculo, ruta No. 1

En la Figura 146 se representan los espectros a partir de las mediciones de vibraciones realizadas en el interior del habitáculo en la ruta No. 1 la cual corresponde al Asfalto, se compararon las frecuencias de vibración de cada espectro correspondiente a las vibraciones en el interior del habitáculo con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso de los neumáticos C y D.


En referencia a los cuatro tipos de neumáticos empleados, se deduce que los neumáticos C y D ocasionan que se presentan mayores alteraciones en el patrón de sus espectros de vibración en el interior del habitáculo con valores picos muy significativos de 82 y 71 Hz respectivamente, siendo el pico más alto generado por algún desperfecto que presenta la ruta.

A diferencia de los neumáticos C y D, los neumáticos A y B ocasionan que se presenten espectros muy similares en las vibraciones al interior del habitáculo y valores picos de frecuencia bajos en comparación con el uso de los dos neumáticos mencionados anteriormente, tomando valores de 15 y 12 Hz respectivamente.

Al analizar los espectros se determinó que el neumático B con patrón de banda de rodadura direccional "V" es el que mejor se comporta en cuanto a la generación de vibraciones en el interior del habitáculo, mientras que el neumático C con patrón de banda de rodadura asimétrico es el que más vibraciones genera.

Figura 146

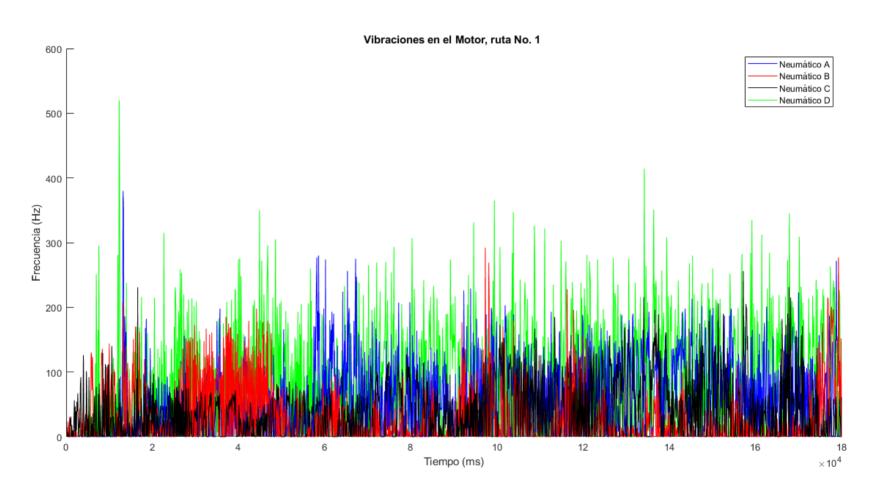
Vibraciones en el interior del habitáculo, ruta No. 1



### 4.1.2. Vibraciones en el motor, ruta No. 1

En la Figura 147 se representan los espectros a partir de las mediciones de vibraciones realizadas en el motor en la ruta No. 1 la cual corresponde al Asfalto, se compararon las frecuencias de vibración de cada espectro correspondiente a la vibración en el motor con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso del neumático D.

Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es la frecuencia de vibración en el motor generada por los distintos neumáticos empleados.


En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático D genera una frecuencia de vibración en el motor mayor en comparación con el uso del resto de neumáticos dándonos un valor máximo de 520 Hz siendo el pico más alto generado por algún desperfecto que presenta la ruta.

A diferencia del neumático D, los neumáticos A, B y C generan espectros muy similares entre ellos y valores picos de frecuencia de vibraciones en el motor menores en comparación al uso del neumático mencionado anteriormente, tomando valores de 380, 292 y 256 Hz respectivamente.

Al analizar los espectros se determinó que el neumático B con patrón de banda de rodadura asimétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el motor del vehículo empleado, mientras que el neumático D con patrón de banda de rodadura simétrico es el que más vibraciones genera.

Figura 147

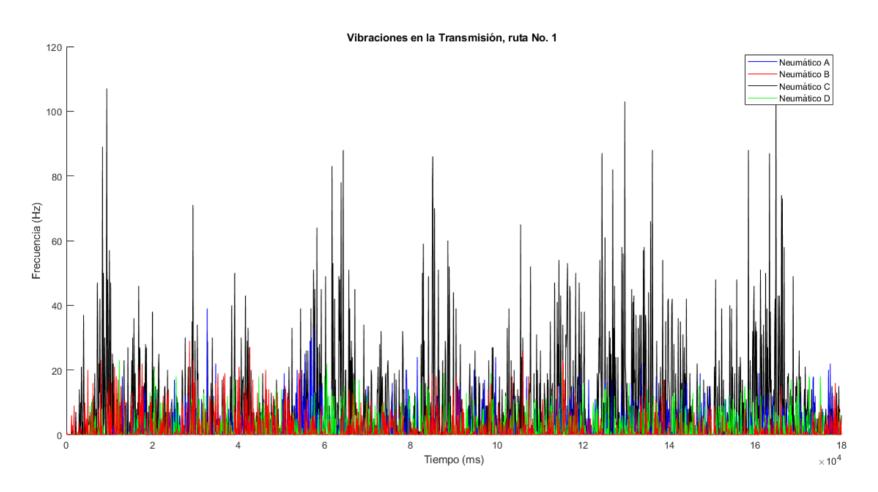
Vibraciones en el motor, ruta No 1



### 4.1.3. Vibraciones en la transmisión, ruta No. 1

En la Figura 148 se representan los espectros a partir de las mediciones de vibraciones realizadas en la transmisión en la ruta No. 1 la cual corresponde al Asfalto, se compararon las frecuencias de vibración de cada espectro correspondiente a la vibración en la transmisión con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso del neumático C.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático C genera una frecuencia de vibración en la transmisión mayor en comparación con el uso del resto de neumáticos dándonos un valor máximo de 116 Hz siendo el pico más alto generado por algún desperfecto que presenta la ruta.


A diferencia del neumático C, los neumáticos A, B y D generan espectros muy similares entre ellos y valores picos de frecuencia de vibraciones en el la transmisión menores en comparación al uso del neumático mencionado anteriormente, tomando valores de 39, 29 y 23 Hz respectivamente.

Al analizar los espectros se determinó que el neumático D con patrón de banda de rodadura simétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el la transmisión del vehículo empleado, mientras que el neumático C con patrón de banda de rodadura asimétrico es el que más vibraciones genera.

Se identifica que los valores de vibración promedios presentados en esta ruta en referencia a las vibraciones en la transmisión están comprendidos entre valores de 1 a 8 Hz aproximadamente con el uso de los diferentes neumáticos empleados.

Figura 148

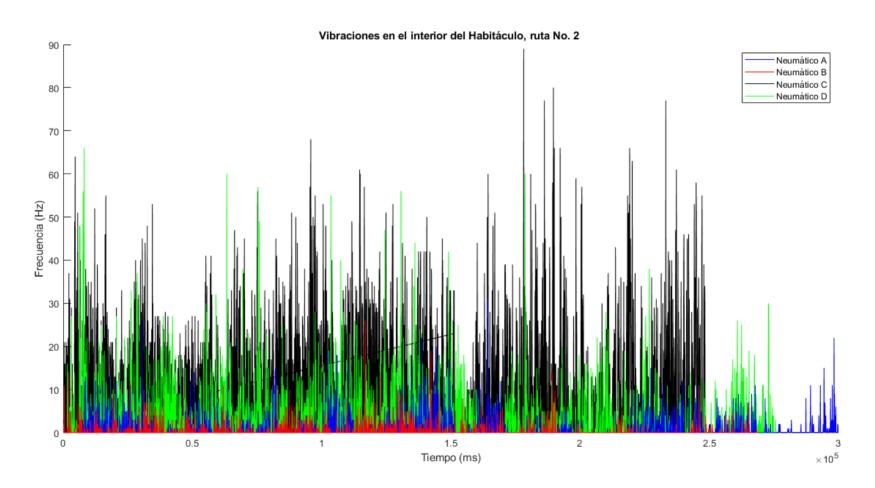
Vibraciones en la transmisión, ruta No. 1



## 4.1.4. Vibraciones en el interior del habitáculo, ruta No. 2

En la Figura 149 se representan los espectros a partir de las mediciones de vibraciones realizadas en el interior del habitáculo en la ruta No. 2 la cual corresponde al Adoquín, se compararon las frecuencias de vibración de cada espectro correspondiente a las vibraciones en el interior del habitáculo con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso de los neumáticos C y D.

Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es la frecuencia de vibración en el interior del habitáculo generada por los distintos neumáticos empleados.


En referencia a los cuatro tipos de neumáticos empleados, se deduce que los neumáticos C y D ocasionan que se presentan mayores alteraciones en el patrón de sus espectros de vibración en el interior del habitáculo con valores picos muy significativos de 89 y 66 Hz respectivamente, siendo el pico más alto generado por algún desperfecto que presenta la ruta.

A diferencia de los neumáticos C y D, los neumáticos A y B ocasionan que se presenten espectros muy similares en las vibraciones al interior del habitáculo y valores picos de frecuencia bajos en comparación con el uso de los dos neumáticos mencionados anteriormente, tomando valores de 31 y 26 Hz respectivamente.

Al analizar los espectros se determinó que el neumático B con patrón de banda de rodadura direccional "V" es el que mejor se comporta en cuanto a la generación de vibraciones en el interior del habitáculo, mientras que el neumático C con patrón de banda de rodadura asimétrico es el que más vibraciones genera.

Figura 149

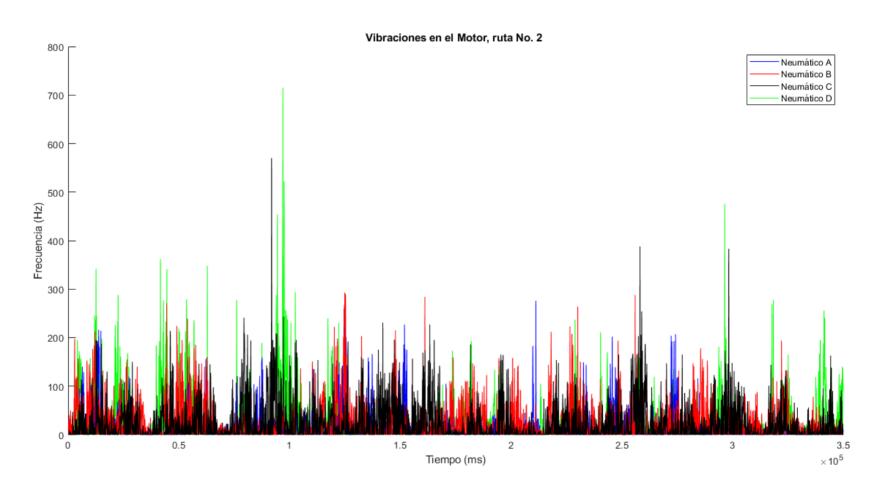
Vibraciones en el interior del habitáculo, ruta No. 2



### 4.1.5. Vibraciones en el motor, ruta No. 2

En la Figura 150 se representan los espectros a partir de las mediciones de vibraciones realizadas en el motor en la ruta No. 2 la cual corresponde al Adoquín, se compararon las frecuencias de vibración de cada espectro correspondiente a la vibración en el motor con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso del neumático D.

Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es la frecuencia de vibración en el motor generada por los distintos neumáticos empleados.


En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático D genera una frecuencia de vibración en el motor mayor en comparación con el uso del resto de neumáticos dándonos un valor máximo de 715 Hz siendo el pico más alto generado por algún desperfecto que presenta la ruta y la velocidad del vehículo.

A diferencia del neumático D, los neumáticos A, B y C generan espectros muy similares entre ellos y valores picos de frecuencia de vibraciones en el motor menores en comparación al uso del neumático mencionado anteriormente, tomando valores de 276, 293, 570 Hz respectivamente.

Al analizar los espectros se determinó que el neumático A con patrón de banda de rodadura asimétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el motor del vehículo empleado, mientras que el neumático D con patrón de banda de rodadura simétrico es el que más vibraciones genera.

Figura 150

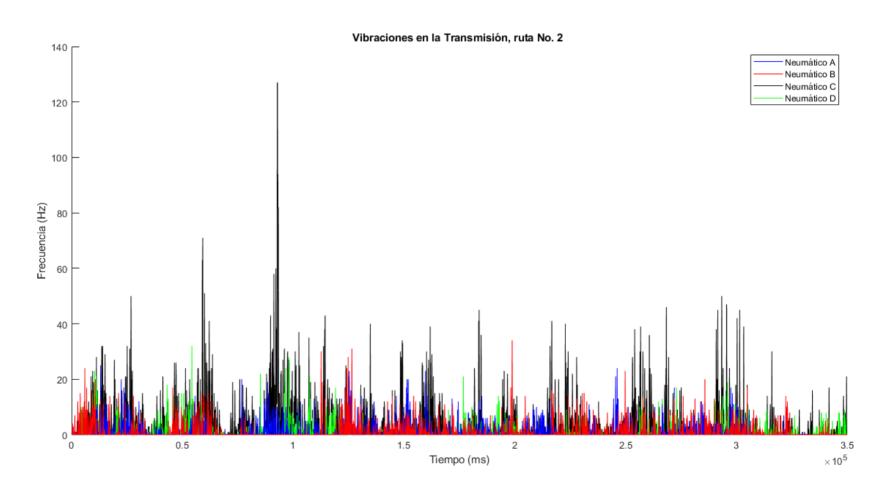
Vibraciones en el motor, ruta No. 2



### 4.1.6. Vibraciones en la transmisión, ruta No. 2

En la Figura 151 se representan los espectros a partir de las mediciones de vibraciones realizadas en la transmisión en la ruta No. 2 la cual corresponde al Adoquín, se compararon las frecuencias de vibración de cada espectro correspondiente a la vibración en la transmisión con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso del neumático C.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático C genera una frecuencia de vibración en la transmisión mayor en comparación con el uso del resto de neumáticos dándonos un valor máximo de 127 Hz siendo el pico más alto generado por algún desperfecto que presenta la ruta.


A diferencia del neumático C, los neumáticos A, B y D generan espectros muy similares entre ellos y valores picos de frecuencia de vibraciones en el la transmisión menores en comparación al uso del neumático mencionado anteriormente, tomando valores de 25, 34, 32 Hz respectivamente.

Al analizar los espectros se determinó que el neumático A con patrón de banda de rodadura asimétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el la transmisión del vehículo empleado, mientras que el neumático C también con patrón de banda de rodadura asimétrico es el que más vibraciones genera.

Se identifica que los valores de vibración promedios presentados en esta ruta en referencia a las vibraciones en la transmisión están comprendidos entre valores de 0 a 5 Hz aproximadamente con el uso de los diferentes neumáticos empleados.

Figura 151

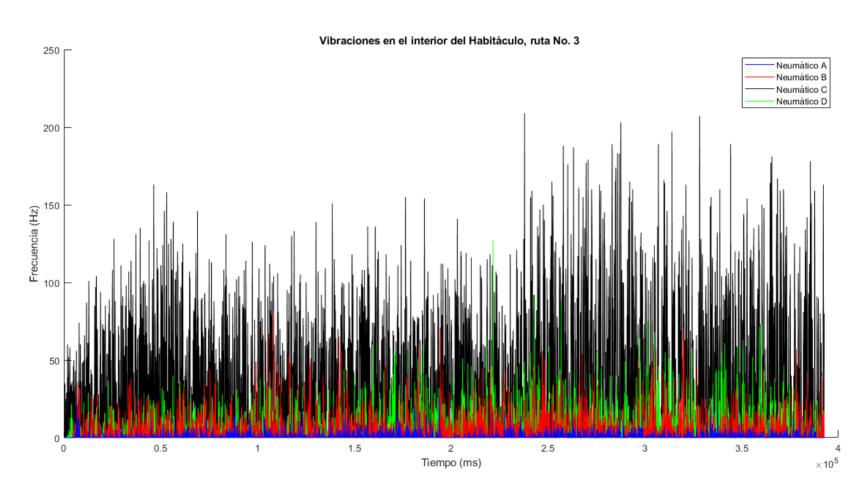
Vibraciones en la transmisión, ruta No. 2



## 4.1.7. Vibraciones en el interior del habitáculo, ruta No. 3

En la Figura 152 se representan los espectros a partir de las mediciones de vibraciones realizadas en el interior del habitáculo en la ruta No. 3 la cual corresponde al Empedrado, se compararon las frecuencias de vibración de cada espectro correspondiente a las vibraciones en el interior del habitáculo con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso del neumático C.

Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es la frecuencia de vibración en el interior del habitáculo generada por los distintos neumáticos empleados.


En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático C ocasiona que se presente mayores alteraciones en el patrón de sus espectros de vibración en el interior del habitáculo con valores picos muy significativos de 209 Hz respectivamente, siendo el pico más alto generado por el tipo y características propias de la ruta.

A diferencia del neumático C, los neumáticos A, B y D ocasionan que se presenten espectros muy similares en las vibraciones al interior del habitáculo y valores picos de frecuencia bajos en comparación con el uso de los dos neumáticos mencionados anteriormente, tomando valores de 27, 82 y 127 Hz respectivamente.

Al analizar los espectros se determinó que el neumático A con patrón de banda de rodadura asimétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el interior del habitáculo, mientras que el neumático C también con patrón de banda de rodadura asimétrico es el que más vibraciones genera.

Figura 152

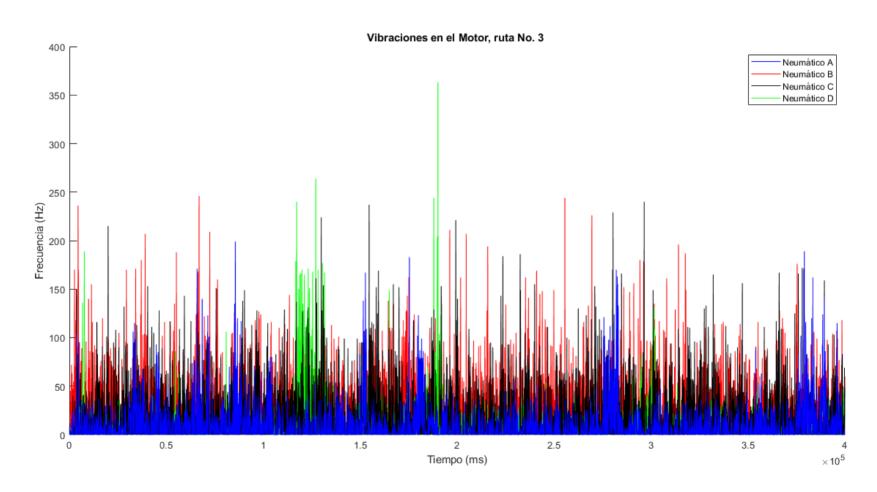
Vibraciones en el interior del habitáculo, ruta No. 3



### 4.1.8. Vibraciones en el motor, ruta No.3

En la Figura 153 se representan los espectros a partir de las mediciones de vibraciones realizadas en el motor en la ruta No. 3 la cual corresponde al Empedrado, se compararon las frecuencias de vibración de cada espectro correspondiente a la vibración en el motor con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso del neumático D.

Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es la frecuencia de vibración en el motor generada por los distintos neumáticos empleados.


En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático D genera una frecuencia de vibración en el motor mayor en comparación con el uso del resto de neumáticos dándonos un valor máximo de 363 Hz siendo el pico más alto generado por el tipo y las características de la ruta.

A diferencia del neumático D, los neumáticos A, B y C generan espectros muy similares entre ellos y valores picos de frecuencia de vibraciones en el motor menores en comparación al uso del neumático mencionado anteriormente, tomando valores de 199, 246, 240 Hz respectivamente.

Al analizar los espectros se determinó que el neumático A con patrón de banda de rodadura asimétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el motor del vehículo empleado, mientras que el neumático D con patrón de banda de rodadura simétrico es el que más vibraciones genera.

Figura 153

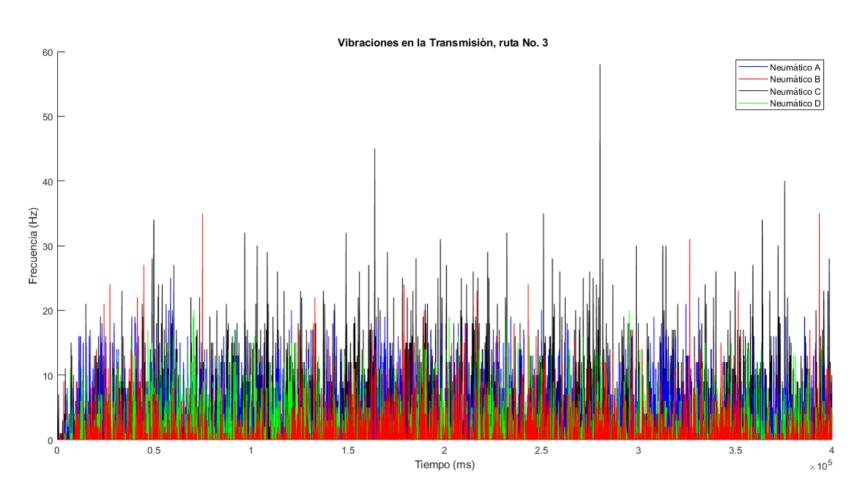
Vibraciones en el motor, ruta No. 3



## 4.1.9. Vibraciones en la transmisión, ruta No. 3

En la Figura 154 se representan los espectros a partir de las mediciones de vibraciones realizadas en la transmisión en la ruta No. 3 la cual corresponde al Empedrado, se compararon las frecuencias de vibración de cada espectro correspondiente a la vibración en la transmisión con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso del neumático C.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático C genera una frecuencia de vibración en la transmisión mayor en comparación con el uso del resto de neumáticos dándonos un valor máximo de 58 Hz siendo el pico más alto generado por algún desperfecto que presenta la ruta.


A diferencia del neumático C, los neumáticos A, B y D generan espectros muy similares entre ellos y valores picos de frecuencia de vibraciones en el la transmisión menores en comparación al uso del neumático mencionado anteriormente, tomando valores de 25, 35, 20 Hz respectivamente.

Al analizar los espectros se determinó que el neumático D con patrón de banda de rodadura simétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el la transmisión del vehículo empleado, mientras que el neumático C con patrón de banda de rodadura asimétrico es el que más vibraciones genera.

Se identifica que los valores de vibración promedios presentados en esta ruta en referencia a las vibraciones en la transmisión están comprendidos entre valores de 1 a 3 Hz aproximadamente con el uso de los diferentes neumáticos empleados.

Figura 154

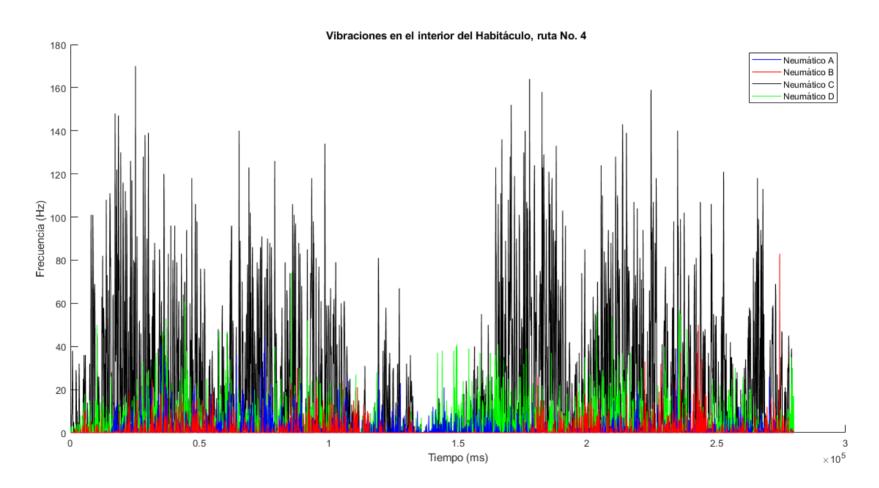
Vibraciones en la transmisión, ruta No. 3



## 4.1.10. Vibraciones en el interior del habitáculo, ruta No. 4

En la Figura 155 se representan los espectros a partir de las mediciones de vibraciones realizadas en el interior del habitáculo en la ruta No. 4 la cual corresponde al Suelo natural, se compararon las frecuencias de vibración de cada espectro correspondiente a las vibraciones en el interior del habitáculo con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso del neumático C.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático C ocasiona que se presente mayores alteraciones en el patrón de sus espectros de vibración en el interior del habitáculo con valores picos muy significativos de 170 Hz respectivamente, siendo el pico más alto generado por el tipo y características propias de la ruta.


A diferencia del neumático C, los neumáticos A, B y D ocasionan que se presenten espectros muy similares en las vibraciones al interior del habitáculo y valores picos de frecuencia bajos en comparación con el uso de los dos neumáticos mencionados anteriormente, tomando valores de 44, 83 y 74 Hz respectivamente.

Al analizar los espectros se determinó que el neumático A con patrón de banda de rodadura asimétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el interior del habitáculo, mientras que el neumático C también con patrón de banda de rodadura asimétrico es el que más vibraciones genera.

Se identifica que los valores de vibración promedios presentados en esta ruta en referencia a las vibraciones en el interior del habitáculo están comprendidos entre valores de 1 a 20 Hz aproximadamente con el uso de los diferentes neumáticos empleados.

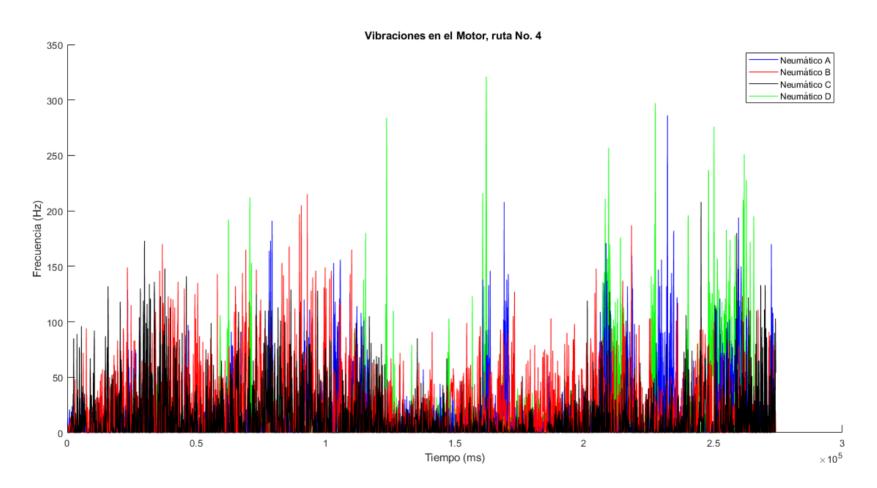
Figura 155

Vibraciones en el interior del habitáculo, ruta No. 4



## 4.1.11. Vibraciones en el motor, ruta No. 4

En la Figura 156 se representan los espectros a partir de las mediciones de vibraciones realizadas en el motor en la ruta No. 4 la cual corresponde al Suelo natural, se compararon las frecuencias de vibración de cada espectro correspondiente a la vibración en el motor con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso del neumático D.


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es la frecuencia de vibración en el motor generada por los distintos neumáticos empleados.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático D genera una frecuencia de vibración en el motor mayor en comparación con el uso del resto de neumáticos dándonos un valor máximo de 321 Hz siendo el pico más alto generado por el tipo y las características de la ruta.

A diferencia del neumático D, los neumáticos A, B y C generan espectros muy similares entre ellos y valores picos de frecuencia de vibraciones en el motor menores en comparación al uso del neumático mencionado anteriormente, tomando valores de 286, 215 y 208 Hz respectivamente.

Al analizar los espectros se determinó que el neumático C con patrón de banda de rodadura asimétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el motor del vehículo empleado, mientras que el neumático D con patrón de banda de rodadura simétrico es el que más vibraciones genera.

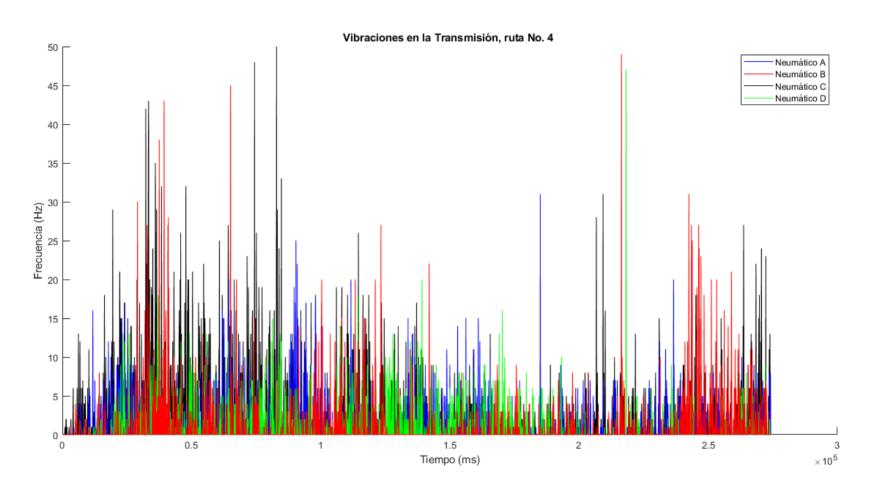
Figura 156
Vibraciones en el motor, ruta No. 4



# 4.1.12. Vibraciones en la transmisión, ruta No. 4

En la Figura 157 se representan los espectros a partir de las mediciones de vibraciones realizadas en la transmisión en la ruta No. 4 la cual corresponde al Suelo natural, se compararon las frecuencias de vibración de cada espectro correspondiente a la vibración en la transmisión con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo, siendo más significativos con el uso de los neumáticos B, C y D.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que el neumático C genera una frecuencia de vibración en la transmisión no tan mayor en comparación con el uso del resto de neumáticos dándonos un valor máximo de 50 Hz siendo el pico más alto generado por algún desperfecto que presenta la ruta.


A diferencia del neumático C, los neumáticos A, B y D generan espectros muy similares entre ellos y valores picos de frecuencia de vibraciones en el la transmisión menores en comparación al uso del neumático mencionado anteriormente, tomando valores de 31, 49 y 47 Hz respectivamente.

Al analizar los espectros se determinó que el neumático A con patrón de banda de rodadura asimétrico es el que mejor se comporta en cuanto a la generación de vibraciones en el la transmisión del vehículo empleado, mientras que el neumático C también con patrón de banda de rodadura asimétrico es el que más vibraciones genera.

Se identifica que los valores de vibración promedios presentados en esta ruta en referencia a las vibraciones en la transmisión están comprendidos entre valores de 0 a 2 Hz aproximadamente con el uso de los diferentes neumáticos empleados.

Figura 157

Vibraciones en la Transmisión, ruta No. 4

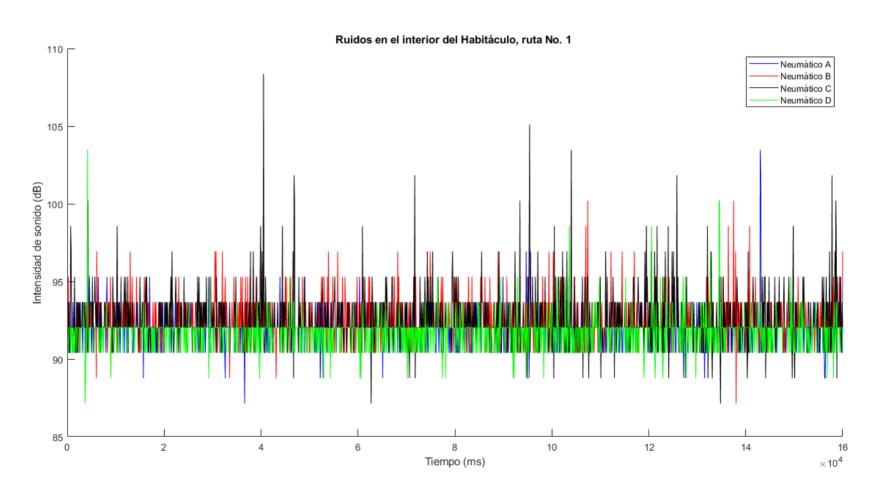


#### 4.2. Análisis de Ruidos

# 4.2.1. Ruidos en el interior del habitáculo, ruta No. 1

En la Figura 158 se representan los espectros a partir de las mediciones de ruido realizadas en el interior del habitáculo en la ruta No. 1 la cual corresponde al Asfalto, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en el interior del habitáculo con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo debido a la excitación aerodinámica

Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido.


En referencia a los cuatro tipos de neumáticos empleados, se deduce que los neumáticos A, C y D presentan mayores alteraciones en el pico de sus espectros de ruido en el interior del habitáculo con valores muy significativos de 103, 108 y 103 dB respectivamente, siendo estos generados por el flujo de aire alrededor de la carroceria.

A diferencia de los neumáticos anteriores, el neumático B ocasiona que se presenten espectros de ruido similares en el interior del habitáculo y valores picos de intensidad de sonido bajos en comparación a los generados con los neumáticos mencionados anteriormente, tomando valores de 100 dB

Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares al interior del habitáculo con promedio de 90 a 92 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo el ruido generado se encuentra fuera del rango de los LIMITES PERMISIBLES DE RUIDO (Anexo 4).

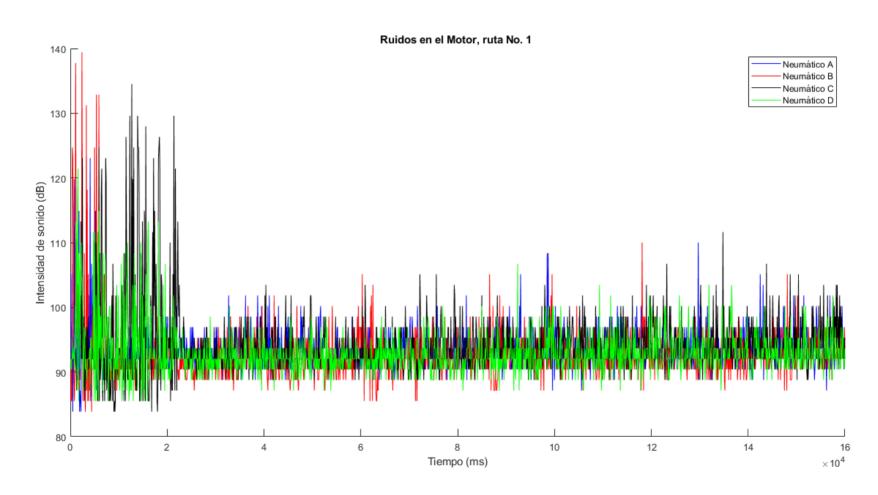
Figura 158

Ruidos en el interior del habitáculo, ruta No. 1



## 4.2.2. Ruidos en el motor, ruta No. 1

En la Figura 159 se representan los espectros a partir de las mediciones de ruido realizadas en el motor en la ruta No. 1 la cual corresponde al Asfalto, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en el motor con cada uno de los neumáticos empleados, mostrando que inicialmente existieron variaciones en los valores máximos en instantes de tiempo debido a la velocidad, rpm y cambios de marcha efectuados en el vehículo, también siendo afectado por ruidos parásitos de origen aerodinámico.


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que todos los neumáticos ocasionan picos altos de intensidad de sonido al inicio de la ruta, siendo más notorios con el uso de los neumáticos B y C tomando valores de 139, 134 dB respectivamente.

A diferencia de los neumáticos anteriores, los neumáticos A y D ocasiona que se presenten espectros de ruido similares en el motor y valores picos de intensidad de sonido bajos en comparación a los generados con los neumáticos mencionados anteriormente, tomando valores de 123 y 121 dB

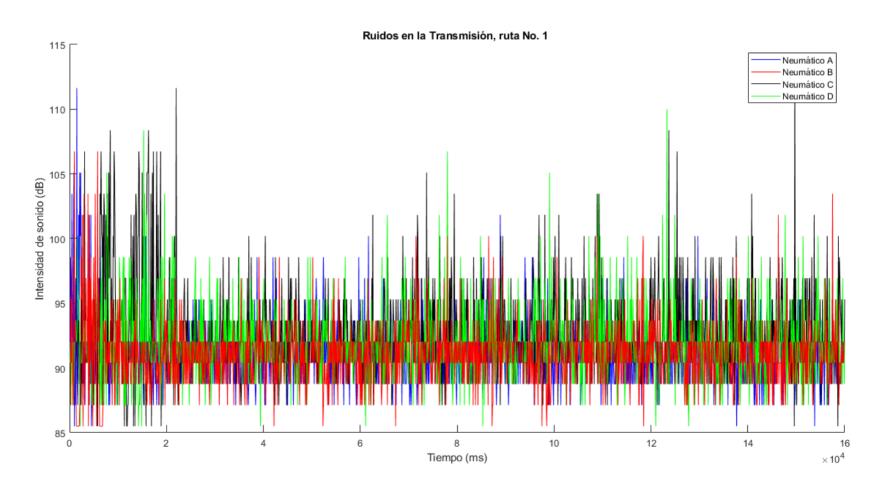
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares en el motor con promedio de 92 a 94 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo el ruido generado se encuentra fuera del rango de 86 a 90 dB que según (Sánchez, 2014) considera admisibles y confortables en el motor.

Figura 159
Ruidos en el motor, ruta No. 1



## 4.2.3. Ruidos en la transmisión, ruta No. 1

En la Figura 160 se representan los espectros a partir de las mediciones de ruido realizadas en la transmisión en la ruta No. 1 la cual corresponde al Asfalto, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en la transmisión con cada uno de los neumáticos empleados, mostrando que inicialmente existieron variaciones en los valores máximos en instantes de tiempo debido a la velocidad, rpm y cambios de marcha efectuados en el vehículo, también siendo afectado por ruidos parásitos de origen mecánico y por las proyecciones.


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido por las razones anteriormente descritas.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que todos los neumáticos ocasionan picos altos de intensidad de sonido al inicio de la ruta, siendo más notorios con el uso de los neumáticos A y C tomando valores de 111, 113 dB respectivamente.

A diferencia de los neumáticos anteriores, los neumáticos B y D ocasiona que se presenten espectros de ruido similares en la transmisión y valores picos de intensidad de sonido bajos en comparación a los generados con los neumáticos mencionados anteriormente, tomando valores de 106 y 110 dB.

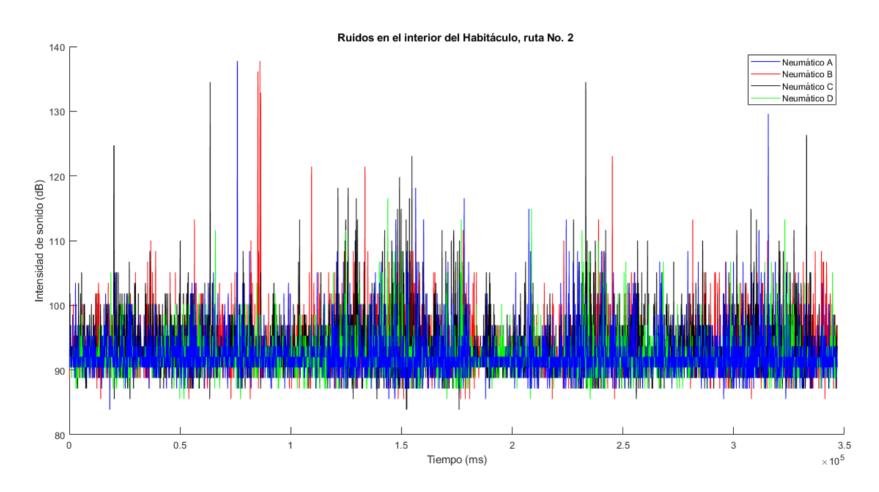
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares en la transmisión con promedio de 91 a 92 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo el ruido generado se encuentra cerca del rango admisible tomando en consideración que debe ser el mismo rango que para el motor.

Figura 160
Ruido en la transmisión, ruta No. 1



## 4.2.4. Ruidos en el interior del habitáculo, ruta No. 2

En la Figura 161 se representan los espectros a partir de las mediciones de ruido realizadas en el interior del habitáculo en la ruta No. 2 la cual corresponde al Adoquín, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en el interior del habitáculo con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo debido a la excitación aerodinámica


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que los neumáticos A y B presentan mayores alteraciones en el pico de sus espectros de ruido en el interior del habitáculo con valores muy significativos de 137 dB para ambos neumáticos, siendo estos generados por el flujo de aire alrededor de la carroceria.

A diferencia de los neumáticos anteriores, los neumáticos C y D presentan espectros de ruido similares a los dos anteriores en el interior del habitáculo y valores picos de intensidad de sonido bajos en comparación a los generados con los neumáticos mencionados anteriormente, tomando valores de 134 y 116 dB respectivamente.

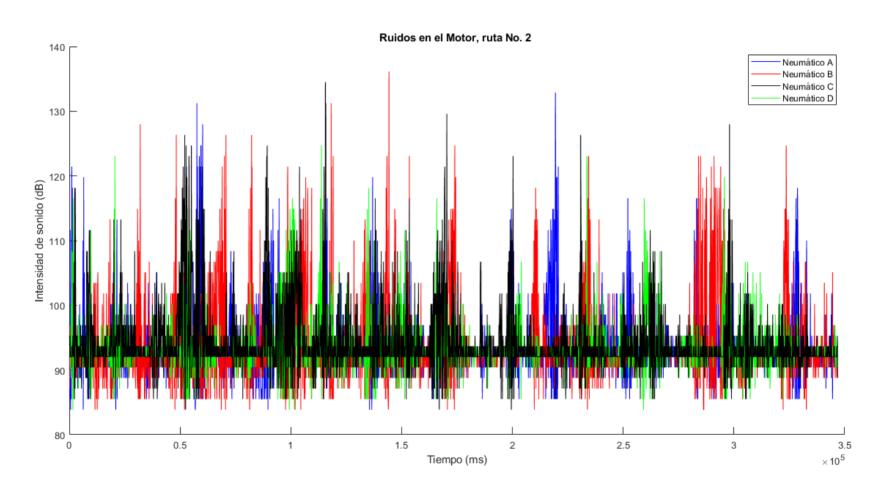
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares al interior del habitáculo con promedio de 92 a 93 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo el ruido generado se encuentra fuera del rango admisible ya detallado con anterioridad.

Figura 161
Ruidos en el interior del habitáculo, ruta No. 2



## 4.2.5. Ruidos en el motor, ruta No. 2

En la Figura 162 se representan los espectros a partir de las mediciones de ruido realizadas en el motor en la ruta No. 2 la cual corresponde al Adoquín, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en el motor con cada uno de los neumáticos empleados, mostrando que existieron variaciones a lo largo de toda la ruta en los valores máximos en instantes de tiempo debido a la velocidad, rpm y cambios de marcha efectuados en el vehículo, también siendo afectado por ruidos parásitos de origen aerodinámico.


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que todos los neumáticos ocasionan picos altos de intensidad de sonido a lo largo de la ruta, siendo más notorios con el uso de los neumáticos B y C tomando valores de 136, 134 dB respectivamente.

A diferencia de los neumáticos anteriores, los neumáticos A y D ocasiona que se presenten espectros de ruido similares en el motor y valores picos de intensidad de sonido no tan bajos en comparación a los generados con los neumáticos mencionados anteriormente, tomando valores de 132 y 124 dB

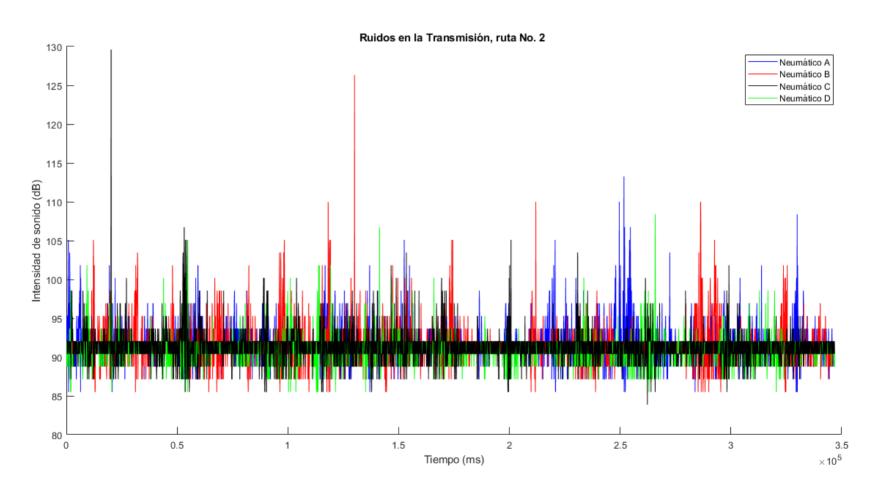
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares en el motor con promedio de 93 a 94 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo el ruido generado se encuentra fuera del rango de 86 a 90 dB que anteriormente ya se consideró admisible y confortable en el motor.

Figura 162
Ruidos en el motor, ruta No. 2



## 4.2.6. Ruidos en la transmisión, ruta No. 2

En la Figura 163 se representan los espectros a partir de las mediciones de ruido realizadas en la transmisión en la ruta No. 2 la cual corresponde al Adoquín, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en la transmisión con cada uno de los neumáticos empleados, mostrando que uno de los neumáticos presento un pico máximo muy elevado instantes de tiempo, esto fue debido a la velocidad, rpm y cambios de marcha efectuados en el vehículo, también siendo afectado por ruidos parásitos de origen mecánico y por las proyecciones.


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido por las razones anteriormente descritas.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que todos los neumáticos ocasionan picos altos de intensidad de sonido a lo largo de la ruta, siendo más notorios con el uso de los neumáticos B y C tomando valores de 126 y 129 dB respectivamente.

A diferencia de los neumáticos anteriores, los neumáticos A y D ocasiona que se presenten espectros de ruido similares en la transmisión y valores picos de intensidad de sonido bajos en comparación a los generados con los neumáticos mencionados anteriormente, tomando valores de 113 y 108 dB.

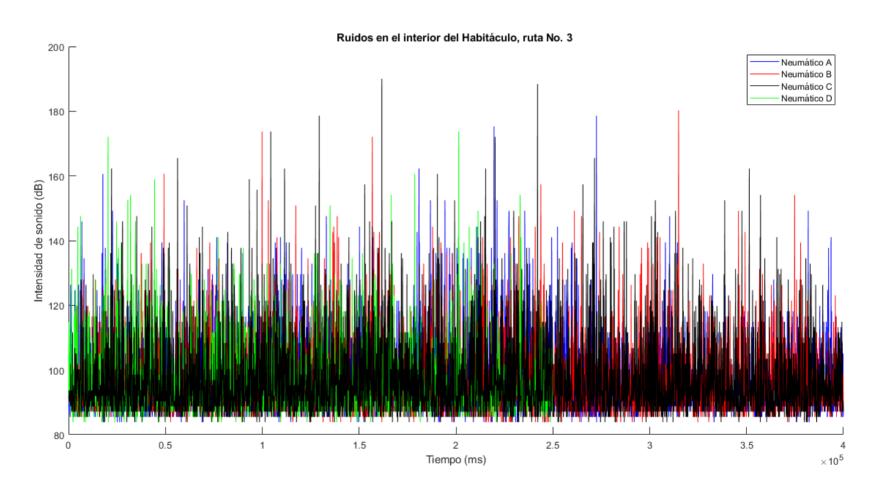
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares en la transmisión con promedio de 90 a 92 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo el ruido generado se encuentra cerca del rango admisible tomando en consideración que debe ser el mismo rango que para el motor

Figura 163
Ruidos en la transmisión, ruta No 2



## 4.2.7. Ruidos en el interior del habitáculo, ruta No. 3

En la Figura 164 se representan los espectros a partir de las mediciones de ruido realizadas en el interior del habitáculo en la ruta No. 3 la cual corresponde al Empedrado, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en el interior del habitáculo con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo debido a la excitación aerodinámica


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que los neumáticos B y C presentan mayores alteraciones en el pico de sus espectros de ruido en el interior del habitáculo con valores muy significativos de 180 y 190 dB respectivamente, siendo estos generados por el flujo de aire alrededor de la carroceria.

A diferencia de los neumáticos anteriores, los neumáticos A y D presentan espectros de ruido similares a los dos anteriores en el interior del habitáculo y valores picos de intensidad de sonido bajos en comparación a los generados con los neumáticos mencionados anteriormente, tomando valores de 178 y 173 dB respectivamente.

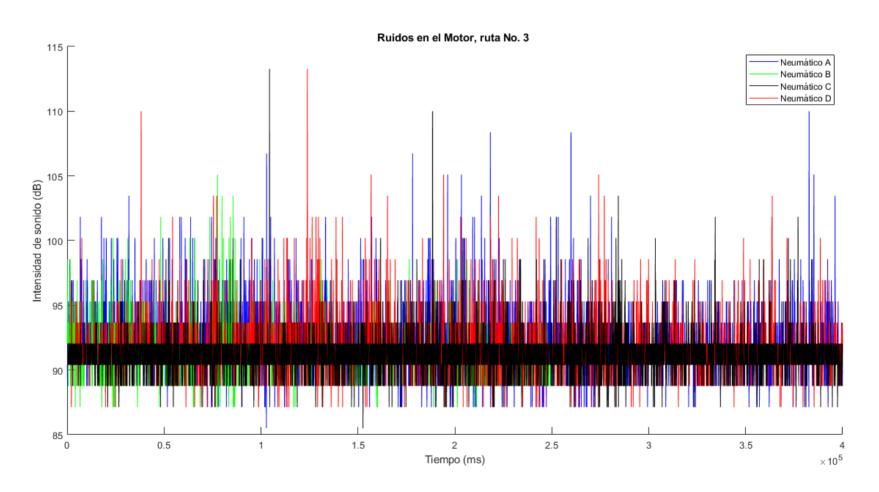
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares al interior del habitáculo con promedio de 96 a 94 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo el ruido generado se encuentra fuera del rango admisible ya detallado con anterioridad.

Figura 164
Ruidos en el interior del habitáculo, ruta No. 3



## 4.2.8. Ruidos en el motor, ruta No.3

En la Figura 165 representan los espectros a partir de las mediciones de ruido realizadas en el motor en la ruta No. 3 la cual corresponde al Empedrado, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en el motor con cada uno de los neumáticos empleados, mostrando que existieron variaciones a lo largo de toda la ruta en los valores máximos en instantes de tiempo debido a la velocidad, rpm y cambios de marcha efectuados en el vehículo, también siendo afectado por ruidos parásitos de origen aerodinámico.


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que todos los neumáticos ocasionan picos altos de intensidad de sonido a lo largo de la ruta, siendo más notorios con el uso de los neumáticos B y C tomando valores de 113 dB para ambos casos.

A diferencia de los neumáticos anteriores, los neumáticos A y D ocasiona que se presenten espectros de ruido similares en el motor y valores picos de intensidad de sonido no tan bajos en comparación a los generados con los neumáticos mencionados anteriormente, tomando valores de 110 y 105 dB respectivamente.

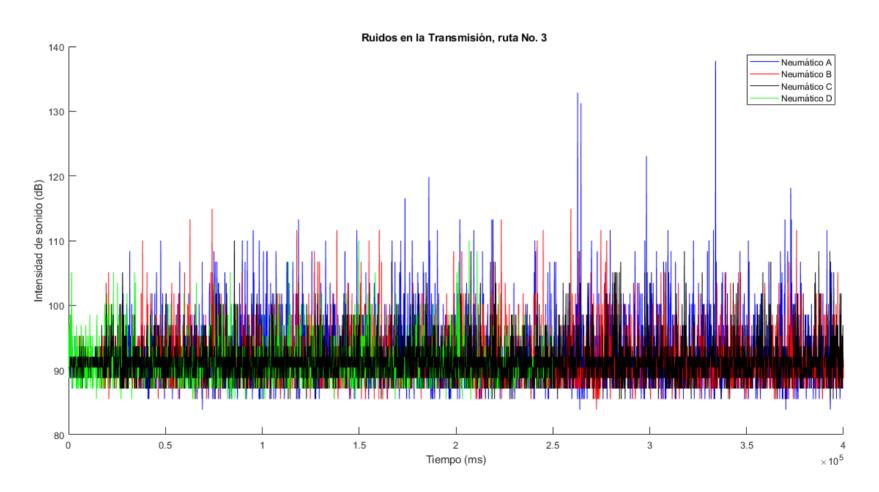
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares en el motor con promedio de 91 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo el ruido generado se encuentra cerca del rango de 86 a 90 dB que anteriormente ya se consideró admisible y confortable en el motor

Figura 165
Ruidos en el motor, ruta No. 3



## 4.2.9. Ruidos en la transmisión, ruta No. 3

En la Figura 166 se representan los espectros a partir de las mediciones de ruido realizadas en la transmisión en la ruta No. 3 la cual corresponde al Empedrado, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en la transmisión con cada uno de los neumáticos empleados, mostrando que uno de los neumáticos presento un pico máximo muy elevado instantes de tiempo, esto fue debido a la velocidad, rpm y cambios de marcha efectuados en el vehículo, también siendo afectado por ruidos parásitos de origen mecánico y por las proyecciones.


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido por las razones anteriormente descritas.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que todos los neumáticos ocasionan picos altos de intensidad de sonido a lo largo de la ruta, siendo más notorios con el uso del neumático A tomando valores de 130 dB.

A diferencia del neumático anterior, los neumáticos B, C y D ocasionan que se presenten espectros de ruido similares en la transmisión y valores picos de intensidad de sonido bajos en comparación a los generados con el neumático mencionado anteriormente, tomando valores de 114 y 110 para estos dos últimos.

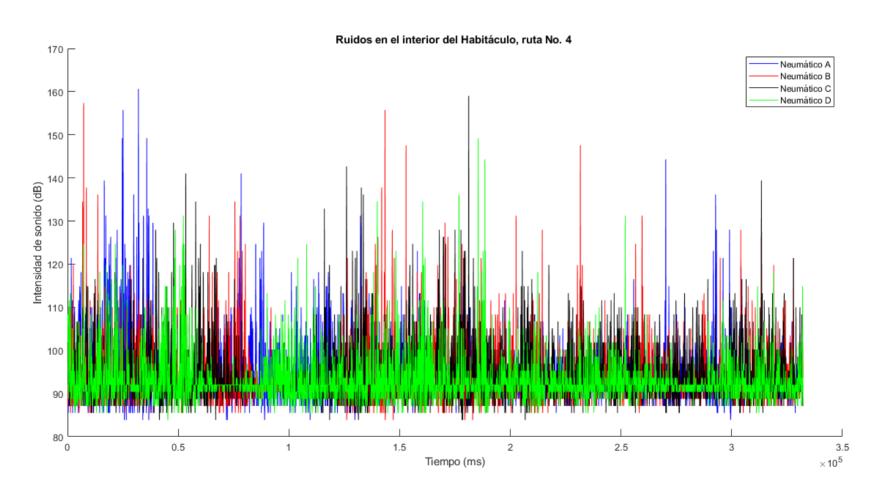
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares en la transmisión con promedio de 90 a 92 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo, el ruido generado se encuentra cerca del rango admisible tomando en consideración que debe ser el mismo rango que para el motor

Figura 166
Ruidos en la transmisión, ruta No. 3



## 4.2.10. Ruidos en el interior del habitáculo, ruta No. 4

En la Figura 167 se representan los espectros a partir de las mediciones de ruido realizadas en el interior del habitáculo en la ruta No. 4 la cual corresponde al Suelo natural, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en el interior del habitáculo con cada uno de los neumáticos empleados, mostrando que existieron variaciones en los valores máximos en instantes de tiempo debido a la excitación aerodinámica


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que los neumáticos A y C presentan mayores alteraciones en el pico de sus espectros de ruido en el interior del habitáculo con valores muy significativos de 160 y 159 dB respectivamente, siendo estos generados por el flujo de aire alrededor de la carroceria.

A diferencia de los neumáticos anteriores, los neumáticos B y D presentan espectros de ruido similares a los dos anteriores en el interior del habitáculo y valores picos de intensidad de sonido poco bajos en comparación a los generados con los neumáticos mencionados anteriormente, tomando valores de 157 y 149 dB respectivamente.

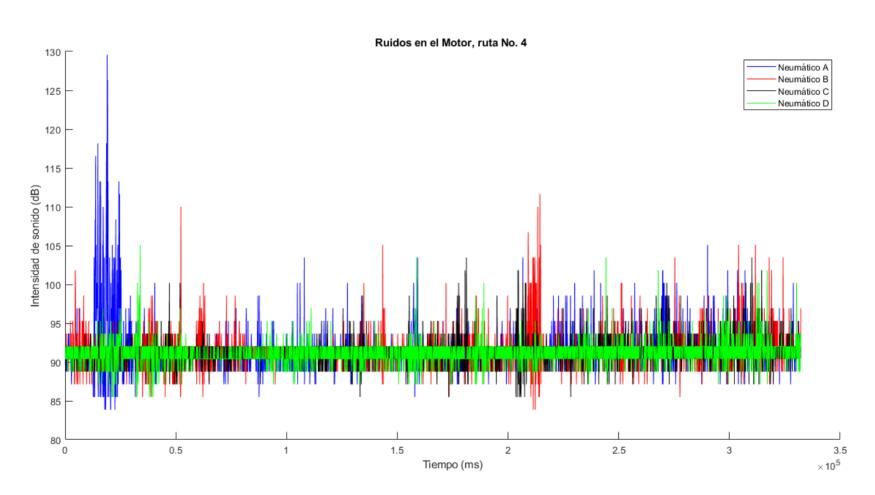
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares al interior del habitáculo con promedio de 93 a 95 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo, el ruido generado se encuentra fuera del rango admisible ya detallado con anterioridad

Figura 167
Ruidos en el interior del habitáculo, ruta No. 4



## 4.2.11. Ruidos en el motor, ruta No. 4

En la Figura 168 se representan los espectros a partir de las mediciones de ruido realizadas en el motor en la ruta No.4 la cual corresponde al Suelo natural, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en el motor con cada uno de los neumáticos empleados, mostrando que existieron variaciones en el primer neumático al inicio de la ruta en los valores máximos en instantes de tiempo debido a la velocidad, rpm y cambios de marcha efectuados en el vehículo, también siendo afectado por ruidos parásitos de origen aerodinámico.


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que todos los neumáticos ocasionan picos altos de intensidad de sonido a lo largo de la ruta, siendo más notorios con el uso del neumático A tomando valores de 129 dB.

A diferencia del neumático anterior, los neumáticos B, C y D ocasiona que se presenten espectros de ruido similares en el motor y valores picos de intensidad de sonido no tan bajos en comparación a los generados con el neumático mencionado anteriormente, tomando valores de 111, 103 y 105 dB respectivamente.

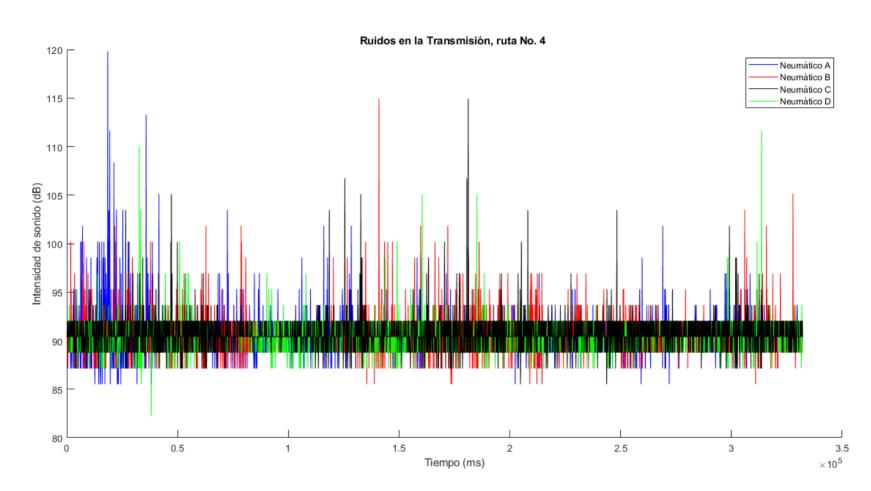
Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares en el motor con promedio de 91 a 92 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo, el ruido generado se encuentra fuera del rango de 86 a 90 dB que anteriormente ya se consideró admisible y confortable en el motor

Figura 168
Ruidos en el motor, ruta No. 4



## 4.2.12. Ruidos en la transmisión, ruta No. 4

En la Figura 169 se representan los espectros a partir de las mediciones de ruido realizadas en la transmisión en la ruta No. 4 la cual corresponde al Suelo natural, se compararon la intensidad de sonido representada por cada espectro correspondiente a los ruidos en la transmisión con cada uno de los neumáticos empleados, mostrando picos máximos muy elevado instantes de tiempo al inicio de la ruta, esto fue debido a la velocidad, rpm y cambios de marcha efectuados en el vehículo, también siendo afectado por ruidos parásitos de origen mecánico y por las proyecciones.


Se identifica claramente una homogeneidad en el patrón de los espectros y los tiempos de realización de las pruebas en esta ruta, notándose que en este caso lo que varía es ciertos picos de intensidad de sonido por las razones anteriormente descritas.

En referencia a los cuatro tipos de neumáticos empleados, se deduce que todos los neumáticos ocasionan picos altos de intensidad de sonido a lo largo de la ruta, siendo más notorios con el uso del neumático A tomando valores de 119 dB.

A diferencia del neumático anterior, los neumáticos B, C y D ocasionan que se presenten espectros de ruido similares en la transmisión y valores picos de intensidad de sonido bajos en comparación a los generados con el neumático mencionado anteriormente, tomando valores de 114, 114 y 111 respectivamente.

Al analizar los espectros se determinó que todos los neumáticos empleados generan ruidos similares en la transmisión con promedio de 90 a 91 dB a excepción de ciertos picos generados por la sumatoria de ruidos parásitos que se generan durante el recorrido de la ruta, sin embargo el ruido generado se encuentra cerca del rango admisible tomando en consideración que debe ser el mismo rango que para el motor

Figura 169
Ruido en la transmisión, ruta No. 4



# Capítulo V

## 5. Conclusiones y Recomendaciones

#### 5.1. Conclusiones

Los equipos de medición empleados como lo son el analizador de vibraciones y el sonómetro, permitieron caracterizar mediante valores de Frecuencia (Hz) e Intensidad de sonido (dB) respectivamente, los ruidos y vibraciones tanto en el interior del habitáculo como en la cadena cinemática (motor y transmisión)

Mediante el análisis de los resultados realizado, se logró identificar las diferentes variables que afectan a la generación de ruido como lo son el aire, velocidad, factores aerodinámicos y mecánicos. En este caso dichas variables estuvieron presentes en las pruebas y mediciones realizadas, la mayoría de ellas se determinó que correspondían a ruidos parásitos de forma aerodinámica y mecánica para el interior del habitáculo y la cadena cinemática respectivamente.

Mediante los datos obtenidos y con una correcta clasificación en base a los distintos factores que intervinieron en las pruebas tales como la velocidad del vehículo, tipo de neumático y las distintas rutas fueron claves para representar adecuadamente mediante graficas realizadas en Matlab (versión gratuita) los distintos espectros representativos de ruidos y vibraciones en la cadena cinemática y en el interior del habitáculo.

Con los diferentes análisis realizados a las distintas graficas obtenidas, se logra evidenciar que el neumático "C" es el que mayor incidencia tiene en la generación de ruido y vibraciones en la cadena cinemática y al interior del habitáculo llegando a tener picos de 570 (Hz) y 190 (dB) para vibración y ruido respectivamente. Durante todas las pruebas en las distintas rutas en comparación con los demás neumáticos, en neumático "C" este neumático presentaba picos muy altos con mayor periodo de tiempo.

#### 5.2. Recomendaciones

Para obtener datos sin márgenes de error empleando el analizador de vibraciones y el sonómetro manufacturados en este proyecto, se recomienda mejorar la programación de dichos equipos de medición con el fin de evitar que los distintos sensores capten vibraciones y ruidos parásitos ajenos a los objetivos de este proyecto de investigación.

Los puntos sobre los cuales estuvieron colocados los sensores de vibración y ruido fueron estratégicamente seleccionados para este proyecto de investigación, se recomienda buscar alternativas de puntos estratégicos sobre los cuales se pueda colocar dichos sensores con el fin de obtener mediciones más exactas.

A futuras generaciones, se recomienda emplear mayor cantidad de tipos de neumáticos siendo empleados en distintas rutas de otras localidades del país.

Dar a conocer a todas las personas interesadas en los temas tratados de este proyecto de investigación la incidencia de los tipos de neumático en la generación de ruido y vibraciones en sus vehículos.

Se debe tomar muy en cuenta el año y modelo del vehículo empleado en la realización de este proyecto de investigación ya que el mismo no cuenta con la confortabilidad y tecnología de los vehículos actuales, por esta razón se recomienda realizar las distintas pruebas y mediciones empleando un vehículo que se encuentre considerado dentro de las normativas vigentes sobre las cuales se basaron este proyecto de investigación con el fin de obtener mejores resultados que tal vez lleguen a encontrarse dentro de los rangos permisibles.

# **Bibliografía**

- AISLAMANIA. (2020). Vibraciones ¿ Qué son? Tipos de vibraciones. Obtenido de

  AISLAMANIA: https://aislamania.com/vibraciones-que-son-tipos-de-vibraciones/.

  Recuperado el 25 de octubre de 2021
- Cavazos, J. E. (1 de 10 de 2017). *Ruidos en la Carroceria*. Obtenido de AUTOBODY: https://www.autobodymagazine.com.mx/2017/10/01/ruidos-en-la-carroceria1/. Recuperado el 30 de octubre de 2021
- Coche Español. (s.f.). Las Vibraciones en el escape. Obtenido de Coche Español: http://www.automotriz.mobi/coches/Reparaciones/diagnosing-car-problems/68605.html. Recuperado el 12 de noviembre de 2021
- DEPARTO . (03 de 07 de 2020). ¿Cómo funciona el motor de combustión del coche?

  Obtenido de DEPARTO We Drive Performance:

  https://www.daparto.es/info/como-funciona-motor-combustion-coche/.

  Recuperado el 20 de noviembre de 2021
- Dirven , B. B., Pérez, R., Cáceres, R. J., Tito, A. T., Gómez , R. K., & Ticona, A. (2018). El desarrollo rural establecido en las áreas Vulnerables. Lima: Colección Racso.
- Dr. Coche. (12 de 04 de 2021). Problemas o vibración en la palanca de cambios.

  Obtenido de Dr. Coche: http://doctorcoche.es/vibracion-palanca-de-cambios-coche/#:~:text=Suele%20ocurrir%20en%20las%20cajas,no%20tiene%20la%20viscosidad%20correcta.. Recuperado el 25 de noviembre de 2021
- Elsevier Inc. (2020). *Ruidos y vibraciones de neumáticos de vibraciones*. Recuperado el 26 de noviembre de 2021
- Expósito, J. (25 de 10 de 2015). Conocer las caracteristicas de la cadena cinemática.

  Obtenido de EXPOCAPS: http://expocaps.blogspot.com/2013/05/conocer-las-caracteristicas-de-la.html. Recuperado el 30 de noviembre de 2021

- Fidalgo, R. (15 de 09 de 2017). Como reducir el ruido que hacen las ruedas. Obtenido de Autocasión: https://www.autocasion.com/actualidad/reportajes/como-reducir-el-ruido-que-hacen-las-ruedas. Recuperado el 02 de diciembre de 2021
- Galarza, D. M. (2014). *Análisis y Diagnóstico de Vibraciones en Vehículos livianos de combustion interna [Tesis de Ingeniería, EPN]*. Repositorio Institucional.
- Gómez, B. M. (2018). Optimización Del Confort Acústico-Térmico En Vehículos

  Convencionales (MCIA) y Eléctricos [Tesis Doctoral, Universidad de Valladolid].

  Repositorio Institucional.
- Gracía, J. (14 de 01 de 2021). *Analizadores de vibraciones*. Obtenido de PCE:

  https://www.pce-iberica.es/instrumentos-de-medida/analizadores/analizadores-de-vibracion.htm
- Jimenez, A. (12 de 08 de 2020). *Análisis de la Forma de Onda para Diagnóstico de Engranajes*. Obtenido de Realiability Connect:

  https://esp.reliabilityconnect.com/analisis-de-la-forma-de-onda-para-diagnostico-de-engranajes/. Recuperado el 10 de diciembre de 2021
- Julio Garavito. (2018). Ruido, [Ergonomìa; Laboratorio de Condiciones de Trabajo].

  Escuela Colombiana de Ingenieria.
- MOTORGIGA. (s.f.). Sacudida Definición- Significado. Obtenido de MOTORGIGA:

  https://diccionario.motorgiga.com/diccionario/sacudida-definicionsignificado/gmx-niv15-con195471.htm. Recuperado el 12 de diciembre de 2021
- Oponeo. (28 de 06 de 2019). *Ruido de rodadura de neumáticos*. Obtenido de

  Oponeo.es: https://www.oponeo.es/blog/ruido-de-rodadura-de-neumaticos.

  Recuperado el 15 de diciembre de 2021
- Sánchez, E. V. (2014). Estudio del nivel de ruido emitido por los vehículos. Valencia: Universidad Miguel Hernández de Elche.
- Taylor, J. (2003). The Vibration Analysis Hanbook.

- Tovar, G. L. (1986). El asentamiento y la segregación de los Blancos y Mestizos.

  Bogotá: Cengage.
- Villa, C. S. (2012). Técnicas para el estudio acústico en vehículos (Noise, Vibration and Harshness) [Tesis de master, Universidad Politecnica de Valencia]. Repositorio Institucional.
- Wang, X. (2020). Introducción a los antecedentes. En E. Inc., *Ruido y vibraciones de los neumáticos del automóvil* (pág. Capítulo 1). Recuperado el 09 de 11 de 2021
- Wikipedia. (01 de 02 de 2021). Cadena Cinemática. Obtenido de https://es.wikipedia.org/wiki/Cadena\_cinem%C3%A1tica#:~:text=En%20un%20v eh%C3%ADculo%20autom%C3%B3vil%20se,el%20sistema%20de%20transmis i%C3%B3n.. Recuperado el 18 de diciembre de 2021
- Wikipedia. (20 de 04 de 2021). *Ruido*. Obtenido de Wikipedia La enciclopedia libre: https://es.wikipedia.org/wiki/Ruido. Recuperado el 20 de diciembre de 2021

# Anexos