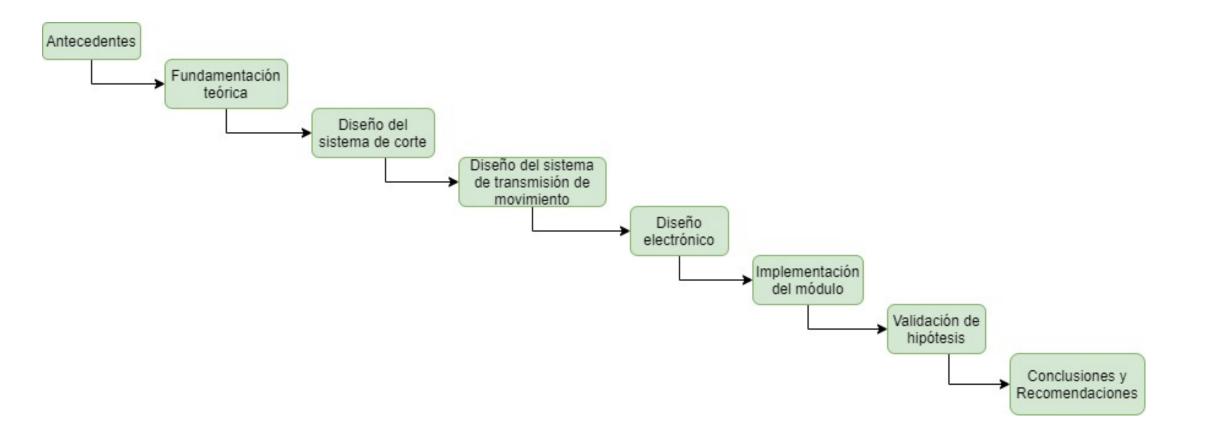


DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECATRÓNICA TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECATRÓNICO

DISEÑO E IMPLEMENTACIÓN DE UN MÓDULO EQUIPADO CON UN CABEZAL DE CORTE DE 15-20 CAPAS OPERADO MEDIANTE CNC, PARA OPTIMIZAR EL PROCESO CORTE DE TELA EN LA EMPRESA 'ROCKA JEANS'


AUTOR: TOBAR POZO, ALEXANDER DANIEL

DIRECTOR: ING. TORRES MUÑOZ, GUIDO RAFAEL

LATACUNGA, FEBRERO 2022

CONTENIDO

ANTECEDENTES

Localización del proyecto

Empresa nacional 'Rocka Jeans' ubicada en la ciudad de Cuenca

OBJETIVO GENERAL

Construir un módulo equipado con un cabezal de corte de 15-20 capas operado mediante CNC, para optimizar el proceso corte de tela en la empresa 'Rocka Jeans'

OBJETIVOS ESPECÍFICOS

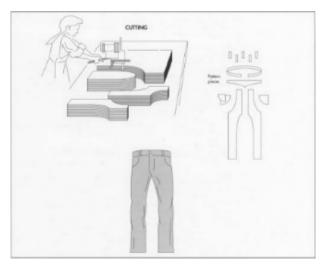
- Investigar el estado del arte sobre los temas correspondientes para el desarrollo del proyecto
- Esquematizar la arquitectura del módulo equipado con el cabezal de corte en base a los componentes existentes en la estación de trabajo de la empresa
- Elegir el sistema de corte para el módulo adecuado en función de los requerimientos de la empresa
- Calcular las dimensiones adecuadas de los componentes del cabezal de corte analizando las funciones que debe realizar el cabezal en el proceso de corte en la empresa
- Establecer las características de los sistemas de transmisión mecánicos y componentes electromecánicos para el sistema de movimiento del módulo respecto a los parámetros requeridos

OBJETIVOS ESPECÍFICOS

- Seleccionar los componentes eléctricos, de control e interfaz con el usuario para el funcionamiento del módulo con los elementos de protección correspondientes
- Identificar un software apropiado para la transformación del archivo de imagen que emplean en la empresa en un código que interprete el módulo
- Validar la hipótesis propuesta con datos obtenidos en pruebas de funcionamiento del módulo tras su implementación

HIPÓTESIS

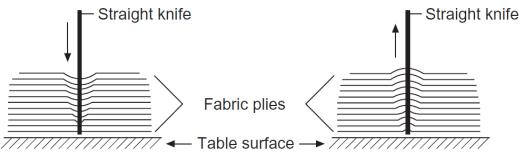
¿El diseño e implementación del módulo equipado con un cabezal de corte de 15-20 capas operado mediante CNC en la estación de trabajo de la empresa optimizará el proceso corte de tela?



Proceso corte de tela

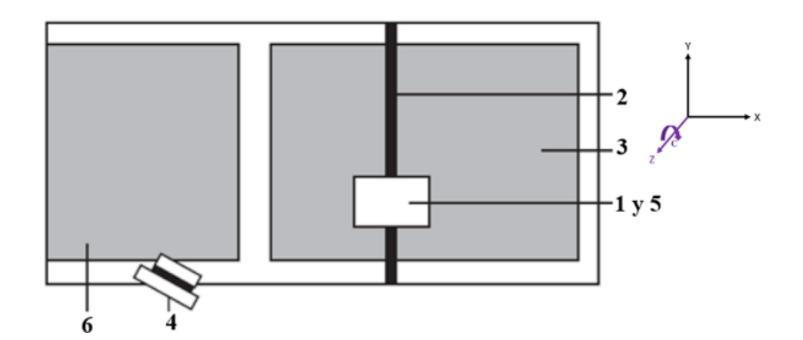
Consiste en seccionar la tela en piezas con figuras previamente definidas mediante el uso de una herramienta de corte.

- Diseño
- Patronaje
- Reposo
- Trazo



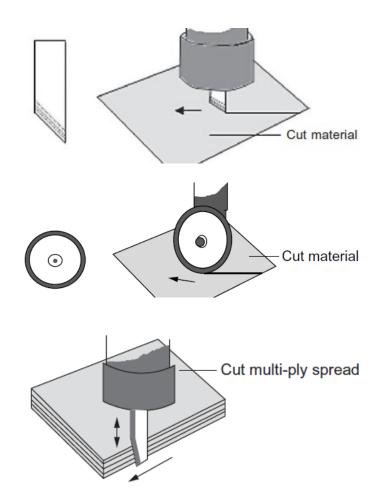
Problemas de precisión debido al proceso manual

Nunca podrá alcanzar una precisión perfecta nunca podrá ser conseguido con procedimientos manuales.


La calidad del corte final es influenciada por los factores:

- Desplazamiento de las capas generado durante el proceso de tendido.
- Forma de la herramienta de corte, estas pueden ser rectas, de banda y redonda.

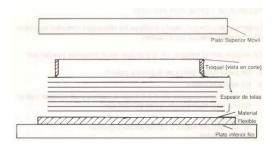
Sistema de corte automático y sus partes

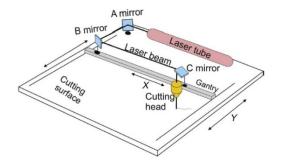

- 1. Cabezal
- 2. Viga de soporte
- 3. Superficie de corte
- 4. Panel de control
- 5. Herramienta de corte
- 6. Superficie para piezas de trabajo

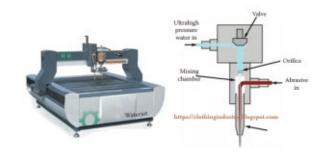
Sistemas para el corte de tela automático

Máquinas con herramientas cortantes

- Cuchillo de arrastre
- Cuchilla redonda
- Cuchilla oscilante

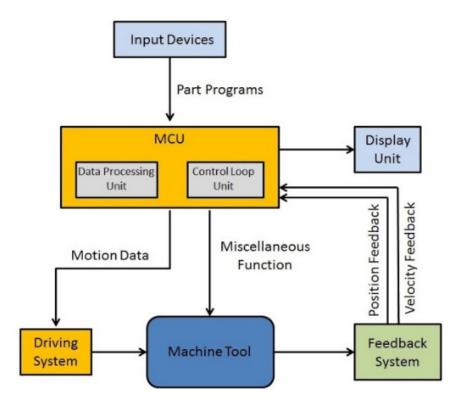



Sistemas para el corte de tela automático


Máquina troqueladora

Máquina de corte láser

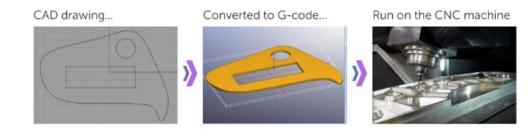
Máquina por chorro de agua

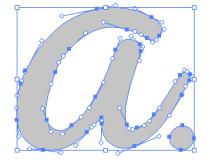


Máquinas CNC

Máquinas automatizadas mediante control numérico computarizado (CNC).

Son programables, realizan de forma automática las operaciones requeridas para un proceso determinado.

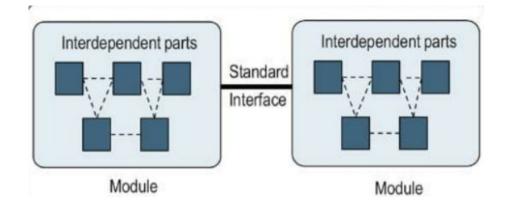




Conversión del archivo CAD en un programa para CNC

Se diseña la pieza en un software CAD, se obtiene su código con un programa CAM y finalmente se ejecuta el programa

El código normalmente se obtiene de piezas graficadas en software CAD o en un proceso de vectorización de imágenes



Arquitectura modular

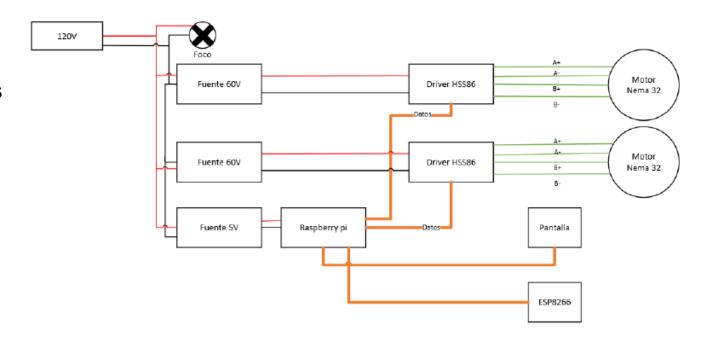
La arquitectura de un producto es el esquema por el cual los elementos funcionales del producto se acomodan en trozos físicos y por medio del cual éstos interactúan.

- Elementos funcionales: Operaciones que sirven para el funcionamiento del producto
- Elementos físicos: Funciones prácticas del artículo

Estado actual de la estación de trabajo de la empresa

Estación de trabajo

Componentes mecánicos

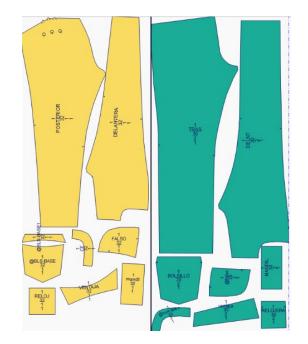


Estado actual de la estación de trabajo de la empresa

Estación de trabajo

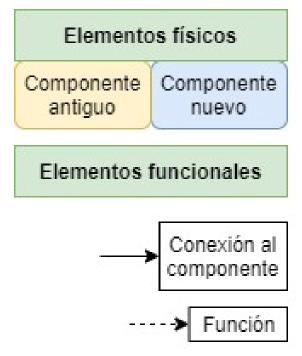
Componentes eléctricos y electrónicos

Raspberry	Drivers HSS86
PI	Dilvers 115500
5 V	PUL+ y DIR+
Pin 18	PUL-
Pin 23	DIR-

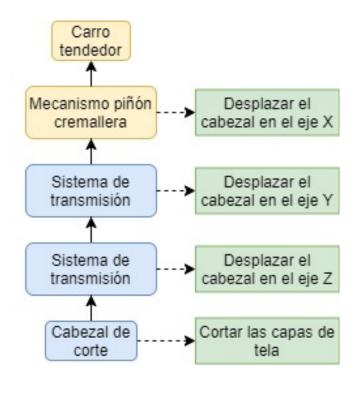

Estado actual de la estación de trabajo de la empresa

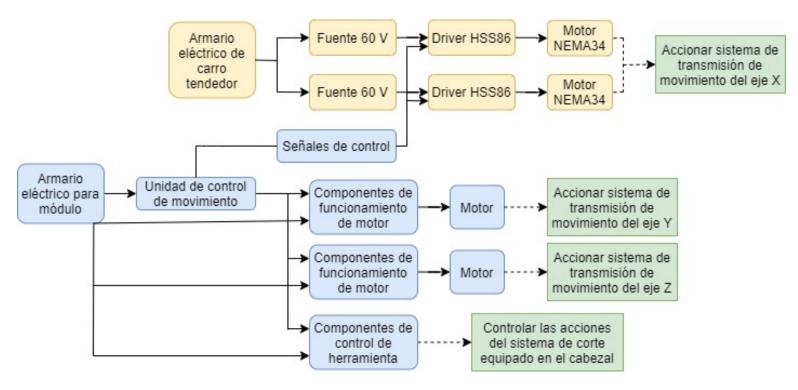
Estación de trabajo

Herramientas informáticas

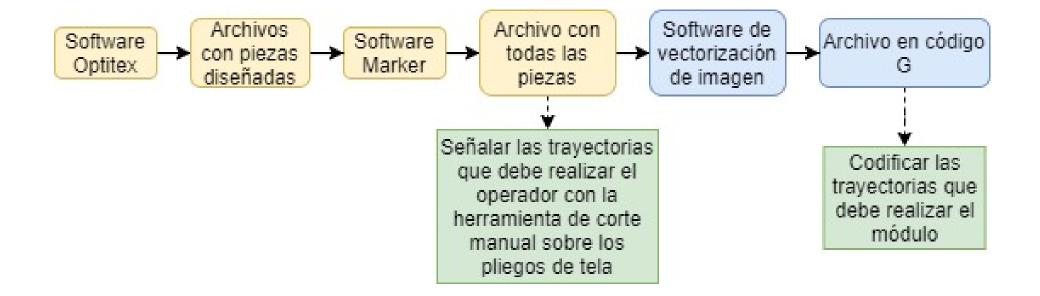

- Software Optitex
- Herramienta Marker

Establecimiento de arquitectura del cabezal


Representación de componentes



Parte mecánica


Parte eléctrica y electrónica

Parte de herramientas informáticas

Matriz casa calidad

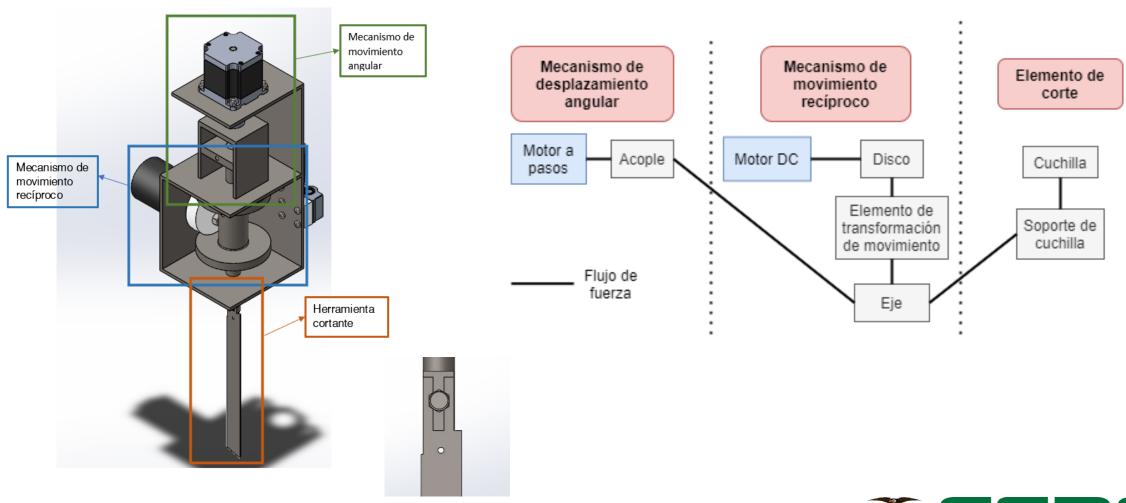
		4	3	3			
				5 5	5 4	4 2	2
			13	15	16	11	9
			0.813	0.938	1	0.688	0.563
	¿Cómo?	Valor de importancia del requerimiento para el usuario (1-5)	Diseño modular del cabezal de corte	Selección de sistema de corte	Diseño y selección de elementos mecánicos y eléctricos	Selección de interfaz de interacción con el usuario	Programacion de componentes de control
¿Qué?		Valo	1	2	3	4	5
Facilidad de instalación en la estación de trabajo	а	4	5	4	3	2	1
Seguridad para el operador		5	3	5	4	4	3
Sencillez en la utilización dura el proceso de corte	nte	5	4	4	3	5	4
Rapidez en el proceso de cor	te	4	3	5	5	2	4
Precisión de las piezas cortad	as	4	3	5	5	3	4
Calidad de los cortes		4	2	5	4	2	3
Corte el número de capas requerido		5	4	5	5	4	1
Precio económico del cabeza	al	3	4	5	5	4	1
Importancia ponderada de requerimientos		Absoluta	119	161	143	113	91
		Relativa	18.98	25.68	22.81	18.02	14.51
		neiativa	3	1	2	4	5
Evaluación ponderada de los requisitos del cliente respecto		Absoluta	15.42	24.07	22.81	12.39	8.164
los del producto	a	Relativa	3	1	2	4	5
							

Selección sistema de corte

N°	Métrica	Importancia	Unidad	Métrica N°	Láser	Herramienta cortante	Chorro de agua
	(I) (1-5)			1	2	4	3
1	Facilidad de instalación	4	Subj.	_			
2	Seguridad del operador	5	Subj.	2	1	4	3
3	Sencillez de utilización	5	Subj.	3	5	5	5
4	Velocidad en el proceso de corte	4	m/min	4	600	60	6
5	Precisión de los cortes	4	mm	5	0.0125	0.1	0.1
6	Calidad de los cortes	4	Subj.	6	5	4	2
7	Número de capas cortadas	5	-	7	53	90	130
8	Precio	3	\$	8	1	150	350

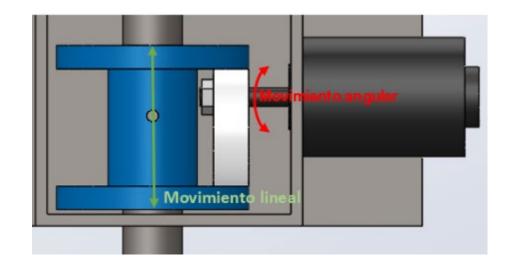
Selección sistema de corte

Métrica	Importancia (I) (1 5)	Lá	áser Herramienta cortante Chorre		Herramienta cortante		de agua
N°	Importancia (I) (1-5)	NC	NC*I	NC	NC*I	NC	NC*I
1	4	2	8	4	16	3	12
2	5	1	5	4	20	3	15
3	5	5	25	5	25	5	25
4	4	5	20	1	4	1	4
5	4	5	20	1	4	1	4
6	4	4	16	4	16	2	8
7	5	2	10	4	20	5	25
8	3	1	3	5	15	2	6
	TOTAL	1	07	120		!	99
		NC		Nivel de d	cumplimento		
		1		Impo	ortancia		


Selección de herramienta cortante

N°	Métrica	Importancia (I) (1-5)	Unidad
1	Facilidad de instalación	4	Subj.
2	Seguridad del operador	5	Subj.
3	Sencillez de utilización	5	Subj.
4	Velocidad en el proceso de corte	4	m/min
5	Precisión de los cortes	4	mm
6	Calidad de los cortes	4	Subj.
7	Número de capas cortadas	5	-
8	Precio	3	\$

			Tipo de herramienta cortante						
Métrica		Cuchillo de arrastre		Cuchilla redonda		Cuchillo tangencial		Cuchilla oscilante	
N°	Importancia (I) (1-5)	NC	NC*I	NC	NC*I	NC	NC*I	NC	NC*I
1	4	5	20	4	16	5	20	5	20
2	5	4	16	3	12	3	12	4	16
3	5	5	20	4	16	5	20	5	20
4	4	2	8	3	12	2	8	4	16
5	4	2	8	4	16	3	12	4	16
6	4	3	12	4	16	3	12	4	16
7	5	3	12	4	16	4	16	5	20
8	3	5	20	4	16	5	20	4	16
	TOTAL		116	12	0	120		14	10
		NC	Ni	vel de cump	limento				
		I		Importan	cia				



Diseño mecánico

Mecanismo de movimiento recíproco

Amplitud: 13 mm para recorrido de 26 mm por ciclo,

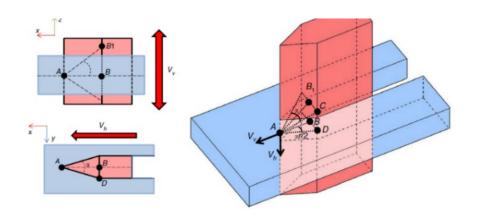
Frecuencia máxima: 50 Hz

Frecuencias de corte recomendadas

Tipo d	Descripción		
Tela	Tela 1		
	Algodón	89%	
Composición E	8%		
	3%		
Tela	Tela 2		
0 11/	Algodón	98%	
Composición	Elastano	2%	
Tela	a 3	Mauna	
Composición	Algodón	100%	
Tel	Antifluido		
Composición	Poliéster	100%	

		Frecuencia	de la
Código	Composición	cuchilla de	corte
		[Hz]	
TK01	Algodón	95%	0
IKUI	Elastano	5%	8
	Algodón	95%	
TK02	Elastano	5%	8
	Elastano	2%	
TK04	Algodón	98%	9
1104	Elastano	2%	9
	Poliéster	60%	
TK06	Viscosa	37%	7
	Elastano	3%	
	Poliéster	60%	
TK07	Viscosa	37%	7
	Elastano	3%	
	Poliéster	60%	
TK08	Viscosa	37%	7
	Elastano	3%	

Frecuencias de corte recomendadas


Tipo d	e tela	Descripción	
Tela	Duo Elastic		
	Algodón	89%	
Composición E	8%		
	3%		
Tela	Tela 2		
0 11/	Algodón	98%	
Composición	Elastano	2%	
Tela	a 3	Mauna	
Composición	Algodón	100%	
Tela	Antifluido		
Composición	Poliéster	100%	

Código	Compos	ición	Velocidad de corte [m/min]
TK01	Algodón	95%	20
INUI	Elastano	5%	32
TK02	Algodón	95%	32
1102	Elastano	5%	32
TK04	Algodón	98%	05
1KU4	Elastano	2%	25
	Poliéster	60%	
TK06	Viscosa	37%	25
	Elastano	3%	
	Poliéster	60%	
TK07	Viscosa	37%	2.5
	Elastano	3%	
	Poliéster	60%	
TK08	Viscosa	37%	2.5
	Elastano	3%	

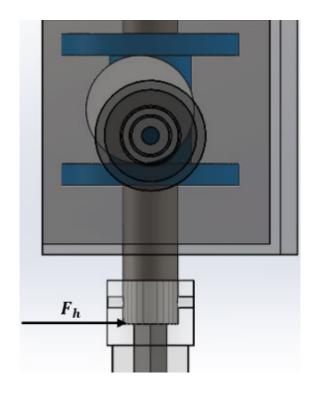
Dimensionamiento de componentes

Fuerzas durante el proceso de corte

$$v_l$$
: Velocidad lineal de corte $\left[\frac{mm}{min}\right]$

 λ : Resistencia del material a ser cortado [Pa]

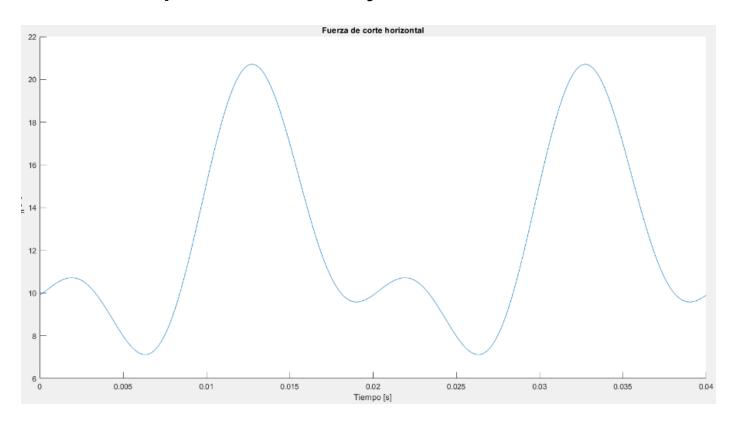
L: Distancia de la cuchilla que ingresa en la tela [mm]


f: Frecuencia de la cuchilla [Hz]

 μ : Parámetro experimental respecto al desplazamiento de la cuchilla [mm]

$$F_{h(t)} = \frac{v_l(\lambda)L}{f} \left(1 + \frac{1}{4}\sin(4\pi ft) + \frac{\mu f}{v_l}\cos\left(4\pi ft + \frac{2\pi}{3}\right) \right)$$

Diseño del eje



Valor	Unidad
10	m/min
250	КРа
15	mm
50	Hz
1.4	mm
	10 250 15 50

Diseño del eje

Esfuerzo al que se somete el eje

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$$

$$\sigma_a = \left| \frac{\sigma_{max} - \sigma_{min}}{2} \right|$$

$$\sigma = \frac{Fl}{Z}$$

$$F_{max} = 20.7059 N$$

$$F_{min} = 7.41 N$$

Diseño del eje por criterio de flexión

$$y_{max} = \frac{-Fl^3}{3EI}$$

$$\left|\frac{y_{max}}{l}\right| \le 0.0005$$

$$F_{max} = 20.7059 N$$

$$l = 194 \text{ mm}$$

$$D \ge \sqrt[4]{\frac{64Fl^2}{0.015E\pi}}$$

$$D \ge 15.167 \ mm$$

$$D = 15.875 \, mm = \frac{5}{8} in$$

Diseño del eje

Límite de resistencia a la fatiga en la ubicación crítica de la parte de una máquina (S_e)

$$Se = k_a k_b k_c k_d k_e k_f S_e'$$

Ecuación de Marin

- Factor de superficie k_a
- Factor de tamaño k_b
- Factor de temperatura k_c
- Factor de temperatura k_d
- Factor de confiabilidad k_e
- Factor de efectos varios k_f
- Límite de resistencia S_e

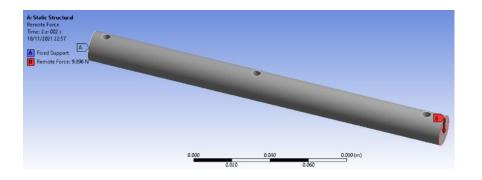
Diseño del eje

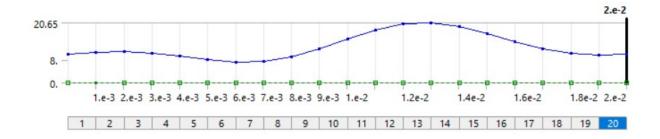
Gerber-Langer

$$n_f = \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m} \right)^2 \left(\frac{\sigma_a}{S_e} \right) \left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut} \sigma_a} \right)^2} \right]$$

$$n_f = 9.1758$$

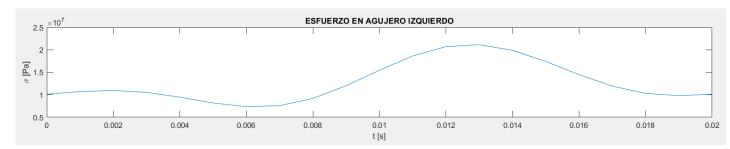
ASME-Elíptica

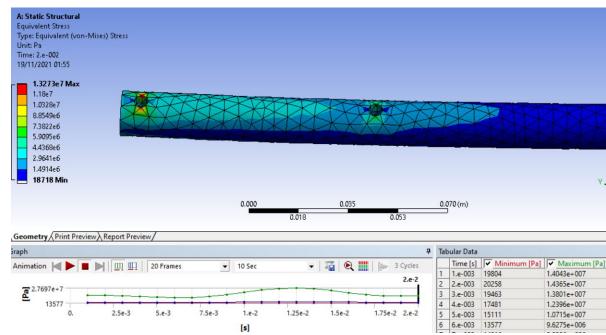

$$n_f = \sqrt{\frac{1}{\left(\frac{\sigma_a}{S_e}\right)^2 + \left(\frac{\sigma_m}{S_y}\right)^2}}$$


$$n_f = 9.3612$$

Diseño del eje

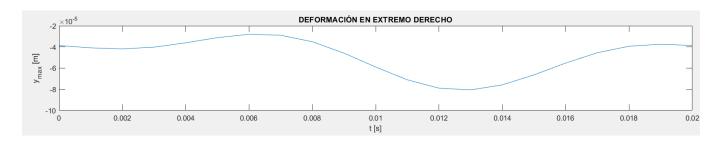
Simulación en software CAE

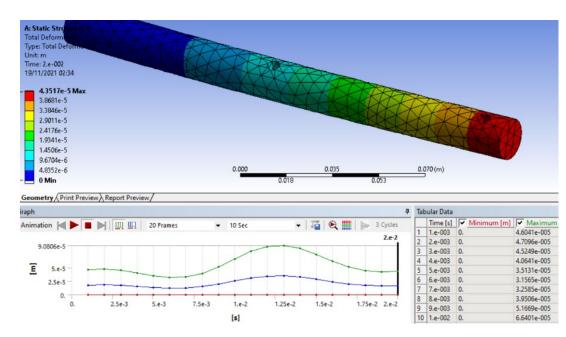




Diseño del eje

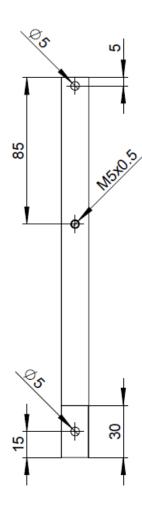
Simulación en software CAE

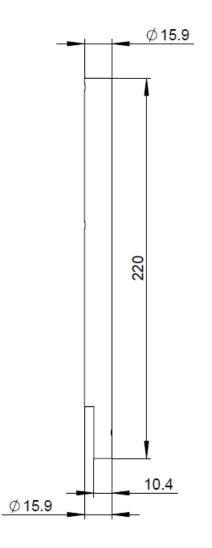




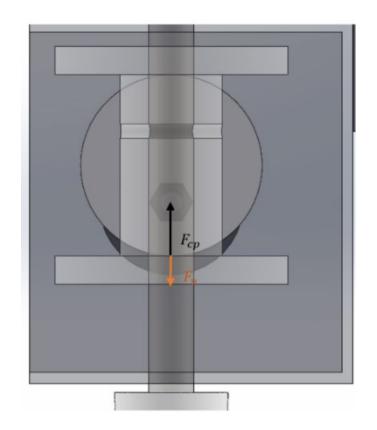
Diseño del eje

Simulación en software CAE





Diseño del eje


Dimensiones

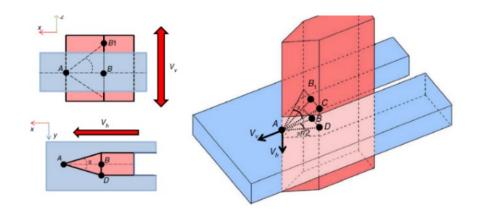
Diseño del disco

$$F_{cp} = m \cdot a_{cp}$$

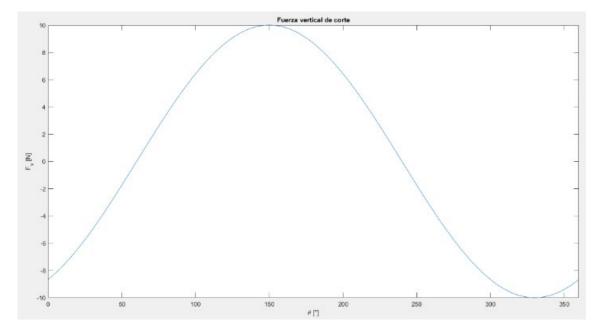
$$a_{cp} = \omega^2 r$$

$$\omega = 100\pi \; \frac{rad}{s}$$

$$a_{cp} = 1283.04857 \frac{m}{s^2}$$
 $r = 13 mm$

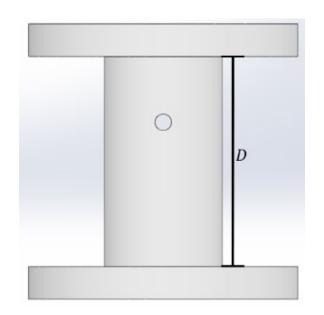

$$r = 13 mm$$

FECHA ÚLTIMA REVISIÓN:13/12/11 CÓDIGO: SGC.DI.260


Dimensionamiento de componentes

Fuerzas durante el proceso de corte

$$F_{v(t)} = \delta \left(\sin \left(2\pi f t - \frac{\pi}{3} \right) \right)$$


δ : Fuerza de rozamiento 10 N para tela Jean

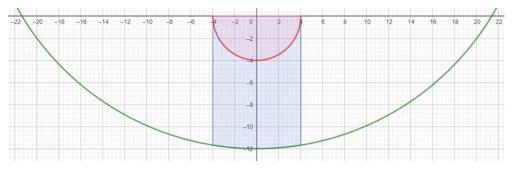
Diseño del disco

Elemento de masa variable

$$m_{t(D)} = \rho \cdot V_s$$

$$V_{s(D)} = 1.0166 \cdot 10^{-4} + \pi D(0.01794^2 - 0.00794^2) m^3$$

$$F_{cp(D)} = \rho \cdot V_{s(D)} \cdot a_{cp}$$

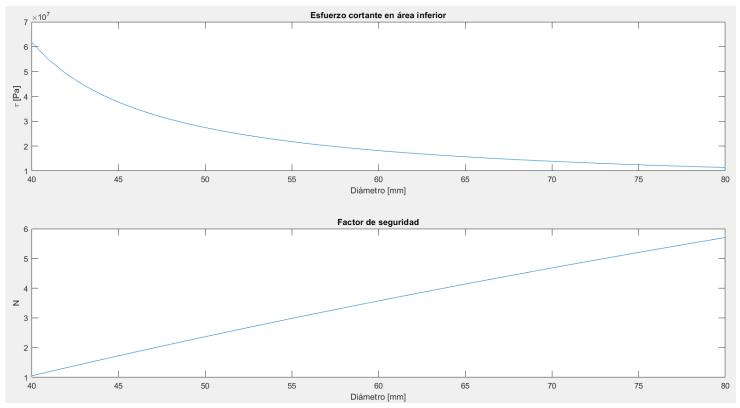


Dimensionamiento de componentes

Esfuerzo durante el proceso de corte

$$F_{total(D)} = 5 + \rho \cdot V_{s(D)} \cdot a_{cp} N$$

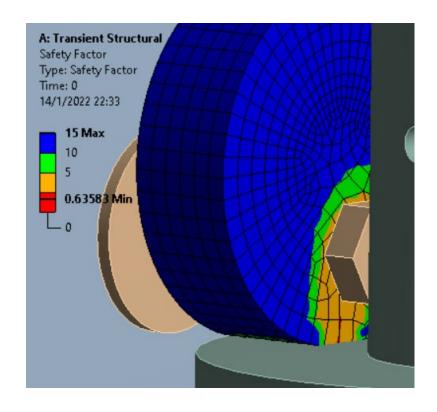
$$A_{(D)} = \int_{-4}^{4} \left(\sqrt{\left(\frac{D}{2}\right)^{2} - x^{2}} + 13 \right) dx - 8\pi \ mm^{2} dD$$


Dimensionamiento de componentes

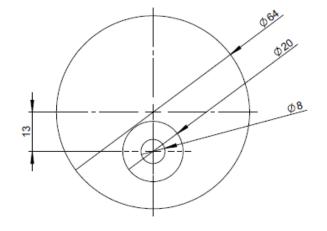
Esfuerzo durante el proceso de corte

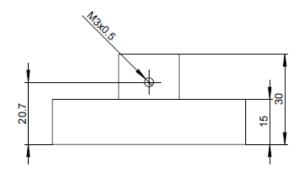
$$\tau = \frac{F}{A}$$

$$N = \frac{27.5 \cdot A_{(D)}}{F_{total(D)}}$$


$$D = 64 \text{ mm}$$

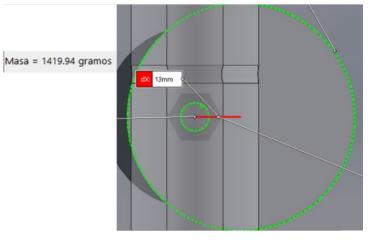
Diseño del disco


Simulación en software CAE



Diseño del disco

Dimensiones



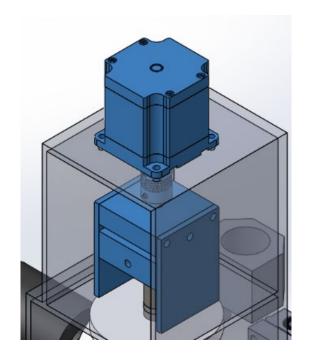
Dimensionamiento del motor

Torque

$$T = W \cdot d$$

T = 0.1811 Nm

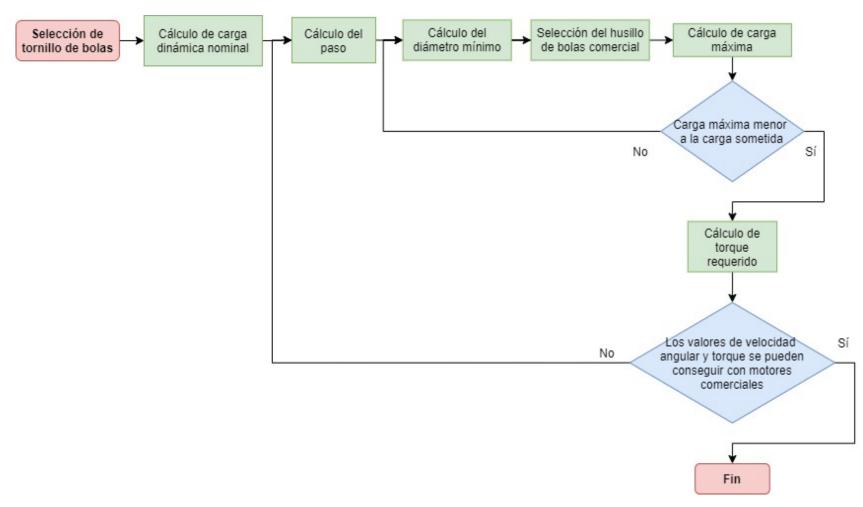
Velocidad angular


50 Hz = 3000 RPM

Datos nominales de motor DC XD3420

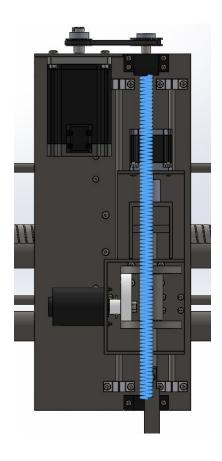
Descripción	Valor	Unidad
Velocidad	3500	RPM
angular		
Torque nominal	0.196	Nm

Mecanismo de movimiento angular


$$I = 87.45654 \times 10^{-4} \, Kgm^2$$

$$T = 1.09 Nm$$

NEMA 23: 1 - 3 Nm



Ejes Y, Z Diseño de husillos de bolas recirculantes

Sistema de transmisión en el eje Z

Descripción	Valor	Unidad	
Carga (F_{eq})	80.534	N	
Orientación	Vertical	-	
Velocidad máxima (v_{lmax})	6	m/min	
Distancia entre los	431	****	
rodamientos (L)	431	mm	
Precisión	±1	mm	
Condiciones de trabajo	Normales	-	
Ciclos de trabajo	8826880000	mm	

Sistema de transmisión en el eje Z

SFU 1605 Carga mínima:

 $138000 N \ge 1664.362 N$

Diámetro:

 $16 \ mm \ge 1.935 \ mm$

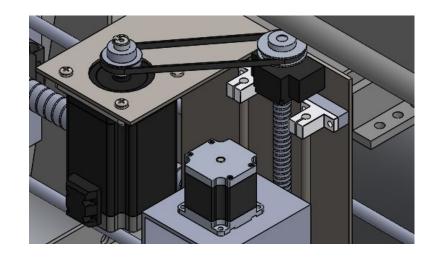
Paso:

 $5 mm \leq 6 mm$

Carga máxima

1526 N > 80.54 N

Torque y velocidad angular

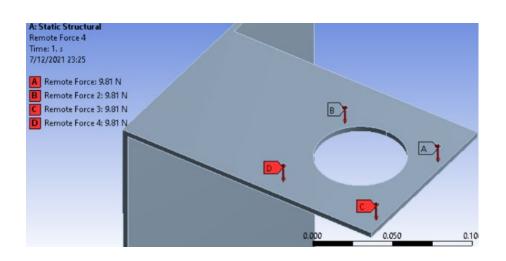

T = 0.0712 Nm

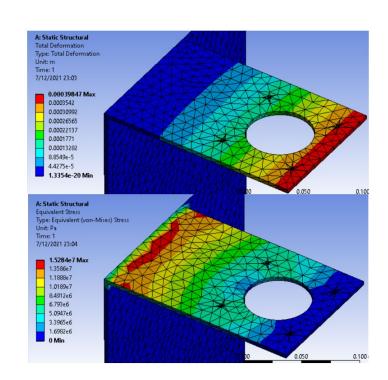
 $\omega = 1200 RPM$

Sistema de transmisión en el eje Z

Diseño sistema de sujeción del motor

	Número de	Diámetro de	
	dientes	paso [mm]	
Polea del motor	55	34.5	
Polea del eje	60	38	


Carga máxima polea (GT2): 56 Kg



Sistema de transmisión en el eje Z

Diseño sistema de sujeción del motor

Simulación en software CAE

$$\left|\frac{y_{max}}{d}\right| \le 0.0005$$

$$h \ge 3.268 \ mm$$

$$h = 4 mm$$

Sistema de transmisión en el eje Y

Descripción	Valor	Unidad
Carga (F _{eq})	22.277	N
Orientación	Horizontal	-
Velocidad máxima (v_{lmax})	10	m/min
Distancia entre los rodamientos (L)	1774	mm
Precisión	±0.25	mm
Condiciones de trabajo	Normales	-
Ciclos de trabajo	18165760000	mm

Sistema de transmisión en el eje Y

SFS 2510 Carga mínima:

 $163800 N \ge 585.615 N$

Diámetro:

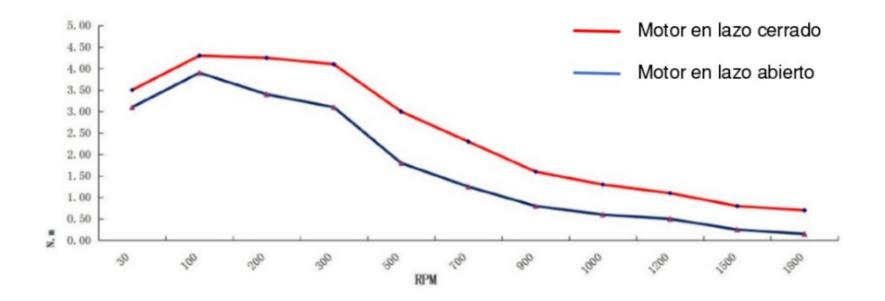
 $25 \ mm \ge 23.438 \ mm$

Paso:

 $10 \ mm \le 10 \ mm \land 10 \ mm \ge 5.55 \ mm$

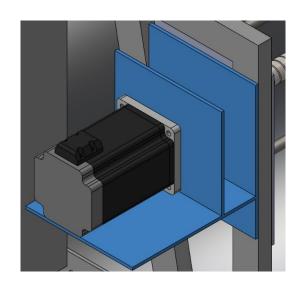
Carga máxima

4633 *N* > 585.615 *N*


Torque y velocidad angular

T = 0.0394 Nm

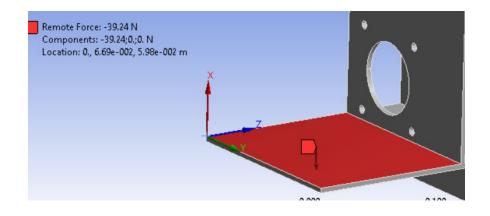
 $\omega = 1000 RPM$

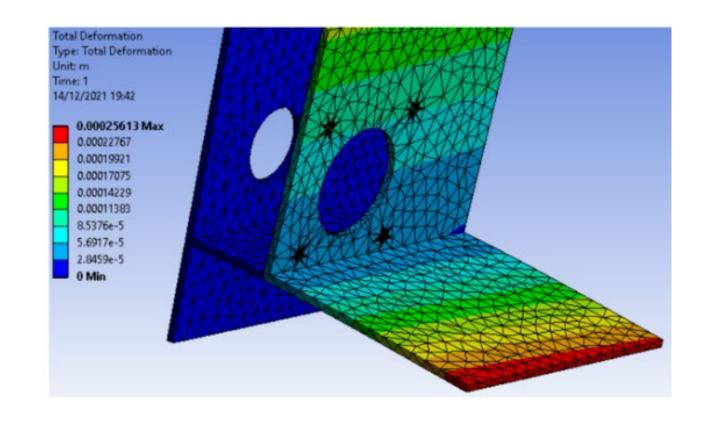

NEMA 34

Sistema de transmisión en el eje Y

Diseño sistema de sujeción del motor

$$h \ge \sqrt[3]{\frac{12Fd^3}{0.0015E \cdot b}}$$

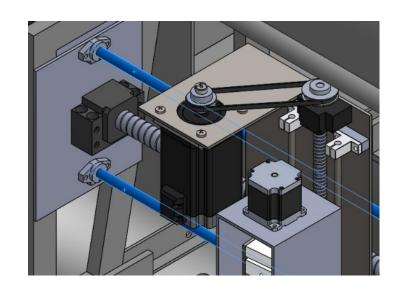

 $h \geq 2.5 mm$

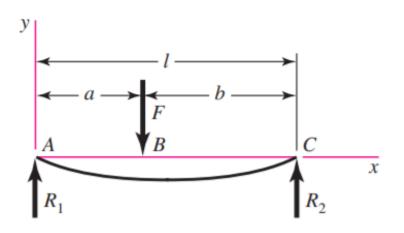


Sistema de transmisión en el eje Y

Diseño sistema de sujeción del motor

Simulación en software CAE





Sistema de transmisión en el eje Y

Diseño sistema de sujeción del motor Diseño de guías lineales

Sistema de transmisión en el eje Y

Diseño sistema de sujeción del motor

Diseño de guías lineales

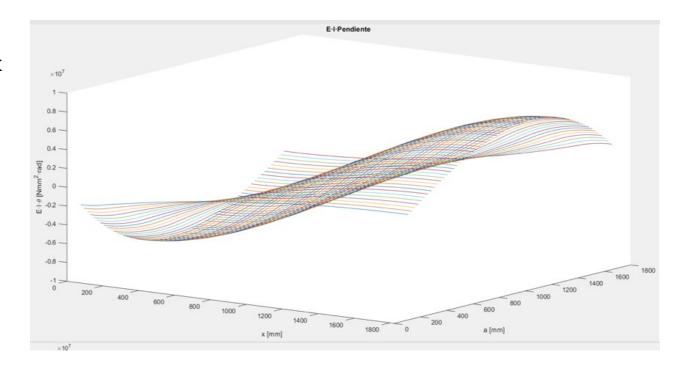
Ecuaciones de singularidad

$$V_{(\chi,a)} = R_1 - F\langle x - a \rangle^0 + R_2 \langle x - l \rangle^0$$

$$M_{(x,a)} = \frac{W}{3} \left(\frac{b \cdot x}{l} - \langle x - a \rangle^{1} \right)$$

$$\theta_{(x,a)} = \frac{W}{3(E \cdot I)} \left\{ \left[\frac{b}{l} \left(\frac{x^2}{2} - \frac{l^2}{6} \right) + \frac{b^3}{6l} \right] - \left[\frac{\langle x - a \rangle^2}{2} \right] \right\}$$

$$y_{(x,a)} = \frac{W}{18 \cdot E \cdot I} \left[\frac{b}{l} (x^3 - x \cdot l^2) + \frac{b^3 \cdot x}{l} - \langle x - a \rangle^3 \right]$$

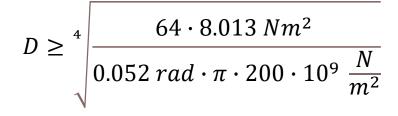

Sistema de transmisión en el eje Y

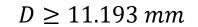
Diseño sistema de sujeción del motor

Diseño de guías lineales

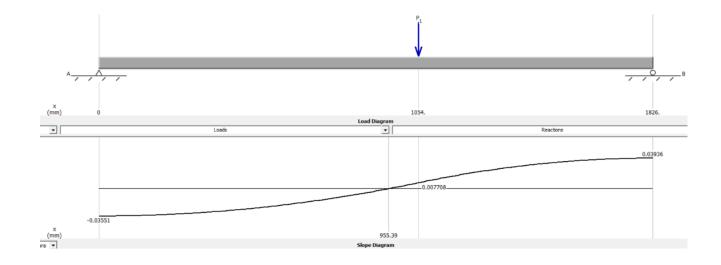
Comportamiento de pendiente respecto a a y x

	Valor máximo	<i>x</i> [<i>mm</i>]	a [mm]
Momento flector [Nmm]	17101.6282	913	913
Pendiente $[rad \cdot Nmm^2]$	8012998.378	0 o 1826	772 o 1054




Sistema de transmisión en el eje Y

Diseño sistema de sujeción del motor


Diseño de guías lineales

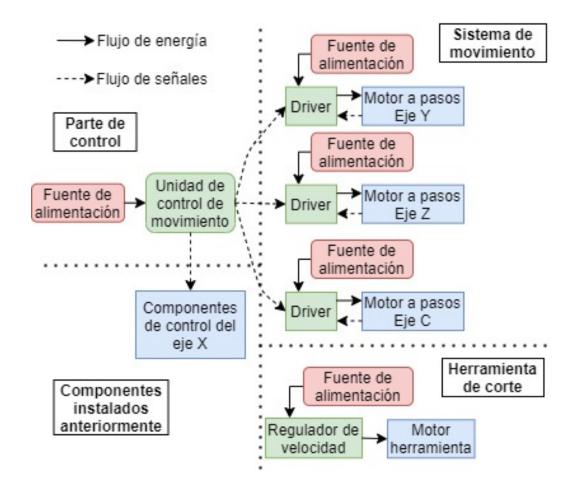
Pendient	es
Rodillo ahusado	0.0005-0.0012 rad
Rodillo cilíndrico	0.0008-0.0012 rad
Bola con ranura profunda	0.001-0.003 rad
Bola esférica	0.026-0.052 rad
Bola autoalineante	0.026-0.052 rad
Engrane recto sin corona	< 0.0005 rad

$$D = 12 mm$$

Sistema de transmisión en el eje X

$$F_T = m\left(a + \frac{g \cdot b}{r} + g \cdot u\right)$$

$$T = \frac{F_T \cdot d}{2}$$


$$T_d = 10.661 \, Nm$$

Descripción	Valor	Unidad
Masa (m)	109.05	Kg
Aceleración (a)	3.33	$\frac{m}{s^2}$
Coeficiente de resistencia a la rodadura (b)	0.25	_
Gravedad (g)	9.81	$\frac{m}{s^2}$
Radio de la rueda (r)	19.05	mm
Coeficiente de fricción (u)	0.09	_

Con los motores previamente instalados en la máquina

16 Nm > 10.661Nm

Selección de componentes

Unidad de control de movimiento

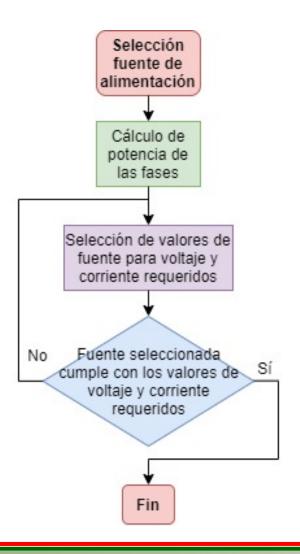
N°	Métrica	Importancia (1-5)	Unidad
1	Simplicidad de implementación	4	Subj.
2	Implementación de interfaz con los datos requeridos	5	Subj.
3	Frecuencia del procesador	4	Hz
4	Precio	4	\$
5	Facilidad de uso para el operador	4	Subj.

Métrica N°	Arduino	Raspberry Pi	DDCS V3.1
1	1	2	5
2	3	4	5
3	16 Mhz	1500 MHz	500 KHz para cada eje
4	\$50	\$130	\$270
5	3	4	5

Selección de componentes

Unidad de control de movimiento

Driver para motores a pasos


Regulador de velocidad para la herramienta de corte

Dimensionamiento de fuentes de alimentación

Para motores y driver

$$P_{motor} = n \cdot 1.2 \cdot \left(I_{fase}^2 \cdot R_{fase}\right)$$

$$I = \frac{N \cdot P_{motor}}{V_{Fuente}}$$

n: Número de fases del motor a pasos

 I_{fase} : Corriente de fase [A]

 R_{fase} : Resistencia de fase $[\Omega]$

N: Número de motores

 P_{motor} : Potencia requerida por el motor

 V_{Fuente} : Voltaje de la fuente

Dimensionamiento de fuentes de alimentación

Ejes Y, Z-NEMA 34

Descripción	Valor	Unidad
Número de fases (n)	2	-
Corriente de fase (I_{fase})	6	\boldsymbol{A}
Resistencia de fase (R_{fase})	0.44	Ω
Rango de voltaje DC del controlador	30 – 110	V

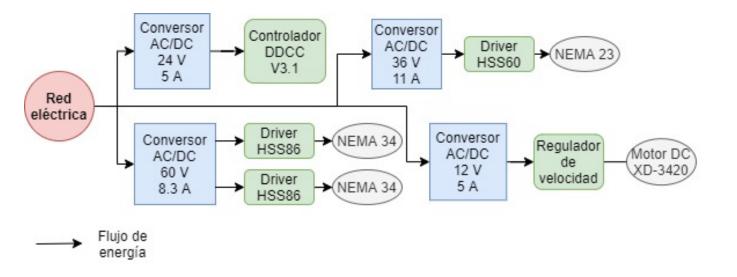
Fuente centralizada 60 V y 8.3 A

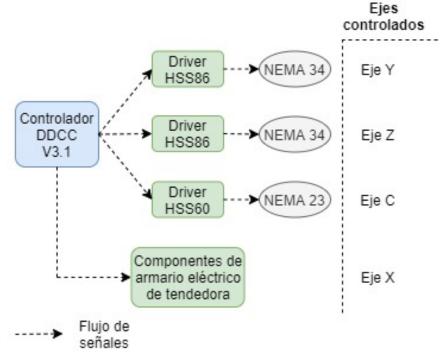
Ejes C-NEMA 23

Fuente centralizada 36 V y 11 A

Valor	Unidad
2	-
38.016	W
60	V
	2 38.016

Unidad de control de movimiento


Fuente centralizada 24 V y 5 A


Motor de herramienta de corte

Fuente centralizada 12 V y 5 A

Conexión

Dimensionamiento de elemento de protección

Descripción	Votaje [V]	Corriente [A]	Potencia [W]
Fuente de controlador	24	1	24
Fuente de motores NEMA 34	60	1.2672	76.032
Fuente de motor NEMA 23	36	0.588	21.168
Fuente de motor de herramienta	12	0.4	4.8
		TOTAL	126

$$I_{fusible} = \frac{f \cdot P_{total}}{V_{red}}$$

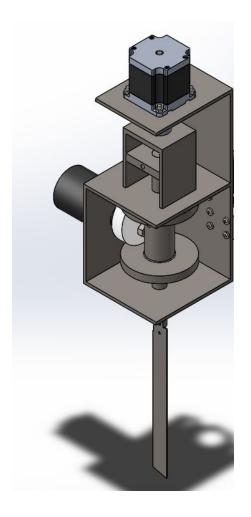
 P_{total} : Potencia total del circuito [W]

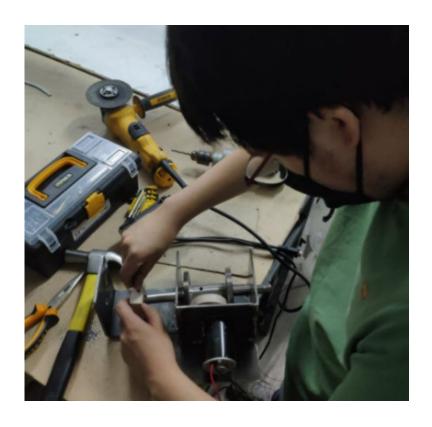
 V_{red} : Voltaje de la red eléctrica $[V](120 \ V)$

f: Factor de diseño (1.2)

$$I_{fusible} = 1.26 A$$

$$I_{fusible} = 2 A$$

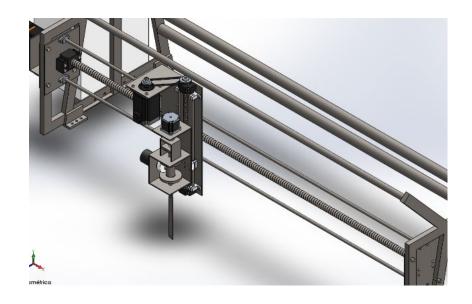

$$I_{fusible} = 2 A$$

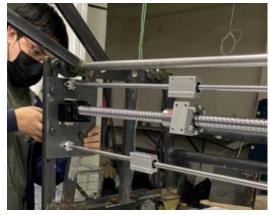


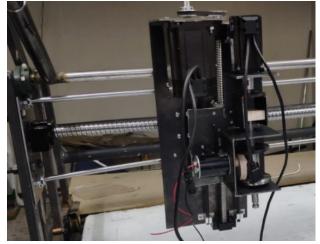
FECHA ÚLTIMA REVISIÓN:13/12/11 CÓDIGO: SGC.DI.260

IMPLEMENTACIÓN DEL MÓDULO

Construcción e implementación del cabezal de corte

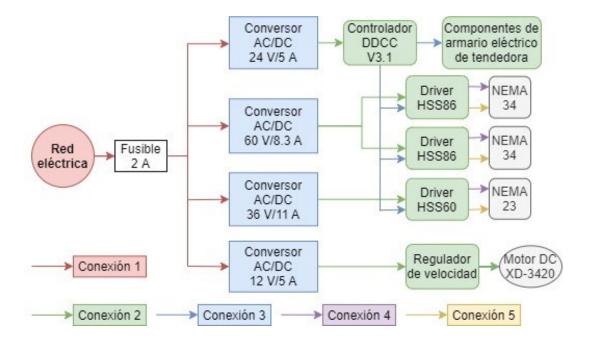


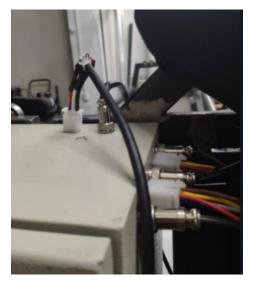




IMPLEMENTACIÓN DEL MÓDULO

Construcción e implementación del sistema de transmisión de movimiento

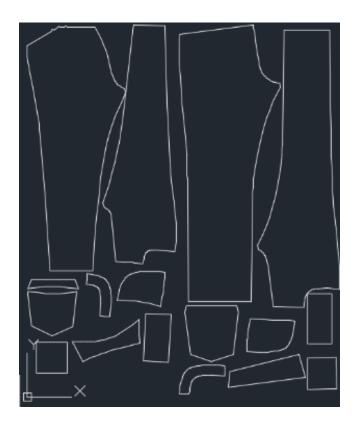


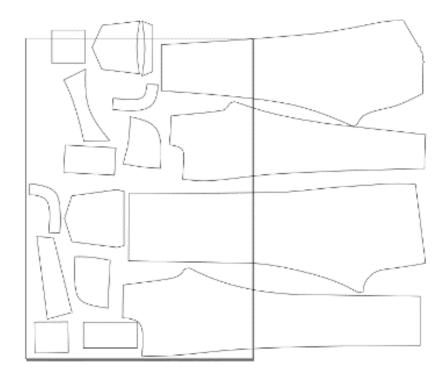


Construcción de armario eléctrico

Generación de archivos de control numérico

Optitex-Marker

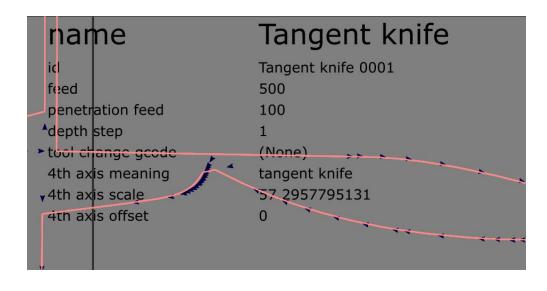

AutoCAD

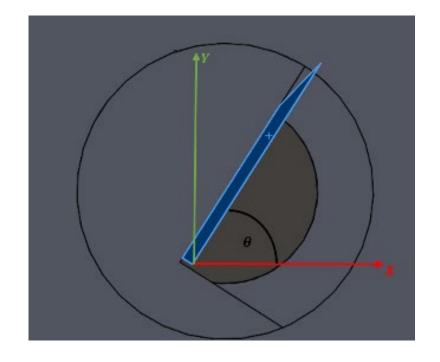


Generación de archivos de control numérico

AutoCAD

Inkscape

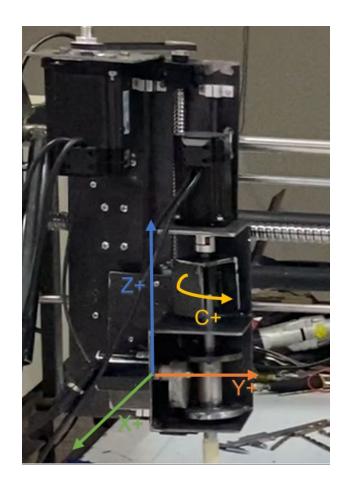




Generación de archivos de control numérico

Inkscape


$$\frac{180}{\pi} = 57.296$$


Generación de archivos de control numérico

NC Viewer

Funcionamiento de la máquina

Volumen de trabajo: $7500 \times 1420 \times 400 \ mm$

Eje	Error		
X	0.7 <i>mm</i>		
Y	1~mm		
Z	0~mm		
С	0°		

Video

Datos obtenidos

Actividad N°	Modelo	Tamaño de la pieza [cm]	Número de piezas	Longitud de la capa [m]	Tiempo por capa (manual) [min]	Tiempo total [min]	Tiempo por capa (automático) [min]
1	Reloj	48	15	1.5	3	3	1.5
2	Ventaja	69.1	15	1.5	5	5	2
3	Ccont falso	51.4	15	1.5	4	4	1.6
4	MANDIL	48	30	1.5	3	3	1.5
5	ventaja	73.57	15	1.5	4	4	2.3
6	Relojera	56.52	15	1.5	3	3	1.7
7	Bolsillo	73.7	15	1.5	5	5	2.2
8	@falso	57.36	15	1.5	4	4	1.8
9	@BLS-BASE	64.35	15	1.5	5	5	2
10	CF	46.2	15	1.5	3	3	1.4
11	FALSO	56.13	15	1.5	3	3	1.7
12	POSTERIOR	221.4	15	1.5	10	10	6.5
13	DELANTERA	220.4	15	1.5	10	10	6.6
14	TRAS	271.8	15	1.5	10	10	8.2
15	DELNT	259	15	1.5	10	10	7.7

Datos obtenidos

Actividad N°	Modelo	Número de piezas	Tamaño de la pieza [cm]	Tolerancia permitida	Piezas con errores (manual)	Piezas con errores (automático)
1	Reloj	15	48	+1.5/-1.5	4	0
2	Ventaja	15	69.1	+1.5/-1.5	4	0
3	Ccont falso	15	51.4	+1.5/-1.5	4	0
4	MANDIL	30	48	+1.5/-1.5	4	0
5	ventaja	15	73.57	+1.5/-1.5	4	0
6	Relojera	15	56.52	+1.5/-1.5	4	0
7	Bolsillo	15	73.7	+1.5/-1.5	4	0
8	@falso	15	57.36	+1.5/-1.5	4	0
9	@BLS-BASE	15	64.35	+1.5/-1.5	4	0
10	CF	15	46.2	+1.5/-1.5	4	0
11	FALSO	15	56.13	+1.5/-1.5	4	0
12	POSTERIOR	15	221.4	+1.5/-1.5	5	0
13	DELANTERA	15	220.4	+1.5/-1.5	5	0
14	TRAS	15	271.8	+1.5/-1.5	5	0
15	DELNT	15	259	+1.5/-1.5	5	0

Establecimiento de hipótesis nula (H_0) y alternativa (H_1)

Tiempo

$$H_0$$
: $t_{manual} \leq t_{automático}$

$$H_1$$
: $t_{manual} > t_{automático}$

Precisión

 H_0 : $p_{manual} \leq p_{automático}$

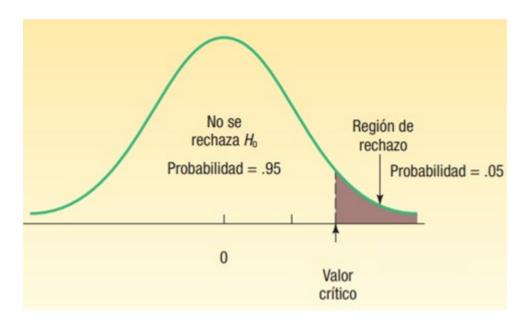
 $H_1: p_{manual} > p_{automático}$

Cálculo de estadístico de prueba

Prueba de hipótesis de dos muestras independientes

$$t = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$t = 2.21$$


 $\overline{X_n}$: Media de las muestras

 $\overline{\sigma_n}$: Desviación estándar de los datos de las muestras

n: Tamaño de las muestras

$$t = 36.1$$

Regla de decisión

Tiempo

2.21 > 2.131

Valor crítico

Para 15 datos, 5% significancia

t = 2.131

Precisión

36.1 > 2.131

Se rechaza la hipótesis nula en ambos casos

CONCLUSIONES

- A partir de las investigaciones realizadas el proyecto consta de un módulo equipado con cabezal de corte, sistema de transmisión en cuatro ejes, control de posición de corte la tela por medio de herramientas informáticas mediante el software Inkscape el cual se adaptó a la estación de trabajo de la empresa.
- De la selección de alternativas se establece, el sistema de corte de herramientas cortantes tipo cuchilla tangencial por el número de capas de tela requerido por la empresa.
- Los cálculos mecánicos de los componentes del sistema de corte determinan una carga máxima de 50~Hz, producida por el movimiento recíproco de la cuchilla con una velocidad de avance de 10~m/min durante el proceso de corte.
- El sistema de transmisión implementado permite el desplazamiento de la herramienta de corte en cuatro ejes, que poseen sistemas de transmisión mecánica los cuales son: piñón cremallera en el eje X, husillo de bolas recirculantes en el eje Y, husillo de bolas recirculantes y poleas síncronas en el eje Z, y acople de transmisión de movimiento angular en el eje C; todos los sistemas de transmisión son impulsados mediante motores a pasos NEMA 34 con torque de 12 Nm para los ejes cartesianos y NEMA 23 con torque de 3 Nm para el eje C.

CONCLUSIONES

- El control del módulo del cabezal de corte se ejecuta mediante la unidad de control de movimiento CNC DDCS V3.1 y drivers modelo HSS los cuales son conectados a los motores a pasos de cada eje con velocidad máxima de 1800 RPM.
- Para el control numérico del proceso de corte, se emplearon los programas AutoCAD e Inkscape; mediante los cuales se realiza la edición y el proceso de vectorización de imagen exportado del archivo del software Optitex empleado en la empresa con resultados óptimos para el proceso de corte con velocidades.
- Mediante el proceso de prueba de hipótesis de dos muestras aplicado a los datos de tiempo y precisión de corte, se determinó que la hipótesis planteada es correcta con un nivel de significancia de 5%.

RECOMENDACIONES

- Para implementar un elemento modular en una máquina se debe analizar todos los elementos presentes de la estación de trabajo para identificar los que se pueden adaptar al equipo implementado.
- Cambiar o afilar la cuchilla antes de cada ejecución de un nuevo proceso de corte.
- Verificar que el punto 0 de la máquina se encuentre en el lugar correspondiente antes de iniciar un proceso de corte.
- Verificar si las alarmas de los drivers de los motores no se encuentran encendidas
- Verificar el estado de la cuchilla para cada proceso de corte
- Comprobar si las medidas en los programas de generación de códigos corresponden a los modelos establecidos

