

DEPARTAMENTO DE CIENCIAS DE LA VIDA Y DE LA AGRICULTURA CARRERA DE BIOTECNOLOGÍA

TRABAJO DE INTEGRACIÓN CURRICULAR, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERA EN BIOTECNOLOGÍA

"Ensamblaje del plásmido para la producción de RNA de interferencia para el silenciamiento del gen SIX en Fusarium oxysporum f. sp. cubense raza 1 (Foc R1)."

Elaborado por: Cornejo Rosado, Anahí Grace

Director: Flores Flor, Francisco Javier PhD.

Sangolquí, Septiembre 2022

CONTENIDO

Banano-Importancia económica en Ecuador

Familia: Museceae

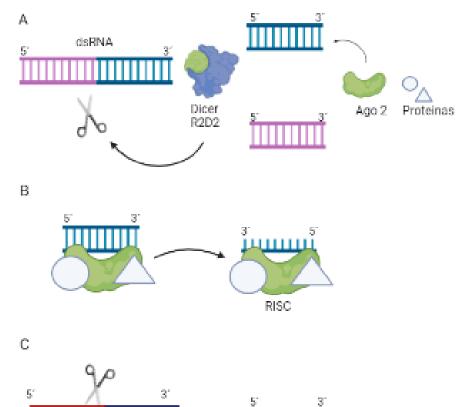
- Entre los cultivos de mayor consumo, después del arroz y el maíz.
- 2016-2018:

 Ecuador primer
 exportador a nivel
 mundial (FAO,

 2019).
- 36% producción global

Fusarium oxysporum f. sp. cubense (Foc)

- Foc R1: Atacó a Gros Michel –
 Reemplazo con Cavendish
- Foc R4: Atacó a Cavendish ¿Solución?


(Maymon et al., 2020)

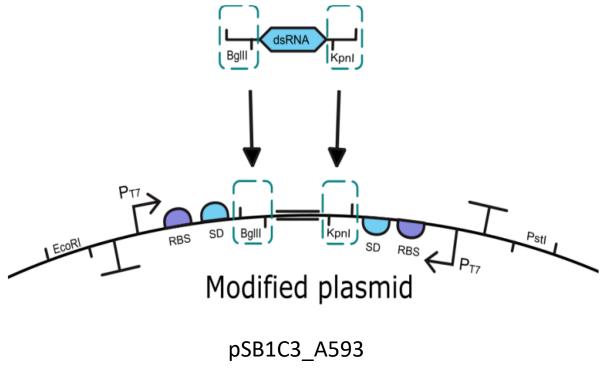
RNA de interferencia (iRNA)

Mecanismos de acción de siRNA.

(Autoría propia, 2022)

iRNA se puede usar para el desarrollo de **bioplaguicidas** que silencien de manera específica genes de virulencia o viabilidad del hongo.

Genes SIX (Secreted in Xylem)


Gen envuelto en la patogenicidad del hongo

Usado exitosamente usado en ensayos de RNAi

Presentar homología entre Foc R4 y Foc R1

Figura 1.Diseño de la plataforma modular AgroBactory 593.

Tabla 1. Partes básicas utilizadas en el diseño de la plataforma modular AgroBactory 593.

Nombre	Descripción	Repositorio iGEM	
Backbone	pSB1C3		
Shine-Dalgarno -SD	Ayuda al ribosoma a encontrar	BBa_K3893000	
	su posición de inicio antes del codón de inicio	BBa_K3893021 (reverso)	
Sitio de unión al ribosoma -RBS	Lugar de unión del ribosoma al ARNm	BBa_B0034	
		BBa_K3893019 (reverso)	
Promotor T7	Promotor especifico que	BBa_I712074	
	transcribe solo por la ARN polimerasa T7	BBa_K3893020 (reverso)	
Secuencia de codificación -CDS	Secuencia que va a ser usada	BBa_K3893004	
	para la producción de dsRNA que silencie al gen <i>SIX</i>		
Terminador	Punto de finalización de la	BBa_K3893006	
	transcripción		
Sitios de restricción	Puntos de corte usados para		
	ingresar el CDS (BgIII y KpnI)		

OBJETIVOS

Objetivo general

Ensamblar un plásmido para la producción de RNA de interferencia para el silenciamiento del gen SIX en Fusarium oxysporum f. sp. cubense raza 1 (Foc R1).

Objetivos específicos

Obtener un biobrick del gen SIX mediante ensamblaje de restricción y ligación.

Ensamblar el plásmido para la producción de dsRNA mediante técnicas de restricción y ligación.

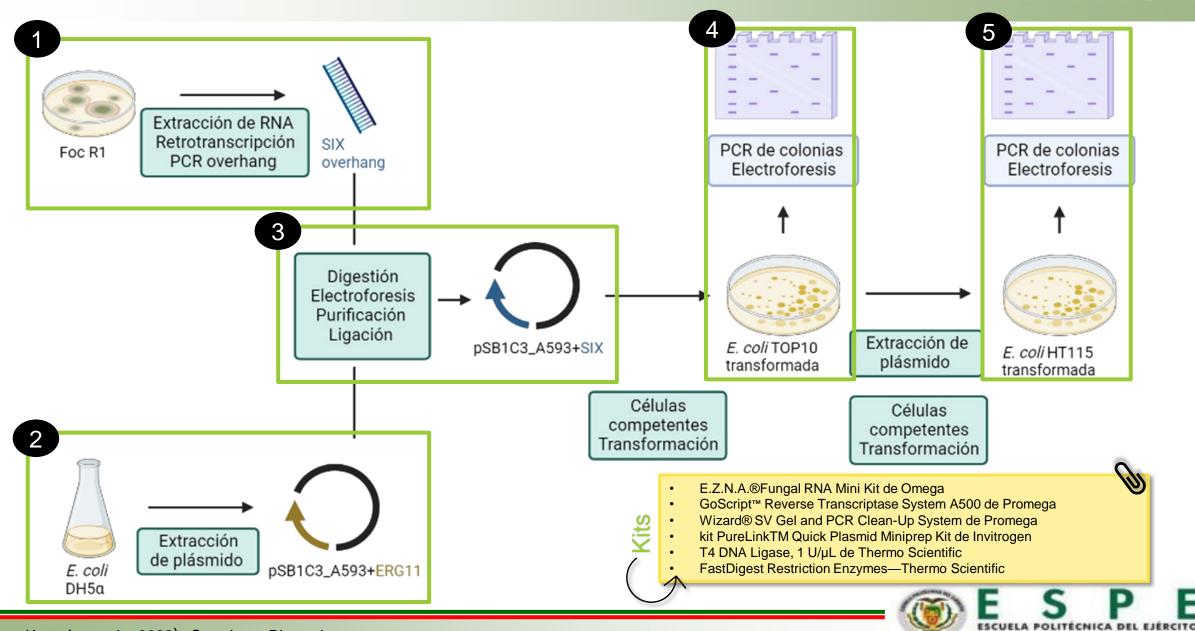
Transformar *Escherichia coli* cepa HT115 con el plásmido ensamblado para producir dsRNA objetivo.

HIPÓTESIS

HIPÓTESIS

Hipótesis de investigación

La eficiencia de transformación presenta diferencias significativas al variar la masa de plásmido pSB1C3_A593+SIX añadido a las células competentes de *Escherichia coli* para su posterior transformación.



METODOLOGÍA

METODOLOGÍA

CAMINO A LA EXCELENCIA

1. Crecimiento Foc R1, Extracción RNA, Retrotrascripción, PCR overhang

Figura 2. Crecimiento de Foc R1 en A) PDB B) PDA

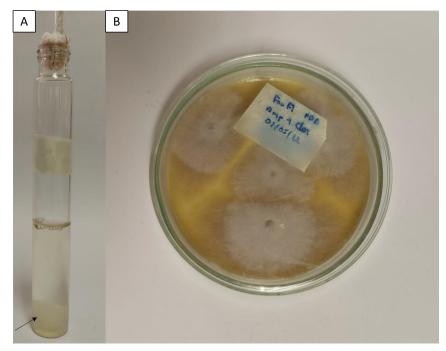
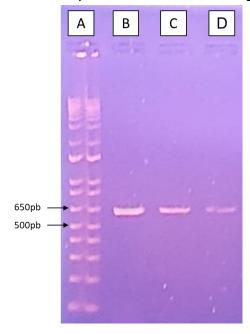
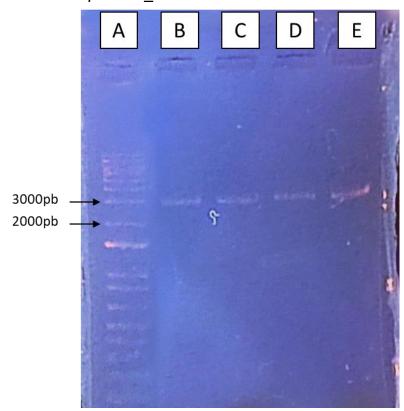



Tabla 2. Concentración y pureza de muestras de cDNA obtenido de Foc R1

Muestra cDNA	Concentración (ng/ul)	A260	A280	260/280	260/230
cDNA Foc R1	873.3	17.46	10.788	1.62	1.96
cDNA Foc R1 dilución 1	298	5.959	3.642	1.64	1.90

Figura 3. Amplificación gen SIX overhang a diferentes temperaturas de annealing


Tabla 3. Primers utilizados para la PCR overhang

Nombre	Secuencia de oligonucleótido	Sitio de Restricción	
dsRNA_SIX1_F_2	5'AAA <u>AGATCT</u> AGACACACATCTAGGCGA3'	BgIII	
dsRNA_SIX1_R_2	5'AAA GGTACC ACCTTGAGCAATTCGACC3'	Kpnl	

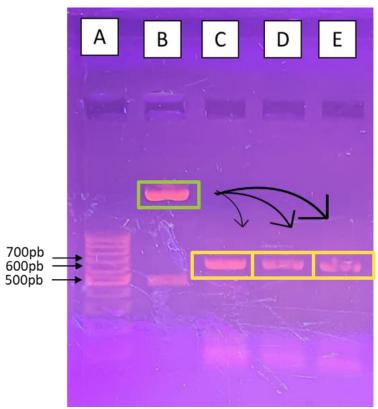
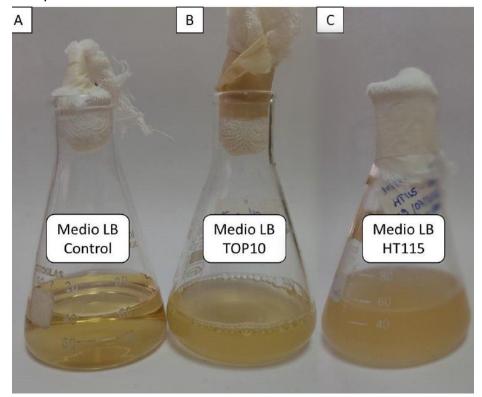
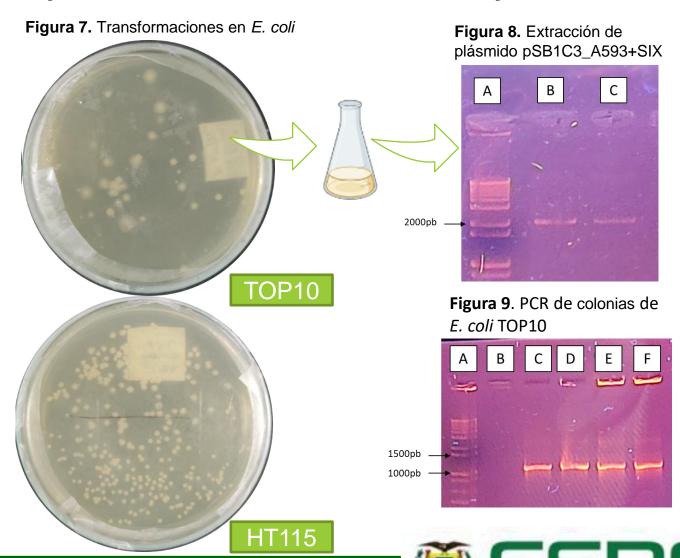

2. Extracción del plásmido

Figura 4. Extracción del plásmido pSB1C3_A593+ERG11

3. Digestión plásmido pSB1C3_A593+ERG11 y SIX overhang

Figura 5. Digestión del plásmido pSB1C3_A593+ERG11 y genes SIX

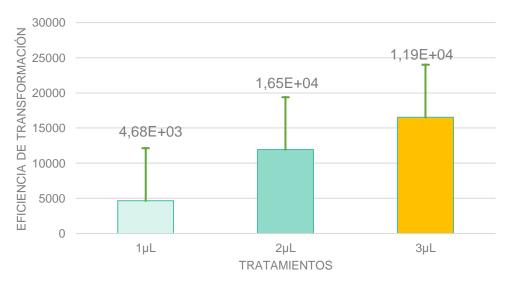

Tabla 4. Tamaños obtenidos tras la digestión del plásmido pSB1C3_A593+ERG11 y gen SIX


Fragmento	Tamaño (pb)
pSB1C3_A593+ERG11	2857
pSB1C3_A593+ERG11 digestado (banda grande)	2386
pSB1C3_A593+ERG11 digestado (banda pequeña)	471
Amplicón SIX overhang digestado	631

4, 5. Preparación de células competentes y transformación en *E. coli* TOP10 y HT115

Figura 6. Cultivos de *E. coli* usados en la preparación de células competentes

6. Diseño Experimental


Tabla 5. Eficiencia de transformación obtenida para el diseño experimental.

EFICIENCIA DE TRANSFORMACIÓN						
Repetición#		1 ul	2ul	3ul		
	1	1,31E+03	5,55E+03	1,74E+03		
	2	0,00E+00	0,00E+00	1,31E+03		
	3	3,27E+03	2,55E+04	4,35E+04		
	4	0,00E+00	0,00E+00	1,07E+04		
	5	0,00E+00	2,94E+03	6,75E+03		
	6	2,35E+04	6,53E+04	7,62E+03		
Control negativo		0	0	0		
PROMEDIO		4,68E+03	1,65E+04	1,19E+04		

Tabla 6. ANOVA de la eficiencia de transformación

F.V.	G.L.	S.C.	C.M.	F	F TAB	p value
TRATAMIENTO	2	429414510	214707255	0,64299	3,68232	0,53961
ERROR	15	5008797470	333919831			
TOTAL	17	5438211980				

Eficiencia de transformación

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

Se ensambló un plásmido conformado por el gen de virulencia *SIX* de *Fusarium oxysporum* f.sp. *cubense* raza 1 y el plásmido pSB1C3_A593 mediante un ensamblaje con la técnica de restricción y ligación. El plásmido generado se lo nombró como pSB1C3 A593+SIX.

Se utilizó el cDNA extraído a partir de Foc R1 para conseguir un amplicón del gen *SIX* mediante la técnica de PCR overhang, la cual añadió los sitios de restricción para KpnI y BgIII a cada extremo del fragmento del gen de interés. De esta manera, el amplicón se volvió compatible con la plataforma modular de AgroBactory 593.

CONCLUSIONES

Se transformó por choque térmico la *cepa TOP10 de Escherichia coli* con el plásmido pSB1C3_A593+SIX. El plásmido se replicó en la bacteria y se extrajo para realizar la segunda transformación. La transformación de *E. coli* cepa HT115 produjo crecimiento de colonias bacterianas en el medio agar LB suplementado con cloranfenicol, sin embargo, la PCR de colonias no generó resultados positivos. Esto pudo ser producto de varios factores como la elección de colonias satélites para realizar la PCR de colonias, la ineficacia del antibiótico usado o la contaminación de los reactivos utilizados.

De acuerdo al análisis de varianza no existe diferencia estadística significativa (valor p: 0,5396) en la eficiencia de transformación de *Escherichia coli* al variar la masa del plásmido pSB1C3_A593+SIX añadido a las células competentes para su posterior transformación. Esto fue corroborado por la prueba Duncan (alfa: 0.05) que mostró los tres tratamientos en un solo grupo.

RECOMENDACIONES

Se recomienda:

- Utilizar el método de secuenciación de DNA Sanger para secuenciar el plásmido pSB1C3_A593+SIX con el fin de verificar el correcto ensamblaje del mismo.
- Utilizar el método de electroporación para la transformación de Escherichia coli, para maximizar la eficiencia de transformación.
- Realizar los procesos de digestión, ligación y transformación de manera consecutiva y de recorrido, para evitar procesos de degradación durante el almacenamiento entre proceso y proceso.

AGRADECIMIENTOS

Francisco Flores, PhD. **Director del proyecto**

Silvana Granda, M. Sc. Laboratorista

Equipo de Agrobactory

FAMILIA Y AMIGOS

