

DEPARTAMENTO DE CIENCIAS DE ENERGÍA Y MECÁNICA

CARRERA EN PETROQUÍMICA

TRABAJO DE UNIDAD DE INTEGRACIÓN CURRICULAR PREVIO A LA OBTENCIÓN DEL TÍTULO DE PETROQUÍMICO

ESTUDIO COMPUTACIONAL DE DERIVADOS DE PIPERAZIN-2-ONA COMO BUILDING BLOCKS EN REACCIONES DE ACOPLAMIENTO PARA LA SÍNTESIS QUÍMICA DE PEQUEÑAS MOLÉCULAS ASOCIADAS A QUINOLINAS Y CON POTENCIALES APLICACIONES BIOACTIVAS.

AUTOR:

QUINTEROS JARA, ALLISTER ALEJANDRO

TUTOR:

ING. FABIÁN MAURICIO, SANTANA ROMO, PHD.

CONTENIDO

INTRODUCCIÓN OBJETIVOS METODOLOGÍA EXPERIMENTAL **RESULTADOS CONCLUSIONES RECOMENDACIONES**

INTRODUCCIÓN

OBJETIVOS

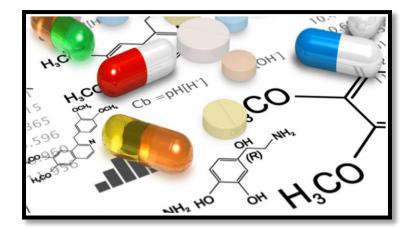
CONTENIDO

METODOLOGÍA EXPERIMENTAL

RESULTADOS

CONCLUSIONES

RECOMENDACIONES

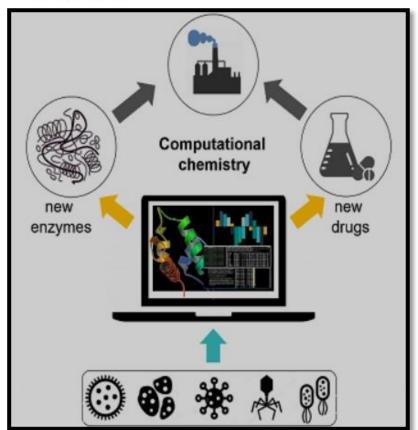


La industria farmacéutica ha tenido un crecimiento alarmante en las ultimas décadas, debido básicamente a dos razones:

Variedad de fármacos

Una demanda global

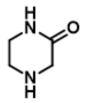
En su constante crecimiento, impulsada por el progreso tecnológico y encuentro de nuevos medicamentos. Busca siempre disminuir costos y tiempo de procesamiento en la producción de medicamentos



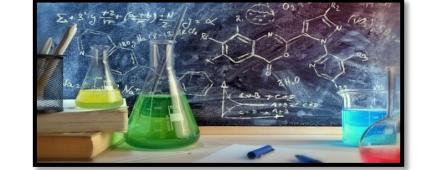
La quimicainformática y la química computacional son la base de la nueva tecnología dedicada a la investigación constante de nuevos compuestos químicos con una utilidad en el campo de la salud.

Petroquímica en la industria farmacéutica

En la actualidad tienen una relación en donde la industria petroquímica se encarga de proveer con materia prima (Compuestos activos) a la industria farmacéutica con el fin de que esta transforme estos compuestos en fármacos, parte de esta materia prima es denominada como compuestos finos (Química Fina)



Piperazin-2-ona

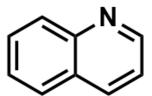


Piperazin-2-ona

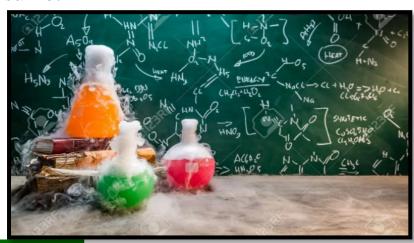
Fórmula Química: C4H8N2O

Peso Molecular: 100,12 g/gmol

Análisis Elemental: C, 47.99; H, 8.05; N, 27.98; O, 15.98


- Es uno de los compuestos más utilizados en la investigación de nuevos fármacos.
- Tienen un gran numero de actividades farmacológicas comprobadas.
- Se los clasifican como moléculas multifuncionales, funcionales e indispensables.
- Ya se encuentran en el mercado para acceso publico.
- Por lo general no son fármacos que necesitan prescripción medica para su uso o consumo.

Quinolina


Fórmula Química: C9H7N Peso Molecular: 129,1620 g/gmol

Análisis Elemental: C, 83.69; H, 5.46; N, 10.84

• Es un compuesto muy popular para el diseño de nuevos fármacos para el tratamiento de diversas enfermedades

- Tienen una amplia gama de actividades biológicas.
- Ya se encuentran en el mercado para acceso publico.
- Por lo general no son fármacos que necesitan prescripción medica para su uso o consumo.

OBJETIVO GENERAL Determinar computacionalmente los potenciales nuevos blancos farmacológicos mediante la variación molecular de compuestos constituidos por fragmentos de piperazin-2-ona.

PETROPULMICA	ECUADOR INNOVACIÓN PARA LA EXCELENCIA
	Establecer una lista de potenciales moléculas químicas de origen orgánico que contengan el fármaco en estudio.
	Procesar cada una de las moléculas químicas de origen orgánico, desde su nomenclatura, estructura química 2D, código SMILES y reporte de propiedades básicas como fórmula, peso molecular y composición elemental.
OBJETIVOS ESPECÍFICOS	Calcular las propiedades fisicoquímicas básicas de cada molécula de origen orgánico, mediante la plataforma gratuita del Instituto Suizo de Bioinformática SwissADME.
	Calcular las estructuras 3D de cada una las moléculas orgánicas, mediante el software Avogadro, para la obtención de las configuraciones y conformaciones finales.
<u>5</u>	Predecir nuevos y futuros blancos farmacológicos para las moléculas modificadas por química combinatoria.

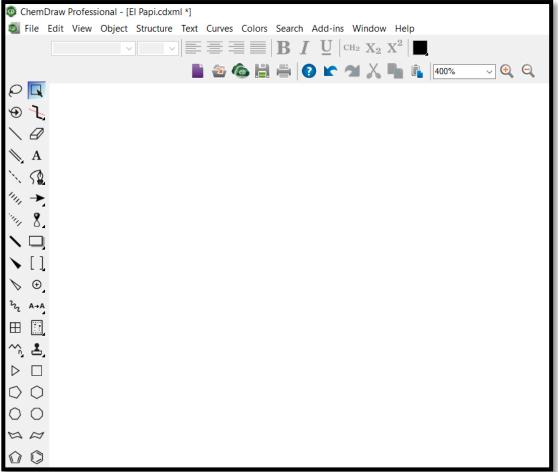
Estableciendo una lista de potenciales moléculas químicas de origen orgánico que contengan el fármaco en estudio.

Este proceso se dio mediante dos formas:

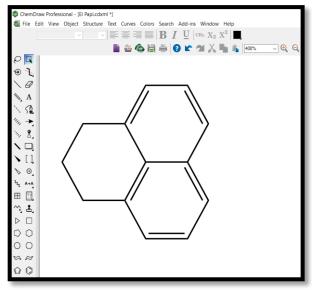
La primera forma fue convencional, en donde se busco compuestos derivados de piperazin-2-ona y quinolina en papers, revistas, artículos, libros y publicaciones científicas de forma digital y de forma física.

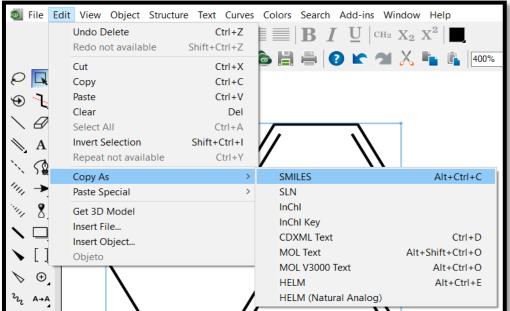
	#	Combined	FP2 fingerprints	Electroshape	Spectrophores	Shape-IT	Align-IT
			Drugs				
Approved	1'516	0	0	0	0	0	0
Experimental	4'788	0	0	0	0	0	0
Investigational	504	0	0	0	0	0	0
Withdrawn	161	0	0	0	0	0	\circ
Nutraceuticals	78	0	0	0	0	0	0
Illicit	169	0	0	0	0	0	0
		Bio	pactive compou	nds			
Ligands from the PDB	19'500	0	0	0	0		
ChEMBL (activity<10µM)	177'000	0	0	0	0		
ChEBI	27'950	0	0	0	0		
Kinase inhibitors (ChEMBL)	53'800	0	0	0	0		
GPCR Ligands (ChEMBL)	140'300	0	0	0	0		
GPCR Ligands (GLASS)	290'700	0	0	0	0		
HMDB	39'060	0	0	0	0		
		Cor	mmercially avail	able			
Zinc Drug-Like	10'639'400	0	0	0	0		
Zinc Lead-Like	4'328'000	0	0	0	0		
Zinc Fragment-Like	705'300	0	0	0	0		
Aldrich ^{CPR}	214'000	0	0	0	0		
Asinex	693'000	0	0	0	0		
AsisChem	241'000	0	0	0	0		
ChemBridge	1'022'000	0	0	0	0		
ChemDiv	1'746'000	0	0	0	0		
Enamine	2'661'000	0	0	0	0		
InnovaPharm	367'000	0	0	0	0		
Maybridge	54'300	0	0	0	0		ı
Otava	376'000	0	0	0	0		ı
Selleckchem	1'900	0	0	0	0	0	0
Sigma-Aldrich	65'000	0	0	0	0		ı
SPECS	326'000	0	0	0	0		ı
TimTec	249'000	0	0	0	0		ı
Vitas	1'733'000	0	0	0	0		
			Virtual libraries	;			
By click chemistry from Sigma Aldrich library	285'000'000		0				

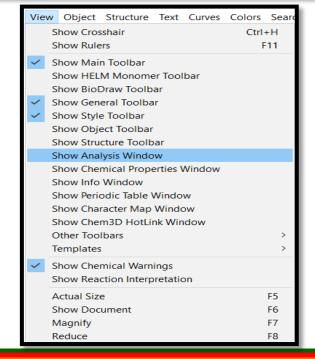
La segunda forma: consiste en buscar compuestos derivados de piperazin-2-ona y quinolina mediante plataformas virtuales con bancos de compuestos patentados.

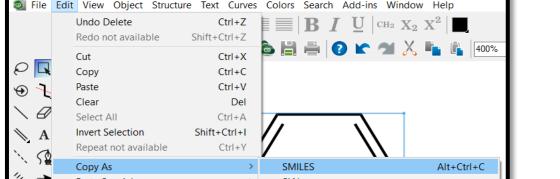


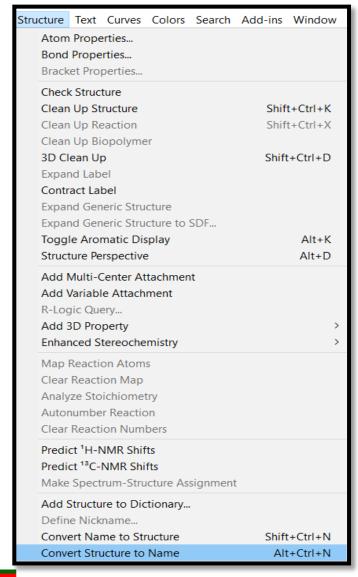
Procesamiento de cada una de las moléculas químicas de origen orgánico, desde su nomenclatura, estructura química 2D, código SMILES y reporte de propiedades básicas como fórmula, peso molecular y composición

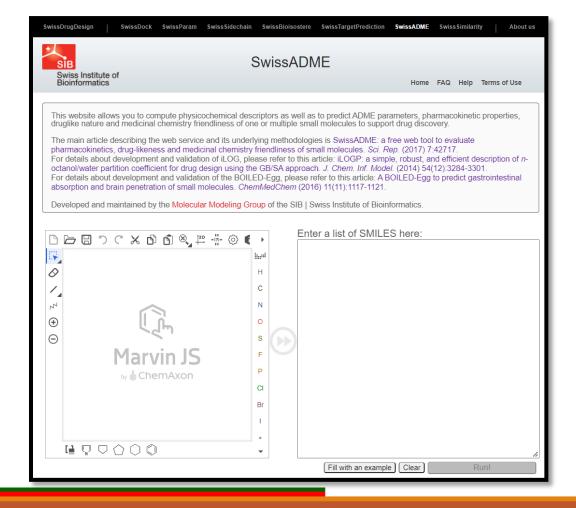

elemental.


Para determinar y caracterizar la molécula se utilizo un programa de diseño



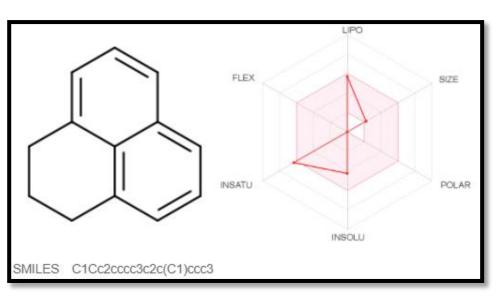






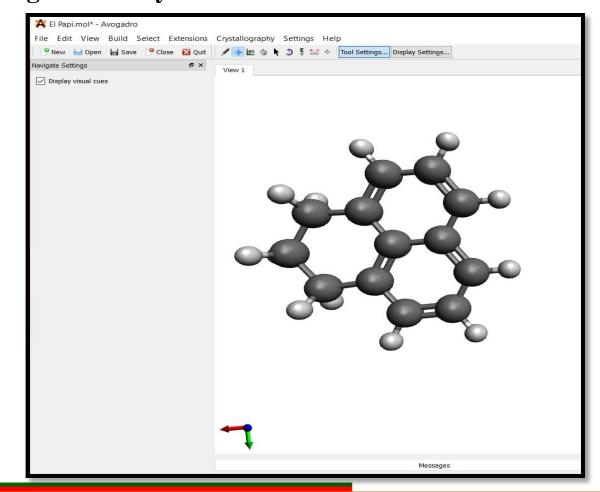
Calculó las propiedades fisicoquímicas básicas de cada molécula de origen orgánico,

mediante la plataforma gratuita del Instituto Suizo de Bioinformática SwissADME.


Mediante el código SMILES, la plataforma virtual realiza los cálculos sobre las propiedades especificas para cada compuesto

Physicochemical Properties				
Formula	C13H12			
Molecular weight	168.23 g/mol			
Num. heavy atoms	13			
Num. arom. heavy atoms	10			
Fraction Csp3	0.23			
Num. rotatable bonds	0			
Num. H-bond acceptors	0			
Num. H-bond donors	0			
Molar Refractivity	56.57			
TPSA 🕖	0.00 Ų			

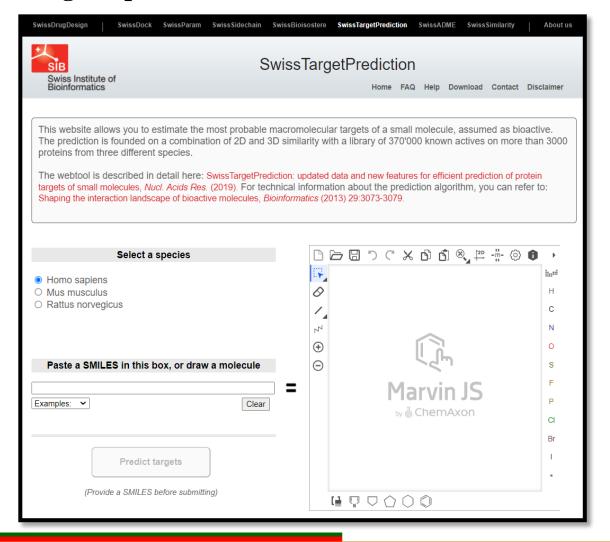
	Lipophilicity
Log Polw (iLOGP) 0	2.38
Log Polw (XLOGP3) 69	4.46
Log Po/w (WLOGP) [€]	3.33
Log Polw (MLOGP) 0	4.71
Log Po/w (SILICOS-IT) [◎]	4.22
Consensus Log P _{o/w} [⊚]	3.82



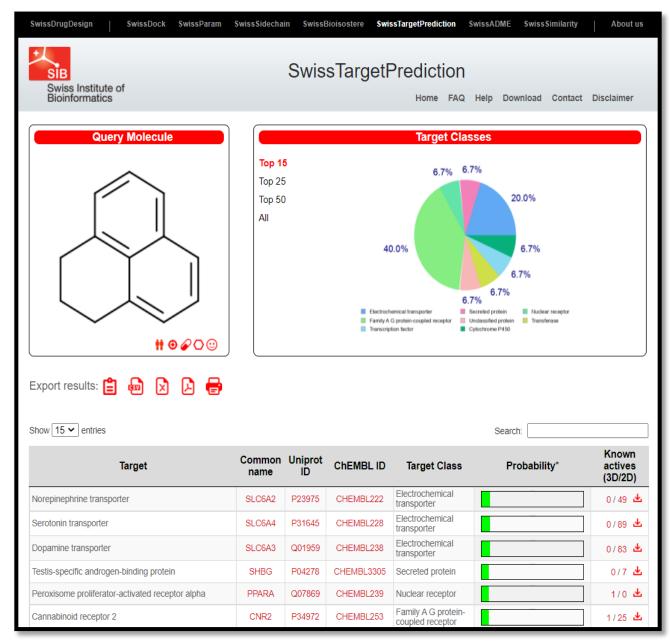
Calcular las estructuras 3D de cada una las moléculas orgánicas, mediante el software

Avogadro, para la obtención de las configuraciones y conformaciones finales.

El software de optimización, readapta la molécula en 2D a 3D



Predecir nuevos y futuros blancos farmacológicos para las moléculas modificadas


por química combinatoria.

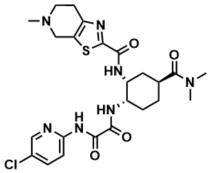
Para determinar los blancos farmacológicos se uso una extensión de la plataforma virtual *SwissADME*.

CONTENIDO

INTRODUCCIÓN **OBJETIVOS** METODOLOGÍA EXPERIMENTAL **RESULTADOS CONCLUSIONES RECOMENDACIONES**

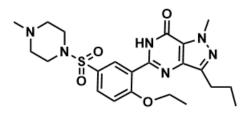
Derivados de piperazin-2-ona

Rivaroxabán


Anticoagulante

Apixabán

Anticoagulante

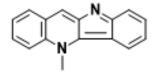

Betrixabán

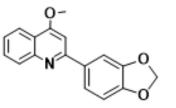
Anticoagulante

Edoxabán

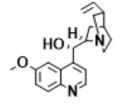
Antineoplásico, inmunodepresor

Sildenafil

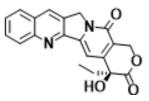

Disfuncion Eréctil, hipertensión arterial pulmonar



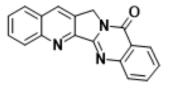
Derivados de quinolina


Cryptolepine

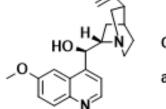
anticancer, antitubercular


Graveolinine

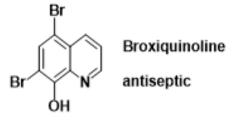
antitubercular

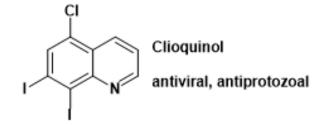

Quinidine

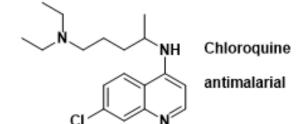
antimalarial, antiarrythmia


Campthotecin

antitumoral


Luotonin A


antitumoral



Quinine

antimalarial

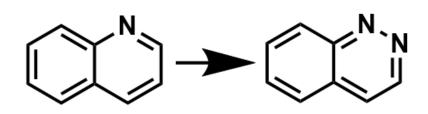
Procesamiento de cada una de las moléculas químicas de origen orgánico, desde su nomenclatura, estructura química 2D, código SMILES y reporte de propiedades básicas como fórmula, peso molecular y composición elemental.

Derivado de piperazin-2-ona

Nombre	Nomenclatura IUPAC	Estructura química 2D	Código SMILES	Formula	Peso	Composición
					Molecular (g/gmol)	Elemental
Sildenafil	5-(2-etoxi-5-((4-metilpiperazin-1-il)sulfonil)fenil)-1-metil-3-propil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona	N S S S S S S S S S S S S S S S S S S S	CN1CCN(S(=O)(C2=CC=C(OCC)C(C3=NC(C (CCC)=NN4C)=C4C(N3)=O)=C2)=O)CC1	C ₂₂ H ₃₀ N ₆ O ₄ S	474,58	C, 55,68%; H, 6,37%; N, 17,71%; O, 13,48%; S, 6,76%;

Derivado de quinolina

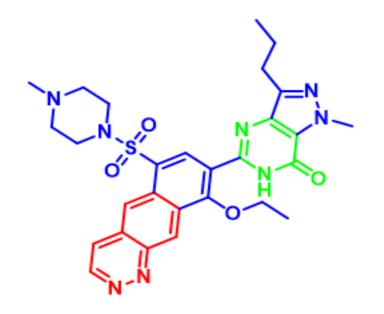
Nombre	Nomenclatura IUPAC	Estructura química 2D	Código SMILES	Formula	Peso Molecular (g/gmol)	Composición Elemental
Quinidina	(1S)-(6-metoxiquinolin-4-yl)((2R,5R)-5-vinilquinuclidin-2-il)metanol	HO, H, LN	COC1=CC=C(N=CC=C2[C@H](O)[C@@]3([H]) CC4CCN3C[C@@H]4C =C)C2=C1	C ₂₀ H ₂₄ N ₂ O ₂	324,424	C, 74,05%; H, 7,46%; N, 8,63%; O, 9,86%;



Calculó de las propiedades fisicoquímicas básicas de cada molécula de origen orgánico, mediante la plataforma gratuita del Instituto Suizo de Bioinformática *SwissADME*.

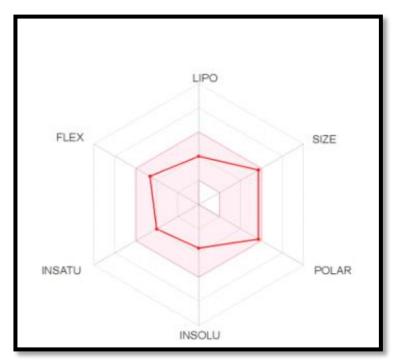
Se procederá a presentar los datos obtenidos para cada molécula, partiendo del derivado de Piperazin-2-ona (Sildenafil), el derivado de quinolina y por ultimo la nueva molécula propuesta

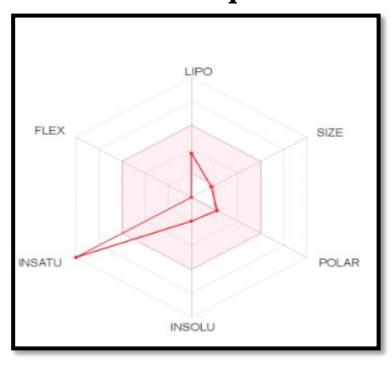
Sildenafil


Molécula de quinolina modificada

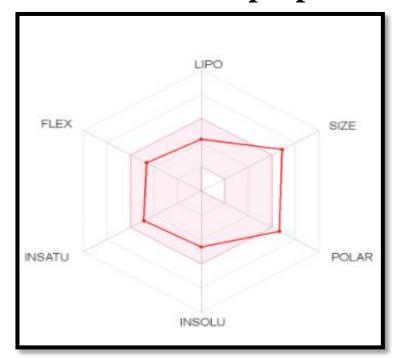
Nueva molécula propuesta

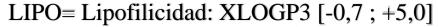
Nomenclatura IUPAC	Código SMILES	Formula	Peso Molecular	Composición
			(g/gmol)	Elemental
5-(9-etoxi-6-((4-metilpiperazin-1-il)sulfonil)benzo[g]cinnolin-8-il)-1-metil-3-propil-1,6-dihidro-7H-pirazolo[4,3-d]pirimidin-7-ona	O=S(N1CCN(C)CC1)(C2=C(C=C(C=CN=N3)C3=C4)C4=C(O CC)C(C5=NC(C(CCC)=NN6C)=C6C(N5)=O)=C2)=O	C ₂₈ H ₃₂ N ₈ O ₄ S	576.23	C, 58,32%; H, 5,59%; N, 19,43%; O, 11,10%;
				S, 5,56%





Lipofilicidad, tamaño, polaridad, solubilidad, flexibilidad y saturación


Sildenafil



Derivado de quinolina

Nueva molécula propuesta

Polaridad: (TPSA) [20; 130]Å

INSATU: Saturación (Carbonos en hibridación sp^3) > 0,25

SIZE: Tamaño [150; 500](g/mol)

INSOLU: Solubilidad ($\log S$) < 6

FLEX: Flexibilidad < 9 enlaces con

Propiedades Fisicoquímicas

Sildenafil Derivado de quinolina Nueva molécula propuesta

Formula	$C_{22}H_{30}N_6O_4S$	$C_8H_6N_2$	C ₂₈ H ₃₂ N ₈ O ₄ S
MW (Peso molecular)	474,58 g/mol	130,15 g/mol	576,67 g/gmol
Num. átomos pesados	33	10	41
Num. átomos aromáticos pesados	15	10	23
Fracción Csp3	0,50	0,00	0,39
Num. Enlaces rotativos	7	0	7
Num. Enlaces aceptores	8	2	10
Num. Enlaces donadores	1	0	1
MR	134,56	39,54	165,16
ASPT	121,80Å ²	25,78Ų	147,58Ų

Lipofilicidad

Sildenafil Derivado de quinolina Nueva molécula propuesta

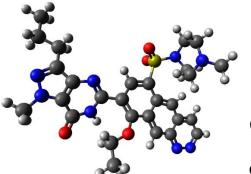
$Log P_{O/W}(iLOGP)$	3,03	1,55	3,88
$Log P_{O/W}(XLOGP3)$	1,48	0,93	1,99
$Log P_{O/W}(WLOGP)$	1,93	1,63	3,03
$Log P_{O/W}(MLOGP)$	1,2	1,41	1,66
$\log P_{O/W}(SILICOS - IT)$	2,06	2,05	2,95
Consensus Log $P_{\mathcal{O}/W}$	1,94	1,51	2,7

Nota. Los valores están calculados en un coeficiente octanol/agua.

Drug-likeness

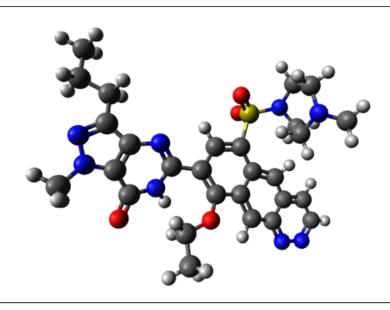
Sildenafil Derivado de quinolina Nueva molécula propuesta

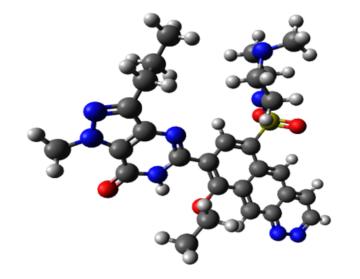
Lipinski	Si; 0 Violaciones	Si; 0 Violaciones	No; 2 Violaciones: MW > 500,
			NorO > 10
Ghose	No; 1 Violación: MR > 130	No; 3 Violación: MW < 160,	No; 3 Violación: MW > 480,
		MR < 40, #atoms < 20	MR > 130, #atoms > 70
Veber	Si	Si	No; 1 Violación: TPSA > 140
Egan	Si	Si	No; 1 Violación: TPSA > 131,6
Muegge	Si	No; 1 Violación: MW < 200	Si
Puntuación de biodisponibilidad	0,55	0,55	0,17



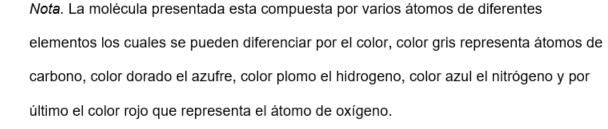
Solubilidad en agua

	Sildenafil	Derivado de quinolina	Nueva molécula propuesta
Log S (ESOL)	-3,59	-1,97	-4,62
Solubilidad	1,22e-01 mg/ml; 2,58e-04 mol/l	1,39e+00 mg/ml ; 1,06e-02 mol/l	1,38e-02 mg/ml ; 2,39e-05 mol/l
Clase	Soluble	Muy Soluble	Moderadamente Soluble
Log S (Ali)	-3,64	-1,06	-4,72
Solubilidad	1,08e-01 mg/ml; 2,27e-04 mol/l	1,14e+01 mg/ml; 8,76e-02 mol/l	1,11e-02 mg/ml ; 1,93e-05 mol/l
Clase	Soluble	Muy Soluble	Moderadamente Soluble
Log S (SILICOS-IT)	-5,38	-3,29	-8,31
Solubilidad	7,08e-04 mg/ml; 1,49e-06 mol/l	6,67e-02 mg/ml; 5,13e-04 mol/l	2,82e-06 mg/ml; 4,89e-09 mol/l
Clase	Moderadamente Soluble	Soluble	Pobremente Soluble



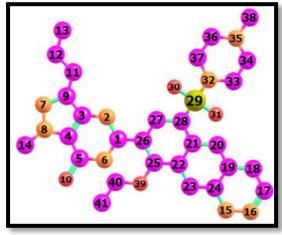


Calcular las estructura 3D de la molécula orgánica, mediante el software Avogadro, para la obtención de las configuraciones y conformaciones finales.


Mo	lecul	а	sın	optimizar

Molécula optimizada

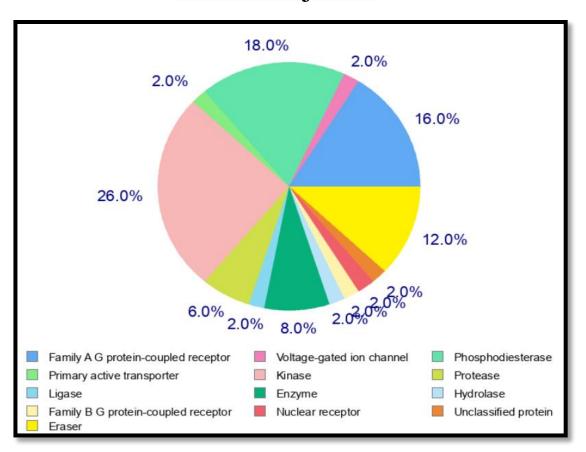
Energía antes de optimizar	Energía después de optimizar		
670,215 kJ/mol	101,07 kJ/mol		



Coordenadas

# Átomo	Elemento	X	Υ
1	6	-0,735442000	1,856250000
2 3	7	-1,449912000	1,443750000
3	6	-2,164384000	1,856250000
4	6	-2,164384000	2,681250000
5	6	-1,449912000	3,093750000
6	7	-0,735442000	2,681250000
7	7	-3,433928000	2,268750000
8	7	-2,949005000	2,936189000
9	6	-2,949005000	2,936189000
10	8	-1,449912000	3,918750000
11	6	-3,203944000	0,816689000
12	6	-4,010916000	0,645162000
13	6	-4,265855000	-0,139460000
14	6	-3,203944000	3,720811000
15	7	3,551384000	1,856250000
16	7	4,265855000	1,443750000
17	6	3,551384000	0,618750000
18	6	3,551384000	0,206250000
19	6	2,836913000	0,618750000
20	6	2,122442000	0,206250000
21	6	1,407971000	0,618750000
22	6	1,407971000	1,443750000
23	6	2,122442000	1,856250000
24	6	2,836913000	1,443750000
25	6	0,693500000	1,856250000
26	6	-0,020971000	1,443750000
27	6	-0,020971000	0,618750000
28	6	0,693500000	0,206250000
29	16	0,693500000	-0,618750000
30	8	-0,131500000	-0,618750000
31	8	1,518500000	-0,618750000
32	7	0,693500000	-1,443750000
33	6	1,407971000	-1,856250000
34	6	1,407971000	-2,681250000
35	7	0,693500000	-3,093750000
36	6	-0,020971000	-2,681250000
37	6	-0,020971000	-1,856250000
38	6	0,693500000	-3,918750000
39	8	0,693500000	2,681250000
40	6	-0,020971000	3,093750000
41	6	-0,020971000	3,918750000

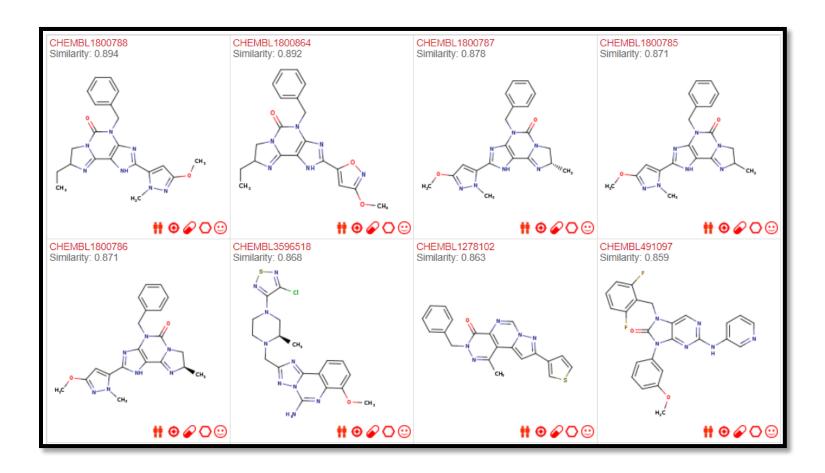
# Átomo	Elemento	Х	Υ	Z
1	6	-2,477200000	-0,560400000	0,406500000
2	7	-1,805900000	-1,239600000	-0,482400000
3	6	-0,539800000	-0,719300000	-0,749400000
4	6	-0,042700000	0,397500000	-0,148600000
5	6	-0,773100000	1,143600000	0,809000000
6	7	-2,007500000	0,581500000	1,046100000
7	7	1,538300000	-0,383700000	-1,571500000
8	7	1,203500000	0,568400000	-0,664900000
9	6	0,457100000	-1,185000000	-1,621200000
10	8	-0,391700000	2,165400000	1,366500000
11	6	0,423800000	-2,375700000	-2,516500000
12	6	0.611200000	-3,685900000	-1,749800000
13	6	0,619100000	-4,883400000	-2,686700000
14	6	2,141300000	1,616500000	-0,341500000
15	7	-9,239900000	0,548100000	3,192900000
16	7	-10,461800000	0,097500000	3,616400000
17	6	-10,754800000	-1,209200000	3,511300000
18	6	-9,863400000	-2,120600000	2,985700000
19	6	-8,616600000	-1,661300000	2,550000000
20	6	-7,652400000	-2,529100000	2,003200000
21	6	-6,387500000	-2,074100000	1,549900000
22	6	-6,110200000	-0,689400000	1,685000000
23	6	-7,095500000	0,155700000	2,247700000
24	6	-8,335700000	-0,299000000	2,673200000
25	6	-4,854400000	-0,179800000	1,262600000
26	6	-3,840200000	-1,027600000	0,798800000
27	6	-4,109300000	-2,389000000	0,669700000
28	6	-5,371500000	-2,902900000	0,998300000
29	16	-5,640000000	-4,646200000	0,705200000
30	8	-5,258200000	-5,319100000	1,926700000
31	8	-6,952600000	-4,818800000	0,119200000
32	7	-4,515900000	-5,051700000	-0,511000000
33	6	-4,198500000	-6,511700000	-0,580800000
34	6	-3,042400000	-6,757900000	-1,574600000
35	7	-3,249000000	-6,211400000	-2,932600000
36	6	-3,653900000	-4,793600000	-2,836100000
37	6	-4,829800000	-4,517000000	-1,876200000
38	6	-4,212000000	-7,003400000	-3,694600000
39	8	-4,611500000	1,173700000	1,369200000
40	6	-4,980900000	1,845600000	0,151200000
41	6	-4,650600000	3,317200000	0,315100000
		X, Y y Z (Tres dime		


Nota. Tabla con las coordenadas X y Y (Dos dimensiones) de la nueva molécula.

Predecir nuevos y futuros blancos farmacológicos para la molécula modificada por química combinatoria.

Clases Objetivo

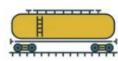
Potencial Bioactivo Especifico


Target	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)
Adenosine A1 receptor	ADORA1	P30542	CHEMBL226	Family A G protein- coupled receptor		666 / 19 😃
HERG	KCNH2	Q12809	CHEMBL240	Voltage-gated ion channel		228/1 🕹
Phosphodiesterase 5A	PDE5A	O76074	CHEMBL1827	Phosphodiesterase		340 / 234 🕹
Phosphodiesterase 10A	PDE10A	Q9Y233	CHEMBL4409	Phosphodiesterase		795/3 🕹
Adenosine A2a receptor	ADORA2A	P29274	CHEMBL251	Family A G protein- coupled receptor		580 / 12 😃
Phosphodiesterase 7A	PDE7A	Q13946	CHEMBL3012	Phosphodiesterase		130 / 23 😃
Phosphodiesterase 4A	PDE4A	P27815	CHEMBL254	Phosphodiesterase		137/2 🕹
Phosphodiesterase 11A	PDE11A	Q9HCR9	CHEMBL2717	Phosphodiesterase		9/4 🕹
Phosphodiesterase 9A	PDE9A	O76083	CHEMBL3535	Phosphodiesterase		25 / 14 😃
Multidrug resistance-associated protein 5	ABCC5	O15440	CHEMBL2046258	Primary active transporter		1/3 🕹
Phosphodiesterase 1A	PDE1A	P54750	CHEMBL3421	Phosphodiesterase		6/8 ₺
Phosphodiesterase 6C	PDE6C	P51160	CHEMBL3977	Phosphodiesterase		4/8 ₺
Phosphodiesterase 2A	PDE2A	O00408	CHEMBL2652	Phosphodiesterase		26/2 🕹
Melanocortin receptor 4	MC4R	P32245	CHEMBL259	Family A G protein- coupled receptor		44/0 🕹
Nerve growth factor receptor Trk-A	NTRK1	P04629	CHEMBL2815	Kinase		443/0 🕹

Similaridad

CONTENIDO

INTRODUCCIÓN **OBJETIVOS** METODOLOGÍA EXPERIMENTAL **RESULTADOS** CONCLUSIONES **RECOMENDACIONES**


- Mediante una revisión bibliográfica y virtual sobre los compuestos químicos derivados de piperazin-2-ona con mayor potencial bioactivo catalogados como fármacos son: **Rivaroxabán, Apixabán, Sildenafil, Edoxabán, Betrixabán y Ciprofloxacina.**
- Mediante una revisión bibliográfica y virtual sobre los compuestos químicos derivados de quinolina con mayor potencial bioactivo catalogados como fármacos son: Criptolepina, quinidina, graveolinina, quinina, broxiquinolina, clioquinol, cloroquina, camptotecina y luotonina A.
- Los parámetros básicos sobre la caracterización de las moléculas fueron obtenidos mediante el software de diseño tales como su nomenclatura, estructura química 2D, código SMILES y reporte de propiedades básicas como fórmula, peso molecular y composición elemental. Estos datos son presentados en el apartado de resultados y sus análisis.
- La molécula seleccionada por parte del derivado de piperazin-2-ona fue el compuesto Sildenafil, debido a mantener gran parte de su bioactividad al ser fusionada con los compuestos derivados de quinolina.

- Mediante el software de optimización espacial de las moléculas propuestas, se obtuvo la geometría molecular precisa sobre una representación real en el espacio, ángulos entre átomos, además de las longitudes apropiadas de enlaces y correspondientes ángulos diedros. Obtenido así una versión 3D de las moléculas junto a sus coordenas x, y, z.
- El principal blanco farmacológico del nuevo compuesto es la proteína receptora adenosina A1, de la familia de receptores acoplados a las proteínas A-G
- La nueva molécula cumple con la farmacocinética ya que no inhibe las isoenzimas (CYP1A2 y CYP2C19) encargadas de la eliminación de drogas en el metabolismo.
- La nueva molécula cumple con el método de evaluación de Muegge, por lo tanto, si puede ser considerada para ser una droga de uso oral, bajo ciertas especificaciones.
- La nueva molécula es considerada como un químico medicinal ya que no cuenta con restricciones, prohibiciones o alertas activas bajo el método PAINS.

- Los blancos farmacológicos secundarios de la nueva molécula son: el gen HERG y la Fosfodiesterasa 5A, 10A, 7A, 4A, 11A y 9A.
- La nueva molécula cuenta con un grado de similaridad máximo de 89.4%, con la molécula más parecida a su estructura molecular por lo tanto es considerada como un nuevo compuesto
- Sildenafil, este compuesto cuenta con un peso molecular de 474,58 g/mol, lipofilicidad de 1,48, polaridad de 121,80 Ų, insolubilidad de -3,59, insaturación de 0,5 y flexibilidad de 7
- El compuesto derivado de quinolina cuenta con un peso molecular de 130,15 g/mol, lipofilicidad de 0,93, polaridad de 25,78 Ų, insolubilidad de -1,97, insaturación de 0,0 y flexibilidad de 0,0.
- La nueva molécula propuesta tiene un peso molecular de 576,67 g/mol, lipofilicidad de 1,99, polaridad de 147,58 Ų, insolubilidad de -4,62, insaturación de 0,39 y flexibilidad de 7.
- La energía de optimización del nuevo compuesto partió de un valor inicial de 670,215 kJ/mol, el cual considera una molécula sin optimizar. La energía resultante después de la optimización fue de 101,07 kJ/mol. La diferencia entre estos valores es de 569.145 kJ/mol.

CONTENIDO

INTRODUCCIÓN **OBJETIVOS** METODOLOGÍA EXPERIMENTAL **RESULTADOS CONCLUSIONES RECOMENDACIONES**

- Se recomienda a los docentes incluir en sus módulos de estudio la utilización de programas de simulación química
- A la carrera a integrar materias exclusivas sobre manejos de programas de diseño y simulación.
- Se sugiere a los estudiantes que desean replicar los resultados obtenidos en esta investigación, contar con conocimientos básicos sobre programas químicos de diseño molecular.
- Se recomienda a la Universidad, adquirir licencias de programas actuales y eficientes para la realización de predicciones químicas computacionales (Simulaciones), evitando de esta forma el uso de programas adulterados y sin licencia de operación.

PETROLEUM INDUSTRY