

Universidad de las Fuerzas Armadas "ESPE"

Departamento de Ciencias de la Vida y de la Agricultura

Carrera de Ingeniería en Biotecnología

Trabajo de titulación previo a la obtención del título de Ingeniera en Biotecnología

Patogenicidad y taxonomía de bacterias pectolíticas asociadas a pudriciones blandas en cultivos solanáceos andinos

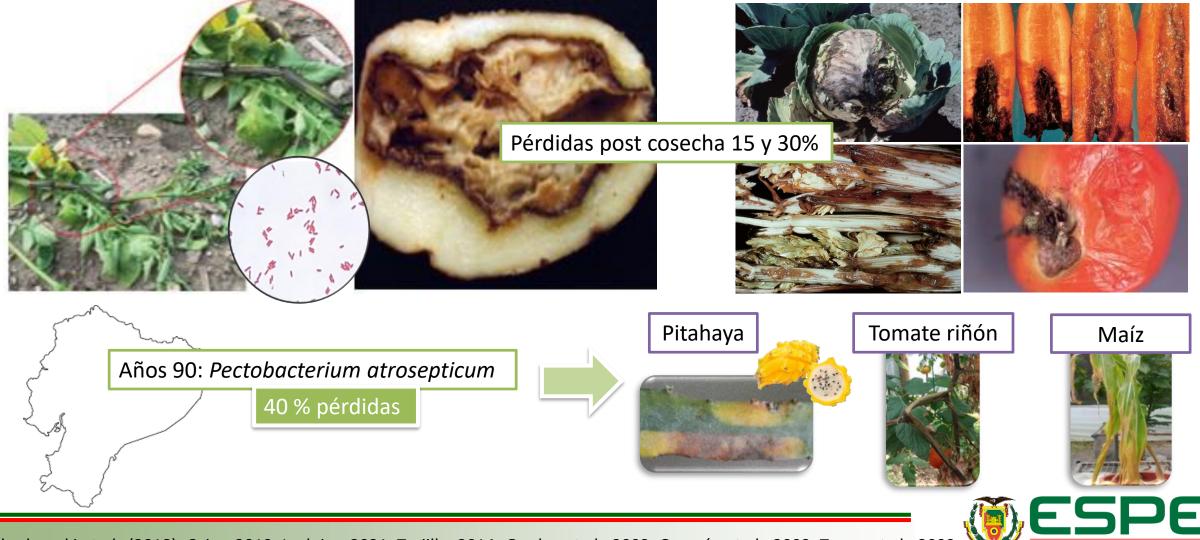
Montatixe Llangari, Pamela Michelle

Director: Gavilanes Quizhpi, Petronio M. Sc.

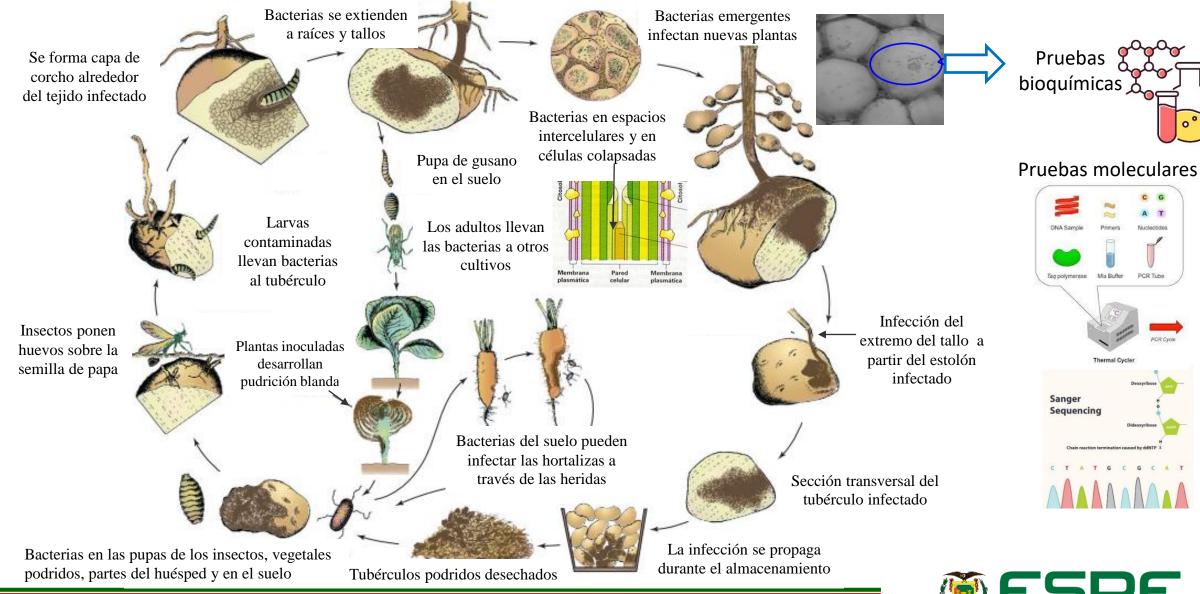
Sangolquí, 22 de agosto 2022

ÍNDICE DE CONTENIDOS

- Introducción
- Objetivos
- **3** Hipótesis
- 4 Materiales y Métodos
- 5 Resultados y Discusión
- 6 Conclusiones
- Recomendaciones
- 8 Agradecimientos



1 INTRODUCCIÓN



INTRODUCCIÓN

Generalidades de la pudrición blanda

INTRODUCCIÓN

OBJETIVOS

OBJETIVOS

Objetivo General

Determinar la patogenicidad y taxonomía de bacterias pectolíticas asociadas a pudriciones blandas en cultivos solanáceos andinos.

Objetivos Específicos

Evaluar la patogenicidad de las bacterias pectolíticas aisladas, en papa (Solanum tuberosum L), tomate de árbol (Solanum betaceum Cav) y naranjilla (Solanum quitoense Lam).

Determinar de forma bioquímica el grupo de bacterias al que pertenecen los aislamientos obtenidos de papa (*Solanum tuberosum* L), tomate de árbol (*Solanum betaceum* Cav) y naranjilla (*Solanum quitoense* Lam).

Identificar molecularmente a los aislamientos de bacterias pectolíticas asociadas con pudriciones blandas de papa (*Solanum tuberosum* L), tomate de árbol (*Solanum betaceum* Cav) y naranjilla (*Solanum quitoense* Lam).

HIPÓTESIS

HIPÓTESIS

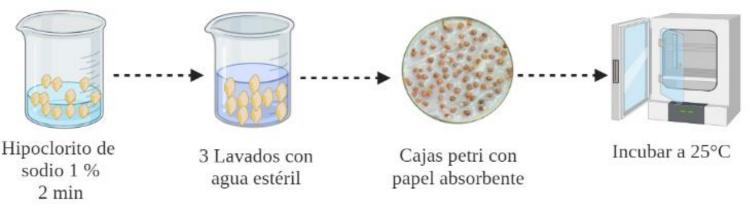
Los aislamientos de las bacterias pectolíticas ocasionan pudrición blanda en cultivos solanáceos andinos y son identificados a nivel bioquímico y molecular.

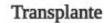
Material Vegetal

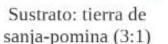
Material Biológico

Tomate de árbol (amarillo punton)

Naranjilla (común)


Papa (leona blanca)


Aislamiento	Origen	Ubicación geográfica	Denominación	
P1		Carchi - Tulcán	Papa Pecto C*	
P2	Papa	Dichincha Maiía	Papa Pedregal	
Р3		Pichincha - Mejía	Papa San Miguel	
Ta1		Pichincha - Mejía	Tomate de árbol (PM)	
Ta2	Tomate de árbol		Tomate de árbol (PP)	
Та3		Pichincha - Mejía - La Virgen	Tomate de árbol (N3)	
N1		Pichincha - Mejía - La Virgen	Naranjilla 3 La Virgen*	
N2	Naranjilla	Morona Santiago – Palora	Naranjilla Palora	
N3		Pichincha - Mejía - La Virgen	Naranjilla 2 La Virgen*	


Siembra de semillas de tomate de árbol y naranjilla

Desinfección

Altura mínima: 20 cm

Siembra de tubérculos de papa

Condiciones en el invernadero

Mañana: 18 a 21 °C

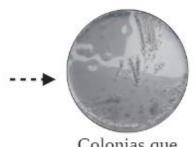
invernadero

Noche: 9 a 12 °C

Riego: moderado

Aislamiento bacteriano

Inoculación bacteriana

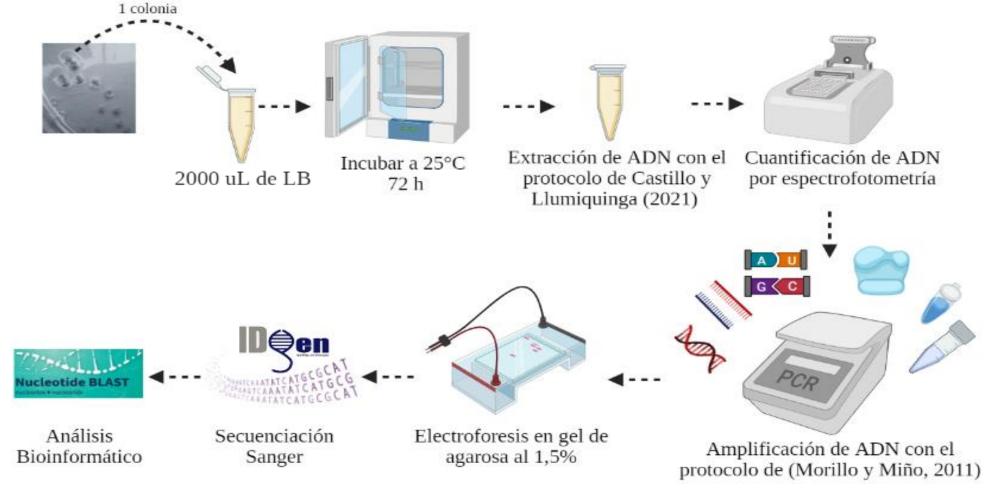


Re-aislamiento bacteriano

Sembrar por estriado en medio CVP

Incubar a 25°C 48 h

Colonias que forman cavidades


Pruebas	Reacción		
Tinción Gram	Gram positiva: células de color azul violáceo	Gram negativa: células de color rojo o rosa.	
Degradación de pectato (CVP)	Formación de hoyos en el medio, color y forma de las colonias		

_			
	Pruebas	Reacción	1
as	Oxido-fermentativa (Hugh and Leifson)	Metabolismo oxidativo	Metabolismo fermentativo
bioquímicas	Catalasa	Desprendimiento de burbujas	
	Oxidasa	Reacción positiva: rosa violáceo	Reacción negativa: amarillo tenue
Pruebas	Crecimiento en agar nutriente a 37°C	Formación de colonias	
_	Crecimiento en YDC	Colonias de color amarillo o anaranjado	

Identificación molecular de los aislamientos

Extracción, cuantificación y validación de ADN bacteriano

Mix PCR

1X (μL) **Reactivos** Concentración final Agua ultra pura 12,4 5 Tampón 1X $MgCl_2(mM)$ 1,8 1,8 dNTPs (mM) 0,5 0,2 Primer 27F (pM) 0,8 (5'- AGTTTGATCCTGGCTCAG -3') Primer 1492R (pM) 0,8 2 (5'- GGTTACCTTGTTACGACTT -3') Taq - polimerasa $(U/\mu L)$ 0,06 0,3 ADN (ng/μL) 1,6 1,0 V_{f} 25

Condiciones de PCR para la amplificación del gen ARNr 16S.

Fases	Temperatura (°C)	Tiempo	Ciclos
Desnaturalización inicial	95	5 min	1
Desnaturalización	94	1 min	
Alineamiento	54	45 s	34
Elongación	70	1 min	
Extensión final	70	8 min	1

Análisis Estadístico

Longitud de pudrición de las plantas inoculadas con los aislamientos bacterianos

N° de cultivos

3

N° aislamientos

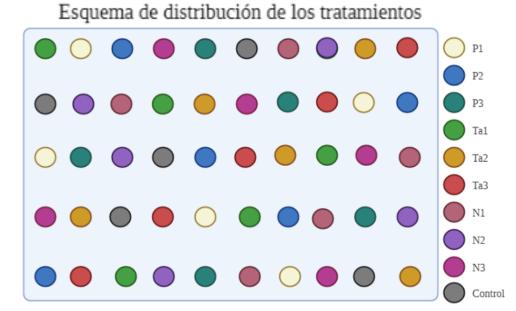
9

Tratamientos

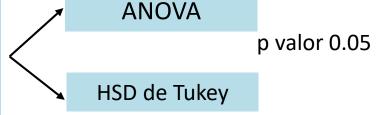
27

Repeticiones por tratamiento

5


Variables de respuesta

Longitud de pudrición


Diseño experimental

Factorial 3 x 9 dispuesto en DCA

Prueba de normalidad Kolmogórov-Smirnov

Prueba de patogenicidad

Chang (2017) factores de predisposición para la pudrición: lesiones, hematomas y heridas. Humedad y temperatura favorecen el desarrollo

Bhat et al., (2004) & Czajkowski, (2011) tejido se ablanda, superficie se decolora y parte interna viscosa

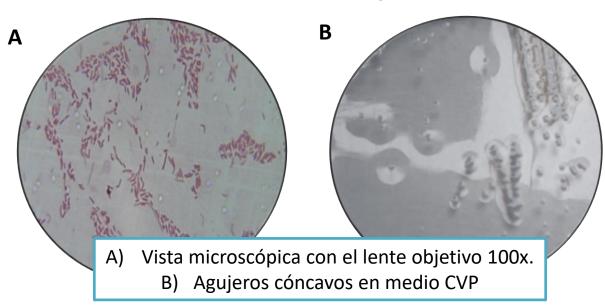
Agrios (2005b) la superficie exterior puede permanecer intacta mientras que el contenido se convierte en una masa viscosa que se exuda al exterior

Patogenicidad diferencial

Agrios (2005b) la superficie exterior puede permanecer intacta. Kubheka et al., (2013) Oclusión de los vasos del xilema por las bacterias.

Revelo et al., (2010) Naranjilla INIAP Palora es un híbrido

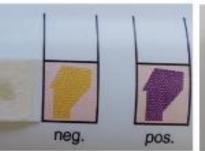
Re-aislamiento bacteriano



26 aislamientos bacterianos formaron cavidades en medio CVP

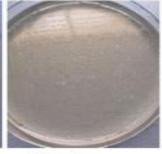
Agrios (2005a) el microorganismo debe ser aislado e idéntico al original

Caracterización fenotípica


Tolga et al., (2018) familia Enterobacteriaceae bacilos Gram Negativos

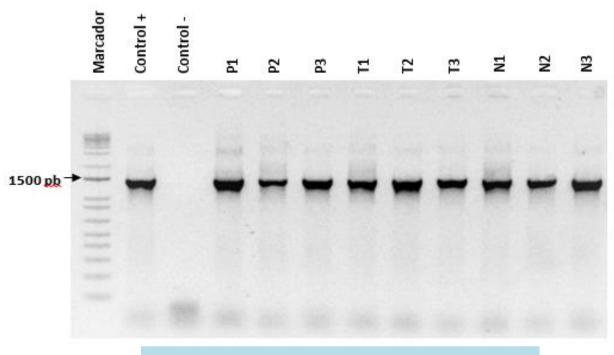
Sangeetha et al., (2020) las bacterias pectolíticas forman cavidades en medio CVP.

Pruebas bioquímicas


Catalasa (+) Oxidasa (-)

Anaerobias facultativas

Colonias anaranjadas en medio YDC (-)


Colonias en agar nutriente a 37°C (+) P1, N2, N3

Czajkowski et al., (2014) y Peralta et al., (2021) especies del género *Pectobacterium* son: catalasa positiva, oxidasa negativa y son anaerobios facultativos

Luna (2007) las colonias color crema en medio YDC pertenecen a especies del género Pectobacterium

Identificación molecular

Lane (1991), cebadores universales para bacterias 27 F y 1492 R, amplifican una región de ~ 1500 pb

Denominación	Especie bacteriana homóloga	Porcentaje de cobertura (%)	Valor E	Porcentaje de identidad (%)
P1	Pectobacterium polaris	100	0.0	99,12
P2	Pectobacterium atrosepticum	99	0.0	99,34
Р3	Pectobacterium atrosepticum	100	0.0	94,53
Ta1	Pectobacterium atrosepticum	100	0.0	94,53
Ta2	Pectobacterium atrosepticum	99	0.0	99,34
Ta3	Pectobacterium punjabense	100	0.0	100
N1	Pectobacterium punjabense	100	0.0	99,79
N2	Pectobacterium carotovorum subsp. carotovorum	100	0.0	100
N3	Pectobacterium carotovorum subsp.	100	0.0	100

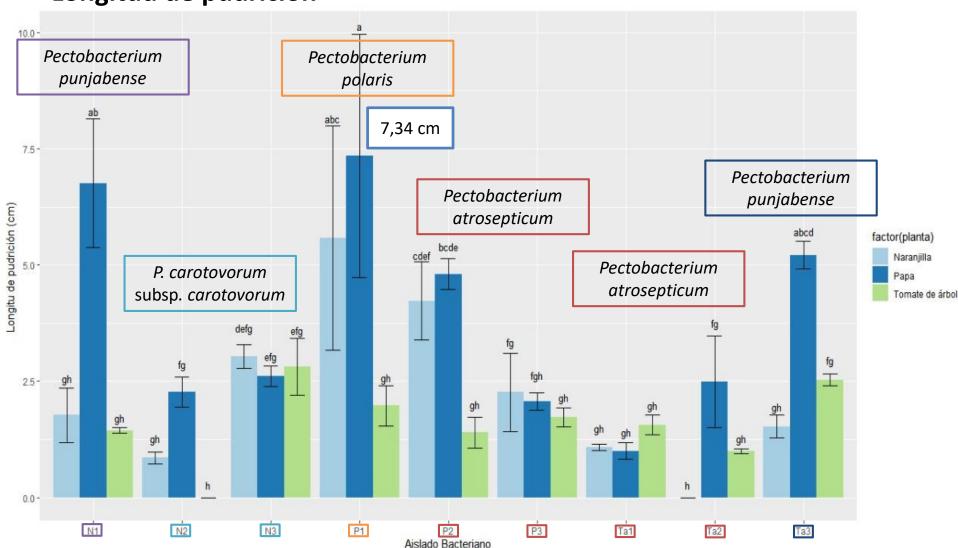
Prueba de normalidad Kolmogórov-Smirnov

p valor = 0.0643 : datos normales

ANOVA de la variable longitud de pudrición (cm)

	Longitud de pudrición (cm)		
	Grados de	Company de Company de a	Pr (>F)
	Libertad	Suma de Cuadrados	
Planta	2	85.23	2e-16
Aislado Bacteriano	8	179.07	2e-16
Planta:Aislado	16	139.70	3.74e-15
Bacteriano			
Residuales	81	55.86	

p valor < 0.05


Influencia significativa de los factores y su interacción

Test HDS de Tukey

Longitud de pudrición

Sarfraz et al., (2018) y Cigna et al., (2021)

Pectobacterium punjabense identificada en Pakistán y Europa como hospedero principal de papa.

Park et al., (2012) y Abd Elkafie et al., (2019)

Pectobacterium

carotovorum subsp.

carotovorum tiene como

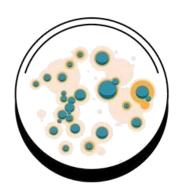
hospederos diferentes

especies vegetales

CONCLUSIONES

CONCLUSIONES

Los aislamientos bacterianos más patogénicos fueron *Pectobacterium polaris* (P1), *P. atrosepticum* (P2, P3 y Ta1), *P. punjabense* (Ta3, N1) y *P. carotovorum* subsp. *carotovorum* (N3); ya que infectaron a los tres cultivos estudiados, ocasionando síntomas como: maceración del tejido, necrosis, liberación de exudados y olor fétido, característico de este tipo de bacterias.


Los dos aislamientos restantes tuvieron patogenicidad diferencial, es decir que *P. carotovorum subsp. carotovorum* (N2) infectó papa y levemente a naranjilla produciendo un cambio tenue en la coloración del tallo; mientras que en tomate de árbol se observó la colonización de los haces vasculares, el aislamiento correspondiente a *P. atrosepticum* (Ta2) infectó a papa, tomate de árbol, pero no a naranjilla.

El cultivo más susceptible a la pudrición blanda fue papa inoculada con *Pectobacterium polaris*, dando una longitud de pudrición de 7,34 cm, seguido de la naranjilla inoculada con *Pectobacterium polaris* con una longitud de pudrición de 5,58 cm, mientras que el tomate de árbol inoculado con *P. carotovorum* subsp. *carotovorum* arrojó 2,81 cm en la longitud de pudrición.

CONCLUSIONES

Los nueve aislamientos bacterianos presentaron similar respuesta a las pruebas bioquímicas: catalasa (+), oxidasa (-), anaerobias facultativas (cambio de coloración de azul a amarillo), formación de colonias amarillas en medio YDC (-) y formación de cavidades en medio CVP (+). Además, el fenotipo característico fue bacilos Gram negativos, por lo que se determinó que pertenecen al género *Pectobacterium*.

Las pruebas moleculares sustentaron a lo predicho por las pruebas bioquímicas, ya que el género de todos los aislamientos bacterianos fue *Pectobacterium*.

RECOMENDACIONES

RECOMENDACIONES

Complementar a las pruebas bioquímicas realizadas con pruebas API, que permiten la identificación rápida de Enterobacterias y otras bacterias Gram negativas, a nivel de género o especie.

Caracterizar molecularmente a los aislamientos bacterianos por medio del uso de otros cebadores u otras regiones de ADN, para así complementar el análisis molecular obtenido en este estudio.

Implementar secuenciación de nueva generación (NGS), para obtener resultados más precisos y óptimos; permitiendo un análisis genómico de mejor calidad.

Aplicar un screening en las diferentes variedades de los cultivos estudiados para así conocer si existe resistencia varietal ante las bacterias pectolíticas.

Para el manejo de esta enfermedad se recomienda considerar, la rotación de cultivos, donde no deberían constar solanáceas, ya que se encontró como hospedantes de todas las especies estudiadas.

8 AGRADECIMIENTOS

AGRADECIMIENTOS

FAMILIA Y AMIGOS

Dr. Petronio Gavilanes

Director del proyecto

Blanca Naranjo MSc.

Codirectora del proyecto

Dra. María Luisa Insuasti **Directora externo del proyecto**

Dr. José Ochoa

Asesor externo

Ing. Pablo Llumiquinga
Asesor externo

Ing. Judith Zapata

Asesor externo

