

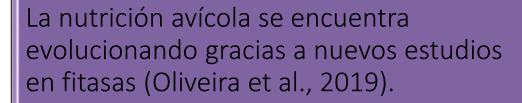
Uso de *Phosfit 300* como fuente alternativa al uso de fosfatos inorgánicos en alimentación de gallinas ponedoras de huevo comercial

Oyos Piarpuesan, Eloary Chermay

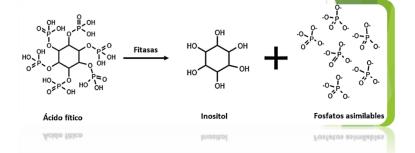
Departamento de Ciencias de la Vida y la Agricultura

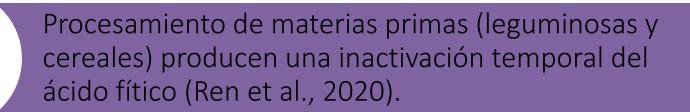
Carrera de Ingeniería Agropecuaria

Trabajo de titulación, previo a la obtención del título de Ingeniera Agropecuaria


Ing. Ortiz Manzano, Mario Leonardo

19 de agosto de 2022


INTRODUCCIÓN


El uso de fitasas en el alimento logran evitar procesos anti nutricionales y mejoran la flora intestinal de las aves (Yépez, 2022).

La mejora que se da en el alimento se refleja en los parámetros zootécnicos y de producción (Yépez, 2022).

JUSTIFICACIÓN

Uso de fitasas exógenas como alternativa para la mejor disponibilidad mineral (Ren et al., 2020).

Relación estricta con la inversión al realizar alimento balanceado para gallinas ponedoras de una línea genética alta (Habibollahi et al., 2019).

OBJETIVOS

Objetivo general

• Validar el uso de *Phosfit 300* como una fuente alternativa al uso de fosfatos inorgánicos en dietas de gallinas ponedoras de huevo comercial, mediante el suministro en el alimento concentrado para reducir costos de producción, mejorar los parámetros zootécnicos y de calidad de huevo.

Objetivos específicos

- Determinar el efecto de la enzima Phosfit 300 en los parámetros zootécnicos en la fase 1 de postura en gallinas Lohoman Brown en comparación de un testigo absoluto.
- Determinar el efecto de la enzima *Phosfit 300* en los diferentes parámetros de calidad de huevo (peso, resistencia, color de yema, altura de albumen, Unidades Haugh y espero de cáscara) en comparación de un testigo absoluto.
- Determinar el tratamiento económicamente más viable.

HIPÓTESIS

Hipótesis nula

La enzima *Phosfit 300* no tiene efecto en los parámetros zootécnicos ni en la calidad del huevo comparado con un testigo absoluto.

Hipótesis alterna

La enzima *Phosfit 300* tiene efecto en los parámetros zootécnicos y en la calidad de huevo comparado con un testigo absoluto.

MARCO TEÓRICO

	Edad 50% de producción	140-150 días	
	Pico de producción	92-94%	
	# huevos / gallina alojada	Unidades	
	(puesta)	295-305	
	12 meses	335-345	
	14 meses		
Puesta	Masa de huevo/ gallina alojada (puesta)	Kilogramos	
	12 meses	18.8-19.8	
	14 meses	21.4-22.4	
	Peso medio del huevo	Gramos	
	12 meses	63.5-64.5	
	14 meses	65.65	
Características del	Color	Marrón	
producto (huevo- cáscara)	Resistencia	+ 35 Newton	
Consumo de pienso	1-20 semanas (puesta)	7.4-7.8 Kg (110-120 g/día)	
	20 semanas	1.6-1.7 Kg	
Peso corporal	Final de la producción	1.9-2.1 Kg	
	Crianza	97-98%	
Viabilidad	Puesta	96%	

Nota. Recuperado de Lohmann Brown Classic. Copyright 2021 por Lohmann Breeders. Reprinted

Nutriente	Requerimiento
Peso corporal kg	1.850
Energía metabólica kcal/kg	2.850
Calcio %	3.889
Fósforo disponible %	0.318
Potasio %	0.449
Sodio %	0.179
Cloro %	0.155

Nota. Recuperado de Tablas Brasileras. Copyright 2017 por

Tablas Brasileras. Reprinted with permission

Pre postura
5% producción
19 semanas

Postura Fase 1 21-44 semanas

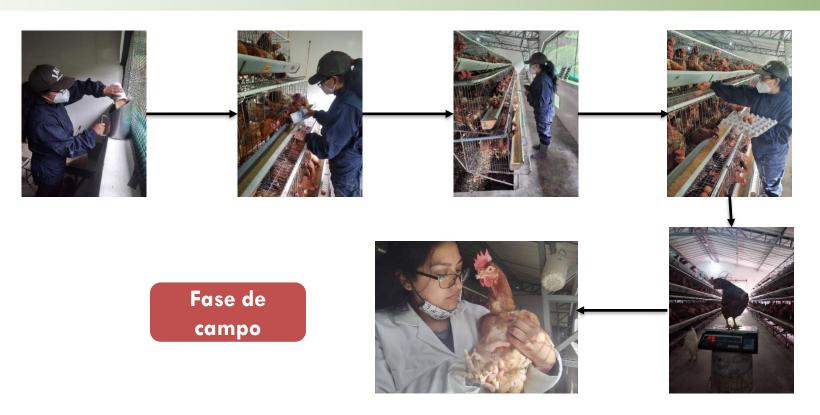
with permission

PHOSFIT 300

Elemento	Unidad
Fitasa	300 U
Clostridium butyricum	1 <i>X</i> 10⁵ UFC
Ácido cítrico	1 mg
Cantaxantina	0.001 mg
Vehículo: fuente fósforo solubilizada c.s.p	1 g

Nota. Recuperado de Nutrion.ec.

Copyright 2021 por Nutrion. Reprinted with permission



METODOLOGÍA

Figura 1

Hacienda "El Prado", taller de Avicultura

Nota. Tomado de Google Maps, 2020.

Ubicación geográfica

• **Longitud:** 78°24'44" Oeste

• **Latitud:** 0°23'20" Sur

• **Altura:** 2748 msnm

Fase de laboratorio

METODOLOGÍA

Fase campo

Zootécnicas

Mortalidad %

Conversión alimenticia

% de postura

Peso de aves (kg)

Producción por tratamiento

Fase laboratorio

Calidad

Peso huevo (g)

Altura de albúmina (mm)

Color de yema

Unidades Haugh

Dureza de cáscara (kgf)

Grosor de cáscara (mm)

Categoría

Tabla 12

Composición nutricional de las dietas suplementadas en aves

Note:	Aporte nut	ritivo/ dieta
Nutrientes	T0	T1
E.M Aves MC	2.850	2.850
Sodio %	0.153	0.184
Potasio %	0.631	0.652
Proteína total %	15.975	16.245
Fósforo total %	0.320	0.318
Calcio %	3.800	3.980
Aminoácidos (% de dieta)		
Lisina Digestible	0.756	0.756
Metionina Digestible	0.524	0.512
Met + Cis Digestible	0.750	0.741
Triptófano Digestible	0.180	0.178
Treonina Digestible	0.600	0.582
Arginina Digestible	0.942	0.970
Valina Digestible	0.703	0.703

DISEÑO EXPERIMENTAL

Se dispuso mediante un diseño completamente al azar (DCA), con 5 repeticiones para cada tratamiento

Análisis Estadístico

- Prueba Tukey (α =0.05)
- 95% de confiabilidad
- InfoStat

$$Y_{ijk} = u + D_i + e_{ij}$$

Croquis del diseño

Donde

Yij= calidad de huevo

U= media general

Di= efecto de la i-ésima dieta

Eij= error experimental

Figura 2

Croquis experimental

T1R2	T0R3	T1R1	T0R4	T1R5
T0R1	T1R4	T0R2	T1R3	T0R5

Jaulas

RESULTADOS Y DISCUSIÓN

Mortalidad

No se registro mortalidad en ninguno de los tratamientos

Conversión Alimenticia

Porcentaje de postura

Tratamiento	Código	Medias	D.E	p-valor 0.05%
Fosfato mono cálcico	T0	2.46	0.27	А
Phosfit 300	T1	2.38	0.28	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p > 0.05)

D.E: Desviación estándar

El rango de conversión alimenticia esta entre 2.0 a 2.2 kg.

Dichos resultados dependen de varios factores que influyen en el comportamiento del animal, como por ejemplo la disponibilidad materias primas, disponibilidad en comederos, temperatura del alojamiento, ventilación.

Tratamiento	Código	Medias	D.E	p-valor 0.05%
Fosfato mono cálcico	T0	65.58	6.95	Α
Phosfit 300	T1	69.15	6.07	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

En estudio realizado por Fernández et al., (2018), con cuatrocientas noventa gallinas ponedoras Hyline W36, en el cual evaluaron la inclusión de una fitasa, no obtuvieron diferencia significativa en el parámetro de producción, estas aves fueron evaluadas durante las semanas 46 y 74 de edad (Fernández et al., 2018).

RESULTADOS Y DISCUSIÓN

Peso de las aves (kg)

Tratamiento	Código	Medias	D.E	p-valor 0.05%
Fosfato mono Cálcico	T0	1.81	0.07	А
Phosfit 300	T1	1.82	0.05	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

A la edad de 26 semanas las aves se deben encontrar en un promedio de 1.89 kg y a la edad de 39 semanas se encuentran en un promedio de 1.94 kg.

La ganancia de peso es determinada por el consumo del ave, horas luz, factores de estrés, calidad de agua, temperatura, más no por el tipo de dieta debido a que deben cumplir con los rangos de pesos determinados por la línea y no sobrepasar o rebajar estos datos (Fernández et al., 2018).

RESULTADOS Y DISCUSIÓN

Producción por tratamiento

Tratamiento	Código	Medias	D.E	p-valor 0.05
Fosfato mono cálcico	T0	1835.93	195.11	А
Phosfit 300	T1	1936.36	169.97	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

T1 con Phosfit 300 es mayor en producción, con un 100 huevos más que el T0.

En un estudio realizado en la provincia de Cotopaxi por Villaroel (2018) con 200 gallinas ponedoras Lohmann Brown, en donde hubo la adición de fitasa a 1800FYT por kilo, tampoco se encontró diferencia significativa en la producción, obteniendo valores de producción promedio de 237.3 huevos (Villaroel, 2018).

Peso del huevo (g)

Tratamiento	Código	Medias	D.E	p-valor 0.05%
Fosfato mono cálcico	T0	63.89	4.73	А
Phosfit 300	T1	64.29	5.28	Α

Nota: Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

INEN-2013 determina que huevos con pesos de 64 a 70 gramos son clasificados como extra grandes, en el mercado actual cubetas con huevos que tengan este peso promedio unitario son comercializados con un valor entre los 3.50 a 4.00 \$.

Color de yema

Tratamiento	Código	Medias	D.E	p-valor 0.05%
Fosfato mono cálcico	T0	8.10	0.89	А
Phosfit 300	T1	8.17	0.88	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

Maguregui (2020) explica que el color de yema depende primero el porcentaje de xantofilas y carotenoides proporcionados en el alimento, mientras que el segundo factor depende directamente del animal, para el primer caso se toma también en cuenta la digestibilidad, el metabolismo, las deficiencias vitamínicas, mientras que para el segundo factor se determina como puntos de peligro la edad de las aves, la estirpe, la sanidad (Maguregui, 2020).

Altura de albúmina (mm)

Tratamiento	Código	Medias	D.E	p-valor 0.05%
Fosfato mono cálcico	T0	8.92	1.58	Α
Phosfit 300	T1	9.26	1.57	В

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

Unidades Haugh

Tratamiento	Código	Medias	D.E	p-valor 0.05
Fosfato mono cálcico	T0	92.59	9.38	А
Phosfit 300	T1	94.32	8.89	В

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

Se encontró diferencia significativa entre los tratamientos.

La albúmina (altura y viscosidad) ,característica de frescura y de excelente calidad es una albúmina espesa, firme, que se mantiene apretada alrededor de la yema, en caso contrario, si la albúmina es acuosa, fluida y se extiende rápidamente se habla de una mala calidad de huevo y de un producto que ha sido almacenado por mucho tiempo (De la Cruz, 2021).

Se encontró diferencia significativa.

Unidades Haugh es la relación de altura de albumina y peso del huevo.

INEN-2013 indica que valores de 70 a 110 son los necesarios la comercialización de estos huevos, de igual manera la normativa indica que valores superiores a 90 grados de frescura son determinados para huevos de excelente calidad.

Dureza de cáscara (kgf)

Tratamiento	Código	Medias	D.E	p-valor 0.05
Fosfato mono cálcico	T0	5.36	1.09	А
Phosfit 300	T1	5.25	1.20	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

Grosor de cáscara (mm)

Tratamiento	Código	Medias	D.E	p-valor 0.05
Fosfato mono cálcico	T0	0.38	0.03	Α
Phosfit 300	T1	0.38	0.03	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

A pesar de que la cáscara está compuesta en su mayoría por carbonato de calcio, el fósforo juega también un papel importante sobre todo en el metabolismo Ca y P, la calidad y dureza de la cáscara puede verse afectada por los niveles irregulares de fósforo en las dietas de las aves, debido a que no podría darse correctamente el proceso de liberación de calcio del hueso y el proceso de mineralización de la cáscara (Bonilla et al., 2021).

El grosor de cáscara y la resistencia son parámetros de calidad externa del huevo que van estrechamente relacionados, esta característica puede ser influenciada por la inclusión de aditivos a dietas bajas en ciertos minerales, (Bonilla et al., 2021).

ANÁLISIS DE ALMACENAMIENTO

Peso huevo (g)

Tratamiento	Código	Medias	D.E	p-valor 0.05%
Fosfato mono cálcico	T1	59.73	3.76	Α
Phosfit 300	T0	59.49	4.05	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

Color de yema

Tratamiento	Código	Medias	D.E	p-valor 0.05
Fosfato mono cálcico	T0	7.65	0.73	Α
Phosfit 300	T1	7.49	0.90	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

El uso de ambas fuentes de fósforo proporcionado en la semana cero de recolección dio como resultado huevos de categoría mediana, pero que con el paso de las semanas no variaron en su peso.

No se encontró diferencia significativa, este parámetro de calidad se rige más a la cantidad de xantofilas y carotenoides que se encuentran proporcionados por las materias primas en las dietas balanceadas.

Altura de albúmina (mm)

Tratamiento	Código	Medias	D.E	p-valor 0.05
Fosfato mono cálcico	T0	4.61	1.19	А
Phosfit 300	T1	4.99	1.75	В

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

Unidades Haugh

Tratamiento	Código	Medias	D.E	p-valor 0.05
Fosfato mono cálcico	T0	63.69	11.69	А
Phosfit 300	T1	66.61	13.89	В

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar

En el proceso de degradación de la albúmina unos de los factores a tomar en consideración es el tiempo de almacenamiento, temperatura, pH y pérdida de CO2, a mayor pérdida CO2 mayor es el valor de pH, por lo tanto, empieza el proceso de degradación de las proteínas ovomucina y lisozima y la calidad disminuye (Martínez, 2020).

En el parámetro de frescura intervienen dos puntos importantes que son la altura de albúmina que está directamente relacionada con Unidades Haugh, el pH incrementa con el paso del tiempo, lo que resulta en una menor altura de albúmina que directamente dará valores inferiores de unidad haugh, valores menores a 70 indican que no son aptos para la venta y el consumo del cliente por la pérdida de proteínas (Tabla 5).

Dureza (kgf)

Tratamiento	Código	Medias	D.E	p-valor 0.05
Fosfato mono cálcico	T0	5.43	1.00	А
Phosfit 30	T1	5.31	1.09	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

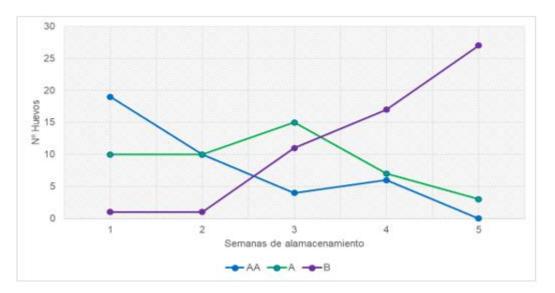
D.E: Desviación estándar

Grosor de cáscara (mm)

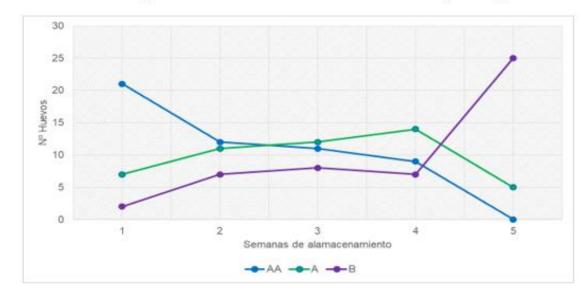
Tratamiento	Código	Medias	D.E	p-valor 0.05
Fosfato mono cálcico	T0	0.39	0.04	Α
Phosfit 300	T1	0.38	0.04	Α

Nota. Medias con letras iguales no son significativamente diferentes, Tukey (p >0.05)

D.E: Desviación estándar


Factores que intervienen en la reducción de la dureza de cáscara externa en el tiempo de almacenamiento puede ser una nutrición decadente, temperaturas altas, edad avanzada de las gallinas, mala calidad de agua, enfermedades como por ejemplo bronquitis infecciosa (INEN, 2013).

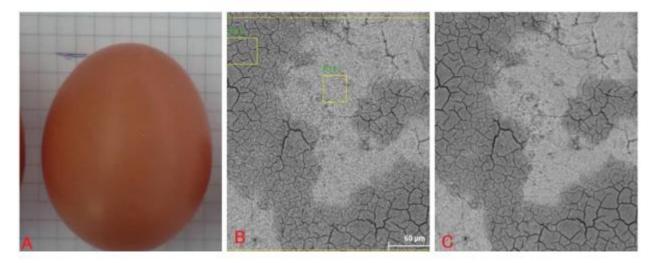
El fósforo al igual que el calcio es un elemento importante para la formación de cáscara, un exceso de este elemento en el proceso de formación puede contribuir a una degradación de solidos de la misma, presentando huevos con cáscaras frágiles, y con un nivel bajo de espesor (INEN,2013).



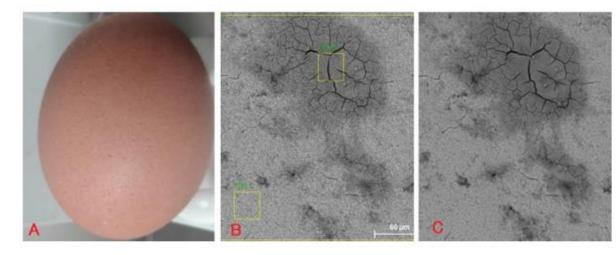
Categoría

Ranking de calidad de huevos en almacenamiento para T0

Ranking de calidad de huevos en almacenamiento para T1/


		Phosfit 300		Fost	ato mono cál	cico
Semanas	AA	Α	В	AA	Α	В
1	21	7	2	19	10	1
2	12	11	7	10	10	1
3	11	12	8	4	15	11
4	9	14	7	6	7	17
5	0	5	25	0	3	27
Promedio	11	9	10	8	9	11

Nota. promedio general para conteo de categoría en análisis de calidad de huevo


ANÁLISIS DE ESPECTOMETRÍA (SEM-EDS)

Espectrometría realizada en cáscara de tratamiento Phosfit 300

Nota. (A) vista parte externa, (B) análisis EDS 60 µm, (C) análisis SEM 100 µm

Espectrometría realizada en cáscara de tratamiento fosfato mono cálcico

Nota. (A) vista parte externa, (B) análisis EDS 60 µm, (C) análisis SEM 100 µm

Análisis de espectrometría SEM-EDS en las los tratamientos experimentales

Tratamientes				Elem	ento (ma	sa porcer	ntaje)			
Tratamientos	С	N	0	Na	Mg	P	s	CI	K	Ca
T0	20.18	4.14	46.40	0.11	0.60	1.76	0.09	0.12	0.32	26.24
T1	17.81	5.02	45.40	0.15	1.46	2.07	0.10	0.23	0.41	27.30
Diferencia	2.37	-0.88	1	04	-0.86	-0.31	-0.01	-0.11	-0.09	-1.06

Nota. Porcentaje de masa de dos elementos esenciales en cáscara de huevo

RESUMEN DE RESULTADOS

Parámetro	TO	T1
% Mortalidad	0	0
Conversión alimenticia	2.45	2.38
% de Postura	66.58	69.14
Peso de aves (kg)	1.81	1.82
Producción por tratamiento	1835.93	1936.36
Peso de huevo (g)	63.89	64.29
Color de yema	8.10	8.17
Altura de albúmina	8.92	9.26
Unidades Haugh	92.59	94.32
Dureza (kgf)	5.36	5.25
Grosor de cáscara (mm)	0.38	0.38
Categoría	AA	AA
	Huevos	percha
	TO	T1
Peso de huevo (g)	59.73	59.49
Color de yema	7.65	7.49
Altura de albúmina	4.61	4.99
Unidades Haugh	63.69	66.61
Dureza (kgf)	5.43	5.31
Grosor de cáscara (mm)	0.39	0.38

ANÁLISIS ECONÓMICO

Análisis económico de los tratamientos evaluados para el primer mes

Análisis económico de los tratamientos evaluados para el segundo mes

Parámetros	Testigo	Phosfit 300
	T0	T1
Aves	400	400
Producción de huevos	7575	7902
Huevos rotos	53	57
Egresos		
Costo del alimento	19.11	17.61
Galponero	400	400
Suma	419.11	417.61
Ingresos		
Venta de huevos	757.5	790.2
Venta de huevos rotos	2.65	2.85
Gallinaza	80	80
Suma	840.15	873.05
Beneficio costo	2.00	2.09

Parámetros	Testigo T0	Phosfit 300 T1
Aves	400	400
Producción de huevos	6976	7362
Huevos rotos	41	41
Egresos		
Costo del alimento	19.11	17.61
Galponero	400	400
Suma	419.11	417.61
Ingresos		
Venta de huevos	697.6	736.2
Venta de huevos rotos	2.05	2.05
Gallinaza	80	80
Suma	779.65	818.25
Beneficio costo	1.86	1.96

Nota. Un proyecto con un beneficio costo menor a 1 es rechazado

Nota. Un proyecto con un beneficio costo menor a 1 es rechazado

Cada uno de los tratamientos presenta valores de beneficio/ costos superiores a 1, por lo tanto, ambos proyectos se aceptan tanto para el primer como segundo.

ANÁLISIS ECONÓMICO

Análisis económico de los tratamientos evaluados para el tercer mes

Parámetros	Testigo T0	Phosfit 300 T1
Aves	400	400
Producción de huevos	7346	7877
Huevos rotos	40	31
Egresos		
Costo del alimento	19.11	17.61
Galponero	400	400
Suma	419.11	417.61
Ingresos		
Venta de huevos	734.6	787.7
Venta de huevos rotos	2	1.55
Gallinaza	80	80
Suma	816.6	869.25
Beneficio costo	1.95	2.08

Nota. Un proyecto con un beneficio costo menor a 1 es rechazado

Análisis económico de los tratamientos evaluados para el cuarto mes

Parámetros	Testigo T0	Phosfit 300 T1
Aves	400	400
Producción de huevos	3806	3968
Huevos rotos	28	31
Egresos		
Costo del alimento	19.11	17.61
Galponero	400	400
Suma	419.11	417.61
Ingresos		
Venta de huevos	380.6	396.8
Venta de huevos rotos	21	21
Gallinaza	80	80
Suma	481.6	497.8
Beneficio costo	1.15	1.19

Nota. Un proyecto con un beneficio costo menor a 1 es rechazado

Cada uno de los tratamientos presenta valores de beneficio/ costos superiores a 1, por lo tanto, ambos proyectos se aceptan tanto para el tercer y cuarto mes.

CONCLUSIONES

- A través de la prueba estadística de Tukey al 95%, solo se registró diferencia significativa en altura de la albúmina y Unidades Haugh, por lo que se acepta la hipótesis alterna donde menciona que la inclusión de la enzima *Phosfit 300* como alternativa a fuentes de fósforo inorgánico en dieta de gallinas ponedoras en fase 1 presenta un efecto significativo sobre dos parámetros de calidad de huevo.
- A pesar de que no se obtuvo diferencia significativa en el parámetro de producción, matemáticamente se observa que el tratamiento con inclusión de una enzima *Phosfit 300* tuvo una mayor producción de huevos en relación con el testigo absoluto, de igual manera en el parámetro de conservación alimenticia no se encontró diferencia significativa, pero la media determinada para el tratamiento con *Phosfit 300* se acerca más a lo que determina la normativa para la línea genética.
- Para el análisis de huevos en almacenamiento, la diferencia significativa se presenta en altura de albúmina, Unidades Haugh, en donde se evidencia el efecto del tiempo y temperatura del almacenamiento para cada uno de los tratamientos, dando como mejor resultado la dieta con inclusión de *Phosfit 300* para la conservación y frescura de huevos.
- El análisis de espectrometría muestra que *Phosfit 300* extrae de mejor manera el fósforo contenido en el ácido fítico de las materias primas.
- Respecto al análisis económico realizado en un periodo de cuatro meses, se observó que, desde el primer mes hasta el cuarto mes de evaluación, ambos proyectos son viables, ya que su beneficio/costo son mayores a 1, pero el tratamiento que recibió mejores ganancias fue con *Phosfit 300*.

RECOMENDACIONES

- Se recomienda el uso de *Phosfit 300* en dietas de gallinas ponedoras Lohmann Brown, desde el período de pre postura, ya que, los resultados demuestran que matemáticamente hay aumento en su producción y sobre todo hay mejora en el parámetro de frescura de huevo considerando altura de albúmina y Unidades Haugh.
- Se recomienda realizar más experimentos en el ámbito de huevos en almacenamiento, debido a que los análisis realizados demuestran que Phosfit 300 es una alternativa interesante en el almacenamiento y calidad interna de huevos.
- De igual manera, se recomienda realizar un seguimiento pertinente a la siguiente fase de postura, debido a que los requerimientos nutricionales para este periodo serán distintos, esto con la finalidad de determinar si *Phosfit 300* presenta alguna diferencia significativa en parámetros de producción o calidad de huevo.

AGRADECIMIENTOS

