

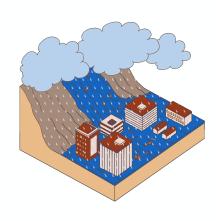


"ANÁLISIS COSTO BENEFICIO DE LAS ZONAS SUSCEPTIBLES A INUNDACIONES EN LA SUBCUENCA DEL RÍO CHICO, UTILIZANDO HERRAMIENTAS GEOESPACIALES"

AUTORA: GUEVARA GUSQUI ODALIS DOMÉNICA

Director del Proyecto: Director de Carrera:
Ing. Rodolfo Jaime Salazar Ing. Alexander Robayo, Mst.
Martínez, PhD.

Docente Evaluador: PhD. Fabián Francisco Rodríguez Espinosa Secretario Académico: Abg. Carlos Calahorrano


PLANTEAMIENTO DEL PROBLEMA

CARRERA DE INGENIERÍA GEOGRÁFICA Y DEL MEDIO AMBIENTE

Inundaciones

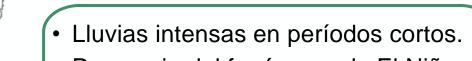
44%

ESMERALDAS

MANABI

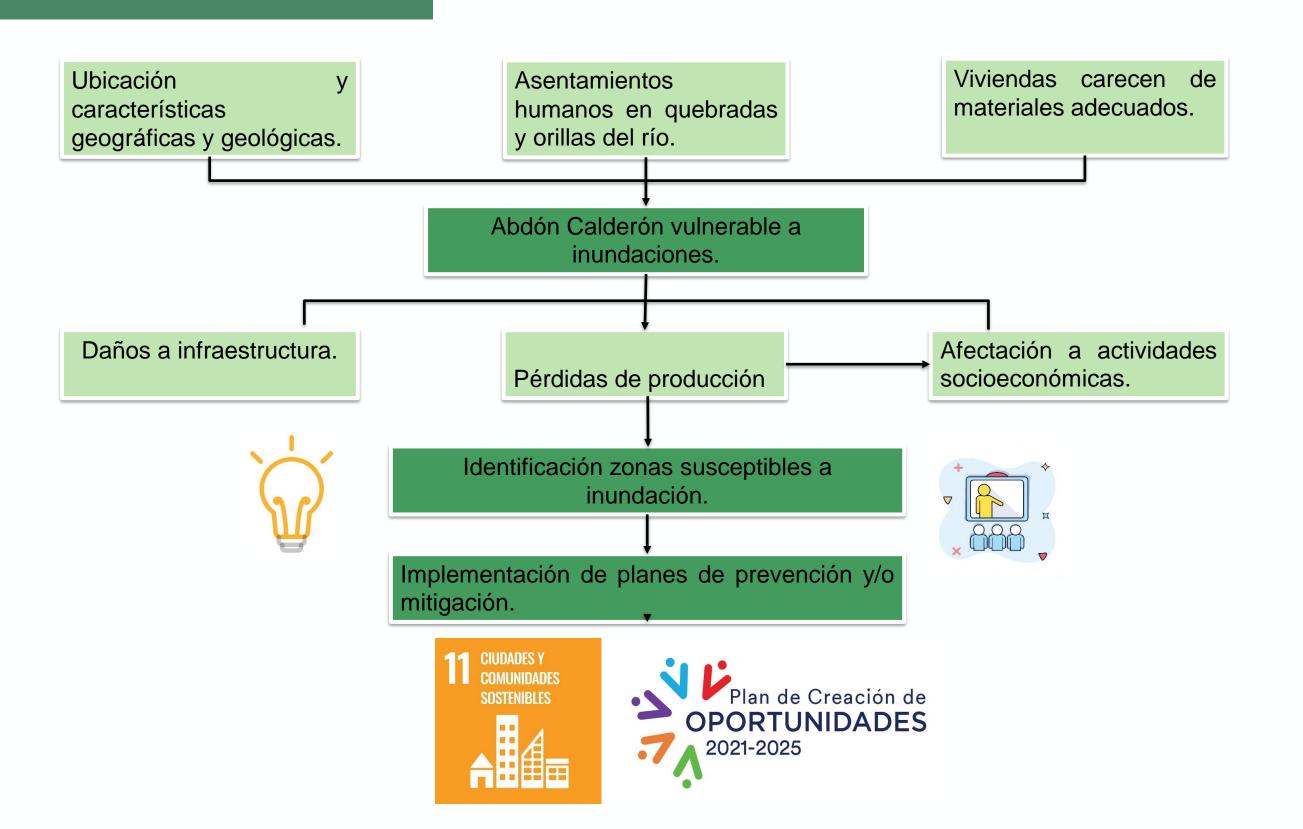

Manejo deficiente de sus ríos y riberas.

PORTOVIEJO



187,63 ha en Abdón Calderón presenta un alto riesgo a inundaciones.

Desbordamiento del río Portoviejo y Chico.

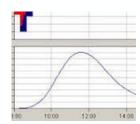


Presencia del fenómeno de El Niño.

JUSTIFICACIÓN E IMPORTANCIA

Objetivo General

Realizar el análisis costo-beneficio de las zonas susceptibles a inundaciones en la subcuenca del río Chico, utilizando herramientas geoespaciales, para determinar el impacto económico con el fin de establecer alternativas que mitiguen los efectos de las inundaciones en la Parroquia Abdón Calderón, en apoyo en la gestión de riesgos.


Objetivos Específicos

Recopilar e interpretar información para elaborar un modelo hidráulico.

Analizar e interpretar imágenes radar SENTINEL-1 GRD de época seca y lluviosa.

Determinar hidrogramas de modelación con caudales de diseño para períodos de retorno de 2, 5, 10 y 25 años.

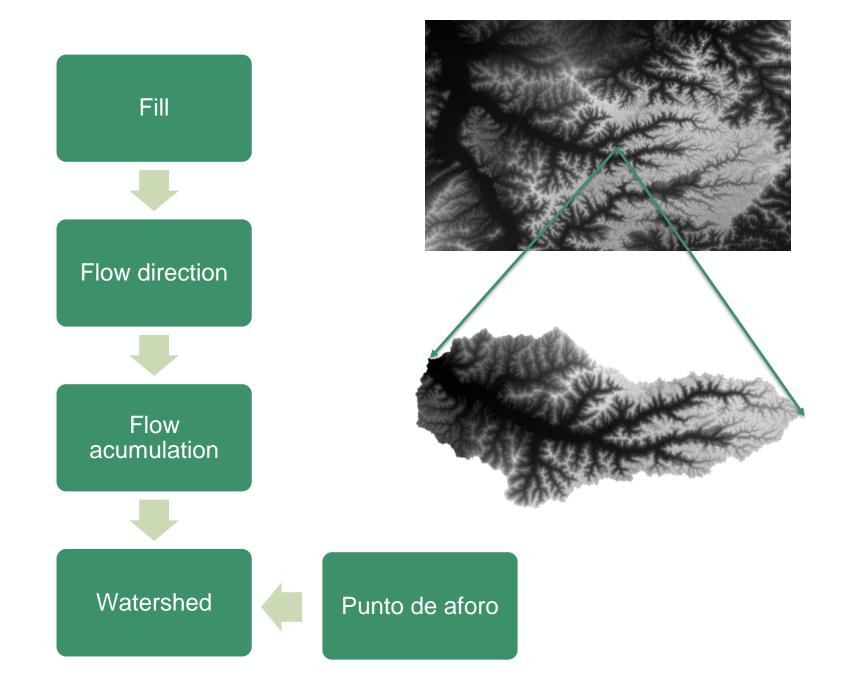
Simular las crecidas de inundación en HEC-RAS.

Realizar la valoración económica mediante análisis costo beneficio.

Comparación de resultados.

Desarrollar las bases para una propuesta de estrategia de prevención y mitigación.

ÁREA DE ESTUDIO



Delimitación Hidrográfica de la cuenca

Modelamiento Hidrológico

Datos anuales de precipitación del período de 1997 a 2018

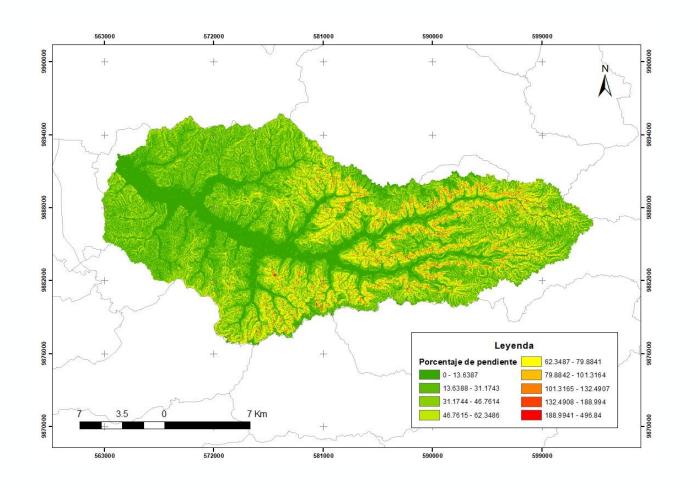
Análisis de tendencia: Prueba de Mann-Kendall y Helmert.

Método de regresión lineal simple.

 $Y = a + b * X1 + c * X2 + \ldots + n * Xi$

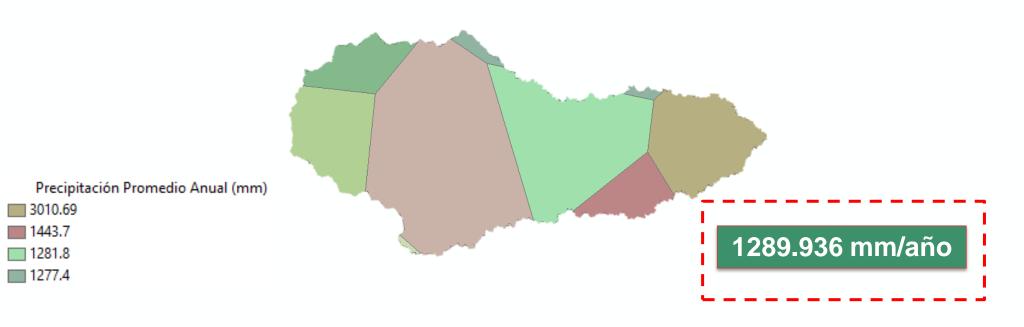
Datos Homogéneos

Completación de la base de datos de precipitación



Modelamiento Hidrológico

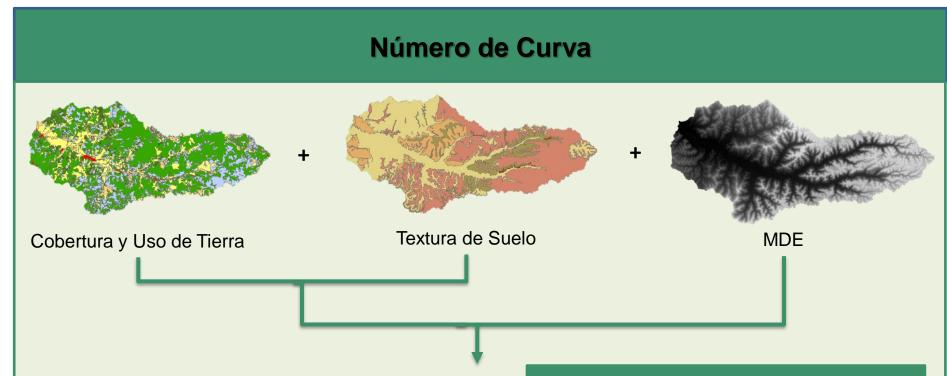
Parámetros Geomorfológicos de la Subcuenca

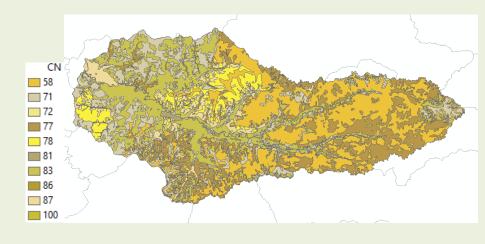

Área	451.21 km ²
Longitud del cauce principal	40.29 km
Pendiente media	37.03%

Precipitación Media de la Subcuenca

Nombre	Código	Elevación	Precipitación Promedio Anual (mm)
RIO CHICO EN ALAJUELA	M0454	118	989.06
RIO CHAMOTETE-JESUS MARIA	M0464	128	1281.80
ROCAFUERTE	M0165	200	537.10
PORTOVIEJO-UTM	M0005	46	625.40
JUNIN	M0462	20	1277.40
GUAJABE-POZA HONDA-EX CRM	M1076	0	1443.70
LA TEODOMIRA	M1208	60	921.30
SAN MIGUEL EN SAN PLACIDO	M1090	439	3010.69

Polígonos de Thiessen





CARRERA DE INGENIERÍA GEOGRÁFICA Y DEL MEDIO AMBIENTE

Modelamiento Hidrológico

0: capacidad máx de infiltración 100: capacidad min de infiltración, > escorrentía

CN para la Subcuenca del río Chico

Gridcode	CN	Área km2	CN*Área
1	100	1.412	141.226
2	87	25.060	2180.237
3	86	0.088	7.542
4	83	97.588	8099.806
5	81	2.692	218.041
6	78	28.081	2190.291
7	77	89.668	6904.398
8	72	0.119	8.566
9	71	69.131	4908.282
10	58	137.358	7966.735
Sumatoria		451.195	32625.125
C	N	72.	308

	Clasificación original		Reclasificación	
Número	Descripción	Número	Descripción	
11	Agua a cielo abierto			
90	Humedales leñosos	1	Agua	
95	Humedales herbáceos emergentes			
21	Poblados en espacios abiertos			
22	Poblados de baja intensidad	2	Residencial media	
23	Poblados de mediana intensidad	2	Residencial media	
24	Poblados de alta intensidad			
41	Bosques secos			
42	Bosques verdes	3	Bosque	
43	Bosques mixtos			
31	Tierra fértil			
52	Arbustos/matorrales			
71	Pastizales/herbáceas	4	Agricultura	
81	Pasto/heno			
82	Cultivos			

Grupo hidrológico del suelo	Infiltración cuando están muy húmedos	Características	Textura
Α	Rápida	Alta capacidad de Infiltración	Arenosa
^	Ιλαρίαα	> 76 mm/h	Arenosa-limosa
		Capacidad de infiltración	Franca
В	Moderada	76-38 mm/h	Franco-arcillosa-arenosa
		70-30 11111/11	Franco-limosa
		Capacidad de infiltración	Franco-arcillosa
С	Lenta	36-13 mm/h	Franco-arcillo-limosa
		30-13 11111/11	Arcillo-arenosa
D	Muy Lenta	Capacidad de infiltración < 13 mm/h	Arcillosa

CARRERA DE INGENIERÍA GEOGRÁFICA Y DEL **MEDIO AMBIENTE**

Modelamiento Hidrológico

Tiempo de concentración

$$tc = \frac{100 * L^{0.8} [(100/CN) - 9]^{0.7}}{1900 * S^{0.5}}$$

tc = 5.343 h = 320.6 min

Donde:

tc: tiempo de concentración en min

L: longitud hidráulica de la cuenca en ft

CN: número de curva SCS (adimensional)

S: pendiente promedio de la cuenca en %

Coeficiente de escorrentía

S (Retención potencial máxima)	97.274	mm
la (Inicial de abstracción)	19.455	mm
P (Precipitación total)	1289.936	mm/año
Pe (Escorrentía directa)	1180.125	mm/año
C (Coeficiente de escorrentía)	0.915	adimensional

$$S = \frac{1000}{CN} - 10$$
 $P_e = \frac{(P - I_a)^2}{P - I_a + S}$

$$I_a = 0.2 * S$$
 $C = \frac{(P - I_a)^2}{P^2 + 4 * P * I_a}$

Donde:

P: Precipitación total o profundidad de precipitación

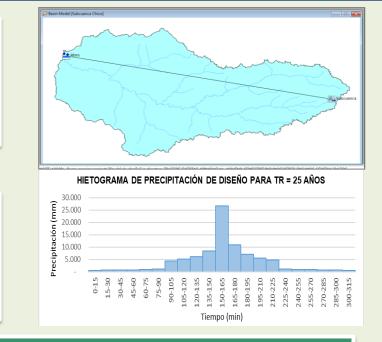
Pe: Exceso de precipitación o escorrentía directa

F_a: Profundidad adicional retenida o abstracción continuada

S: Retención potencial máxima

Determinación de caudales máximos

Modelo


Computo con tiempos de

retorno de 2, 5, 10, 25 y 50

años.

3. Series de Datos Instantáneos (Time Series Data).

4. Especificaciones de control (Control Especifications).

Ecuaciones de intensidad de duración-frecuencia para la estación M0005

Estación		Intervales de tiempe (mn)	Faussianas	
Código	Nombre	Intervalos de tiempo (mn)	Ecuaciones	
MOOOF		5<120	$i = 175.897 * T^{0.2692} * tc^{-0.5042}$	
M0005	PORTOVIEJO	120<1440	$i = 891.120 * T^{0.2424} * tc^{-0.8418}$	

■ Global Summary Results for Run "Run 4"

Project: Caudal de diseño 4 Simulation Run: Run 4

Meteorologic Model: Datos metereologicos

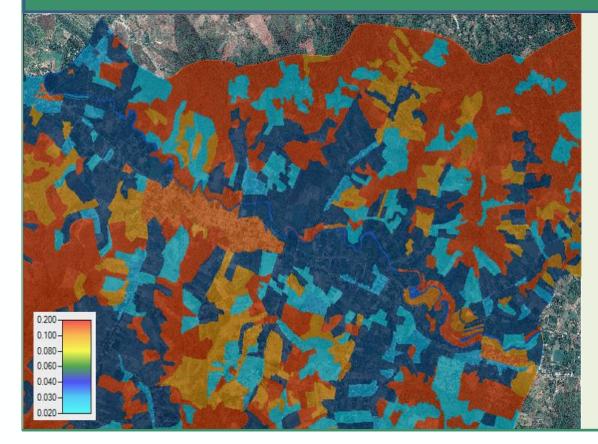
Compute Time:22jul.2023, 00:01:59 Control Specifications: Control

Show Elements: All Elements V

Volume Units: ● MM ○ 1000 M3 Sorting: Hydrologic ∨

- 0

Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)
Subcuenca	451,21434	778,9	26feb.2022, 06:15	29,48
Aforo	451,21434	778,9	26feb.2022, 06:15	29,48



Modelamiento Hidráulico

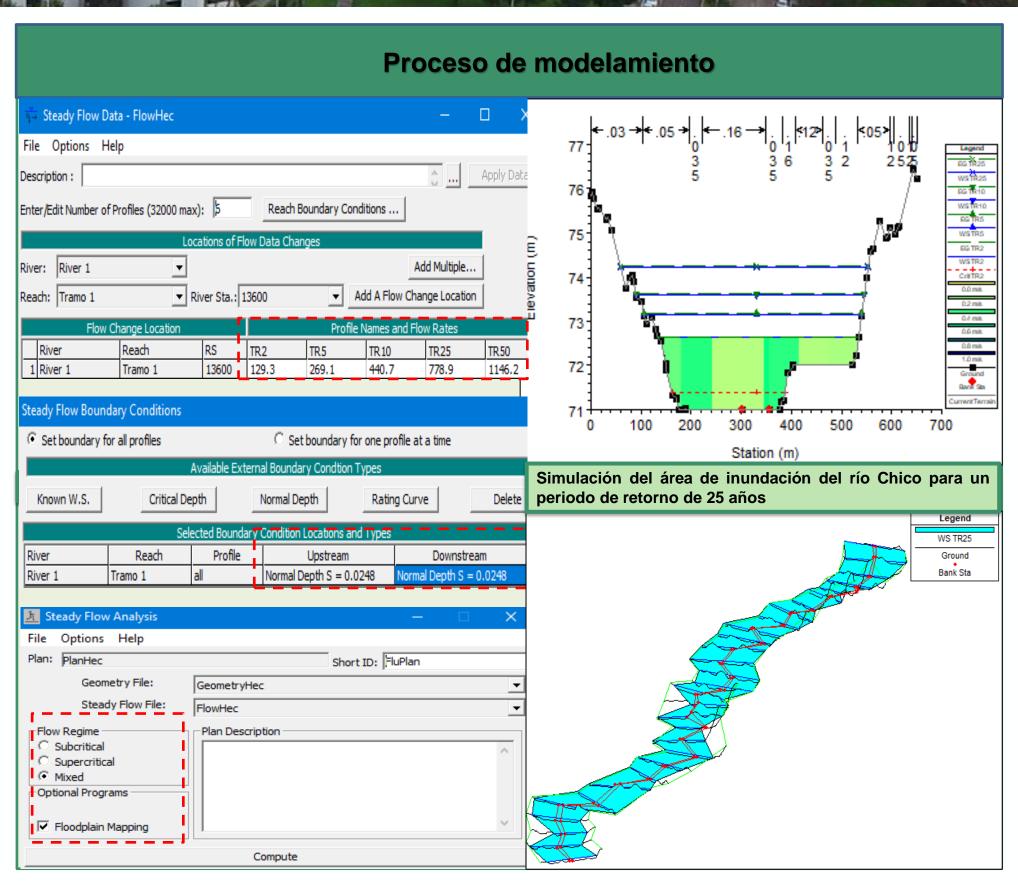
Insumos del modelo hidráulico

- Caudal pico de cada período de retorno
- Cobertura y Uso de Suelo Coeficiente de rugosidad
- → Geometría cauce del río

Coeficiente de rugosidad

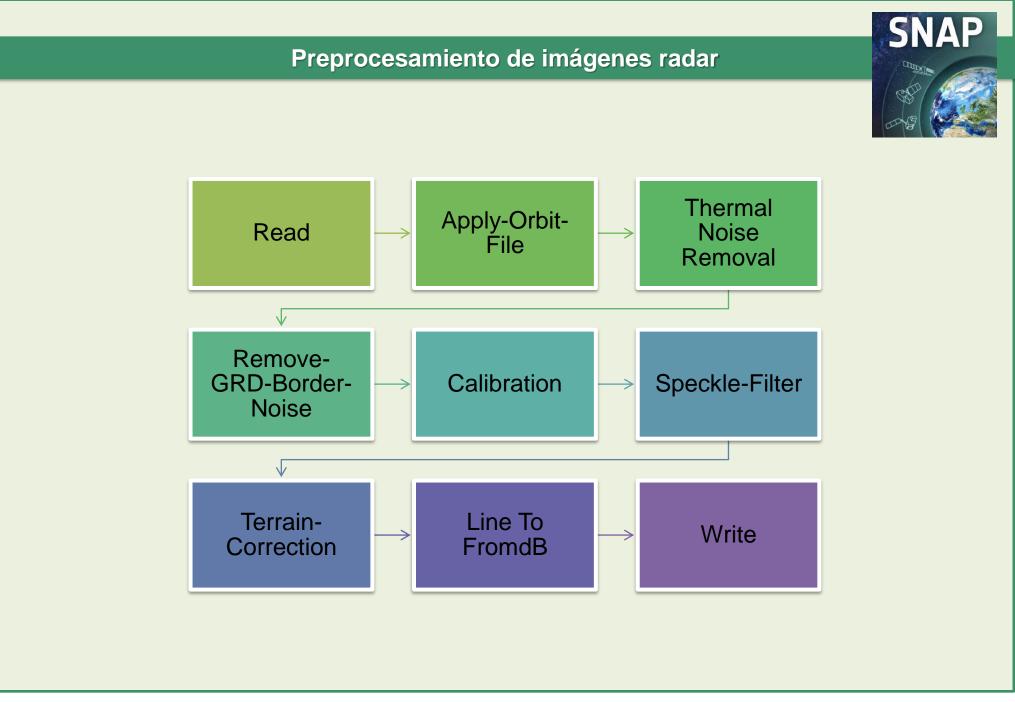
Medida de textura

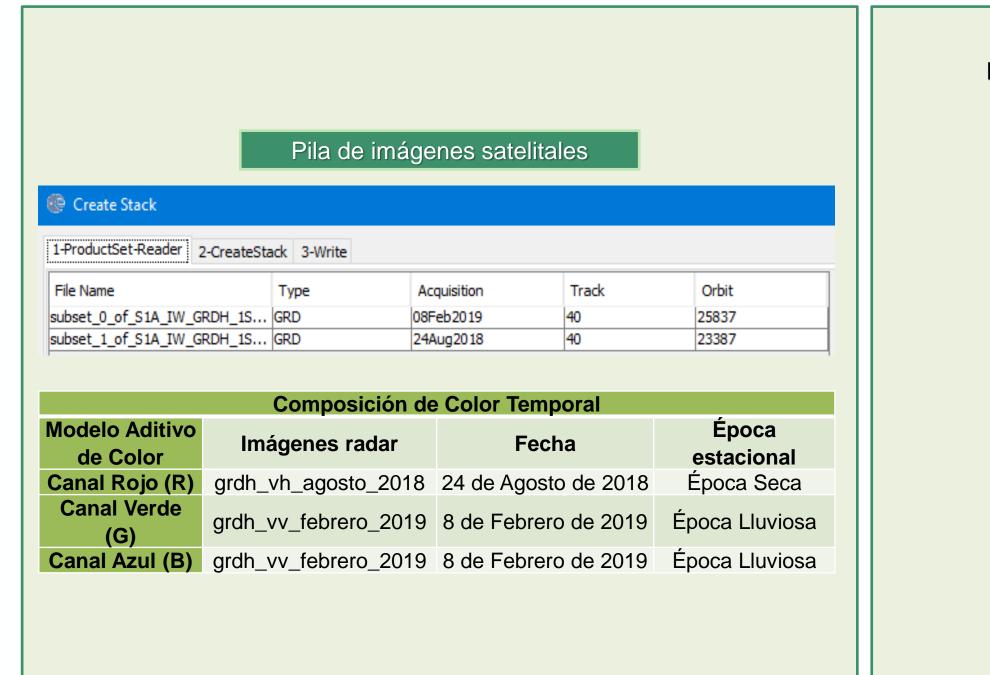
0,001
(superficies muy lisas) –
0,1 (superficies muy rugosas)

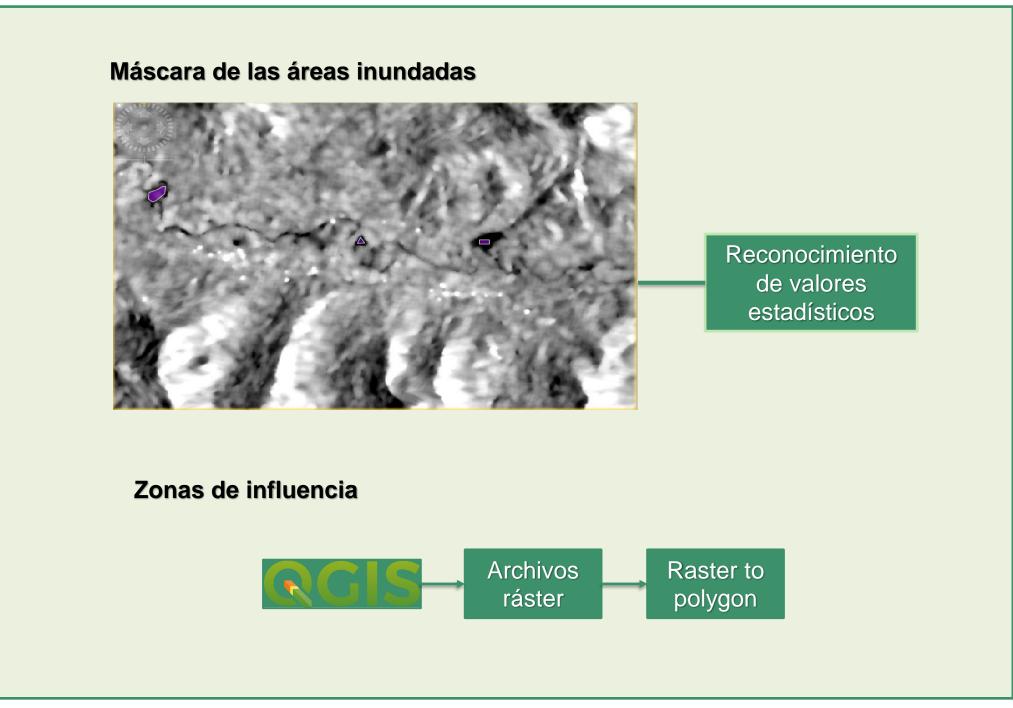

	Valor NLCD	n rango de valores	Descripción
9	11	0,025 - 0,05	Aguas abiertas: áreas de aguas abiertas, generalmente con menos del 25% de cobertura de vegetación o suelo. Esto es para arroyos naturales en pendientes leves a moderadas.
	12	n / A	Hielo/Nieve Perenne - áreas caracterizadas por una cubierta perenne de hielo y/o nieve, generalmente más del 25% de la cubierta total.
4	21	0,03 - 0,05	Espacio abierto desarrollado: áreas con una mezcla de algunos materiales construidos, pero principalmente vegetación en forma de césped. Las superficies impermeables representan menos del 20% de la cubierta total. Estas áreas comúnmente incluyen unidades de vivienda unifamiliares de lotes grandes, parques, campos de golf y vegetación plantada en entornos desarrollados para fines recreativos, de control de la erosión o estéticos.
	22	0,06 - 0,12	Desarrollado, Baja Intensidad - áreas con una mezcla de materiales construidos y vegetación. Las superficies impermeables representan del 20% al 49% por ciento de la cubierta total. Estas áreas comúnmente incluyen unidades de vivienda unifamiliares.
	23	0,08 - 0,16	Desarrolladas, Intensidad Media -áreas con una mezcla de materiales construidos y vegetación. Las superficies impermeables representan del 50% al 79% de la cubierta total. Estas áreas comúnmente incluyen unidades de vivienda unifamiliares.
	24	0,12 - 0,20	Áreas desarrolladas de alta intensidad: áreas altamente desarrolladas donde las personas residen o trabajan en gran número. Los ejemplos incluyen complejos de apartamentos, casas adosadas y comerciales/industriales. Las superficies impermeables representan del 80% al 100% de la cubierta total.
	31	0,023 - 0,030	Tierra baldía (roca/arena/arcilla): áreas de lecho rocoso, pavimento desértico, escarpes, taludes, deslizamientos, material volcánico, escombros glaciales, dunas de arena, minas a cielo abierto, canteras de grava y otras acumulaciones de material de tierra. Generalmente, la vegetación representa menos del 15% de la cobertura total.
	41	0,10 - 0,20	Bosque caducifolio: áreas dominadas por árboles generalmente de más de 5 metros de altura y más del 20% de la cubierta vegetal total. Más del 75% de las especies de árboles arrojan follaje simultáneamente en respuesta al cambio estacional.
	42	0,08 - 0,16	Bosque siempre verde: áreas dominadas por árboles que generalmente superan los 5 metros de altura y superan el 20 % de la cubierta vegetal total. Más del 75% de las especies de árboles mantienen sus hojas todo el año. El dosel nunca está sin follaje verde.
	43	0,08 - 0,20	Bosque mixto: áreas dominadas por árboles generalmente de más de 5 metros de altura y más del 20% de la cubierta vegetal total. Ni las especies de hoja caduca ni las de hoja perenne superan el 75% de la cubierta arbórea total.
	51	0,025 - 0,05	Matorral enano: solo áreas de Alaska dominadas por arbustos de menos de 20 centímetros de altura con un dosel de arbustos típicamente mayor al 20% de la vegetación total. Este tipo a menudo se asocia con pastos, juncos, hierbas y vegetación no vascular.
	52	0,07 - 0,16	Arbusto/matorral: áreas dominadas por arbustos; menos de 5 metros de altura con dosel de arbustos típicamente mayor al 20% de la vegetación total. Esta clase incluye arbustos verdaderos, árboles jóvenes en una etapa de sucesión temprana o árboles atrofiados por las condiciones ambientales.
	71	0,025 - 0,05	Pastizales/ Herbáceos: áreas dominadas por vegetación graminoide o herbácea, generalmente más del 80% de la vegetación total. Estas áreas no están sujetas a un manejo intensivo como la labranza, pero pueden utilizarse para el pastoreo.
	72	0,025 - 0,05	Juncias/herbáceas: solo áreas de Alaska dominadas por juncias y hierbas, generalmente más del 80% de la vegetación total. Este tipo puede ocurrir con otros pastos significativos u otras plantas similares a pastos, e incluye la tundra de juncos y la tundra de matas de juncos.
	73	n / A	Líquenes : solo áreas de Alaska dominadas por líquenes fruticosos o foliosos, generalmente más del 80% de la vegetación total.
	74	n / A	Musgo: solo áreas de Alaska dominadas por musgos, generalmente más del 80% de la vegetación total.
	81	0,025 - 0,05	Pasto/Heno: áreas de pastos, leguminosas o mezclas de pastos y leguminosas plantadas para el pastoreo de ganado o la producción de cultivos de semillas o heno, típicamente en un ciclo perenne. La vegetación de pasto/heno representa más del 20% de la vegetación total.
	82	0,020 - 0,05	Cultivos: áreas utilizadas para la producción de cultivos anuales, como maíz, soja, hortalizas, tabaco y algodón, y también cultivos leñosos perennes, como huertas y viñedos. La vegetación de cultivo representa más del 20% de la vegetación total. Esta clase también incluye todas las tierras que se labran activamente.
	90	0,045 - 0,15	Humedales leñosos : áreas donde la vegetación de bosques o matorrales representa más del 20% de la cubierta vegetal y el suelo o sustrato se satura o cubre periódicamente con agua.
	95	0,05 - 0,085	Humedales herbáceos emergentes : áreas donde la vegetación herbácea perenne representa más del 80% de la cubierta vegetal y el suelo o sustrato se satura o cubre periódicamente con agua.

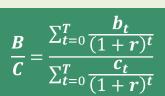
UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA CONSTRUCCIÓN CIENCIAS DE LA TIERRA Y DE LA CONSTRUCCIÓN MEDIO AMBIENTE

Modelamiento Hidráulico



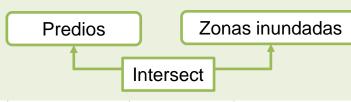

Técnica de detección de cambios de imágenes radar: Composición de Color Temporal





Técnica de detección de cambios de imágenes radar: Composición de Color Temporal

Donde:


 b_t : beneficios del proyecto a largo plazo

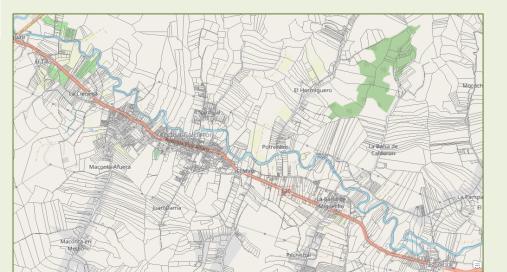
- c_t : costos a lo largo del tiempo
- t: duración temporal
- r: tasa de reducción

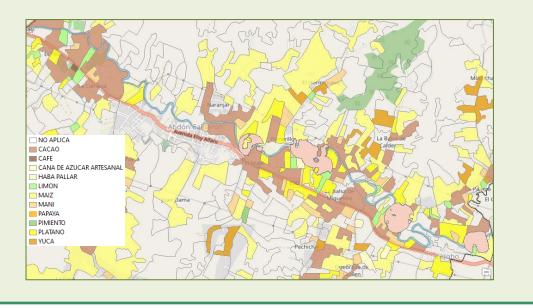
B/C>1

- B: Costos evitados de los posibles efectos de la inundación.
- C: Costo total del proyecto de prevención o mitigación.

Pérdidas económicas de propiedades

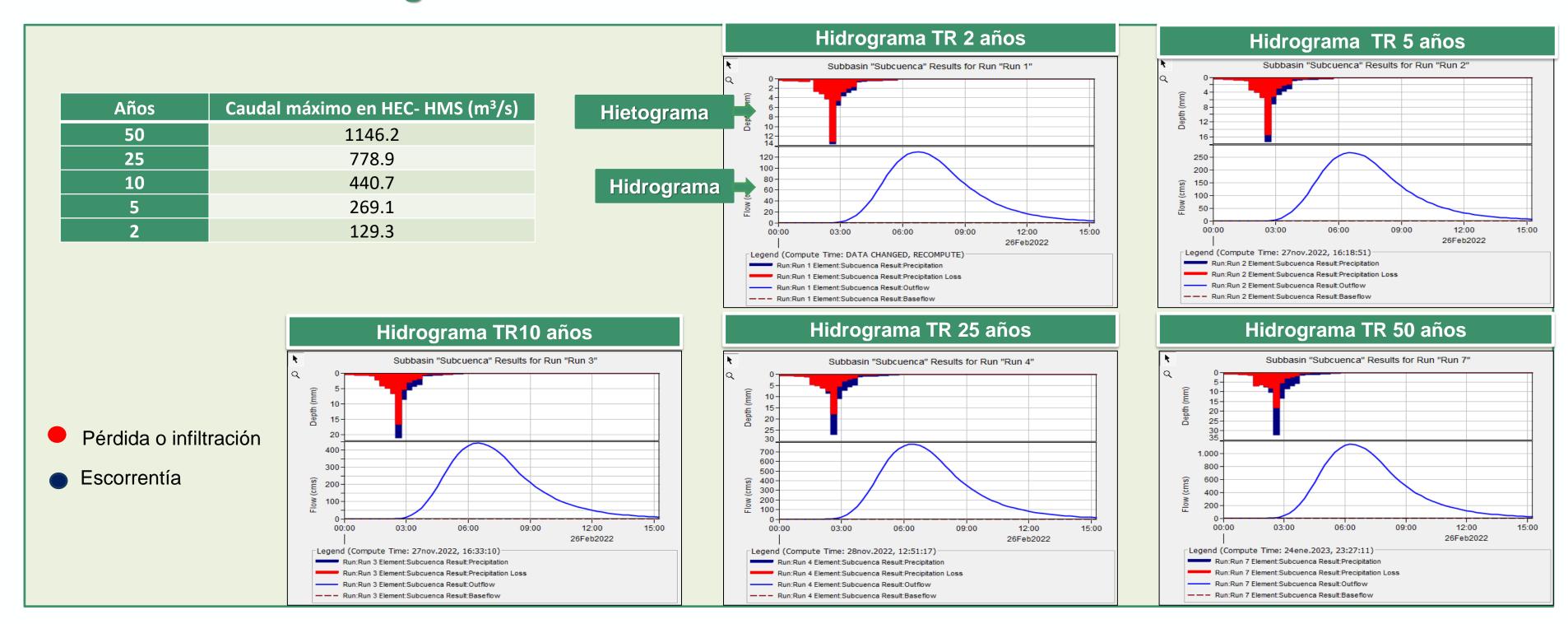
SECTOR	clavepre	AREA_TERRENO	AREA_CONSTRUCCION	AVALUO_TERRENO	AVALUO_CONSTRUCCION	AVALUO_TOTAL	VALOR_USD_m2
URBANO	501001001	332.07	0.00	12178.36	0.00	12178.36	36.67
URBANO	501001002	290.04	328.63	9055.13	75574.59	84629.72	31.22
URBANO	501001003	265.23	112.40	9133.79	39777.75	48911.54	34.44
URBANO	501001004	224.26	95.52	7733.96	26754.31	34488.27	34.49
URBANO	501001005	308.05	210.66	9650.04	29517.46	39167.50	31.33
URBANO	501001006	360.00	121.06	12274.00	37307.15	49581.15	34.09

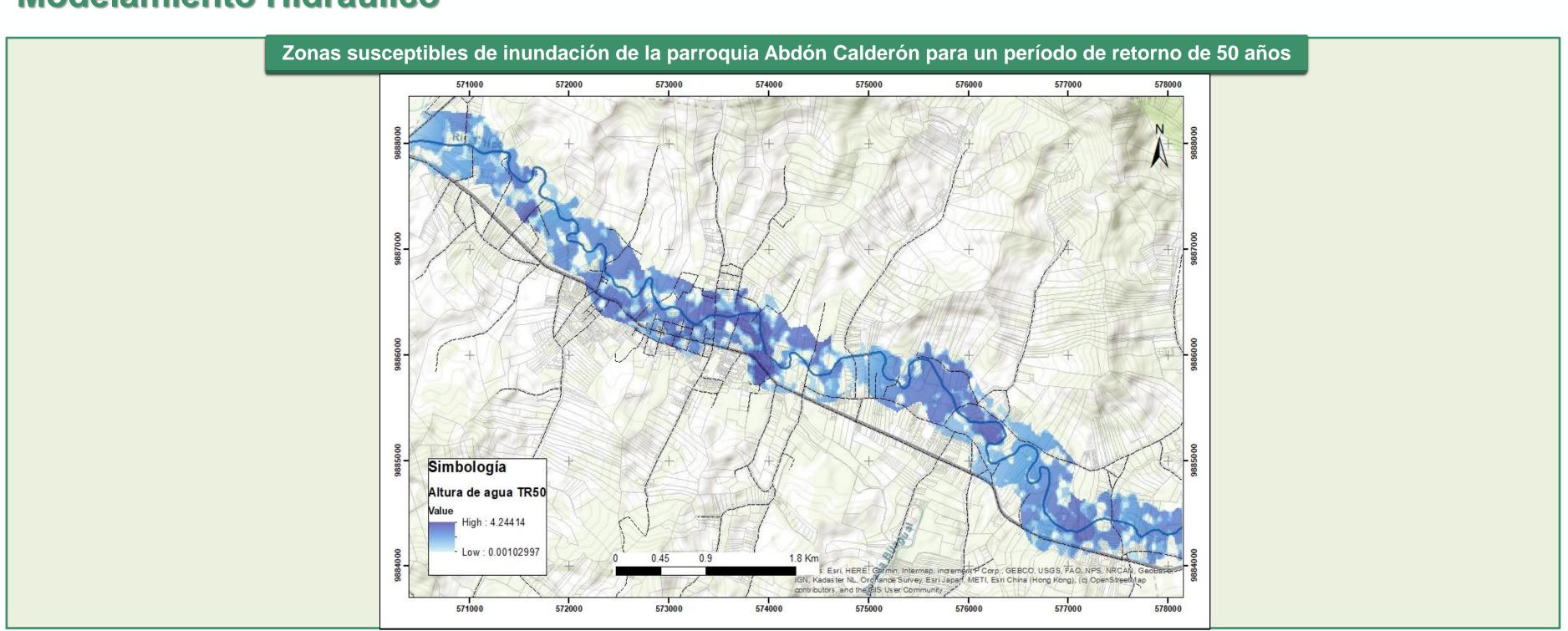

Pérdidas económicas de producción



Cultivos		Zonas inundadas
1	Interse	ect

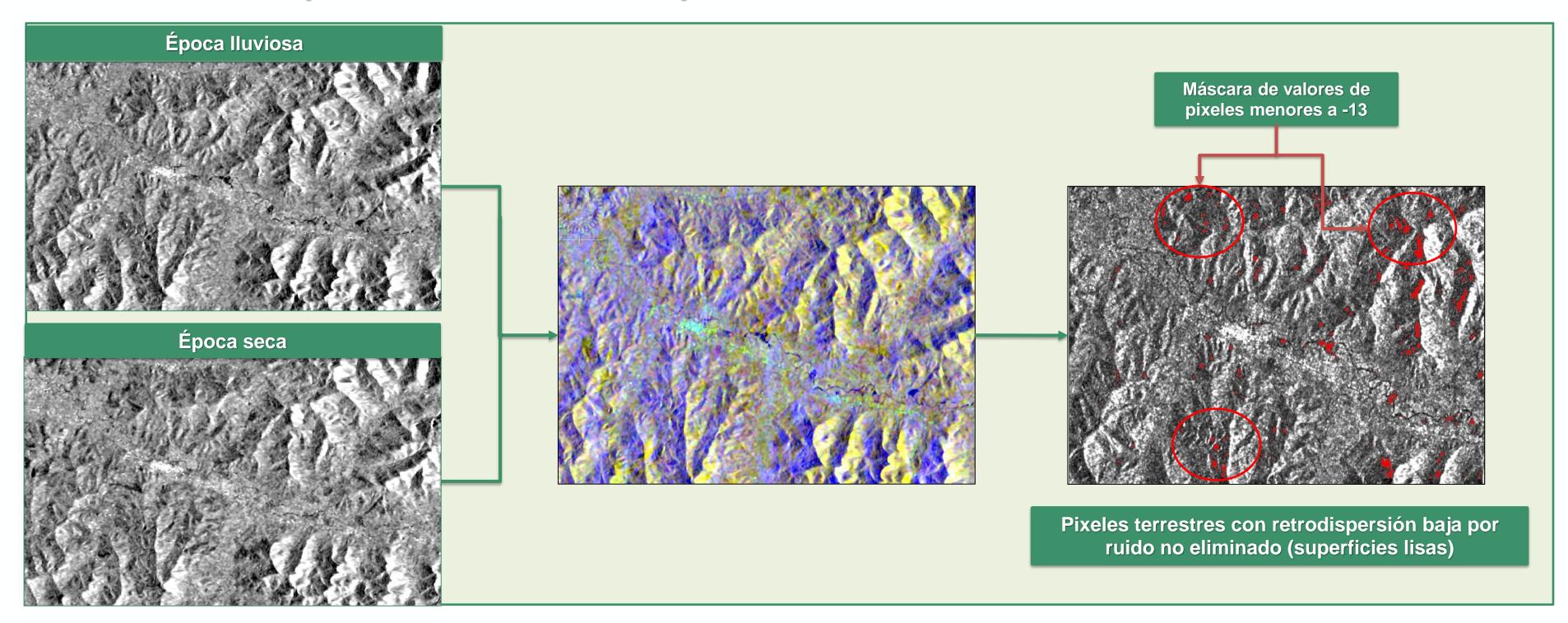
Producto	Precio al productor (\$/ton)	Rendimiento (ton/ha)
Cacao	841.3	0.42
Caña de azúcar para otros usos	300.8	11.89
Limón	57	5.46
Maíz	159.2	6.21
Maní	253	1.25
Plátano	51.2	7.54





Modelamiento Hidrológico

Modelamiento Hidráulico

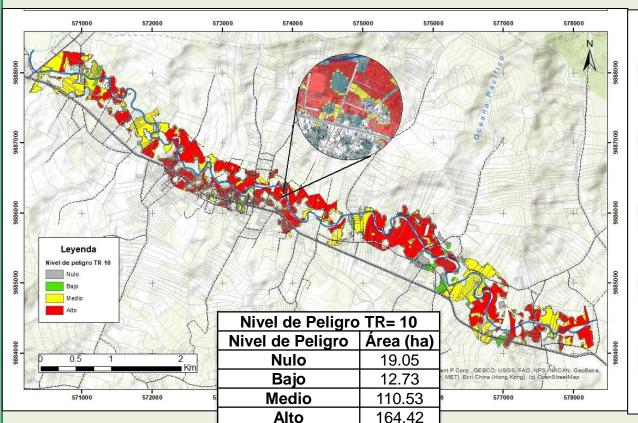

Modelamiento Hidráulico

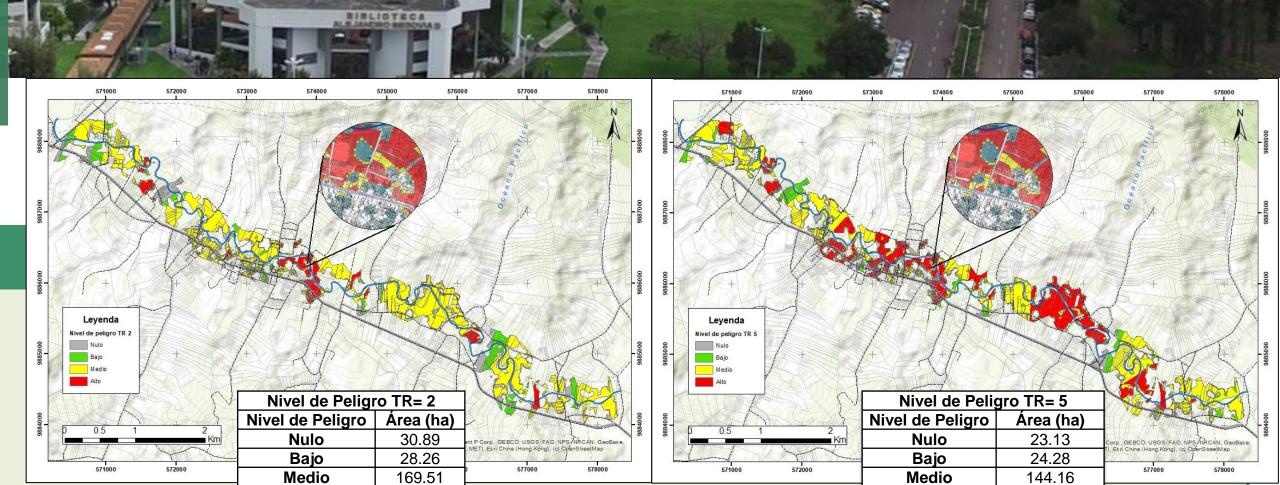
Período de retorno	Área de afectación (ha)
2	301.37
5	337.39
10	367.67
25	410.00
50	438.90

Técnica de Composición de Color Temporal

Técnica de Composición de Color Temporal

Comparación de áreas de afectación


Polígono	Área de afectación (ha)
1	0.72
2	3.55
3	0.27
4	0.2
5	0.14
6	1.96
7	0.79



Modelo Hidráulico

Criterios establecidos para la generación del mapa de peligro por inundación IMTA

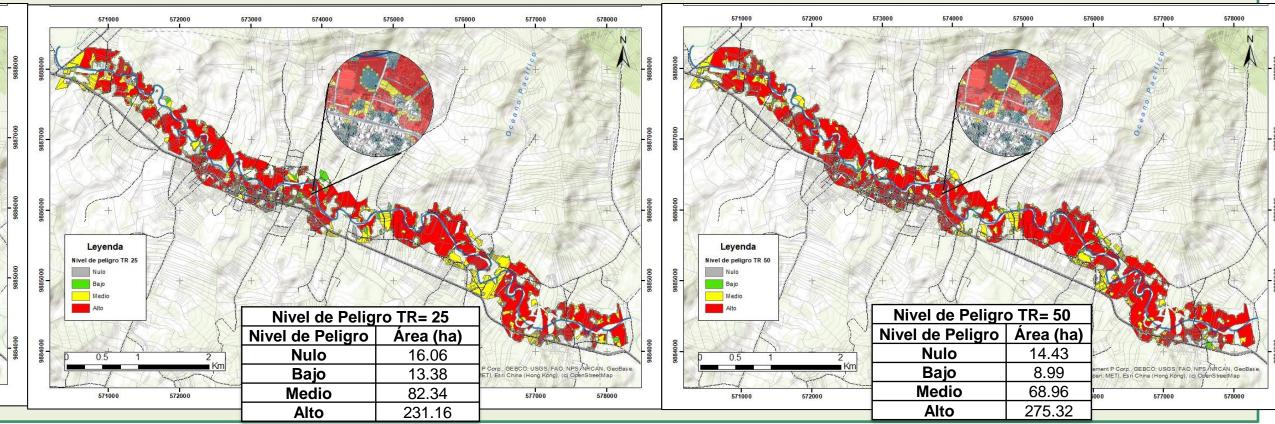
Nivel de peligro	Altura (m)
Nulo	h<0.3
Bajo	0.3≥h<0.5
Medio	0.5≥h<1.5
Alto	h≥1.5

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y

DE LA CONSTRUCCIÓN

CARRERA DE INGENIERÍA

GEOGRÁFICA Y DEL MEDIO AMBIENTE


89.48

Alto

UNIVERSIDAD DE LAS FUERZAS ARMADAS

22.68

Alto

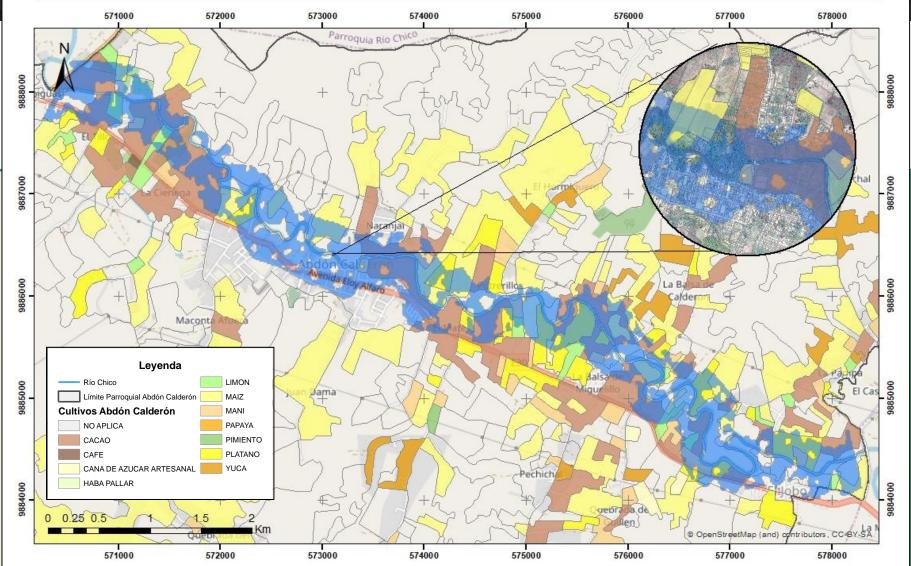
RESULTADOS

Modelo Hidráulico

PÉRDIDAS ECONÓMICAS DE PRODUCCIÓN

TR2				
Producto	ha	\$/ha	Total \$	
Cacao	83.63	353.346	\$29,548.56	
Caña de azúcaı artesanal	5.41	3576.51	\$19,358.94	
Limón	7.24	311.22	\$2,253.82	
Maíz	31.86	988.632	\$31,494.45	
Maní	11.22	316.25	\$3,548.17	
Plátano	30.79	386.048	\$11,887.23	
TOTAL			\$98,091.18	

TR5				
Producto	ha	\$/ha	Total \$	
Cacao	95.25	353.346	\$33,655.46	
Caña de azúcar artesanal	5.76	3576.51	\$20,615.73	
Limón	7.67	311.22	\$2,388.33	
Maíz	35.85	988.632	\$35,442.36	
Maní	12.80	316.25	\$4,046.77	
Plátano	33.14	386.048	\$12,794.33	
TOTAL			\$108.942.98	


TR10 Producto ha \$/ha Total \$

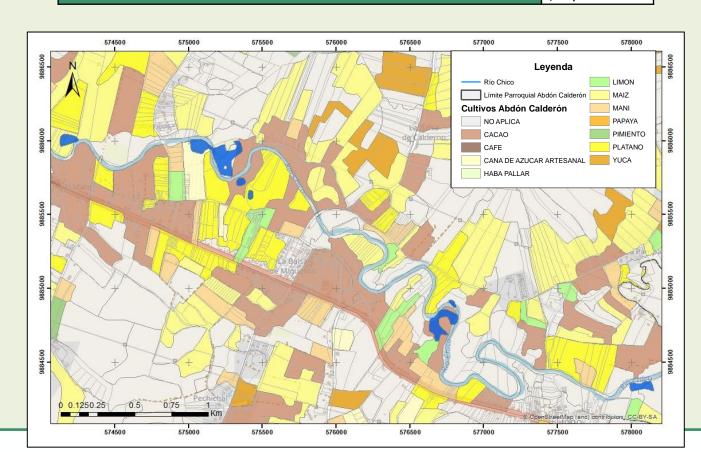
TR10				
Producto	ha	\$/ha	Total \$	
Cacao	103.62	353.346	\$36,612.37	
Caña de azúcar artesanal	5.77	3576.51	\$20,622.53	
Limón	8.93	311.22	\$2,780.00	
Maíz	37.99	988.632	\$37,562.68	
Maní	14.05	316.25	\$4,442.36	
Plátano	35.50	386.048	\$13,704.47	
TO1		\$115,724.41		

TR25				
Producto	ha	\$/ha	Total \$	
Cacao	118.41	353.346	\$41,840.58	
Caña de azúcar artesanal	5.79	3576.51	\$20,695.13	
Limón	9.51	311.22	\$2,960.48	
Maíz	41.37	988.632	\$40,900.40	
Maní	15.43	316.25	\$4,878.85	
Plátano	39.23	386.048	\$15,142.73	
TOTAL			\$126,418.18	

TR50				
Producto	ha	\$/ha	Total \$	
Cacao	126.39	353.35	\$44,660.14	
Caña de azúcar artesanal	5.79	3576.51	\$20,695.13	
Limón	10.65	311.22	\$3,314.84	
Maíz	43.65	988.63	\$43,150.82	
Maní	16.58	316.25	\$5,244.60	
Plátano	41.88	386.05	\$16,166.26	
TOTAL			\$133,231.79	

Mapa de zonas agrícolas susceptibles a inundaciones en la Parroquia Abdón Calderón para un perído de retorno de 25 años

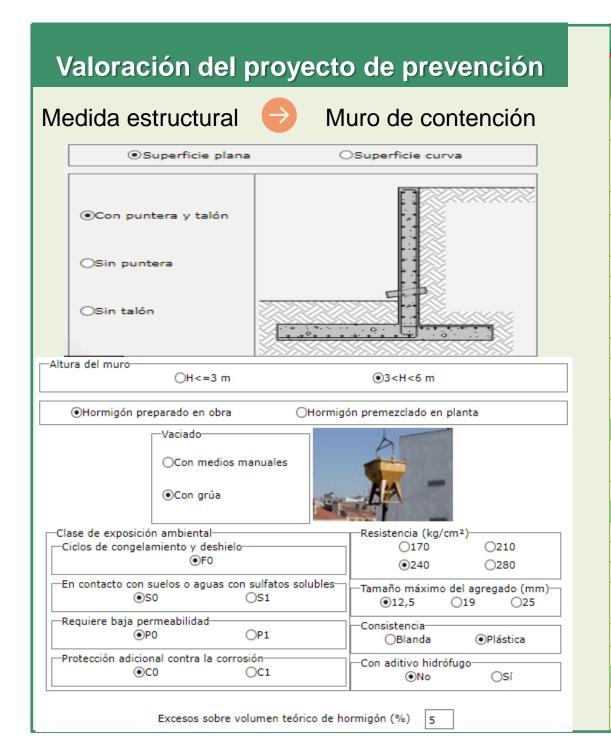
PÉRDIDAS ECONÓMICAS DE PROPIEDADES


Pérdidas económicas sector rural					
TR= 2 años	TR= 5 años	TR= 10 años	TR= 25 años	TR= 50 años	
\$13,176,443.10	\$18,362,408.48	\$20,528,255.63	\$24,277,884.33	\$25,579,138.20	
Pérdidas económicas sector urbano					
TR= 2 años	TR= 5 años	TR= 10 años	TR= 25 años	TR= 50 años	
\$31,587,773.18	\$42,307,849.42	\$52,355,443.30	\$55,586,056.99	\$56,406,737.48	
TOTAL					
\$44,764,216.28	\$60,670,257.89	\$72,883,698.93	\$79,863,941.33	\$81,985,875.68	


Interpretación de imágenes satelitales

PÉRDIDAS ECONÓMICAS DE PRODUCCIÓN

Producto	ha	\$/ha	Total \$
Limón	0.056	311.22	\$17.35
Plátano	0.199	386.05	\$76.83
Maíz	0.684	988.63	\$676.05
Caña de azúcar artesanal	0.866	3576.51	\$3,096.37
Cacao	2.091	353.35	\$738.92
TOTAL	\$4,605.52		



PÉRDIDAS ECONÓMICAS DE PROPIEDADES

Pérdidas económicas sector rural			
Predio	Avalúo Total		
1	\$821.85		
2	\$7,779.07		
3	\$92,933.41		
4	\$29,074.70		
5	\$681.17		
6	\$6,299.80		
7	\$2,412.01		
8	\$71,421.55		
9	\$156,164.35		
TOTAL	\$367,587.91		

Generador de Precios.Ecuador Costo Costo Unidad Cantidad Descripción unitario parcial 1. Materiales Ud Separador homologado para muros. 8.000 0.08 0.64 Acero en barras corrugadas, Grado 60 (fy=4200 kg/cm²), de 22.440 32.54 1.45 varios diámetros, según NTE-INEN-2167 y ASTM A 706. Alambre galvanizado para atar, de 1,30 mm de diámetro. 0.286 0.52 1.83 Tubo de PVC, serie B, de 75 mm de diámetro y 3 mm de 0.050 4.80 0.24 m espesor, con extremo abocardado. m³ 0.227 0.42 1.83 Agua. m³ Arena cribada 0.447 8.11 3.63 Agregado grueso homogeneizado, de tamaño máximo 12,5 0.744 13.52 10.06 kg 466.637 0.17 79.33 Cemento gris en sacos. Aditivo plastificante para la reducción del agua de amasado 2.333 2.72 6.35 del hormigón. Subtotal materiales: 133.73 2. Equipo y maquinaria Concretera eléctrica con una capacidad de amasado de 160 0.630 3.71 2.34 Subtotal equipo y maquinaria: 2.34 3. Mano de obra 0.326 3.20 Fierrero. 9.82 2.61 0.414 6.30 Ayudante fierrero. Albañil de obra civil. 1.233 9.45 11.65 Maestro de estructura mayor, en el proceso de 0.242 9.82 2.38 hormigonado. 0.969 6.30 6.10 Ayudante estructurista, en el proceso de hormigonado. 25.94 Subtotal mano de obra: 4. Herramienta menor Herramienta menor 2.000 162.01 3.24

Coste de mantenimiento decenal: \$ 6,61 en los primeros 10 años. Costos directos (1+2+3+4):

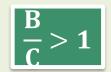
Costo total del proyecto: Costos directos * Longitud del muro

Longitud del muro				
Metodo 1	27918.95	m		
Método 2	2187.11	m		
Costo del proyecto				
Metodo 1	\$4,613,606.82			
Método 2	\$361,419.13			

165.25

Modelo Hidráulico

Análisis costo beneficio para cinco períodos de retorno						
Costo del proyecto			\$4,613,606.82			
	TR=2 años	TR= 5años	TR= 10 años	TR= 25 años	TR= 50 años	
Beneficio	\$44,862,307.46	\$60,779,200.87	\$72,999,423.34	\$79,990,359.51	\$82,119,107.47	
Relación B/C	9.72	13.17	15.82	17.34	17.80	



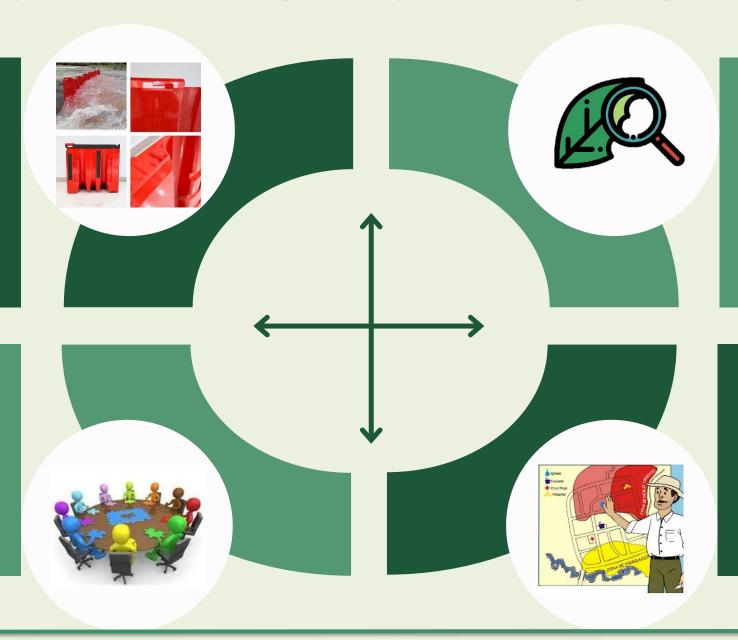
Buena inversión.

Interpretación de imágenes satelitales

Análisis costo beneficio				
Costo del proyecto	\$361,419.13			
Beneficio	\$372,193.43			
Relación B/C	1.03			

Rentable realizar el proyecto.

Análisis y discusión de resultados


Bases para una propuesta de estrategias de prevención y mitigación de inundaciones

Aplicación de Medidas Estructurales

Construcción de diques, muros de contención, canales, embalses, entre otros.

Coordinación interinstitucional

Promoción de programas y proyectos de investigación en colaboración con universidades y otras entidades.

Control de construcción en zonas de riesgos, mediante:

- Estudio de zonificación de riesgo.
- Evaluación de impacto Ambiental.
- Educación y concientización.

Elaboración de mapas

- Mapas de Amenazas.
- Mapas de Vulnerabilidad.
- Mapas de Riesgos.

Conclusiones

- Se determinó los hidrogramas y los caudales para cada período de retorno (2, 5, 10, 25 y 50 años), obteniéndose un caudal de 1146.2 m3/s para 50 años, 778.9 m3/s para 25 años, 440.7 m3/s para 10 años, 269.1 m3/s para 5 años y 129.3 m3/s para un período de retorno de 2 años. El área de afectación alcanzada en el período de retorno de 50 años fue de 438.9 ha, es decir, casi 138 ha más que los 301.37 ha del período de retorno de 2 años.
- En conclusión, los resultados obtenidos del modelo hidráulico son esenciales para comprender y abordar adecuadamente los riesgos asociados con las inundaciones, debido a que, nos permitirá tomar decisiones sobre la zonificación del suelo, la planificación urbana y la implementación de medidas de mitigación y/o prevención.
- La interpretación de imágenes radar permitió identificar áreas inundadas en la ribera del río Chico de la parroquia Abdón Calderón, obteniéndose siete polígonos de inundación con un área total de 7.6 ha de afectación. Sin embargo, debido a la fecha de toma y calidad de la imagen no se pudo identificar más zonas afectadas.

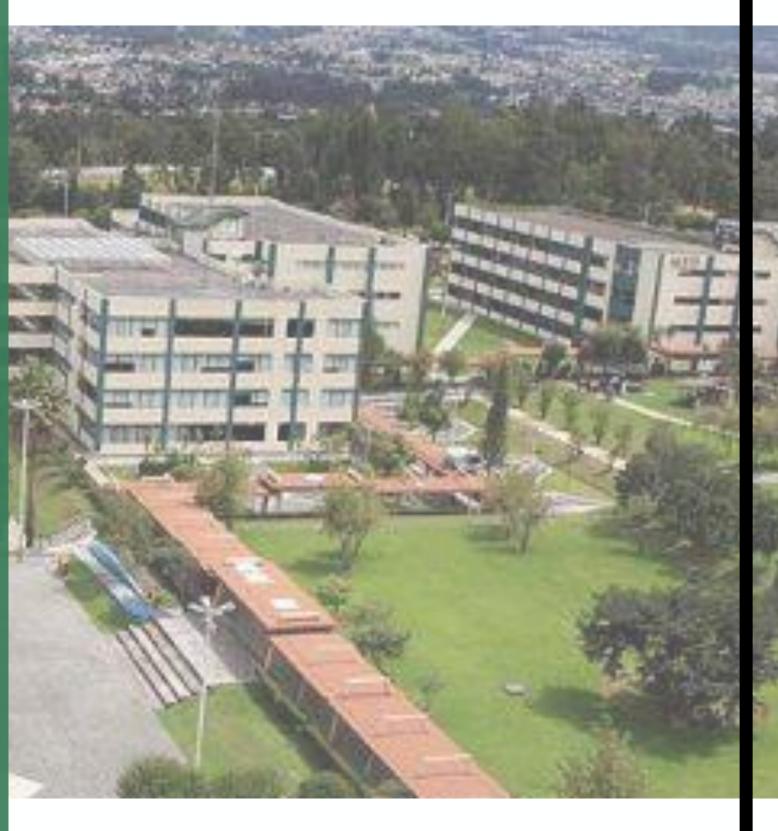
Conclusiones

*	•
• Se identificó que el sector urbano presentó mayores pérdidas económicas debido a la presencia de superficies impermeables que sistemas de drenaje insuficientes y cambios en la superficie del terreno.	impiden la infiltración del agua,
• · · · · · · · · · · · · · · · · · · ·	•
 El análisis costo beneficio en ambas metodologías, dedujo la factibilidad de realizar la construcción del muro de contención como mitigación para el área de estudio, sugiriendo que el proyecto tiene un potencial económico favorable y puede implicar una rentabilid 	'
• Se concluye que el análisis costo-beneficio de las áreas susceptibles a inundaciones es una herramienta esencial para evalua informadas, asignar recursos de manera eficiente, priorizar inversiones y justificar las medidas de mitigación. También, constituye un los impactos económicos y sociales derivados de los efectos de las inundaciones, protegiendo a las comunidades y promoviendo un	a estrategia óptima para reducir

Recomendaciones

- El plan de prevención propuesto sirve de base técnica para establecer un enfoque sólido, sin embargo, es esencial incorporar un monitoreo continuo en la zona de estudio, debido a que, las condiciones naturales son dinámicas y pueden cambiar con los años.

 Es importante considerar que la valoración realizada puede variar con el tiempo, va que la parroquia continúa expandiéndose y los predios pueden verse.
- Es importante considerar que la valoración realizada puede variar con el tiempo, ya que la parroquia continúa expandiéndose y los predios pueden verse influenciados por factores como el estado del mercado inmobiliario y condiciones económicas generales, como también varios de los productos agrícolas pueden aumentar o disminuir su precio.
- Se aconseja a las entidades gubernamentales de los sectores correspondientes llevar a cabo iniciativas educativas dirigidas a la población, con el fin de evitar la construcción de hogares y otras infraestructuras cercanas a las riberas de los ríos.
- Se recomienda la utilización de RPAS en la gestión de inundaciones de la parroquia, debido a que es una herramienta efectiva para obtener información detallada, rápida y precisa sobre las áreas afectadas, lo que contribuye a una mejor planificación, respuesta y recuperación ante desastres naturales.



"ANÁLISIS COSTO BENEFICIO DE LAS ZONAS SUSCEPTIBLES A INUNDACIONES EN LA SUBCUENCA DEL RÍO CHICO, UTILIZANDO HERRAMIENTAS GEOESPACIALES"

AUTORA: GUEVARA GUSQUI ODALIS DOMÉNICA

Director del Proyecto: Director de Carrera:
Ing. Rodolfo Jaime Salazar Ing. Alexander Robayo, Mst.
Martínez, PhD.

Docente Evaluador: PhD. Fabián Francisco Rodríguez Espinosa Secretario Académico: Abg. Carlos Calahorrano

