DEPARTAMENTO DE CIENCIAS DE LA ENERGÍAY MECÁNICA CARRERA DE INGENIERÍA EN MECATRÓNICA

TRABAJO DETITULACIÓN, PREVIOA LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN MECATRÓNICA

"Diseño y construcción de un prototipo de vehículo marino de superficie no tripulado (USV) tipo catamarán para la recolección de macro plásticos en un ambiente controlado"

Autores: Mamarandi Aulestia Bryan Ezequiel
Unda Tipan Jhon Jairo

Director: Ing. David Loza Matovelle PhD (c)

2023

Contenido

- Introducción
- Investigación previa
- Metodología
- Diseño y Construcción
- Pruebas y Resultados
- Conclusiones
- Recomendaciones
- Trabajos futuros

<u>Introducción</u>

Investigación previa

Metodología

Diseño

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Planteamiento del problema

En Ecuador, cada habitante produce 0,83 kg de residuos sólidos diarios.

La basura mal tratada llega a ríos, lagunas, lagos y mares.

El 60-90% de la basura marina es plástico

Los macroplásticos se fragmenta en microplásticos

Existen iniciativas de recolección manual.

Investigación previa

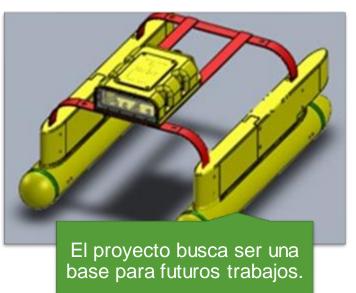
Metodología

Diseño

Pruebas y Resultados

Conclusiones

Recomendaciones


Trabajos futuros

Justificación e Importancia

<u>Introducción</u>

Investigación previa

Metodología

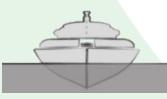
Diseño

Pruebas y Resultados

Conclusiones

Recomendaciones

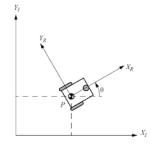
Trabajos futuros


Objetivos

Diseño de un USV para recolección de macro plásticos

Cálculo e implementación para flotación y estabilidad Selección de motores y hélices Suministro de energía a los componentes eléctricos

Implementación localización global y local Instalación de comunicación entre usuario y USV


Implementación de sistema de recolección

Investigación previa

Metodología

Diseño

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

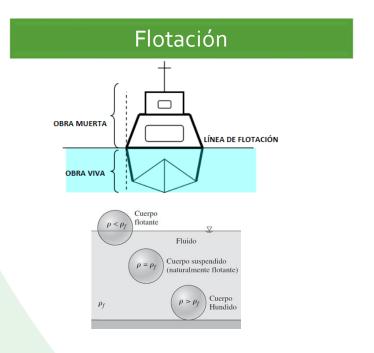
Robótica Móvil

Fábricas

Investigación previa

Metodología

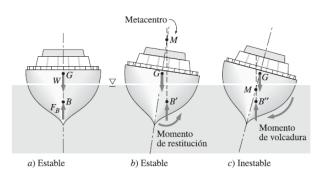
Diseño

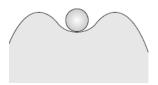

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros


Análisis para el diseño y construcción



Resistencia

Estabilidad

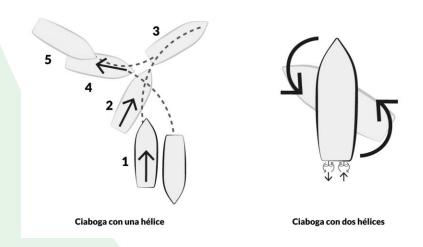
Propulsión

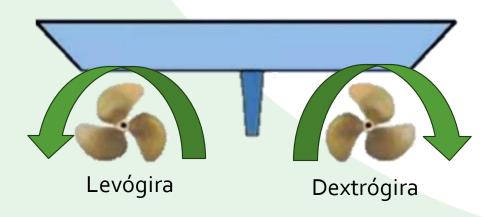
Investigación previa

Metodología

Diseño

Pruebas y Resultados


Conclusiones


Recomendaciones

Trabajos futuros

Análisis para el diseño y construcción

Maniobrabilidad

Comportamiento en el mar

Investigación previa

Metodología

Diseño

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Resistencia: Formas de obtención

Ensayos experimentales

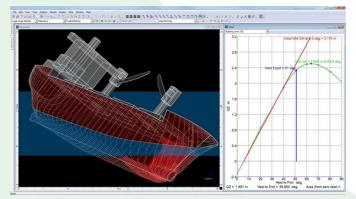
Semejanza geométrica

Semejanza dinámica

Resistencia total

$$\lambda = \frac{L_S}{L_M}$$

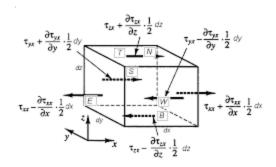
$$\lambda^2 = \frac{S_S}{S_M}$$


$$\lambda^3 = \frac{\nabla_S}{\nabla_M}$$

$$\frac{V_S}{\sqrt{L_S}} = \frac{V_M}{\sqrt{L_M}}$$

$$F_D = \frac{C_D \cdot A \cdot \rho \cdot u^2}{2}$$

Métodos estadísticos


Savitsky, Blount and Fox, Wyman, Holtrop, Compton y Fung

Métodos analíticos

Navier Stokens

Métodos numéricos

MaxSurf, HELYX – Marine, STAR-CCM y SolidWorks

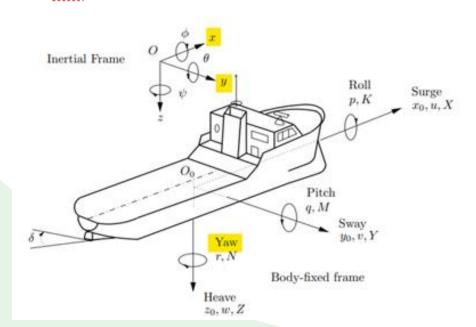
Investigación previa

Metodología

Diseño

Pruebas y Resultados

Conclusiones


Recomendaciones

Trabajos futuros

Control de un barco

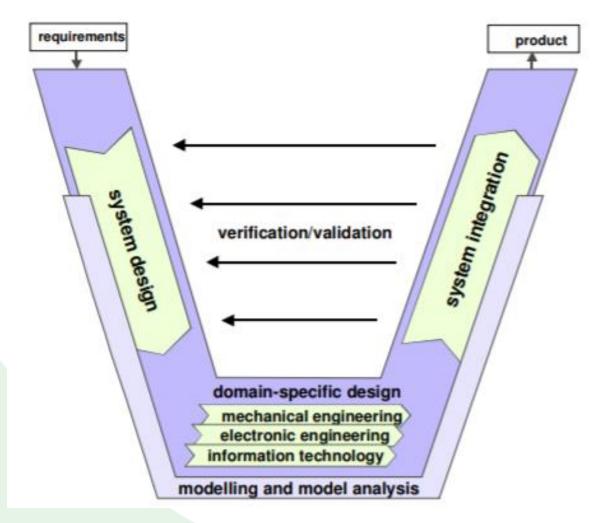
Translación	Fuerza	Velocidad lineal	Posición
Avance - Surge	X	и	х
Desplazamiento lateral - Sway	Y	υ	у
Arfada - Heave	Z	W	z

Rotación	Momento	Velocidad angular	Ángulos de Euler
Balanceo - Roll	K	p	φ
Cabeceo - Pitch	М	q	θ
Guiñada - Yaw	N	r	Ψ

Investigación previa

<u>Metodología</u>

Diseño


Pruebas y Resultados

Conclusiones

Recomendaciones

 ${\sf Trabajos} \ futuros$

Metodología

Modelo en "V"
Norma VDI 2206
Metodología de diseño de sistemas mecatrónicos

Investigación previa

<u>Metodología</u>

Diseño

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Metodología

							+			<u>></u>	<u>\</u>
		Customer Importance	Costo	Peso	Tamaño	Flotabilidad	Estabilidad	Resistente al agua	Rango de contol	Capacidad de recolección	Tiempo de operación
	Asequible	5	5	3	3			5	1		5
S	Portable	2	1	5	5					3	
sito	Robusto	5	5	3		5	5	5	3		1
Requisitos	Tele operación	4	1					5			5
	Recolección de macro plásticos flotantes	3	3	3	5	3	3			5	1
	Baterías	2	5	3				5			5
	Target		75	55	40	34	34	80	20	21	63

Investigación previa

<u>Metodología</u>

Diseño

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Metodología

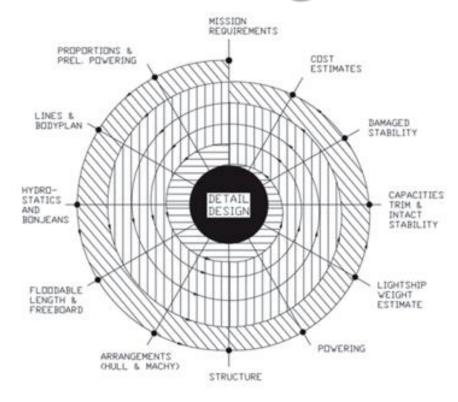
No	Requerimientos técnicos	Target
1	Costo	75
2	Peso	55
3	Tamaño	40
4	Flotabilidad	34
5	Estabilidad	34
6	Resistente al agua	80
7	Rango de control	20
8	Capacidad de recolección	21
9	Tiempo de operación	63

No	Subsistema	Requerimiento técnico
1	Flotación y estabilidad	1, 2, 3, 4, 5, 8
2	Direccionamiento y propulsión	1, 2, 5, 8
3	Alimentación del sistema	1, 2, 6,7, 9
4	Localización	1, 6, 7, 9
5	Comunicación	1, 6, 7
6	Recolección de residuos sólidos	2, 3, 8, 9

Investigación previa

<u>Metodología</u>

Diseño


Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

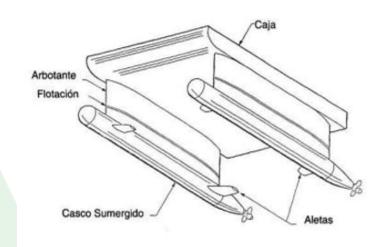
Metodología

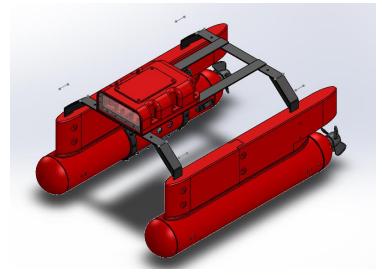
PHA	SE.	TYPICAL EFFORE	
CONCEPT	DESIGN	20-MAN-DAYS	
PRELIMIN	ARY DESIGN	300-MAN-DAYS	
CONTRACT	T DESIGN	5,000-MAN-DAY	s
DETAIL I	PESIGN	60,000-MAN-DAY	rs

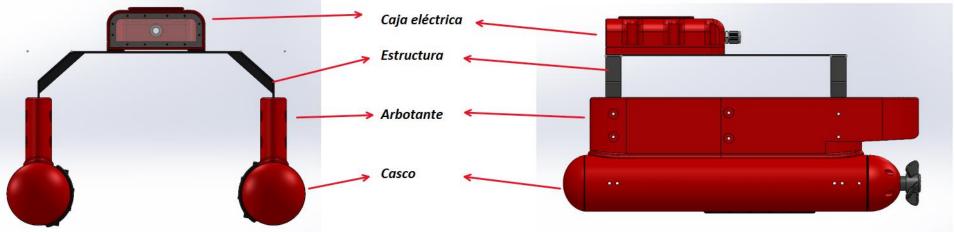
Investigación previa

Metodología

<u>Diseño</u>


Pruebas y Resultados


Conclusiones


Recomendaciones

Trabajos futuros

Características principales

Investigación previa

Metodología

<u>Diseño</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Características principales

$$\lambda = Escala = \frac{157 \ cm}{68 \ cm} = 2.3$$

$$manga = \frac{109}{2.3} = 47.4 \ cm$$

$$u_m = \frac{u_p}{\sqrt{\lambda}} = \frac{1.5 \ knots}{\sqrt{2.3}} = 0.98 \ knots$$

Característica	Detalle
Eslora	157 cm
Manga	109 cm
Peso	72 kg
Rango de radiocontrol	3 km
Velocidad	1.5 nudo
Conectividad	Wifi, Bluetooth 3G, 4G, 5G, GPS

Investigación previa

Metodología

<u>Diseño</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

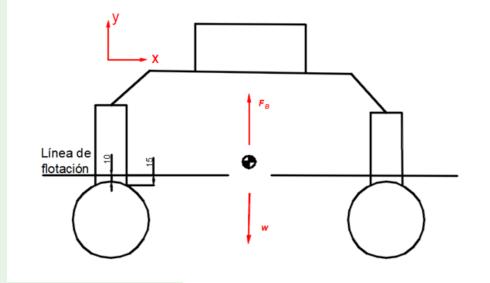
Características principales

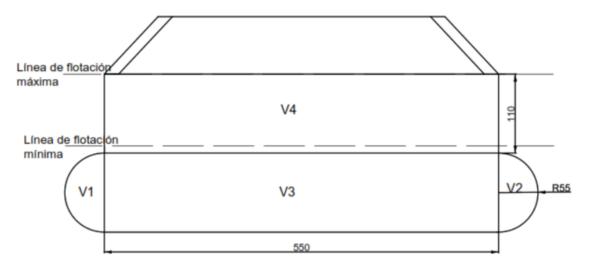
Relación	Multicasco	Monocasco	Dimensiones finales del USV
Manga global / Eslora	0,3 – 1	0,1-0,3	510/660 = 0,7818
Puntal / Eslora	0,1 - 0,3	0.07 - 0.1	190/660 = 0,2878
Manga / Calado (un caso)	0,5-2,5	2 - 4	110/190 = 0,5789
Eslora / Manga (un caso)	2 – 30	3 – 10	660/110 = 2,6

Investigación previa

Metodología

<u>Diseño</u>


Pruebas y Resultados


Conclusiones

Recomendaciones

Trabajos futuros

Flotación

$$F_B = \rho_f \cdot g \cdot v_{sumergido} = m_t \cdot g$$

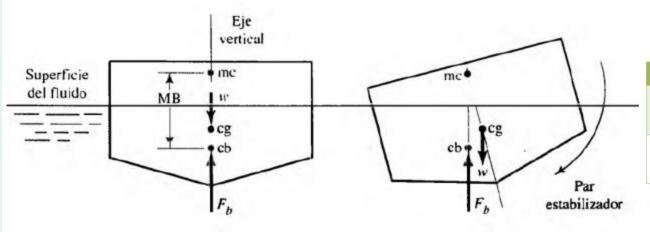
$$m_{t_{min}} = v_{sumergido_{min}} \cdot \rho_{H2O} = 0.0123m^3 \cdot 1000 \frac{kg}{m^3} = 12.33 \ kg$$

$$m_{t_{max}} = v_{sumergido_{max}} \cdot \rho_{H2O} = 17,28 \ kg$$

Investigación previa

Metodología

<u>Diseño</u>


Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Estabilidad

Condición	Criterio de estabilidad
$oldsymbol{y_{mc}} > oldsymbol{y_{cg}}$	Cuerpo estable
$oldsymbol{y_{mc}} < oldsymbol{y_{cg}}$	Cuerpo inestable

(a) Posición original

(b) Posición inclinada

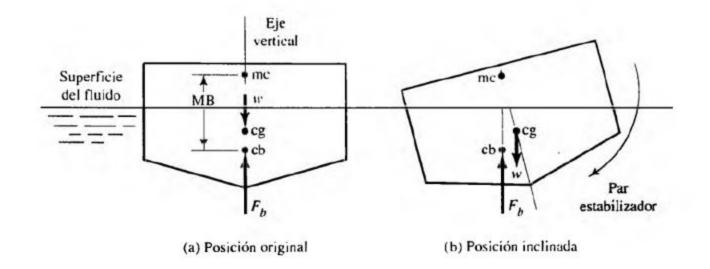
$$\overline{\mathbf{y}} = \frac{\sum \widetilde{\mathbf{y}} W}{\sum W}$$

Subensamble	Peso total [g]	% del peso total
Arbotante	2967	24,1
Cables	510	4,1
Canasta	432	3,5
Casco	5520	44,7
Estructura	1956	15,9
Casco-electrónica	566	4,6
Caja eléctrica	385	3,1
Total	12337	100

Investigación previa

Metodología

<u>Diseño</u>


Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Estabilidad

Condición	Criterio de estabilidad
$y_{mc} > y_{cg}$	Cuerpo estable
$oldsymbol{y_{mc}} < oldsymbol{y_{cg}}$	Cuerpo inestable

$$y_{cb} = :53,87 \ mm$$

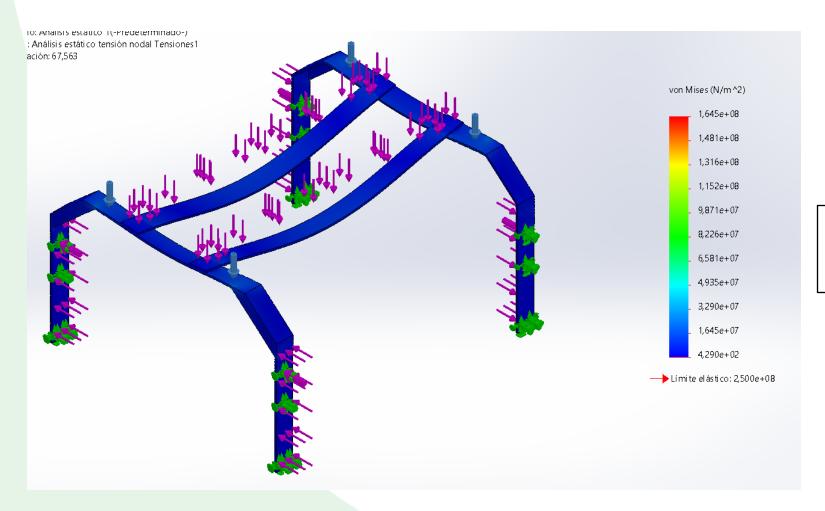
$$MB = 1,25 m$$

$$y_{mc} = 53,87 \; mm + 1,25 \; m = 1,30387 \; m$$

Investigación previa

Metodología

<u>Diseño</u>


Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

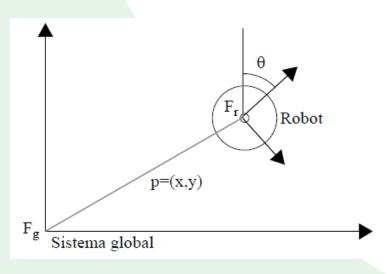
Estructura

Investigación previa

Metodología

<u>Diseño</u>

Pruebas y Resultados


Conclusiones

Recomendaciones

Trabajos futuros

Localización

	Conceptos			
Criterios de selección	MPU	MPU	HMC5883	
	6050	9250	L	
Resolución	0	0	+	
Cálculo directo	-	+	+	
Robustez	+	+	+	
Consumo	+	0	+	
Tamaño	0	0	+	
Protocolo	+	+	+	
Librerías	+	+	+	
Proyección	0	+	-	
Costo	0	-	+	
Suma +	4	5	8	
Suma o	4	3	0	
Suma -	1	1	1	
Evaluación neta	3	4	7	
Lugar	3	2	1	
¿Continuar?	No	No	Si	

Investigación previa

Metodología

<u>Diseño</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

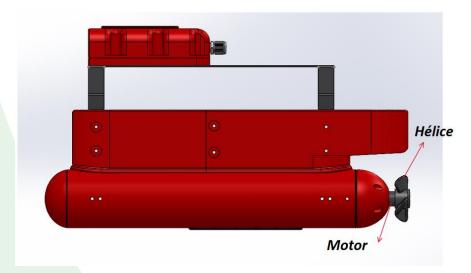
Localización

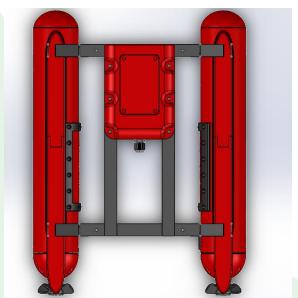
Modelo	Especificaciones	llustración
HMC5883L	 Sensores magneto resistivos en 3 ejes Dimensiones: 1.8 x 1.3 cm Resolución: 5 miliGauss en campos de ± 8 Gauss Consumo: 100 Ua Alimentación: 2.16 – 3.16 V Comunicación: I2C Tasa de salida: 160 Hz 	LA CHARLES
Modelo	Especificaciones	llustración
GPS NEO 7M	 Tiempo de la primera señal: 31 s Sensibilidad: -161 dBm Precisión de posición horizontal: 2.5 m Frecuencia de pulsos: 1 Hz Alimentación: 0.5 – 3.6 V Consumo: 67 mA 	

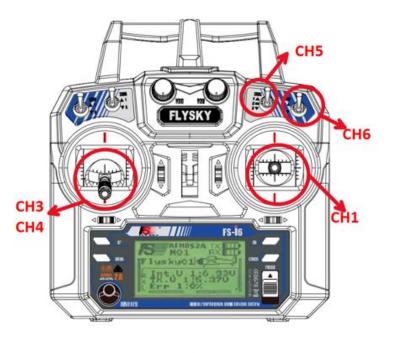
Investigación previa

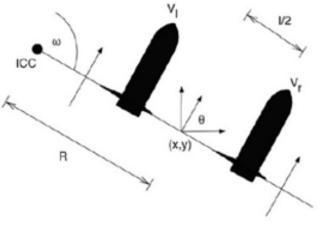
Metodología

<u>Diseño</u>


Pruebas y Resultados


Conclusiones


Recomendaciones


Trabajos futuros

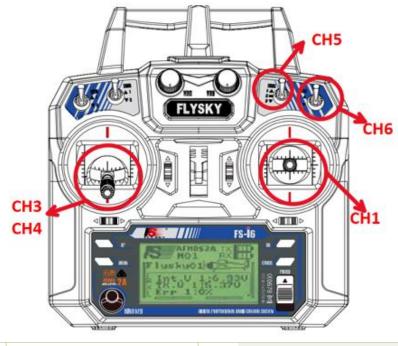
Direccionamiento

Investigación previa

Metodología

<u>Diseño</u>

Pruebas y Resultados


Conclusiones

Recomendaciones

Trabajos futuros

Direccionamiento: Manual

Canal	Función	Esquema de funcionamiento
1	Dirección	Izquierda Derecha
3	Acelerador	Aumento de aceleración Disminución de aceleración
4	Giro	Giro Giro antihorario horario

5	Modo de manejo	1.Reposo 2.Manual 3.Automático
6	Sentido de avance	1.Adelante 2.Atras

Investigación previa

Metodología

<u>Diseño</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Direccionamiento: Automático

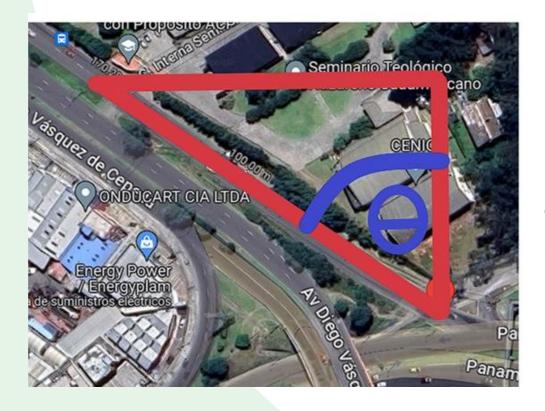
1.Reposo 2.Manual 3.Automático

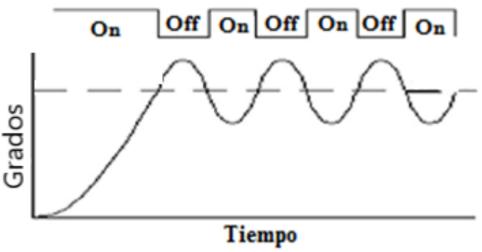
$$Distancia = 2 * R * asin \sqrt{\sin^2\left(\frac{\Delta lat}{2}\right) + \cos(lat1) * \cos(lat2) * \sin^2\left(\frac{\Delta lon}{2}\right)}$$

Investigación previa

Metodología

<u>Diseño</u>


Pruebas y Resultados


Conclusiones

Recomendaciones

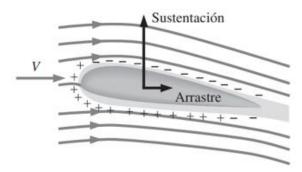
Trabajos futuros

Direccionamiento: Automático

Investigación previa

Metodología

<u>Diseño</u>

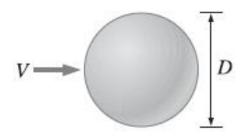

Pruebas y Resultados

Conclusiones

Recomendaciones

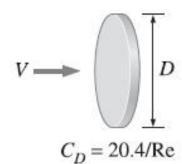
Trabajos futuros

Propulsión

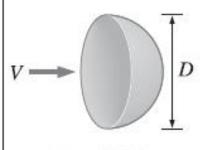


$$R_e = \frac{V \cdot L}{v}$$

FIGURA 11-18

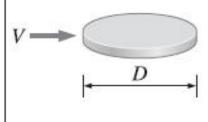

Coeficientes de arrastre C_D a bajas velocidades $Re \lesssim 1$ donde $Re = VD/\nu$ y $A = \pi D^2/4$).

Esfera



$$C_D = 24/\text{Re}$$

Disco circular (normal al flujo)



Hemisferio

$$C_D = 22.2/\text{Re}$$

Disco circular (paralelo al flujo)

$$C_D = 13.6/\text{Re}$$

Investigación previa

Metodología

<u>Diseño</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Propulsión

$$F_D = \frac{1}{2} \rho v^2 C_D A_D$$

$$F_D = 44.65 [N]$$

$$P = F * V$$

Potencia necesaria = 22,32 W,

Potencia efectiva = 29,016 W.

Investigación previa

Metodología

<u>Diseño</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Propulsión

	Modelos de motores		
Criterios de selección	JGA25-370	BL 2838	F2838
Potencia	-	+	+
Uso en agua	-	+	+
Controlabilidad	+	+	+
Peso	0	0	0
Precio	+	-	0
Suma +	2	3	3
Suma o	1	1	2
Suma -	2	1	0
Evaluación neta	0	2	3
Lugar	3	2	1
¿Continuar?	No	No	Si

ROV MAKER F2838

Tipo: Brushless

Potencia máxima: 125 W

Voltaje: 12-24 V

Corriente: 7,5 A

KV (rpm/voltio): 350 KV

Alimentación: Lipo 3S-12S

Peso: 100 g

Precio: \$ 36

Investigación previa

Metodología

<u>Diseño</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Alimentación

$$P = 29,016[W]$$

$$I_m = 2,42 [A]$$

$$I_{ESP} = 0.5 [A]$$

$$I_{BAT} = 1600 \left[mAh \right]$$

Tiempo de autonomía = 32 [min]

Investigación previa

Metodología

<u>Diseño</u>

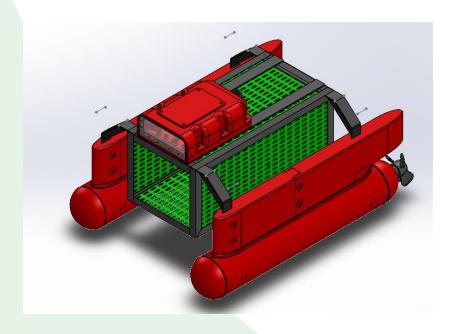
Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Recolección de residuos sólidos



	Conceptos		
Criterios de selección	Banda transportadora	Pala cargadora	Canasta
Dimensión – peso	-	-	+
Fácil implementación	0	0	+
Infraestructura	-	-	+
requerida Mantenimiento	+	-	0
Capacidad de recolección	+	+	0
Consumo de energía	-	0	+
Precio	-	-	+
Suma +	1	1	5
Suma o	1	2	2
Suma -	5	4	0
Evaluación neta	-4	-3	5
Lugar	3	2	1
¿Continuar?	No	No	Si

Prototipo final

Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros

Flotación

Verificación de la masa total

Masa total 12.5 kg

Línea de flotación mínima

Línea de flotación 19 mm

> Error absoluto 4 mm

Línea de flotación máxima

Masa añadida 4.7 kg

Investigación previa

Metodología

Diseño

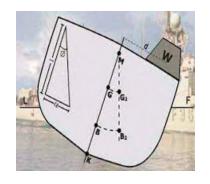
<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

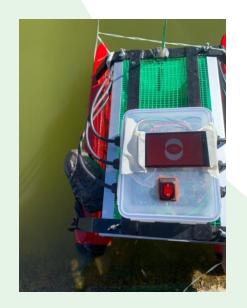
Recomendaciones

Trabajos futuros

Estabilidad: Experiencia de estabilidad


a

b




C

d

Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros

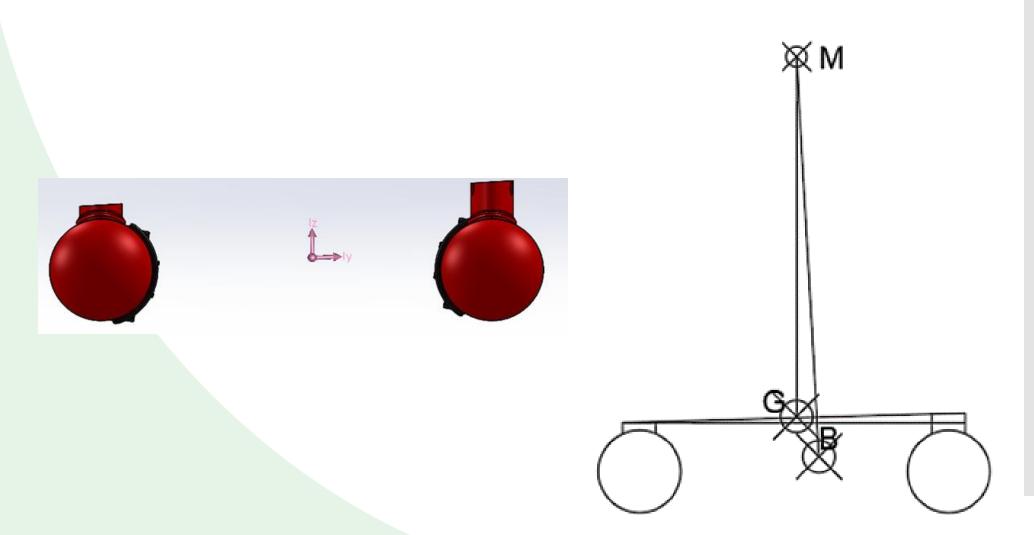
Estabilidad: Experiencia de estabilidad

Escora, φ[°]	Peso [Kg]
5	1.1
7	1.50
9	2
11	2.4
14	3.1

Investigación previa

Metodología

Diseño


<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

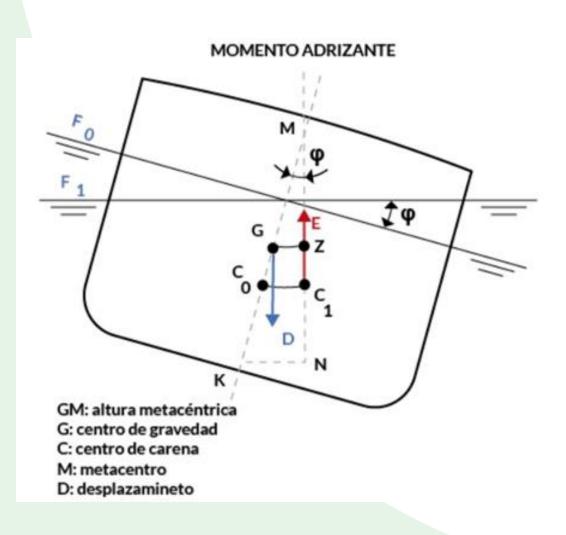
Trabajos futuros

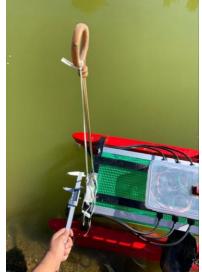
Estabilidad: Experiencia de estabilidad

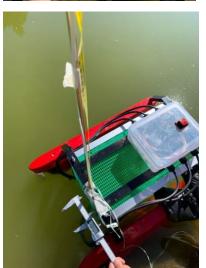
Investigación previa

Metodología

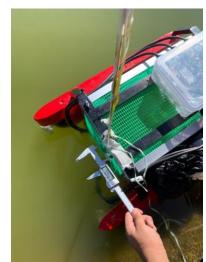
Diseño


<u>Pruebas y</u> <u>Resultados</u>


Conclusiones


Recomendaciones

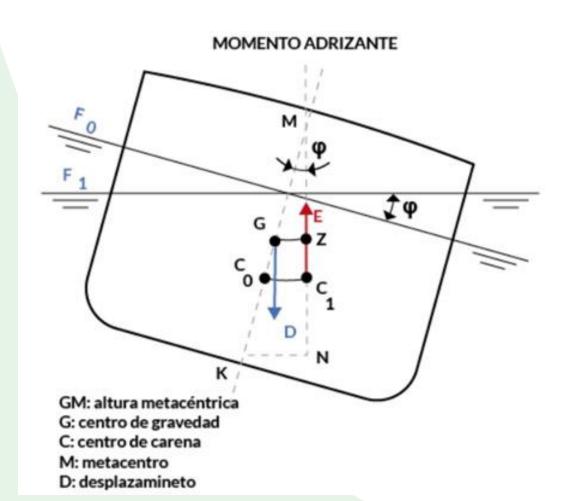
Trabajos futuros


Estabilidad: Experiencia de estabilidad

Investigación previa

Metodología

Diseño


Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Estabilidad: Experiencia de estabilidad

Escora φ[°]	GZ [mm]	GM [mm]	X [mm]
5	70,5	809,00	52,29
7	90	689,86	66,75
9	86	550,03	63,78
11	80	419,48	59,33
14	74	306,04	54,88

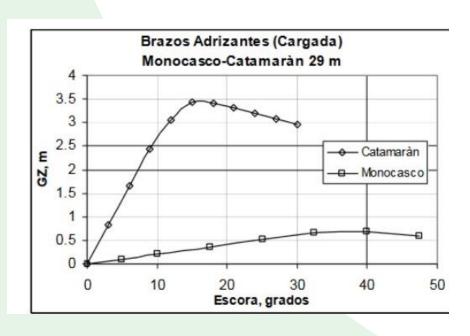
Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones


Recomendaciones

Trabajos futuros

Estabilidad: Experiencia de estabilidad

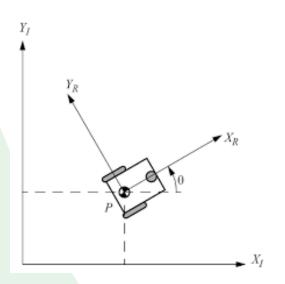
Comparación de estabilidad de un monocasco y un catamarán

Resultados de estabilidad del USV

Investigación previa

Metodología

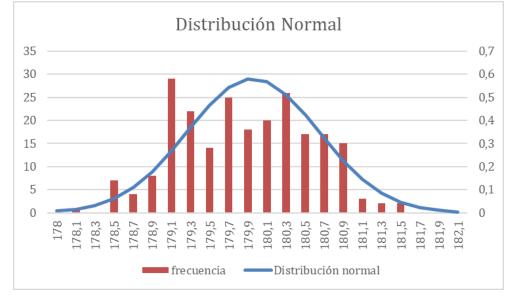
Diseño


<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros


Localización Local – Magnetómetro

180 grados 235 datos

Parámetro	Valor	
Media	179,9538272	
Desviación estándar	0,68632095	
Coeficiente de variación	0,381387248	
Valor mínimo	178,17	
Valor máximo	181,53	

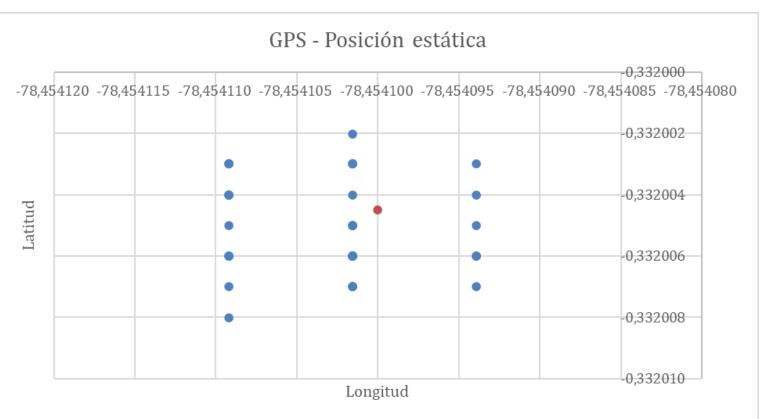
Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones


Recomendaciones

Trabajos futuros

Localización Global – GPS

300 datos

Investigación previa

Metodología

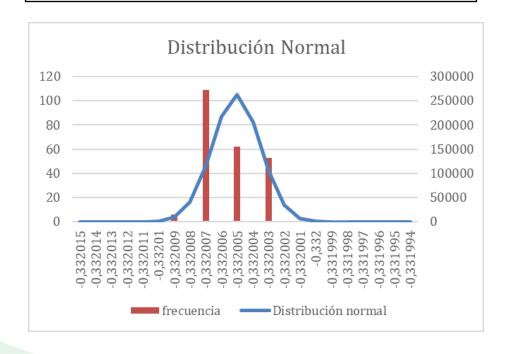
Diseño

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros


Localización Global – GPS

Análisis de Latitud

Desviación estándar: 0.2 m

Error absoluto promedio: 0.1 m

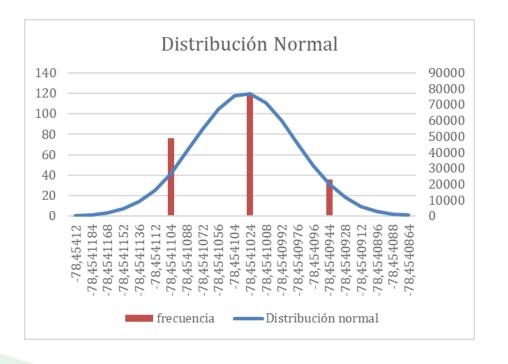
Investigación previa

Metodología

Diseño

Pruebas y Resultados

Conclusiones


Recomendaciones

Trabajos futuros

Localización Global – GPS Análisis de Longitud

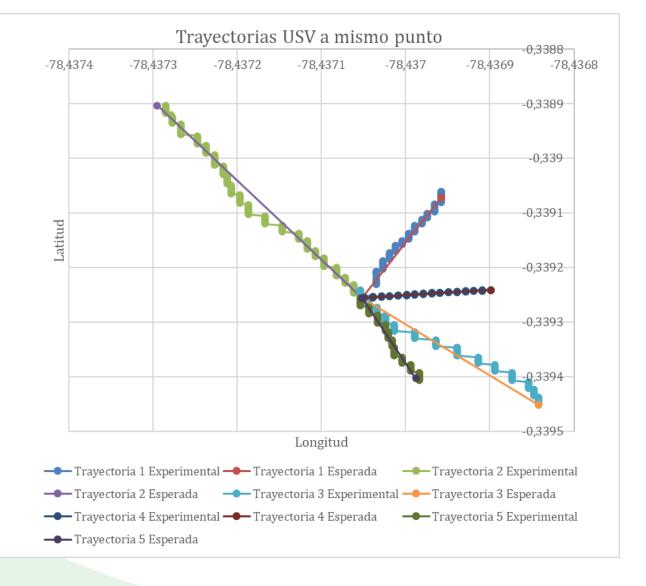
Desviación estándar: 0.5 m Error absoluto promedio: 0.3 m

Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>


Conclusiones

Recomendaciones

Trabajos futuros

Direccionamiento

Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros

Direccionamiento Error medio cuadrático

Trayectoria	RMSE	Error [m]
1	8,58495E-06	0,7
2	1,51666E-05	1,3
3	1,48008E-05	1,2
4	5.967002E-07	0,8
5	1,48005E-05	1,2

RMSE = 1,04

Investigación previa

Metodología

Diseño

Pruebas y Resultados

Conclusiones

Recomendaciones

 ${\it Trabajos futuros}$

Direccionamiento: Puntos de llegada

Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros

Direccionamiento: Puntos de llegada

Trayectoria	Error [m]	
1	1,55	
2	1,51	
3	0,32	
4	2,91	
5	0,15	

Error = 1,28 m

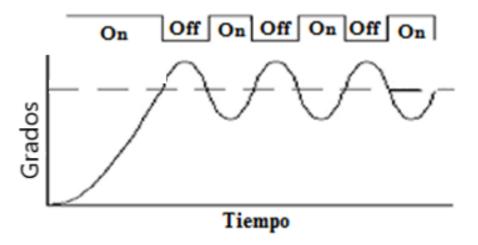
Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones


Recomendaciones

Trabajos futuros

Direccionamiento: Automático

Gráfica de control ángulo meta

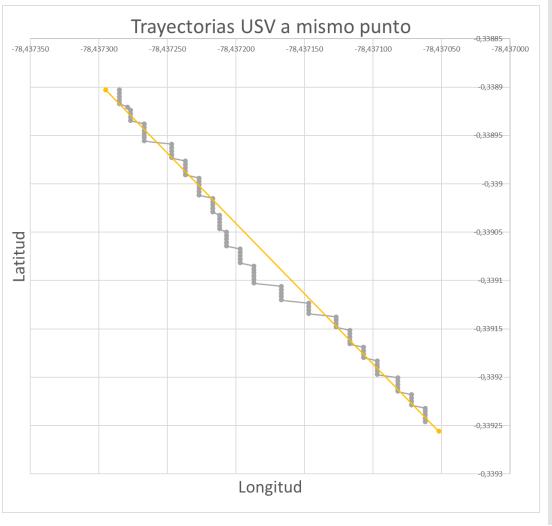
Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones


Recomendaciones

Trabajos futuros

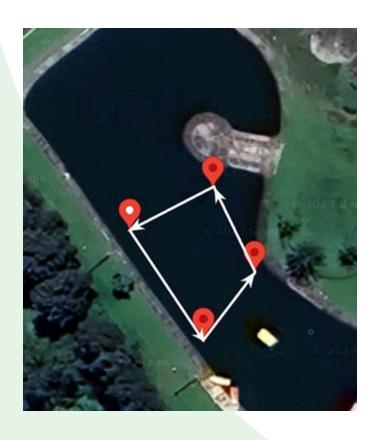
Direccionamiento: Automático

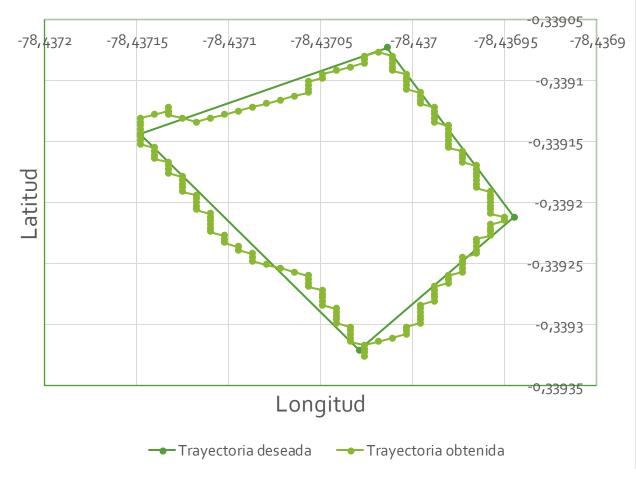
Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>


Conclusiones


Recomendaciones

Trabajos futuros

Direccionamiento: Cuadrilátero

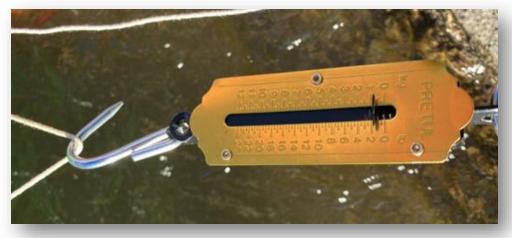
Prueba cuadrilátero

Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>


Conclusiones

Recomendaciones

Trabajos futuros

Propulsión

Arrastre: 0.875 kg

Error absoluto: 0.125 kg

Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros

Comunicación

Coordenada	Distancia [m]	Error [%]
-0.339059, - 78.438117	10	1
-0.339140, - 78.437027	40	2
-0.339946 , - 78.436684	130	10
-0.340186, - 78.436571	160	19
-0.340315, - 78.436541	180	36

Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros

Recolección

Investigación previa

Metodología

Diseño

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros

Recolección

Prueba	Tiempo[m in]	
1	5,3	
2	6,2	
3	5,7	
4	5,45	
5	6,6	

Tiempo promedio=5,85 [min]

Investigación previa

Metodología

Diseño

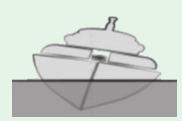
Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

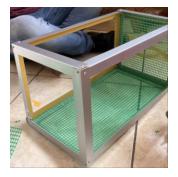
Conclusiones


Conclusiones

Cálculo e implementación para flotación y estabilidad Selección de motores y hélices Suministro de energía a los componentes eléctricos

Implementación localización global y local Instalación de comunicación entre usuario y USV

Implementación de sistema de recolección



Investigación previa

Metodología

Diseño

Pruebas y Resultados

Conclusiones

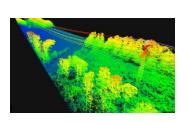
Recomendaciones

Trabajos futuros

Recomendaciones

Recomendaciones

Analizar métodos de construcción. Componentes de propulsión de altas prestaciones


Añadir evasor de obstáculos Componentes de localización de altas prestaciones

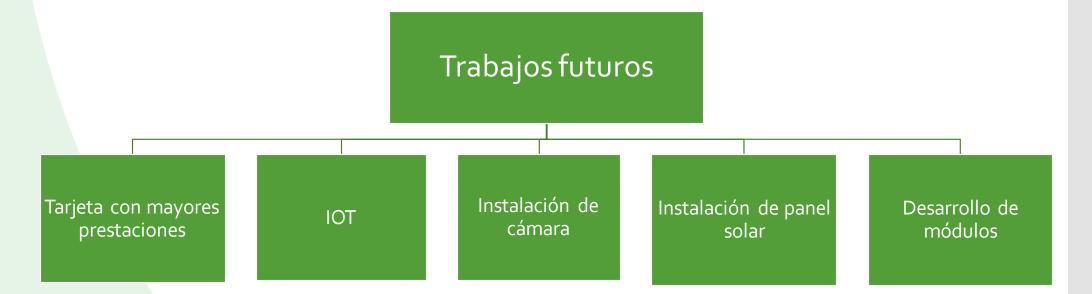
Complemento para trasferencia de datos

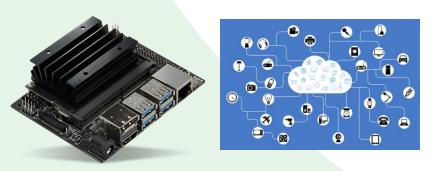
Implementación de sistema antiretorno

Investigación previa

Metodología

Diseño


Pruebas y Resultados


Conclusiones

Recomendaciones

Trabajos futuros

Trabajos Futuros

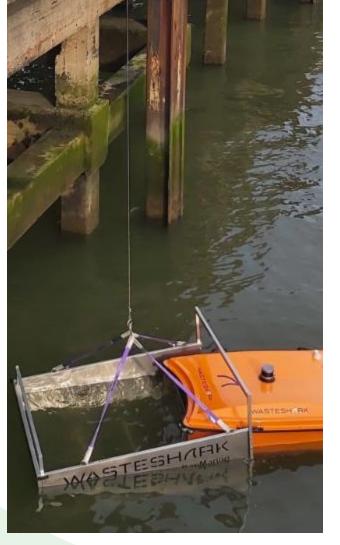
Investigación previa

Metodología

Diseño

Pruebas y Resultados

Conclusiones


Recomendaciones

Trabajos futuros

Desarrollo de módulos

Gracias por su atención.

