

Universidad de las Fuerzas Armadas ESPE-L

Departamento de Ciencias de la Energía y Mecánica Carrera de Petroquímica

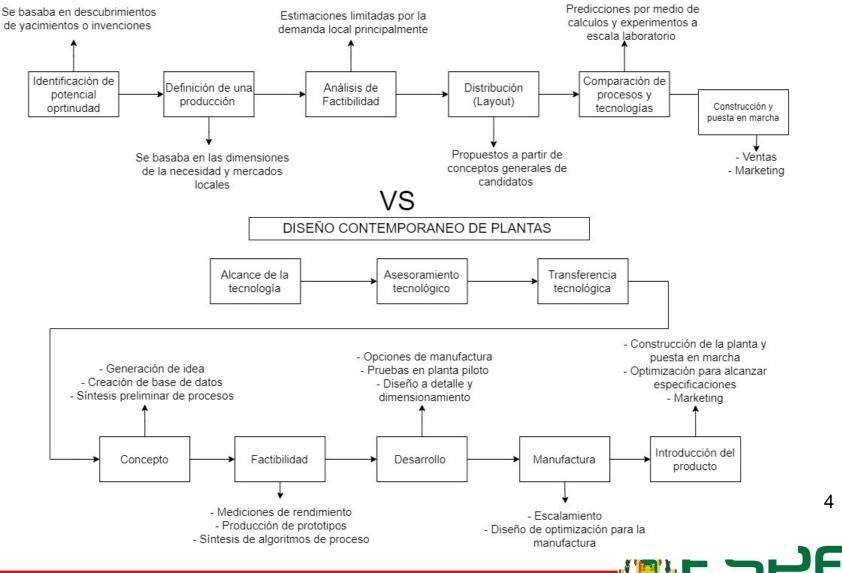
Diseño conceptual del proceso de steam-cracking para una capacidad de procesamiento de 240.000 TMA de nafta.

Unidad de Integración Curricular, previo a la obtención del Título de Petroquímico

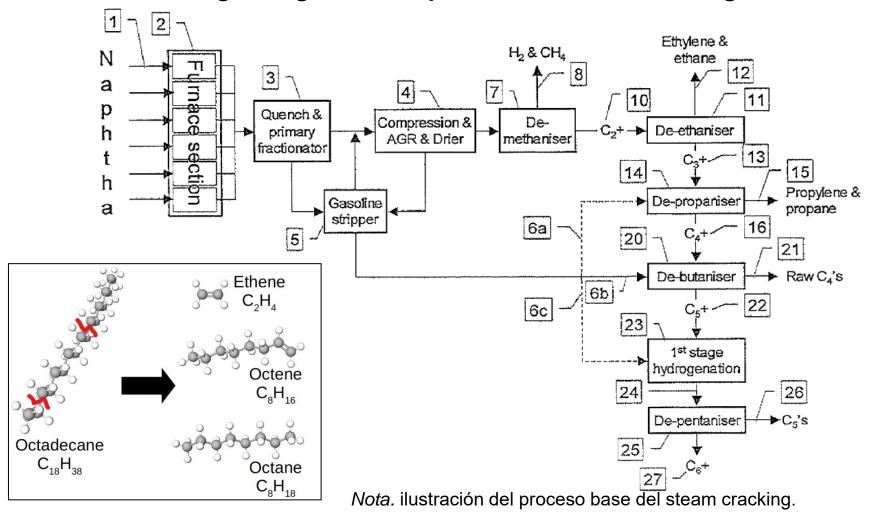
Autor: Andrade Valens, Anthony Israel

Director: Ing. Robalino Cacuango. Milton Javier. MSc.

CONTENIDO

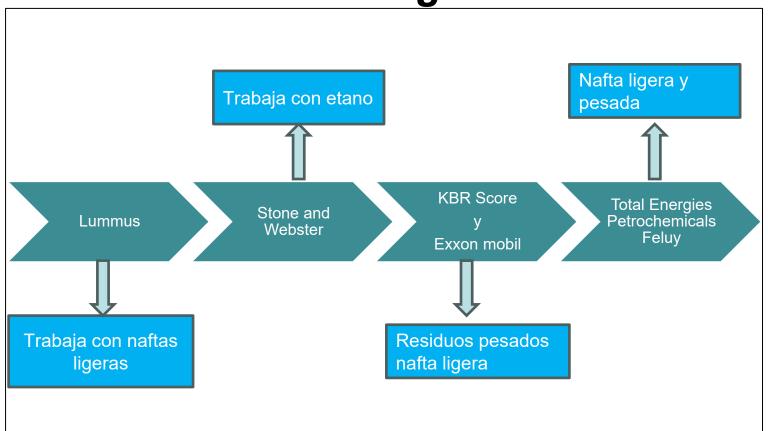

INTRODUCCIÓN

INTRODUCCIÓN

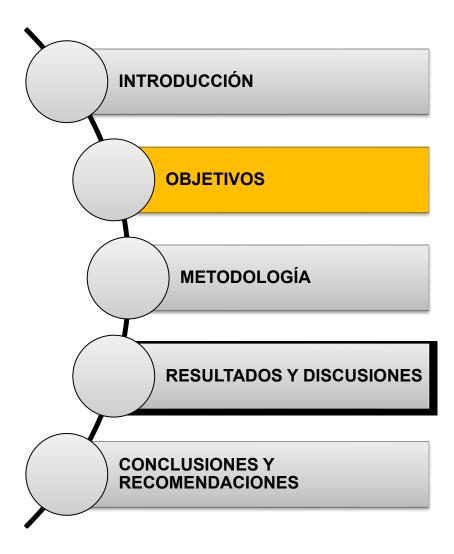

DISEÑO DE PLANTAS SIGLO XX

INTRODUCCIÓN

Diagrama general del proceso de steam cracking



Extraído de Vermeiren et al., (2010).


5

Tecnologías de proceso de steam cracking

CONTENIDO

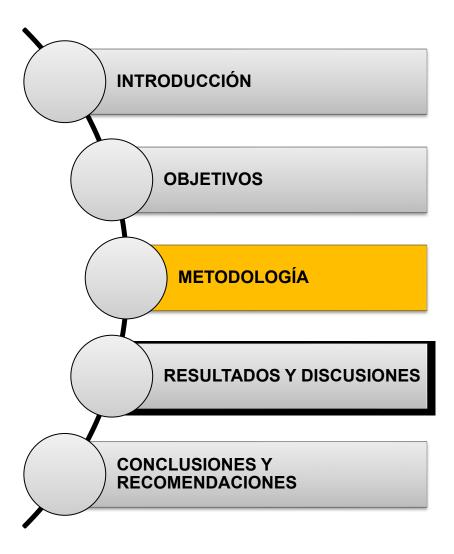
OBJETIVOS

Objetivo general

Realizar el diseño conceptual del proceso de Steam-cracking para una capacidad de procesamiento de 240 000 TMA.

Objetivos específicos

- Investigar sobre el estado del arte y concepto del Steam-cracking.
- Generar diagramas de flujo de procesos y balance de materiales.
- Realizar la estimación de costos de capital de inversión utilizando un resumen de equipos y procesos.


Materia prima

Disponibilidad de la materia prima (2022)								
	Densidad							
	nafta	740 Kg/m ³			Estimación			
	BAR/año	m³/año nafta	Kg/año	KTon/año	KTon/año			
REFINERIAS	nafta			nafta base	nafta ligera			
Esmeraldas	836797	133050.723	98457535.02	98.457	9.845			
Libertad	1007300	160160.7	118518918	118.518	11.851			
Shushufindi	904852	143871.468	106464886.3	106.464	10.646			
			TOTAL	323.441	32.3441			

Nota. Producción de nafta por refinerías. Adaptado de (Informe estadístico enerodiciembre del 2022 EP Petroecuador)

CONTENIDO

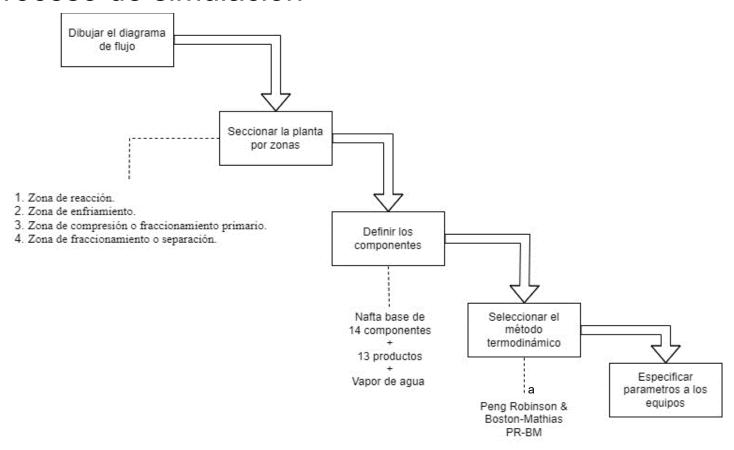
METODOLOGÍA

Revisión bibliográfica

- Recopilación de datos locales.
- Estudio de patentes.
- Bases de la simulación.

Simulación

Balances energéticos y de materiales


Estimación de costos

- Requerimientos de utilidad.
- Estimación de costo de capital de inversión por métodos de escalamiento.
- Inversión total de capital.

Metodología

Proceso de simulación

a. Pramod, K., & Deepak, K. (1985)

Metodología

Ecuación balance de masa global del proceso

Balances de masa

$$E - S + G = A$$

$$E = S$$

$$\sum \dot{m}_{Corrientes \ de \ entrada} = \sum \dot{m}_{Corrientes \ de \ salida}$$

Corrientes de entrada	Corrientes de salida			
	Etileno			
	Propileno			
	Etano			
Nafta 240 KTMA	Propano			
Agua 84 KTMA	Metano Hidrógeno residual			
Agua o4 KTMA				
	C4-			
	C5+			
	Agua contaminada de HC			
Total: 240 KTMA + 84 KTMA = 324	Total: 324 KTMA			

Carácter UNIDAD DE PROCESO energético Horno pirólisis (F-101) Endotérmico Generador de vapor (F-100) Endotérmico Rehervidor (E-408) Endotérmico Rehervidor (E-410) Endotérmico Rehervidor (E-406) Endotérmico Rehervidor (E-402) Endotérmico Rehervidor (E-400) Endotérmico Rehervidor (E-411) Endotérmico Rehervidor E-405 (E-404) **Endotérmico** Compresor (C-200) Endotérmico Bomba (P-100) Endotérmico Bomba (P-400) Endotérmico Multi compresor (C-300) Endotérmico Compresor (C-400) Endotérmico Enfriador (E-200) Exotérmico **Enfriador (E-201)** Exotérmico Condensador (E-410) Exotérmico Condensador (E-407) Exotérmico **Enfriador (E-202) Exotérmico** Enfriador (E-300) Exotérmico Enfriador (E-400) Exotérmico Enfraidor (E-203) Exotérmico Condensador (E-405) Exotérmico Condensador (E-403) Exotérmico Condensador (E-401) Exotérmico Condensador (E-412) Exotérmico

Exotérmico

Exotérmico

Enfriador (E-301)

Condensador (E-409)

Metodología Balances energéticos

1. Columna de unidades o equipos.

2. Tipo de intercambio de calor.

3. Energía de la fuente o sumidero MJ/Kg nafta procesada.

4. Temperatura o ΔT °C Final – inicial.

5. Utilidad requerida.

Metodología propuesta por Peters, et al., (2003).

14

Metodología

Estimación de costo por escalamiento

$$costo_2 = \left(\frac{capacidad_2}{capacidad_1}\right)^m * \left(\frac{I}{I_{base}}\right) * costo_1$$

Donde:

Capacidad 2: Capacidad de la planta de steam cracking propuesta = 0.240 MTMA

Capacidad 1: Capacidad de la planta de steam cracking de referencia = 3.07

MTMA

I = CE del año actual (2022) = 813

I = CE del año de referencia (2017) = 576.5

Costo 2: Costo de la planta de steam cracking propuesta

Costo 1: Costo de la planta de steam cracking de referencia

m = 0,7 según (Sapilla, 2017) y también se encuentra dentro del rango que sugiere

Seider et al., (2009).

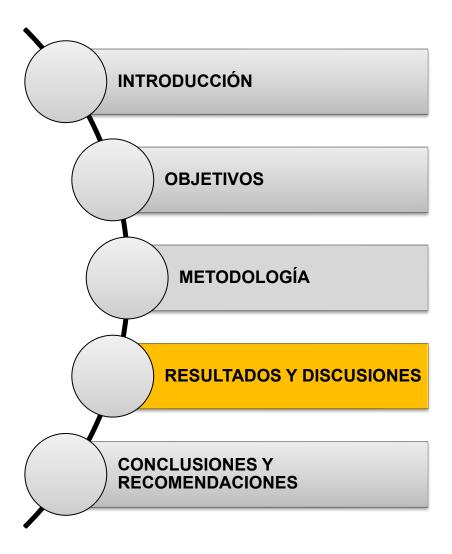
Estimación de costos

Tipo de equipo	Parámetro	Fórmula	Rango	Material	
Horno de pirólisis	Absorbedor e calor Q, Btu/h	$C_P = 0.650 Q^{0.81}$	10-500 millones Btu/h	Acero al carbono	
Caldera	Absorbedor e calor Q, Btu/h	$C_P = 0.367 Q^{0.77}$	0,5-70 millones Btu/hr	Acero al carbono	
Intercambiadores de calor (tubo espiral)	Área de transferencia de calor, A, ft²	$C_{\rm p}$ = exp{8.0757 + 0.4343[ln(A)] + 0.03812[ln(A)] ² }	1-500 ft ²	Acero al carbono	
Compresores centrífugos	Potencia, Hp	$C_p = e^{[7.58 + 0.8 \cdot \ln(Pc)]}$	300-1000 hp	Acero al carbono	
Tanques de almacenamiento	Volumen, V,gal	$C_P = 60 V^{0.72}$	10,000- 1,000,000 gal	Acero al carbono	
Bomba centrífuga	Flujo volumétrico; gal / min	C_B = exp{9.7171 - 6019[ln(S)] + 0.0519[ln(S)] ² }	400 a 100,000 S	Acero al carbono	
Compresor de Tornillo	Potencia, Hp	C_B = exp{8.1238 + 0,7243[ln(P_c)]}	10 a 750 Hp	Acero al carbono	

Nota. Costo de compra Cp y modulo desnudo Cb de diferentes equipos industriales. Adaptado de Seider et al., (2009)

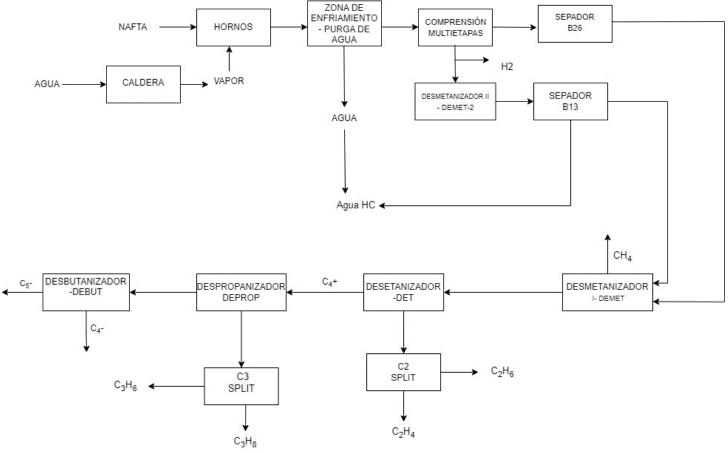
16

Metodología


Estimación de costos por components del TCI

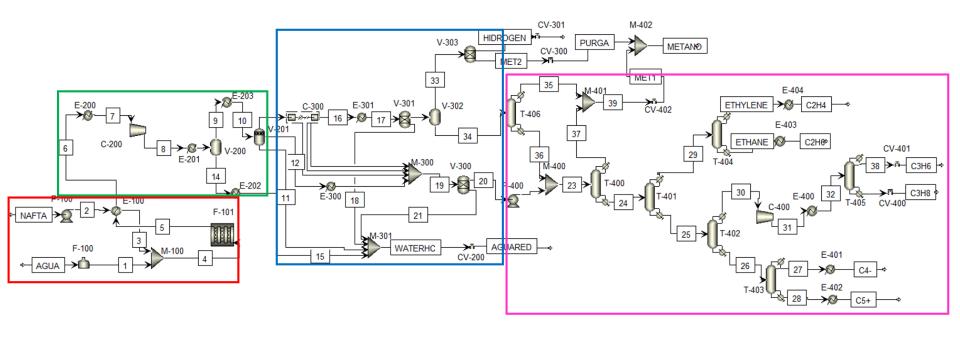
Inversión total en módulos desnudos	XXXX				
Coste de preparación del terreno	XXXX				
Coste de las instalaciones de servicios	XXXX				
Costes asignados a plantas de servicios e instalaciones conexas	XXXX				
Inversión directa permanente		XXXX			
Coste de imprevistos y honorarios del contratista		XXXX			
Total capital amortizable			XXXX		
Coste del terreno			XXXX		
Coste de puesta en marcha de la planta			Xxxx		
Total inversión permanente					
Capital <u>circulante</u>				XXXX	
Total <u>inversión</u> de capital					XXX
Costo total de inversión con fator de sitio*1,25					XXX

Nota. Adaptado de Seider eta al., (2009)



CONTENIDO

Proceso de steam cracking propuesto


El diagrama de flujo BFD generado, se aproximó bastante al propuesto por la patente de la compañía Total Energies Petrochemicals Feluy, reportado por Vermeiren et al., (2010).

19

UNIVERSIDAD DE LAS FUERZAS ARMADAS

Simulación

Hoja de flujo de la simulación del proceso de steam cracking propuesto

El diagrama de la simulación generado permite identificar claramente las diversas zonas o etapas de la planta de steam cracking.

Balance de masa global

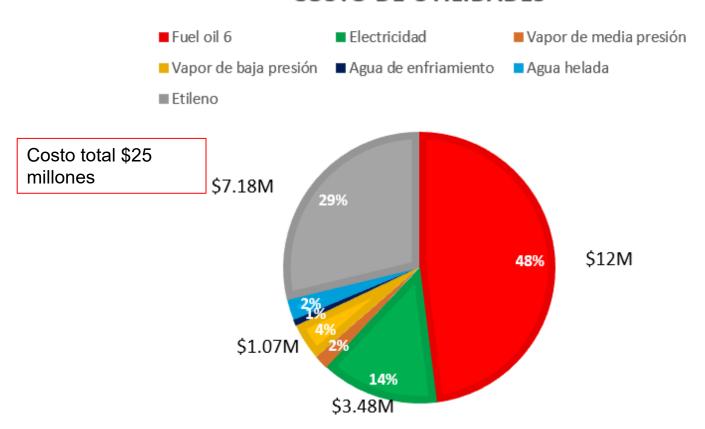
Corrientes de entrada	Corrientes de salida
	Etileno 33.263 KTMA
	Propileno 31.596 KTMA
	Etano 5.800 KTMA
	Propano 1.571 KTMA
Nafta 240 KTMA	Metano 19.009 KTMA
Agua 84 KTMA	Hidrogeno residual 2.443 KTMA
	C4- 48.065 KTMA
	C5+ 98.242 KTMA
	Agua contaminada de HC 84.011 KTMA
Total: 240 + 84 = 324 KTMA	Total: 324 KTMA

Resumen del balance de calor

(E-400)

Unidad	Tipo de intercambio de calor	Energía de Fuente o sumidero (MJ/Kg nafta)	Temperatur a o ∆T °C Final - inicial	Utilidad requerida	Unidad	Tipo de intercambio d calor	Energí Fuent e sumic (MJ/l	Temperatu a o ∆T °C lero Final - Kg inicial	
Horno pirólisis (F- 101)	Calor de reacción y sensible	2.61541	800 - 452	Fuel oil No. 6	Condensador (E-407)	Calor latente	0.34443	35.7 - 116.25	Agua de refrigeració
Generador de vapor (F-100)	Calor sensible y latente	1.11849	530 – 25	Fuel oíl No. 6	Enfriador	Calor	0.12012	10 - 100	n Agua helada
Rehervidor (E-408)	Calor sensible y latente	0.08517	-30.7 - (- 48.8)	Vapor de BP (50 psig)	(E-202) Condensador	Sensible Calor			
Rehervidor (E-410)	Calor sensible y latente	0.69813	58.8 - 25	Vapor de BP (50 psig)	(E-405)	latente	0.11234	20.2 - 69.71	Agua helada
Rehervidor (E-406)	Calor sensible y latente	0.34336	157 - 116.2	Vapor de MP (150 psig)	Condensador (E-403)	Calor	0.22966	-48.9 - 39.67	Etileno
Rehervidor (E-402)	Calor sensible y latente	0.29820	69.7 - 39.6	Vapor de BP (50 psig)	Condensador (E-401)	Calor	0.02100	-93.3 - 11	Etileno
Rehervidor	Calor sensible y latente	0.07150	39.7 - 11	Vapor de BP	(L-401)	iaiciiic			22

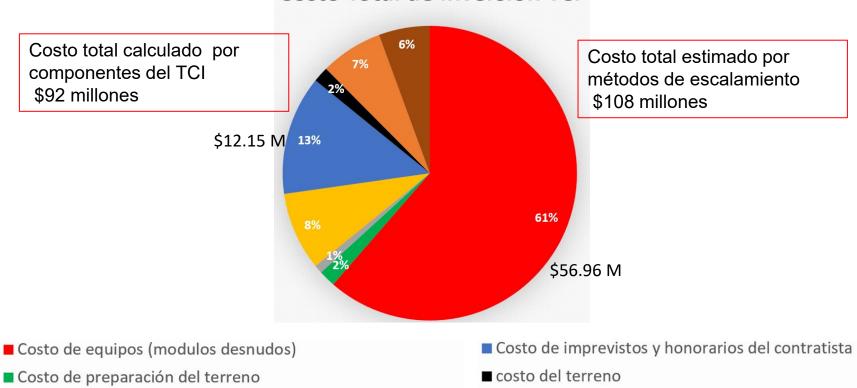
(50 psig)


Rendimiento % masa de la planta de steam cracking por productos calculados vs reportados por la patente

Producto	Rendimiento %	Rendimiento %		
rioddolo	masa simulación	masa patente		
Etileno	13.9	26.34		
Propileno	13.1	15.8		
Etano	2.4	4.22		
Propano	0.65	0.5		
Hidrógeno	7.92	0.87		
Metano	1.01	2.612		

Razón de la Variación: No se consideraron esquemas de reacción diferentes para especies nafténicas y otros tipos de compuestos los cuales no son considerados en el presente estudio, además de la ausencia de optimizaciones.

COSTO DE UTILIDADES

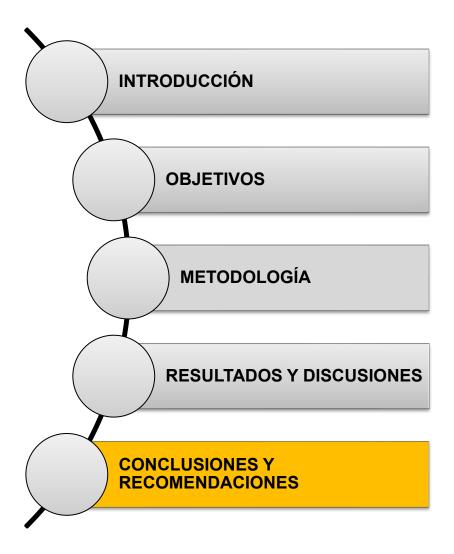


La utilidad donde más se invierte es el Fuel oíl 6 con un 48% de las utilidades totales, aproximadamente a USD 12 millones, seguido de este, se tiene al etileno, con un 29%, equivalente a USD 7.18 millones.

24

INNOVACIÓN PARA LA EXCELENCIA

Costo Total de inversión TCI



- Costo de instalaciones de servicios
- costo asignados a plantas de sericios e instalaciones conexas
- Costo de puesta en marcha de la planta
- Capital circulante

Se obtuvo un margen de error 14% de la estimación por escalamiento con respecto del cálculo por componentes del TCI, valor que recae dentro del margen de precisión aceptable, según lo reporta Seider (2009).

CONTENIDO

Conclusiones y recomendaciones

Se desarrolló el diseño conceptual del proceso de Steam cracking para una capacidad de procesamiento de 240 000 TMA, reportando diagramas de flujo, balances de masa y energia además de una simulación del proceso.

Se realizó una investigación bibliográfica sobre el estado del arte del proceso de steam cracking y del diseño de plantas que permiten identificar los avances y novedades de este proceso a escala industrial.

Se generó un diagrama de proceso BFD que describe de manera clara el proceso propuesto de steam cracking.

Se estimó el costo total de inversión la planta por escalamiento y se corroboró por medio del cálculo de los componentes del TCI.

Recomendaciones

Mejorar la precisión del estudio por medio de la aplicación de un esquema de reacciones más extenso que si tome en cuenta a las diferentes familias de compuestos presentes en cada nafta.

Considerar la idea de una redirección de la matriz productiva, en donde ya no se exporten en gran media el crudo y sus derivados, sino, redireccionarlos a este tipo de industria y procesarlos de forma local a estos.

Disponer de una caracterización para cada tipo de nafta proveniente de las refinerías para así poder simular un rendimiento más real que se podría alcanzar al procesar la mezcla de este tipo de naftas.

GRACIAS POR SU ATENCIÓN

