

Universidad de las Fuerzas Armadas-ESPE

Departamento de Ciencias de la Vida y de la Agricultura

Carrera de Biotecnología

Trabajo de Integración Curricular, previo a la obtención del título de Ingeniero Biotecnólogo

Síntesis y caracterización de nanocompositos de aceite esencial de eucalipto (*Eucalyptus globulus* Labill) y nanopartículas de plata bioreducidas con extracto de romero (*Rosmarinus officinalis* L.)

Autor: Sangotuña Gonzalez, Danilo Javier

Director: Msc. Izquierdo Romero, Andrés Ricardo Ph.D.

Contenido

INTRODUCCIÓN

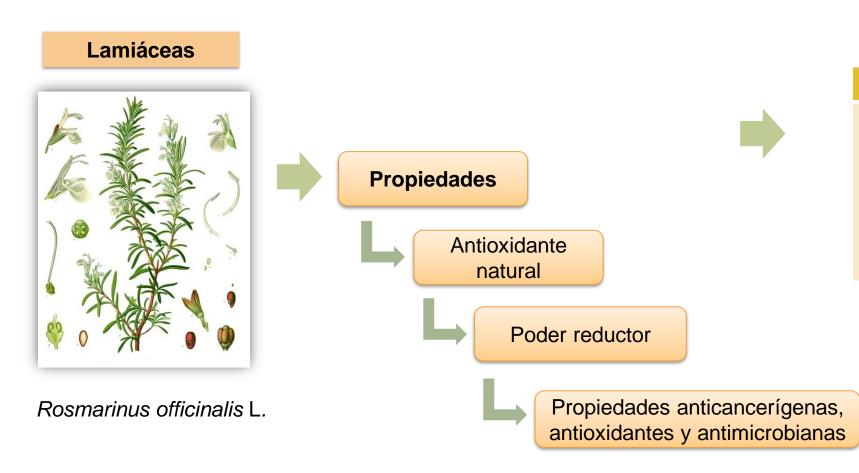
OBJETIVOS

HIPÓTESIS

METODOLOGÍA

RESULTADOS Y DISCUSIÓN

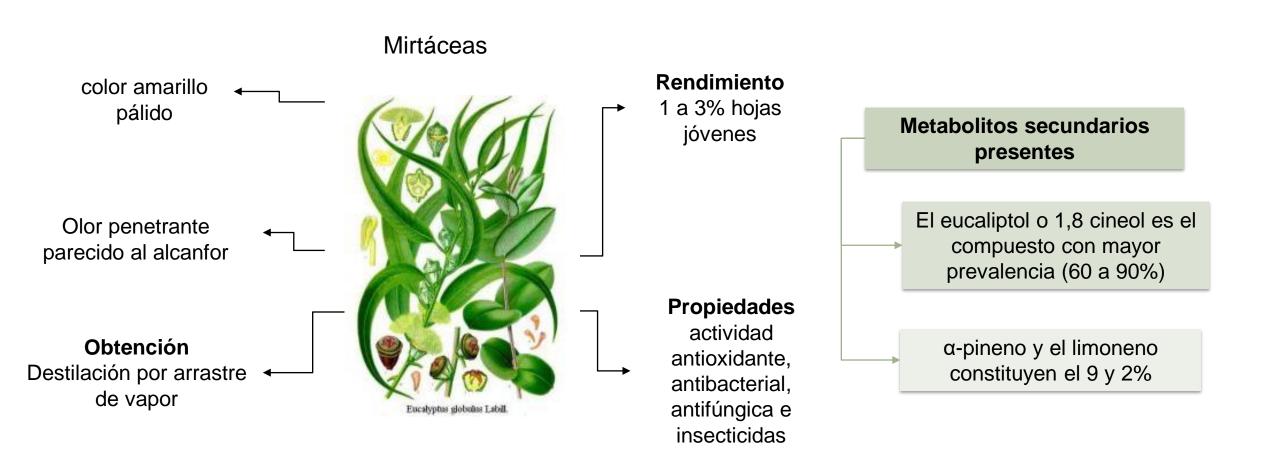
CONCLUSIONES Y RECOMENDACIONES



AGRADECIMIENTOS

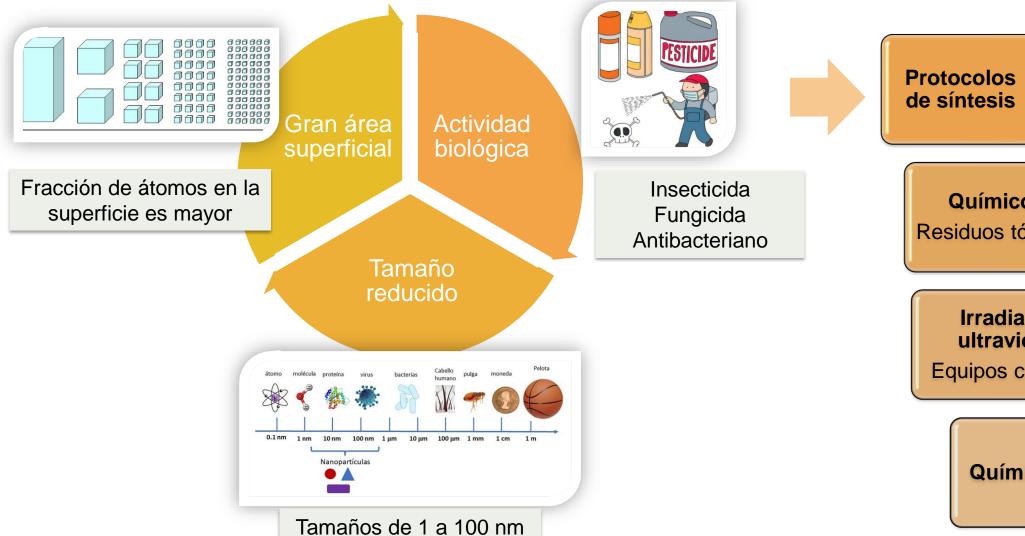
Extracto de Rosmarinus officinalis (romero)

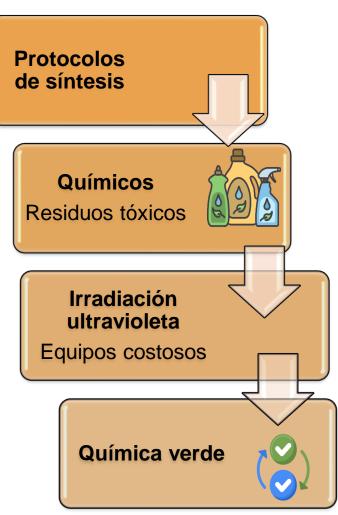
INTRODUCCIÓN


Principales compuestos

- Ácido carnósico
- Ácido rosmarínico
- Epirosmanol
- Rosmanol
- Metilcarnosato
- Isorosmanol

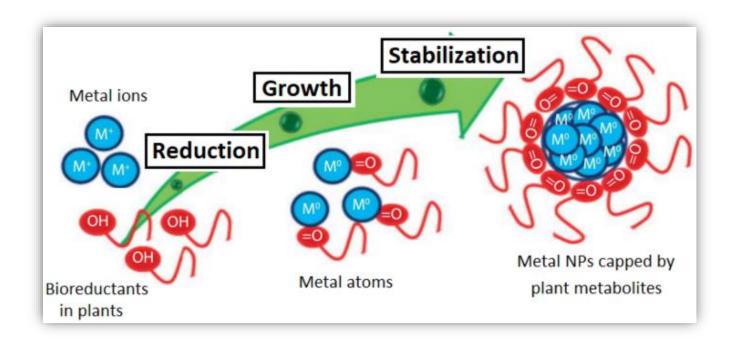
Aceite esencial de Eucalyptus globulus Labill (eucalipto)


INTRODUCCIÓN



Las nanopartículas de plata, generalidades

INTRODUCCIÓN



Biosíntesis de nanopartículas metálicas

INTRODUCCIÓN

Separación de los iones metálicos de sus precursores salinos

Formación de las nanopartículas metálicas

Adoptan su morfología más favorable y constante No se producen desechos tóxicos

Tamaños entre 10 y 35 nm

Forma esférica

El agente reductor es el extracto de romero

Nanocompositos de A.E. eucalipto

INTRODUCCIÓN

Material de matriz

Material de refuerzo

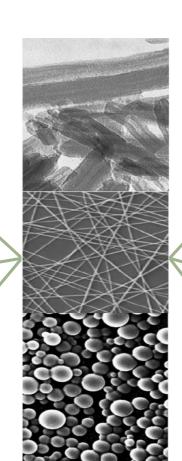
Conservar
características

Al menos una de sus fases está en escala nano

Se caracterizan por:

Formar

aglomerados


de sus rellenos

Tamaños entre 20 a 300 nm **Ventajas**

Compuesto de varias fases

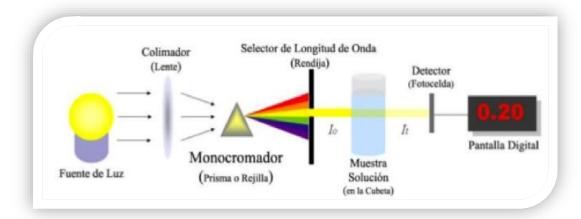
Propiedades combinadas

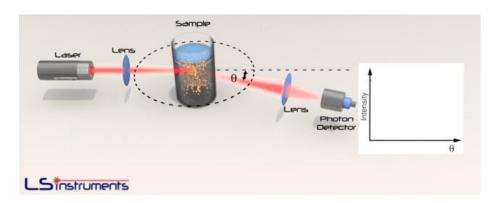
Relación superficie/volumen

Desventajas

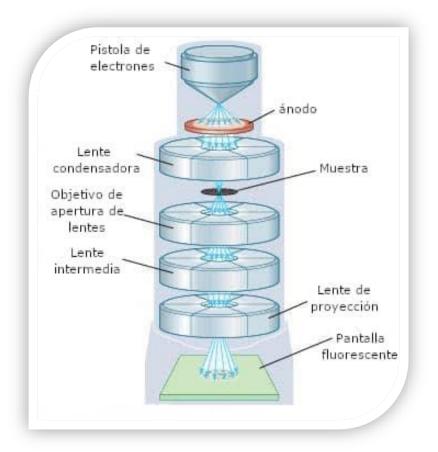
Comprensión insuficiente

Estabilidad reducida


Rentabilidad


Caracterización de nanomateriales

INTRODUCCIÓN


Espectroscopía UV-VIS

Dispersión de luz dinámica DLS

Microscopía electrónica de transmisión

OBJETIVOS

Objetivo General

Sintetizar y caracterizar nanocompositos de aceite esencial de eucalipto (*Eucalyptus globulus* Labill) y nanopartículas de plata bioreducidas con extracto de romero (*Rosmarinus officinalis* L.)

Objetivos específicos

- Obtener extracto de romero (*Rosmarinus officinalis* L.) y aceite esencial de eucalipto (*Eucalyptus globulus* Labill) mediante los métodos de maceración y por arrastre de vapor respectivamente.
- Sintetizar nanopartículas de plata utilizando extracto de romero (*Rosmarinus officinalis* L.) obtenido por maceración para su posterior caracterización.
- Caracterizar nanopartículas de plata mediante dispersión de luz dinámica (DLS) y espectroscopía ultravioleta visible (UV-VIS) para determinar el tamaño y distribución de partícula.
- Sintetizar nanocompositos utilizando las nanopartículas de plata y aceite esencial de eucalipto (*Eucalyptus globulus* Labill) mediante precipitación para su posterior caracterización.
- Caracterizar nanocompositos de aceite esencial de eucalipto (*Eucalyptus globulus* Labill) y nanopartículas de plata mediante Dispersión de luz dinámica (DLS) y espectroscopía ultravioleta-visible (UV-VIS) para verificar el tamaño y la distribución del nanocomposito.

HIPÓTESIS

La concentración de extracto de romero (*Rosmarinus* officinalis L.) como agente reductor de las nanopartículas de plata y, la concentración de aceite esencial de eucalipto (*Eucalyptus globulus* Labill) influyen en el tamaño de partícula de los nanocompositos.

Elaboración de extracto de Rosmarinus officinalis (Romero)

METODOLOGÍA

Pesamos 25 g de hojas de romero Pesaje

Limpieza

Lavado triple con agua corriente

Macerado

Maceración por 7 días

20 min, 77mbar y 40°C

En refrigeración a 4°C

Conservación

Solvente

Etanol/agua

vaso ámbar

3:1 en un

Extracción

Extracción de

etanol con

rotavapor

METODOLOGÍA

Destilación por arrastre de vapor

Pesaje

Pesamos 200 g de hojas de eucalipto

Lavado

Lavado triple con agua corriente

Montaje del equipo

Alambique de vidrio

Destilación

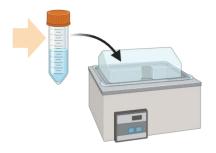
3 horas

Conservación

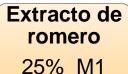
Tubos ámbar de 5 ml

Síntesis de nanomateriales

METODOLOGÍA



Síntesis de nanopartículas de plata



Nitrato de plata 0.01 M Hidróxido de sodio 0.1 M

100% M2

Hidróxido de sodio

Ajustar el pH a 10.5

Incubación

3 horas, 40°C

Conservación

En tubos protegidos de la luz a 4°C

Estabilizante

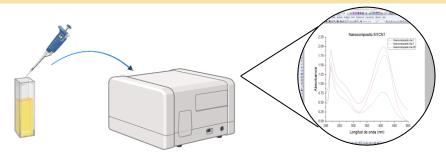
1 ml Citrato de sodio 1%

1.5: NC1

3: NC2

AgNPs

100 µl en 2 ml de agua tipo 1


Síntesis Nanocompositos

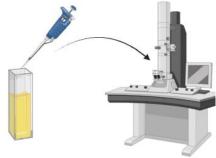
Caracterización de nanomateriales

METODOLOGÍA

Espectroscopía UV-VIS

Las lecturas se realizaron a una dilución de 1:350 AgNPs/agua

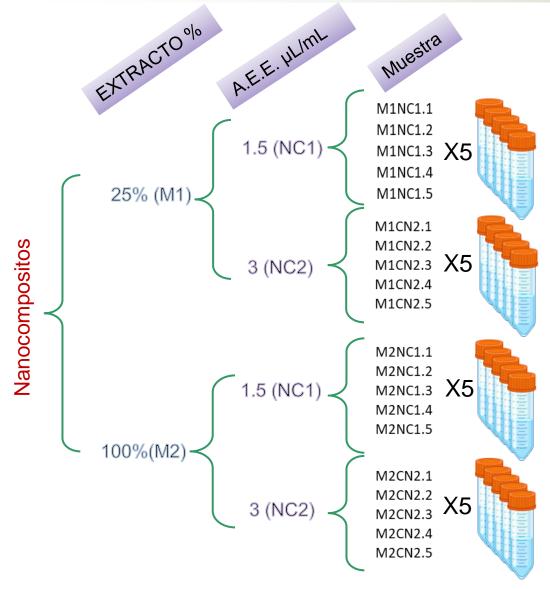
Equipo Genesys 10 scanning y software OriginPRO


Dispersión de luz dinámica DLS

Las lecturas son directas

Equipo HORIBA DLS 550 y software OriginPRO

Microscopía electrónica de transmisión TEM



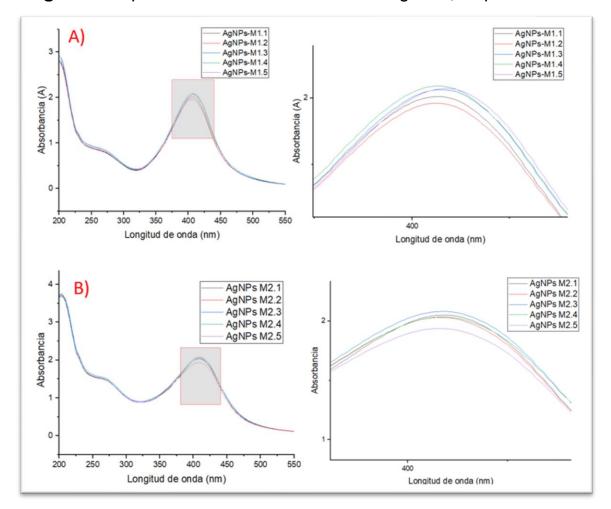
Laboratorio de microscopía y software FIJI, imageJ

Diseño experimental, montaje de las muestras del ensayo

METODOLOGÍA

Tabla 2. Detalle de nomenclatura usada en los tubos de centrífuga Falcon

		[A.E. Eucalyptus globulus Labill]										
		Réplicas	NC1				NC2					
			NC1.1	NC1.2	NC1.3	NC1.4	NC1.5	NC2.1	NC2.2	NC2.3	NC2.4	NC2.5
[Extracto de Rosmarinus officinalis L.]	M1	M1.1										
		M1.2										
		M1.3										
		M1.4										
		M1.5										
	M2	M2.1										
		M2.2										
		M2.3										
traci		M2.4										
Ē		M2.5										


El análisis estadístico se analizó con el promedio de las réplicas de M1 y M2, empleando el modelo de rangos múltiples de Duncan

Caracterización de AgNPs bioreducidas con extracto de romero

RESULTADOS Y DISCUSIÓN

Figura 4. Espectro de absorción UV-Vis de AgNPs, Reproducibilidad

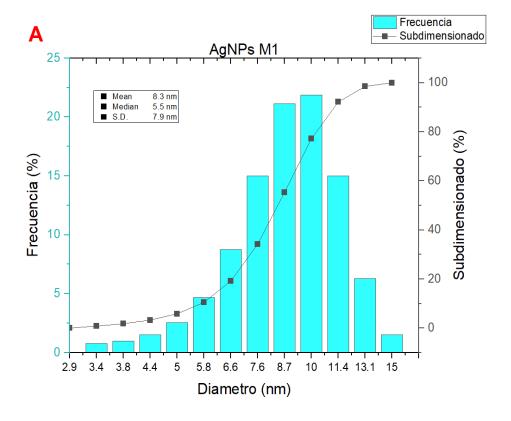
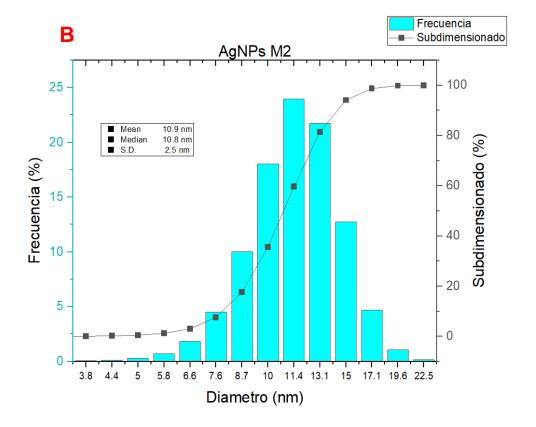
A) Extracto diluido 1:3 B) Extracto sin diluir

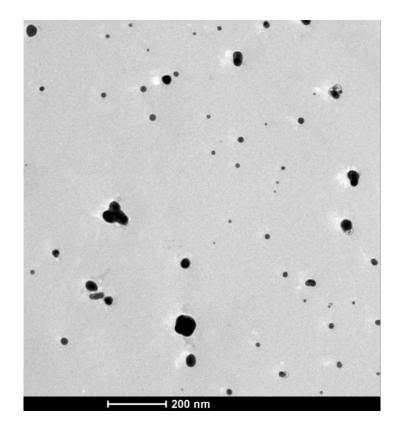
Las curvas muestran un pico de plasmón de resonancia en 409 nm.

La amplitud de la curva es mayor en M2, suponiendo mayor agrupación de AgNPs.

RESULTADOS Y DISCUSIÓN

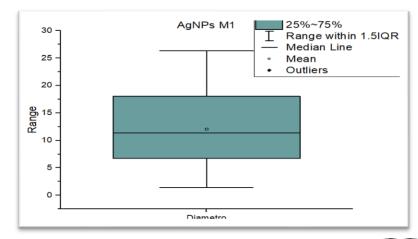
Figura 1. Distribución de tamaño de AgNPs, muestra M1


Figura 2. Distribución de tamaño de AgNPs, muestra M2

RESULTADOS Y DISCUSIÓN

Figura 2. Nanopartículas de plata observadas en TEM

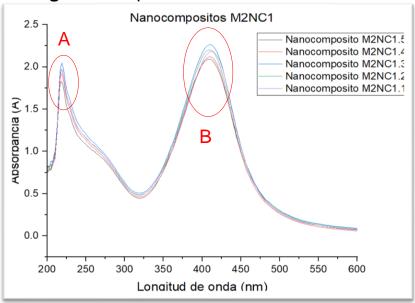


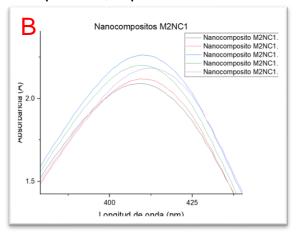
Para síntesis verde de AgNPs, el rango de tamaño oscila entre 10 a 35 nm, forma esférica

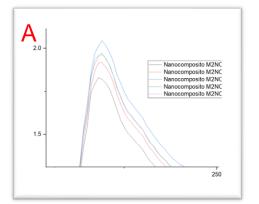
Tabla 1. tamaños de AgNPs, software FIJI

		Diámetro		
14.32	13.6	11.18	7.81	11.18
18.03	19.85	19.7	14.42	17
6.4	11.4	21.02	7.28	21.1
10.3	6.71	8.06	20.81	13.34
3.61	2.83	19.42	10.3	18.38
9.49	8.94	11.4	14.14	3.61
17.26	2.24	10.82	13.04	17.8
22.02	18.44	4.47	2.24	13.04

Figura 3. Análisis de la distribución de los tamaños de AgNPs

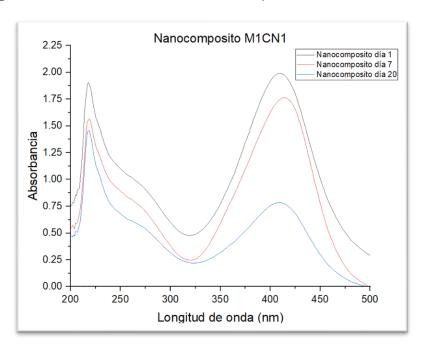



Media: 12.4 ± 5.8


Caracterización de Nanocompositos con A.E. de eucalipto

RESULTADOS Y DISCUSIÓN

Figura 7. Espectro de absorción UV-Vis de nanocompositos, reproducibilidad



Picos en 219 y 409 nm para el A.E. eucalipto y la plata cerovalente respectivamente.

Figura 8. Estabilidad de nanocompositos, muestra M1CN1

Los nanocompositos son estables alrededor de una semana, después comienzan a degradarse.

Caracterización de Nanocompositos con A.E. de eucalipto

RESULTADOS Y DISCUSIÓN

Figura 5. Análisis de la distribución de tamaños de nanocomposito de A.E. de eucalipto, software originPRO

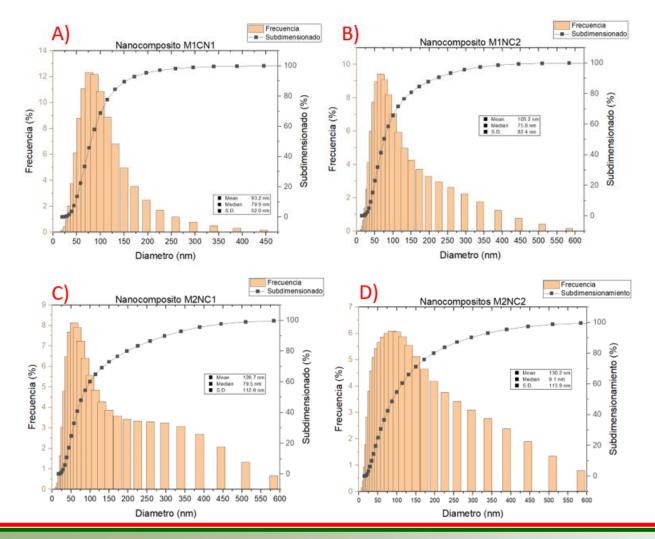


Tabla 2. Descripción de resultados

Parámetro	M1CN1	M1CN2	M2CN1	M2CN2
[Extracto de romero]	25%	100%	25%	100%
[A.E. eucalipto] μl/ml	1.5	3	1.5	3
Tamaños medios (nm)	93.2	105.2	126.7	130.2
Frecuencia mayor %	12	9	8	6
Distribución (agrupamiento)		+	++	+++

Tamaño

Agrupamiento

El tamaño y la distribución se ven influenciados por el incremento de las concentraciones.

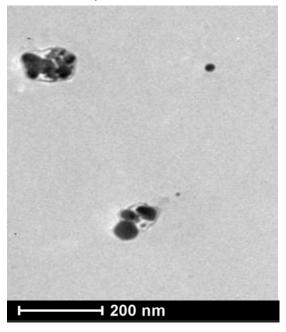
Caracterización de Nanocompositos con A.E. de eucalipto

RESULTADOS Y DISCUSIÓN

Tabla 5. Media de tamaños de nanocompositos a diferentes concentraciones de aceite esencial y extracto, equipo HORIBA DLS 550

Promedios de muestras											
			CN1			CN2					
M1	M1NC 1.1	M1NC 1.2	M1NC 1.3	M1NC 1.4	M1NC 1.5	M1CN 2.1	M1CN 2.2	M1CN 2.3	M1CN 2.4	M1CN 2.5	
	108.6	105.8	107.3	107.6	109.2	123.1	122.4	116	126.1	124.3	
M2	M2NC 1.1	M2NC 1.2	M2NC 1.3	M2NC 1.4	M2NC 1.5	M2CN 2.1	M2CN 2.2	M2CN 2.3	M2CN 2.4	M2CN 2.5	
-	114.7	114.3	115.6	118.4	118.3	134.5	133.3	135.7	129.7	135	

Tamaño


El ensayo M1CN1 posee los menores tamaños

El ensayo **M2CN2** muestran un aumento del tamaño mayor a 30 nm

Figura 4. Nanocompositos observados en TEM

Se observan estructuras micelares formadas de AgNPs recubiertas por A.E. de eucalipto

CONCLUSIONES

- El rendimiento del aceite esencial de eucalipto varía dependiendo de las condiciones que se aplican en la destilación por arrastre de vapor, siendo este de aproximadamente un 1.5% de aceite esencial, este rendimiento es dado por el uso de hojas jóvenes de la planta.
- El aumento de la concentración de extracto, influye negativamente sobre las nanopartículas de plata. Dando tamaños promedio de 8.3 y 10.9 para M1 (extracto diluido) y M2 (extracto sin diluir) respectivamente manteniendo una forma esférica en ambos ensayos.
- Los nanocompositos son materiales recubiertos por sustancias que por lo general presentan diferentes fases de agregación, el uso de aceite esencial cumple este objetivo promoviendo la formación de estructuras micelares, este efecto puede incrementar su tamaño y disminuir drásticamente su estabilidad, por ello, es necesario el uso de estabilizantes como el citrato de sodio.
- El análisis estadístico demuestra que los tamaños de los nanocompositos presentan diferencias significativas respecto de las medias de las réplicas ensayadas, dando como mejor tratamiento (menor tamaño e índice de agrupamiento) el ensayo M1NC1 el que cuenta con una menor concentración de extracto y aceite esencial, además se pudo observar que, a mayor concentración de estas, la inestabilidad del nanocomposito es mayor pero el aumento del tamaño es moderado.

Agradecimientos

Agradezco primero a mis padres Jaime y Lucila, por haberme apoyado en todo momento, sepan que su entrega y endereza al educarme han hecho que pueda tomar decisiones con sabiduría y no derrumbarme en los momentos difíciles.

A mis amigos Dani, Ali, Roger, Mishu, Leidy, Glenda, Giss y Yadii por formar parte de mi experiencia universitaria y permitirme compartir momentos que ahora forman parte de mis mejores años de vida.

Mi gratitud también a las técnicas de laboratorio Cari Stael y Geovi Arroyo por compartir su conocimiento de manera desinteresada, gracias por el apoyo y por crear un ambiente agradable en mi estancia en el laboratorio de materiales avanzados.

Agradezco a Gaby Ayala por haberme apoyado de forma incondicional cuando más lo necesité, estaré en deuda contigo para toda la vida.

