ESCUELA POLITECNICA DEL EJERCITO

FACULTAD DE INGENIERIA MECANICA

"ANÁLISIS DE LA CONTAMINACIÓN TÉRMICA DE UN MOTOR DE 200HP DE LA SECCIÓN DE TRANSPORTES DE LA ESPE"

PROYECTO PREVIO A LA OBTENCION DEL TITULO DE INGENIERO MECANICO

JUAN CARLOS ARGUELLOS BALLESTEROS
FRANKLIN LEONEL AYALA SALCEDO

DIRECTOR: ING. JOSE GUASUMBA CODIRECTOR: ING. ERNESTO SORIA

Sangolquí, Junio 2008

CERTIFICACION DE LA ELABORACION DEL PROYECTO

El proyecto "ANALISIS DE LA CONTAMINACION TERMICA DE UN MOTOR DE 200 HP DE LA SECCION TRANSPORTES ESPE", fue realizado en su totalidad por (Juan Carlos Arguello Ballesteros y Franklin Leonel Ayala Salcedo) como requerimiento parcial para la obtención del título de Ingeniero Mecánico.

Ing. José Guasumba

DIRECTOR

Ing. Ernesto Soria
CODIRECTOR

Sangolquí, Junio 2008

LEGALIZACION DEL PROYECTO

"ANALISIS DE LA CONTAMINACION TERMIC DE LA SECCION DE TRANSPORTE DE LA ES	
ELABORADO PO	DR:
Sr. JUAN C ARGUELLO B.	Sr. FRANKLIN L AYALA S.
FACULTAD DE INGENIERIA	A MECANICA

Crnl. Ing. JUAN DÍAZ T. COORDINADOR

Sangolquí, Junio 2008

INDICE

	Pág.
Capítulo 1: GENERALIDADES	
1.1 Antecedentes.	1
1.2 Definición del problema.	3
1.3 Objetivos.	4
1.4 Alcance.	4
1.5 Justificación e Importancia.	5
Capítulo 2: Marco Teórico.	
2.1 Definición.	7
2.1.1 Sistemas.	7
2.1.1.1 Sistema Cerrado.	8
2.1.1.2 Sistema Abierto	8
2.1.1.3 Sistema Aislado.	9
2.1.2 Propiedades Termodinámica.	10
2.1.2.1 Propiedad Extensiva.	10
2.1.2.2 Propiedad Intensiva.	10
 2.1.2.3 Relación entre propiedades intensivas y extensivas. 	11
2.1.2.4 Propiedades específicas.	11
2.1.4 Leyes de la Termodinámica.	12
2.1.4.1 Primera Ley.	12
2.1.4.2 Segunda Ley.	17
2.2 Fenómenos de Transferencia de Calor.	19
2.2.1 Radiación.	20
2.2.2 Conducción.	21
2.2.3 Convección.	22

2.3 Procesos de Generación Térmica.	24
2.4 Acumuladores	32
2.5 Disipadores	33
2.6 Aislamientos	35
2.6.1 Aislamiento Térmico	35
2.6.2 Tipos de Aislamiento térmico.	36
Capítulo 3: Instalaciones y equipos térmicos.	
3.1 Contaminación Térmica.	38
3.2 Instalaciones Industriales	40
3.2.1 Calderos.	40
3.2.2 Intercambiadores de Calor	45
3.2.3 Hornos de Secado	48
3.3 Sistemas de Transporte	50
3.3.1 Autobuses.	50
3.3.2 Carga Pesada.	51
3.3.3 Carga liviana.	51
3.4 Comparación de niveles de contaminación térmica	52
3.5 Normas Corpaire.	60
Capítulo 4: Modelizacion Térmica de un motor de 200 Hp.	
4.1 Análisis Comparativo	79
4.2 Características	81
4.3 Selección de componentes de estudio	82
4.4 Mediciones	83
4.5 Selección de puntos críticos	105
4.6 Análisis Exergético	112
4.7 Programa	120
4.7.1 Datos de diseño.	120
4.7.2 Caracterización de variables	121
4.7.3 Elaboración de algoritmos	122
4.7.4 Flaboración del programa de calculo	123

4.7.5 Verificación	124
4.7.6 Guía del Usuario	127
Capitulo 5 : Análisis estadístico	
5.1 Datos de Prueba	138
5.2 Estructuración Datos	139
5.3 Análisis de Variables	149
Capitulo 6 : Conclusiones y recomendaciones	
6.1 Conclusiones	485
6.2 Recomendaciones	486
REFERENCIAS BIBLIOGRAFIAS	489
ANEXOS	

LISTADO DE TABLAS

		Pág.
Tabla 2.1	Relación entre las escalas de temperatura	11
Tabla 2.2	Tabla de materiales de portadores mayoritarios y	
	minoritarios	27
Tabla 3.1	Limites máximos permisibles de emisiones al aire para	
	calderos generadores de vapor norma para fuentes	
	en operación antes de enero del 2003	55
Tabla 3.2	Limites máximos permisibles de emisiones al aire para	
	calderos generadores de vapor norma para fuentes en	
	operación a partir de enero del 2003	56
Tabla 3.3	Limites máximos permisibles de emisiones al aire desde	
	combustión de biomasa en calderos generadores de vapor	56
Tabla 3.4	Límites máximos permisibles de emisiones al aire para	
	turbinas a gas norma para fuentes en operación antes de	
	enero del 2003	57
Tabla 3.5	Limites máximos permisibles de emisiones al aire para	
	turbinas a gas norma para fuentes en operación a partir	
	de enero del 2003	57
Tabla 3.6	Límites máximos permisibles de emisiones al aire para	
	motores de combustión interna norma para fuentes en	
	operación antes de enero del 2003	58
Tabla 3.7	Limites máximos permisibles de emisiones al aire para	
	motores de combustión interna norma para fuentes en	
	operación a partir de enero del 2003	59
Tabla 3.8	Métodos de medición de emisiones al aire para centrales	
	termoeléctricas	59
Tabla 3.9	Límites máximos de emisiones permitidos para fuentes	
	móviles con motor de gasolina. Marcha mínima o ralentí	
	(prueba estática)	67
Tabla 3.10	Límites máximos de emisiones para fuentes móviles con	
	motor de gasolina (prueba dinámica)* a partir del año modelo	

	2000 (ciclos americanos)	68
Tabla 3.11	Límites máximos de emisiones para fuentes móviles con	
	motor de gasolina (prueba dinámica) * a partir del año	
	modelo 2000 (ciclos europeos)	68
Tabla 3.12	Límites máximos de emisiones permitidos para fuentes	
	móviles con motor de diesel (prueba dinámica) a partir	
	del año modelo 2000 (ciclos americanos)	76
Tabla 3.13	Límites máximos de opacidad de emisiones para fuentes	
	móviles con motor de diesel (prueba de aceleración libre)	77
Tabla 3.14	Opacidad	78
Tabla 4.1	Límites máximos de emisiones permitidos para fuentes	
	móviles con motor de gasolina. Marcha mínima o ralentí	
	(prueba estática)	79
Tabla 4.2	Límites máximos de emisiones para fuentes móviles con	
	motor de gasolina (prueba dinámica)* a partir del año	
	modelo 2000 (ciclos americanos)	79
Tabla 4.3	Límites máximos de emisiones permitidos para fuentes	
	móviles con motor de diesel (prueba dinámica)* a partir del	
	año modelo 2000 (ciclos americanos)	80
Tabla 4.4	Límites máximos de opacidad de emisiones para fuentes	
	móviles con motor de diesel (prueba de aceleración libre)	80
Tabla 4.5	Opacidad	81
Tabla 4.6	Características Técnicas del Vehiculo	81
Tabla 4.7	Identificación de variables	83
Tabla 4.8	Parámetros pruebas Estáticas	114
Tabla 4.9	Parámetros pruebas Movimiento	115
Tabla 5.1	Datos para análisis Tiempo vs T carter	149
Tabla 5.2	Medidas de Dispersión Tiempo vs T carter	150
Tabla 5.3	Datos del comportamiento de la Temperatura en función	
	del tiempo Tiempo vs T carter	150
Tabla 5.4	Resultado para la curva del modelo logarítmico	
	Tiempo vs T carter	151
Tabla 5.5	Datos para análisis Tiempo vs T múltiple	151
Tabla 5.6	Medidas de dispersión Tiempo vs T múltiple	152

Tabla 5.7	Datos del comportamiento de la temperatura en	
	función del tiempo Tiempo vs T múltiple	153
Tabla 5.8	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	153
Tabla 5.9	Datos para análisis Tiempo vs T admisión	154
Tabla 5.10	Medidas de dispersión Tiempo vs T admisión	155
Tabla5.11	Datos del comportamiento de la temperatura en	
	función del tiempo Tiempo vs T admisión	156
Tabla 5.12	Datos para análisis Tiempo vs T escape	157
Tabla 5.13	Medidas de dispersión Tiempo vs T escape	158
Tabla 5.14	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	158
Tabla 5.15	Resultado para la curva del modelo logarítmico	
	Tiempo vs T escape	159
Tabla 5.16	Datos para análisis Tiempo vs T block	159
Tabla 5.17	Medidas de dispersión Tiempo vs T block	160
Tabla 5.18	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T block	161
Tabla 5.19	Resultados para la curva del modelo logarítmico	
	Tiempo vs T block	161
Tabla 5.20	Datos para análisis Tiempo vs T agua	162
Tabla 5.21	Medidas de dispersión Tiempo vs T agua	163
Tabla 5.22	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T agua	164
Tabla 5.23	Resultado para la curva del modelo logarítmico	
	Tiempo vs T agua	164
Tabla 5.24	Datos para análisis ΔT_{AGUA} vs Humedad relativa	165
Tabla 5.25	Medidas de dispersión $\Delta T_{{\scriptscriptstyle AGUA}}$ vs Humedad relativa	166
Tabla 5.26	Datos del comportamiento de la humedad en función de	
	ΔT_{AGUA} (Modelo lineal)	167
Tabla 5.27	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	167
Tabla 5.28	Dato para análisis $\Delta T_{\scriptscriptstyle AGUA}$ vs velocidad del ventilador	168

Tabla 5.29	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	169
Tabla 5.30	Datos del comportamiento de la velocidad en función de	
	ΔT_{AGUA} (Modelo lineal)	169
Tabla 5.31	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	170
Tabla 5.32	Datos para análisis Tiempo vs T carter	170
Tabla 5.33	Medidas de Dispersión Tiempo vs T carter	171
Tabla 5.34	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T carter	172
Tabla 5.35	Resultados para la curva del modelo logarítmico	
	Tiempo vs T carter	172
Tabla 5.36	Datos para análisis Tiempo vs T múltiple	173
Tabla 5.37	Medidas de dispersión Tiempo vs T múltiple	174
Tabla 5.38	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T múltiple	174
Tabla 5.39	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	175
Tabla 5.40	Datos para análisis Tiempo vs T block	175
Tabla 5.41	Medidas de dispersión Tiempo vs T block	176
Tabla 5.42	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T block	177
Tabla 5.43	Resultado para la curva del modelo logarítmico	
	Tiempo vs T block	177
Tabla 5.44	Datos para análisis Tiempo vs T escape	178
Tabla 5.45	Medidas de dispersión Tiempo vs T escape	179
Tabla 5.46	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	179
Tabla 5.47	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	180
Tabla 5.48	Datos para análisis Tiempo vs T admisión	180
Tabla 5.49	Medidas de dispersión Tiempo vs T admisión	181
Tabla 5.50	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T admisión	182

Tabla 5.51	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	182
Tabla 5.52	Datos para análisis Tiempo vs T agua	183
Tabla 5.53	Medidas de dispersión Tiempo vs T agua	184
Tabla 5.54	Datos del comportamiento de la Temperatura en función	
	del tiempo Tiempo vs T agua	184
Tabla 5.55	Resultado para la curva del modelo logarítmico	
	Tiempo vs T agua	185
Tabla 5.56	Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador	185
Tabla 5.57	Medidas de dispersión $\Delta T_{\rm AGUA}$ vs Velocidad del ventilador	186
Tabla 5.58	Datos del comportamiento de la velocidad en función	
	de la ΔT_{AGUA} (Modelo lineal)	187
Tabla 5.59	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs. Velocidad del ventilador del radiador	187
Tabla 5.60	Datos para análisis $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	188
Tabla 5.61	Medidas de dispersión $\Delta T_{{\scriptscriptstyle AGUA}}$ vs Humedad relativa	189
Tabla 5.62	Comportamiento de la humedad en función de la	
	ΔT_{AGUA} (Modelo lineal)	189
Tabla 5.63	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	190
Tabla 5.64	Datos para análisis Tiempo vs T escape	190
Tabla 5.65	Medidas de dispersión Tiempo vs T escape	192
Tabla 5.66	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	192
Tabla 5.67	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	193
Tabla 5.68	Datos para análisis Tiempo vs T múltiple	193
Tabla 5.69	Medidas de Dispersión Tiempo vs T múltiple	194
Tabla 5.70	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T múltiple	195
Tabla 5.71	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	195

Tabla 5.72	Datos para análisis Tiempo vs T block	196
Tabla 5.73	Medidas de Dispersión Tiempo vs T block	197
Tabla 5.74	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T block	197
Tabla 5.75	Resultado para la curva del modelo logarítmico	
	Tiempo vs T block	198
Tabla 5.76	Datos para análisis Tiempo vs T admisión	198
Tabla 5.77	Medidas de dispersión Tiempo vs T admisión	199
Tabla 5.78	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T admisión	200
Tabla 5.79	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	200
Tabla 5.80	Datos para análisis Tiempo vs T carter	201
Tabla 5.81	Medidas de dispersión Tiempo vs T carter	202
Tabla 5.82	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T carter	202
Tabla 5.83	Resultados para la curva del modelo logarítmico	
	Tiempo vs T carter	203
Tabla 5.84	Datos para análisis Tiempo vs T agua	203
Tabla 5.85	Medidas de dispersión Tiempo vs T agua	204
Tabla 5.86	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T agua	205
Tabla 5.87	Resultados para la curva del modelo logarítmico	
	Tiempo vs T agua	205
Tabla 5.88	Datos para análisis ΔT_{AGUA} vs Humedad relativa	206
Tabla 5.89	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	207
Tabla 5.90	Datos del comportamiento de la humedad en función	
	de la $\Delta T_{\scriptscriptstyle AGUA}$ (Modelo lineal)	207
Tabla 5.91	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	208
Tabla 5.92	Datos para análisis $\Delta T_{\rm AGUA}$ vs Velocidad del ventilador	208
Tabla 5.93	Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador	209

Tabla 5.94	Comportamiento de la velocidad en función de la	
	ΔT_{AGUA} (Modelo lineal)	210
Tabla 5.95	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	210
Tabla 5.96	Datos para análisis Tiempo vs T admisión	211
Tabla 5.97	Medidas de Dispersión Tiempo vs T admisión	212
Tabla 5.98	Medidas de Dispersión Tiempo vs T admision	212
Tabla 5.99	Resultado para la curva del modelo logarítmico	
	Tiempo vs T admisión	213
Tabla 5.100	Datos para análisis Tiempo vs T múltiple	213
Tabla 5.101	Medidas de dispersión Tiempo vs T múltiple	214
Tabla 5.102	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T múltiple	215
Tabla 5.103	Resultado para la curva del modelo logarítmico	
	Tiempo vs T múltiple	215
Tabla 5.104	Datos para análisis Tiempo vs T escape	216
Tabla 5.105	Medidas de dispersión Tiempo vs T escape	217
Tabla 5.106	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	217
Tabla 5.107	Resultado para la curva del modelo logarítmico	
	Tiempo vs T escape	218
Tabla 5.108	Datos para análisis Tiempo vs T block	218
Tabla 5.109	Medidas de dispersión Tiempo vs T block	219
Tabla 5.110	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T block	220
Tabla 5.111	Resultado para la curva del modelo logarítmico	
	Tiempo vs T block	220
Tabla 5.112	Datos para análisis Tiempo vs T Carter	221
Tabla 5.113	Medidas de dispersión Tiempo vs T Carter	222
Tabla 5.114	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T Carter	222
Tabla 5.115	Resultado para la curva del modelo logarítmico	
	Tiempo vs T carter	223

Tabla 5.116	Datos para análisis Tiempo vs T agua	223
Tabla 5.117	Medidas de dispersión Tiempo vs T agua	224
Tabla 5.118	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T agua	225
Tabla 5.119	Resultado para la curva del modelo logarítmico	
	Tiempo vs T agua	225
Tabla 5.120	Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador	226
Tabla 5.121	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	227
Tabla 5.122	Datos del comportamiento de la velocidad en función de la	
	ΔT_{AGUA} (Modelo lineal)	228
Tabla 5.123	Resultado para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	228
Tabla 5.124	Datos para análisis $\Delta T_{\rm AGUA}$ vs Humedad relativa	229
Tabla 5.125	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	230
Tabla 5.126	Datos de comportamiento de la humedad en función de la	
	ΔT_{AGUA} (Modelo lineal)	230
Tabla 5.127	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	231
Tabla 5.128	Datos para análisis Tiempo vs T carter	231
Tabla 5.129	Medidas de dispersión Tiempo vs T carter	232
Tabla 5.130	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T carter	230
Tabla 5.131	Resultado para la curva del modelo logarítmico	
	Tiempo vs T carter	233
Tabla 5.132	Datos análisis Tiempo vs T Block	234
Tabla 5.133	Medidas de dispersión Tiempo vs T Block	235
Tabla 5.134	Datos del comportamiento de la temperatura en función del	
	tiempo Tiempo vs T Block	235
Tabla 5.135	Resultados para la curva del modelo logarítmico	
	Tiempo vs T Block	236
Tabla 5.136	Datos análisis Tiempo vs T escape	236
Tabla 5.137	Medidas de dispersión Tiempo vs T escape	237

Tabla 5.138	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	238
Tabla 5.139	Resultado para la curva del modelo logarítmico	
	Tiempo vs T escape	238
Tabla 5.140	Datos análisis Tiempo vs T múltiple	239
Tabla 5.141	Datos análisis Tiempo vs T múltiple	240
Tabla 5.142	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs Múltiple	240
Tabla 5.143	Resultado para la curva del modelo logarítmico	
	Tiempo vs T Múltiple	241
Tabla 5.144	Datos para análisis Tiempo vs T Admisión	241
Tabla 5.145	Medidas de dispersión Tiempo vs T admisión	242
Tabla 5.146	Datos del comportamiento de la temperatura en función del	
	tiempo Tiempo vs T admisión	243
Tabla 5.147	Resultado para la curva del modelo logarítmico	
	Tiempo vs T admisión	243
Tabla 5.148	Datos análisis Tiempo vs Tagua	244
Tabla 5.149	Medidas de dispersión Tiempo vs Tagua	245
Tabla 5.150	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T agua	245
Tabla 5.151	Resultado para la curva del modelo logarítmico	
	Tiempo vs T agua	246
Tabla 5.152	Datos análisis $\Delta Tagua$ vs Velocidad del ventilador	246
Tabla 5.153	Medidas de dispersión $\Delta Tagua$ vs Velocidad del ventilador	247
Tabla 5.154	Datos del comportamiento de la velocidad en función de la	
	ΔTagua (Modelo lineal)	248
Tabla 5.155	Resultados para la curva del modelo lineal	
	$\Delta Tagua$ vs Velocidad del ventilador	248
Tabla 5.156	Datos análisis $\Delta Tagua$ vs Humedad relativa	249
Tabla 5.157	Medidas de Dispersión $\Delta Tagua$ vs Humedad relativa	250
	Datos del comportamiento de la humedad en función de	
01100	$\Delta Tagua$ (Modelo lineal)	250
	LI UZ WA (14100010 III 1001)	

Tabla 5.159	Resultado para la curva del modelo lineal	
	$\Delta Tagua$ vs Humedad relativa	251
Tabla 5.160	Datos análisis $\Delta Tagua$ vs Velocidad del ventilador	251
Tabla 5.161	Medidas de dispersión ΔTagua vs Velocidad del ventilador	252
Tabla 5.162	Datos del comportamiento de la velocidad en función de	
	$\Delta Tagua$ (Modelo lineal)	253
Tabla 5.163	Resultado para la curva del modelo lineal	
	$\Delta Tagua$ vs Velocidad del ventilador	253
Tabla 5.164	Datos análisis Δ <i>Tagua</i> vs Humedad relativa	254
Tabla 5.165	Datos análisis $\Delta Tagua$ vs Humedad relativa	255
Tabla 5.166	Datos del comportamiento de la humedad en función de la	
	ΔTagua (Modelo lineal)	256
Tabla 5.167	Resultados para la curva del modelo lineal	
	$\Delta Tagua$ vs Humedad relativa	256
Tabla 5.168	Datos análisis Tiempo vs T admisión	257
Tabla 5.169	Medidas de regresión Tiempo vs T admisión	258
Tabla 5.170	Datos del comportamiento de la Temperatura en función	
	del Tiempo vs T admisión	259
Tabla 5.171	Resultado para la curva del modelo logarítmico	
	Tiempo vs T admisión	259
Tabla 5.172	Datos análisis Tiempo vs T agua	260
Tabla 5.173	Medidas de regresión Tiempo vs T agua	261
Tabla 5.174	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T agua	261
Tabla 5.175	Resultado para la curva del modelo logarítmico	
	Tiempo vs T agua	262
Tabla 5.176	Datos análisis Tiempo vs T block	262
Tabla 5.177	Medidas de regresión Tiempo vs T block	263
Tabla 5.178	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T block	264
Tabla 5.179	Resultado para la curva del modelo logarítmico	
	Tiempo vs T block	264
Tabla 5.180	Datos para análisis Tiempo vs T carter	265

Tabla 5.181	Medidas de regresión Tiempo vs T carter	266
Tabla 5.182	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T carter	266
Tabla 5.183	Resultado para la curva del modelo logarítmico	
	Tiempo vs T carter	267
Tabla 5.184	Datos análisis Tiempo vs T escape	267
Tabla 5.185	Medidas de regresión Tiempo vs T escape	268
Tabla 5.186	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	269
Tabla 5.187	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	269
Tabla 5.188	Datos análisis Tiempo vs T múltiple	270
Tabla 5.189	Medidas de regresión Tiempo vs T múltiple	271
Tabla 5.190	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T múltiple	271
Tabla 5.191	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T múltiple	272
Tabla 5.192	Datos análisis ΔT_{AGUA} vs Velocidad del ventilador	272
Tabla 5.193	Medidas de regresión $\Delta T_{\rm AGUA}$ vs Velocidad del ventilador	273
Tabla 5.194	Datos del comportamiento de la velocidad en función de la	
	diferencia de ΔT_{AGUA} (Modelo lineal)	274
Tabla 5.195	Resultado para la curva del modelo logarítmico	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	274
Tabla 5.196	Datos análisis ΔT_{AGUA} vs Humedad relativa	275
Tabla 5.197	Medidas de regresión ΔT_{AGUA} vs Humedad relativa	276
Tabla 5.198	Datos del comportamiento de la humedad en función	
	de la ΔT_{AGUA} (Modelo lineal)	277
Tabla 5.199	Resultado para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	277
Tabla 5.200	Datos análisis Tiempo vs T admisión	278
Tabla 5.201	Medidas de regresión Tiempo vs T admisión	279

Tabla 5.202	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T admisión	280
Tabla 5.203	Resultado para la curva del modelo logarítmico	
	Tiempo vs T admisión	280
Tabla 5.204	Datos análisis Tiempo vs T agua	281
Tabla 5.205	Medidas de regresión Tiempo vs T agua	282
Tabla 5.206	Datos de comportamiento de la temperatura en función	
	del tiempo Tiempo vs T agua	282
Tabla 5.207	Resultado para la curva del modelo logarítmico	
	Tiempo vs T agua	283
Tabla 5.208	Datos análisis Tiempo vs T block	283
Tabla 5.209	Medidas de regresión Tiempo vs T block	284
Tabla 5.210	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T block	285
Tabla 5.211	Resultado para la curva del modelo logarítmico	
	Tiempo vs T block	285
Tabla 5.212	Datos análisis Tiempo vs T carter	286
Tabla 5.213	Medidas de regresión Tiempo vs T carter	287
Tabla 5.214	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T carter	287
Tabla 5.215	Resultado para la curva del modelo logarítmico	
	Tiempo vs T carter	288
Tabla 5.216	Datos análisis Tiempo vs T escape	288
Tabla 5.217	Medidas de dispersión Tiempo vs T escape	289
Tabla 5.218	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	290
Tabla 5.219	Resultado para la curva del modelo logarítmico	
	Tiempo vs T escape	290
Tabla 5.220	Datos análisis Tiempo vs T múltiple	291
Tabla 5.221	Medidas de dispersión Tiempo vs T múltiple	292
Tabla 5.222	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T múltiple	292
Tabla 5.223	Resultado para la curva del modelo logarítmico	
	Tiempo vs T múltiple	293

Tabla 5.224	Datos para análisis ΔT_{AGUA} vs Humedad relativa	293
Tabla 5.225	Medidas de regresión ΔT_{AGUA} vs Humedad relativa	295
Tabla 5.226	Datos del comportamiento de la humedad en función	
	de la ΔT_{AGUA} (Modelo lineal)	295
Tabla 5.227	Resultado para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	296
Tabla 5.228	Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador	296
Tabla 5.229	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	297
Tabla 5.230	Datos del comportamiento de la velocidad en función de la	
	$\Delta T_{\scriptscriptstyle AGUA}$ (Modelo lineal)	298
Tabla 5.231	Resultado para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	298
Tabla 5.232	Datos para análisis Tiempo vs T admisión	299
Tabla 5.233	Medidas de dispersión Tiempo vs T admisión	300
Tabla 5.234	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T admisión	301
Tabla 5.235	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	301
Tabla 5.236	Datos análisis Tiempo vs T agua	302
Tabla 5.237	Medidas de regresión Tiempo vs T agua	303
Tabla 5.238	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T agua	303
Tabla 5.239	Resultado para la curva del modelo logarítmico	
	Tiempo vs T agua	304
Tabla 5.240	Datos para análisis Tiempo vs T block	304
Tabla 5.241	Medidas de regresión Tiempo vs T block	305
Tabla 5.242	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T block	306
Tabla 5.243	Resultado para la curva del modelo logarítmico	
	Tiempo vs T block	306
Tabla 5.244	Datos análisis Tiempo vs T carter	307
Tabla 5.245	Medidas de regresión Tiempo vs T carter	308

Tabla 5.246	Datos del comportamiento de la temperatura en función del	
	tiempo Tiempo vs T carter	308
Tabla 5.247	Resultado para la curva del modelo logarítmico	
	Tiempo vs T carter	309
Tabla 5.248	Datos análisis Tiempo vs T escape	309
Tabla 5.249	Medidas de regresión Tiempo vs T escape	310
Tabla 5.250	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	311
Tabla 5.251	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	311
Tabla 5.252	Datos análisis Tiempo vs T múltiple	312
Tabla 5.253	Medidas de regresión Tiempo vs T múltiple	313
Tabla 5.254	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T múltiple	314
Tabla 5.255	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	314
Tabla 5.256	Datos análisis ΔT_{AGUA} vs Humedad relativa	315
Tabla 5.257	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	316
Tabla 5.258	Datos del comportamiento de la humedad en función	
	de la ΔT_{AGUA} (Modelo lineal)	317
Tabla 5.259	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	317
Tabla 5.260	Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador	317
Tabla 5.261	Medidas de dispersión $\Delta T_{\rm \tiny AGUA}$ vs Velocidad del ventilador	318
Tabla 5.262	Datos del comportamiento de la velocidad en función de la	
	diferencia de ΔT_{AGUA} (Modelo lineal)	319
Tabla 5.263	Resultados para la curva del modelo lineal	
	ΔT_{AGUA} vs Velocidad del ventilador	319
Tabla 5.264	Datos para análisis Tiempo vs T admisión	319
Tabla 5.265	Medidas de dispersión Tiempo vs T admisión	320
Tabla 5.266	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T admisión	320

Tabla 5.267	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	321
Tabla 5.268	Datos para análisis Tiempo vs T agua	321
Tabla 5.269	Medidas de dispersión Tiempo vs T agua	322
Tabla 5.270	Datos para el comportamiento de la temperatura en	
	función del Tiempo vs T agua	322
Tabla 5.271	Resultados para la curva de modelo logarítmico	
	Tiempo vs T agua	323
Tabla 5.272	Datos para análisis Tiempo vs T block	323
Tabla 5.273	Medidas de dispersión Tiempo vs T block	324
Tabla 5.274	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T block	324
Tabla 5.275	Resultados para la curva del modelo logarítmico	
	Tiempo vs T block	325
Tabla 5.276	Datos para análisis Tiempo vs T carter	325
Tabla 5.277	Medidas de dispersión Tiempo vs T carter	326
Tabla 5.278	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T carter	326
Tabla 5.279	Resultados para la curva del modelo logarítmico	
	Tiempo vs T carter	326
Tabla 5.280	Datos para análisis Tiempo vs T escape	327
Tabla 5.281	Medidas de dispersión Tiempo vs T escape	328
Tabla 5.282	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	328
Tabla 5.283	Resultado para la curva del modelo logarítmico	
	Tiempo vs T escape	328
Tabla 5.284	Datos para análisis Tiempo vs T múltiple	329
Tabla 5.285	Medidas de dispersión Tiempo vs T múltiple	330
Tabla 5.286	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T múltiple	330
Tabla 5.287	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	330
Tabla 5.288	Datos para análisis $\Delta T_{_{AGUA}}$ vs Humedad relativa	331

Tabla 5.289	Medidas de dispersión ΔT_{AGUA} vs Humedad relativa	333
Tabla 5.290	Datos del comportamiento de la velocidad en función	
	de la ΔT_{AGUA} (Modelo lineal)	333
Tabla 5.291	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	333
Tabla 5.292	Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador	334
Tabla 5.293	Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador	334
Tabla 5.294	Datos del comportamiento de la velocidad en función	
	de la ΔT_{AGUA} (Modelo lineal)	335
Tabla 5.295	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	335
Tabla 5.296	Datos para análisis Tiempo vs T admisión	336
Tabla 5.297	Medidas de dispersión Tiempo vs T admisión	336
Tabla 5.298	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T admisión	337
Tabla 5.299	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T admisión	337
Tabla 5.300	Datos para análisis Tiempo vs T agua	337
Tabla 5.301	Medidas de dispersión Tiempo vs T agua	338
Tabla 5.302	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T agua	339
Tabla 5.303	Resultados para la curva del modelo logarítmico	
	Tiempo vs T agua	339
Tabla 5.304	Datos para análisis Tiempo vs T block	339
Tabla 5.305	Medidas de dispersión Tiempo vs T block	340
Tabla 5.306	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T block	341
Tabla 5.307	Resultados para la curva del modelo logarítmico	
	Tiempo vs. T block	341
Tabla 5.308	Datos para análisis Tiempo vs T carter	341
Tabla 5.309	Medidas de dispersión Tiempo vs T carter	342

Tabla 5.310	Datos del comportamiento de la temperatura en	
	función del tiempo Tiempo vs T carter	343
Tabla 5.311	Resultados para la curva del modelo logarítmico	
	Tiempo vs T carter	343
Tabla 5.312	Datos para análisis Tiempo vs T escape	343
Tabla 5.313	Medidas de dispersión Tiempo vs T escape	344
Tabla 5.314	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T escape	345
Tabla 5.315	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	345
Tabla 5.316	Datos para análisis Tiempo vs T múltiple	345
Tabla 5.317	Medidas de dispersión Tiempo vs T múltiple	346
Tabla 5.318	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T múltiple	347
Tabla 5.319	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	347
Tabla 5.320	Datos para análisis ΔT_{AGUA} vs Humedad relativa	348
Tabla 5.321	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	349
Tabla 5.322	Datos del comportamiento de la humedad en función	
	de la ΔT_{AGUA} (Modelo lineal)	350
Tabla 5.323	Resultados de la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs humedad relativa	350
Tabla 5.324	Datos para análisis $\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	351
Tabla 5.325	Medidas de dispersión $\Delta T_{{\scriptscriptstyle AGUA}}$ vs Velocidad del ventilador	351
Tabla 5.326	Datos del comportamiento de la velocidad en función de	
	ΔT_{AGUA} (Modelo lineal)	352
Tabla 5.327	Resultados para la curva del modelo logarítmico	
	ΔT_{AGUA} vs Velocidad del ventilador	352
Tabla 5.328	Datos para análisis Tiempo vs T admisión	352
Tabla 5.329	Medidas de dispersión Tiempo vs T admisión	353
Tabla 5.330	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T admisión	354

Tabla 5.331	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	354
Tabla 5.332	Datos para análisis Tiempo vs T agua	354
Tabla 5.333	Medidas de dispersión Tiempo vs T agua	355
Tabla 5.334	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T agua	356
Tabla 5.335	Resultados para la curva del modelo logarítmico	
	Tiempo vs. T agua	356
Tabla 5.336	Datos para análisis Tiempo vs. T block	356
Tabla 5.337	Medidas de dispersión Tiempo vs. T block	357
Tabla 5.338	Datos del comportamiento de la temperatura en función	
	del Tiempo vs. T block	358
Tabla 5.339	Resultados para la curva del modelo logarítmico	
	Tiempo vs. T block	358
Tabla 5.340	Datos para análisis Tiempo vs. T carter	358
Tabla 5.341	Medidas de dispersión Tiempo vs. T carter	359
Tabla 5.342	Datos del comportamiento de la temperatura en función	
	del Tiempo vs. T carter	360
Tabla 5.343	Resultados para la curva del modelo logarítmico	
	Tiempo vs. T carter	360
Tabla 5.344	Datos para análisis Tiempo vs. T escape	360
Tabla 5.345	Medidas de dispersión Tiempo vs. T escape	361
Tabla 5.346	Datos del comportamiento de la temperatura en función	
	del Tiempo vs. T escape	362
Tabla 5.347	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	362
Tabla 5.348	Datos para análisis Tiempo vs. T múltiple	362
Tabla 5.349	Medidas de dispersión Tiempo vs. T múltiple	363
Tabla 5.350	Datos del comportamiento de la temperatura en función	
	del Tiempo vs. T múltiple	364
Tabla 5.351	Resultados para la curva del modelo logarítmico	
	Tiempo vs. T múltiple	364
Tabla 5.352	Datos para análisis ΔT_{AGUA} vs Humedad relativa	365

Tabla 5.353	Medidas de dispersión ΔT_{AGUA} vs humedad relativa	366
Tabla 5.354	Datos del comportamiento de la humedad en función	
	de la ΔT_{AGUA} (Modelo lineal)	367
Tabla 5.355	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs. humedad relativa	367
Tabla 5.356	Datos para análisis $\Delta T_{\scriptscriptstyle AGUA}$ vs. Velocidad del ventilador	367
Tabla 5.357	Medidas de dispersión $\Delta T_{\rm AGUA}$ vs. velocidad del ventilador	368
Tabla 5.358	Datos del comportamiento de la velocidad en función de la	
	ΔT_{AGUA} (Modelo lineal)	369
Tabla 5.359	Resultados para la curva del modelo lineal	
	$\Delta T_{{\scriptscriptstyle AGUA}}$ vs. Velocidad del ventilador	369
Tabla 5.360	Datos para análisis Tiempo vs T admisión	369
Tabla 5.361	Medidas de dispersión Tiempo vs T admisión	370
Tabla 5.362	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T admisión	371
Tabla 5.363	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admision	371
Tabla 5.364	Datos para análisis Tiempo vs T agua	371
Tabla 5.365	Medidas de dispersión Tiempo vs T agua	372
Tabla 5.366	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T agua	373
Tabla 5.367	Resultados para la curva del modelo logarítmico	
	Tiempo vs T agua	373
Tabla 5.368	Datos para análisis Tiempo vs T block	373
Tabla 5.369	Medidas de dispersión Tiempo vs T block	374
Tabla 5.370	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T block	375
Tabla 5.371	Resultados para la curva del modelo logarítmico	
	Tiempo vs T block	375
Tabla 5.372	Datos para análisis Tiempo vs T Carter	375
Tabla 5.373	Medidas de dispersión Tiempo vs T Carter	376

Tabla 5.374	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T Carter	377
Tabla 5.375	Resultado para la curva del modelo logarítmico	
	Tiempo vs T Carter	377
Tabla 5.376	Datos para análisis Tiempo vs T escape	377
Tabla 5.377	Medidas de dispersión Tiempo vs T escape	378
Tabla 5.378	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T escape	379
Tabla 5.379	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	379
Tabla 5.380	Datos para análisis Tiempo vs T múltiple	379
Tabla 5.381	Medidas de dispersión Tiempo vs T múltiple	380
Tabla 5.382	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T múltiple	381
Tabla 5.383	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	381
Tabla 5.384	Datos análisis ΔT_{AGUA} vs humedad relativa	382
Tabla 5.385	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	383
Tabla 5.386	Datos del comportamiento de la humedad en función	
	de la $\Delta T_{\scriptscriptstyle AGUA}$ (Modelo lineal)	384
Tabla 5.387	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs humedad relativa	384
Tabla 5.388	Datos para análisis $\Delta T_{\rm AGUA}$ vs Velocidad del ventilador	384
Tabla 5.389	Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador	385
Tabla 5.390	Datos del comportamiento de la velocidad en función	
	de la diferencia de $\Delta T_{\scriptscriptstyle AGUA}$ (Modelo lineal)	386
Tabla 5.391	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	386
Tabla 5.392	Datos análisis Tiempo vs T admisión	386
Tabla 5.393	Medidas de dispersión Tiempo vs T admisión	387

Tabla 5.394	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T admisión	388
Tabla 5.395	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	388
Tabla 5.396	Datos análisis Tiempo vs T agua	388
Tabla 5.397	Medidas de dispersión Tiempo vs T agua	389
Tabla 5.398	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T agua	390
Tabla 5.399	Resultados para la curva del modelo logarítmico	
	Tiempo vs T agua	390
Tabla 5.400	Datos análisis Tiempo vs T block	390
Tabla 5.401	Medidas de dispersión Tiempo vs T block	391
Tabla 5.402	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T block	392
Tabla 5.403	Resultados para la curva del modelo logarítmico	
	Tiempo vs T block	392
Tabla 5.404	Datos para análisis Tiempo vs T carter	392
Tabla 5.405	Medidas de dispersión Tiempo vs T carter	393
Tabla 5.406	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs T carter	394
Tabla 5.407	Resultados para la curva del modelo logarítmico	
	Tiempo vs T carter	394
Tabla 5.408	Datos para análisis Tiempo vs T escape	394
Tabla 5.409	Medidas de dispersión Tiempo vs T escape	395
Tabla 5.410	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T escape	396
Tabla 5.411	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	396
Tabla 5.412	Datos para análisis Tiempo vs T múltiple	396
Tabla 5.413	Medidas de dispersión Tiempo vs T múltiple	397
Tabla 5.414	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T múltiple	398
Tabla 5.415	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	398

Tabla 5.416	Datos para análisis $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	399
Tabla 5.417	Medidas de dispersión ΔT_{AGUA} vs Humedad relativa	400
Tabla 5.418	Datos del comportamiento de la humedad en función	
	de la ΔT_{AGUA} (Modelo lineal)	401
Tabla 5.419	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	401
Tabla 5.420	Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador	401
Tabla 5.421	Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador	402
Tabla 5.422	Datos del comportamiento de la velocidad en función de la	
	ΔT_{AGUA} (Modelo lineal)	403
Tabla 5.423	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs velocidad del ventilador	403
Tabla 5.424	Datos para análisis Tiempo vs T admision	403
Tabla 5.425	Medidas de dispersión Tiempo vs T admision	404
Tabla 5.426	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T admisión	405
Tabla 5.427	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	405
Tabla 5.428	Datos para análisis Tiempo vs T agua	405
Tabla 5.429	Medidas de dispersión Tiempo vs T agua	406
Tabla 5.430	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T agua	407
Tabla 5.431	Resultados para la curva del modelo logarítmico	
	Tiempo vs T agua	407
Tabla 5.432	Datos para análisis Tiempo vs T block	407
Tabla 5.433	Medidas de dispersión Tiempo vs T block	408
Tabla 5.434	Datos del comportamiento de la temperatura en función	
	Del Tiempo vs T block	409
Tabla 5.435	Resultados para la curva del modelo logarítmico	
	Tiempo vs T block	409
Tabla 5.436	Datos para análisis Tiempo vs T carter	409
Tabla 5.437	Medidas de dispersión Tiempo vs T carter	410

Tabla 5.438	Datos del comportamiento de la temperatura en	
	función del Tiempo vs T carter	411
Tabla 5.439	Resultados para la curva del modelo logarítmico	
	Tiempo vs T carter	411
Tabla 5.440	Datos para análisis Tiempo vs T escape	411
Tabla 5.441	Medidas de dispersión Tiempo vs T escape	412
Tabla 5.442	Datos del comportamiento de la temperatura en	
	función del Tiempo vs T escape	413
Tabla 5.443	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	413
Tabla 5.444	Datos para análisis Tiempo vs T múltiple	414
Tabla 5.445	Medidas de dispersión Tiempo vs T múltiple	415
Tabla 5.446	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T múltiple	415
Tabla 5.447	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	415
Tabla 5.448	Datos análisis ΔT_{AGUA} vs Humedad relativa	416
Tabla 5.449	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	417
Tabla 5.450	Datos del comportamiento de la humedad en función	
	de la ΔT_{AGUA} (Humedad relativa)	418
Tabla 5.451	Resultados para la curva del modelo logarítmico	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	418
Tabla 5.452	Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador	418
Tabla 5.453	Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador	419
Tabla 5.454	Datos del comportamiento de la velocidad en función de la	
	ΔT_{AGUA} (Modelo lineal)	420
Tabla 5.455	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	420
Tabla 5.456	Datos para análisis Tiempo vs T admisión	420
Tabla 5.457	Medidas de dispersión Tiempo vs T admisión	421
Tabla 5.458	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T admisión	422

Tabla 5.459	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	422
Tabla 5.460	Datos para análisis Tiempo vs T agua	422
Tabla 5.461	Medidas de dispersión Tiempo vs T agua	423
Tabla 5.462	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T agua	424
Tabla 5.463	Resultados para la curva del modelo logarítmico	
	Tiempo vs T agua	424
Tabla 5.464	Datos para análisis Tiempo vs T block	424
Tabla 5.465	Medidas de dispersión Tiempo vs T block	425
Tabla 5.466	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T block	426
Tabla 5.467	Resultados para la curva del modelo logarítmico	
	Tiempo vs T block	426
Tabla 5.468	Datos para análisis Tiempo vs T Carter	426
Tabla 5.469	Medidas de dispersión Tiempo vs T Carter	427
Tabla 5.470	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T carter	428
Tabla 5.471	Resultados para la curva del modelo logarítmico	
	Tiempo vs T Carter	428
Tabla 5.472	Datos para análisis Tiempo vs T escape	428
Tabla 5.473	Medidas de dispersión Tiempo vs T escape	429
Tabla 5.474	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T escape	430
Tabla 5.475	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	430
Tabla 5.476	Datos para análisis Tiempo vs T múltiple	430
Tabla 5.477	Medidas de dispersión Tiempo vs T múltiple	431
Tabla 5.478	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T múltiple	432
Tabla 5.479	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	432
Tabla 5.480	Datos para análisis ΔT_{AGUA} vs Humedad relativa	433

Tabla 5.481	Medidas de dispersión ΔT_{AGUA} vs Humedad relativa	434
Tabla 5.482	Datos del comportamiento de la humedad en función de la	
	ΔT_{AGUA} (Modelo lineal)	435
Tabla 5.483	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	435
Tabla 5.484	Datos para análisis $\Delta T_{\rm AGUA}$ vs Velocidad del ventilador	435
Tabla 5.485	Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador	436
Tabla 5.486	Datos del comportamiento de la velocidad en función de la	
	ΔT_{AGUA} (Modelo lineal)	437
Tabla 5.487	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs velocidad del ventilador	437
Tabla 5.488	Datos para análisis Tiempo vs T admisión	437
Tabla 5.489	Medidas de dispersión Tiempo vs T admisión	438
Tabla 5.490	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T admisión	439
Tabla 5.491	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	439
Tabla 5.492	Datos para análisis Tiempo vs T agua	439
Tabla 5.493	Medidas de dispersión Tiempo vs T agua	440
Tabla 5.494	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T agua	441
Tabla 5.495	Resultados para la curva del modelo logarítmico	
	Tiempo vs T agua	441
Tabla 5.496	Datos para análisis Tiempo vs T block	441
Tabla 5.497	Medidas de dispersión Tiempo vs T block	442
Tabla 5.498	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T block	443
Tabla 5.499	Resultado para la curva del modelo logarítmico	
	Tiempo vs T block	443
	Datos para análisis Tiempo vs T carter	443
Tabla 5.501	Medidas de dispersión Tiempo vs T carter	444
Tabla 5.502	Datos del comportamiento de la temperatura en función	

	Del Tiempo vs T carter	445
Tabla 5.503	Resultados para la curva del modelo logarítmico	
	Tiempo vs T carter	445
Tabla 5.504	Datos para análisis Tiempo vs T escape	445
Tabla 5.505	Medidas de dispersión Tiempo vs T escape	446
Tabla 5.506	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T escape	447
Tabla 5.507	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	447
Tabla 5.508	Datos para análisis Tiempo vs T múltiple	447
Tabla 5.509	Medidas de dispersión Tiempo vs T múltiple	448
Tabla 5.510	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T múltiple	449
Tabla 5.511	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	449
Tabla 5.512	Datos para análisis ΔT_{AGUA} vs Humedad relativa	450
Tabla 5.513	Medidas de dispersión $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	451
Tabla 5.514	Datos del comportamiento de la humedad en función	
	de la $\Delta T_{\rm\scriptscriptstyle AGUA}$ vs Humedad relativa	452
Tabla 5.515	Resultados para la curva del modelo logarítmico	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	452
Tabla 5.516	Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador	452
Tabla 5.517	Medidas de dispersión $\Delta T_{\rm AGUA}$ vs Velocidad del ventilador	453
Tabla 5.518	Datos del comportamiento de la velocidad en función de la	
	ΔT_{AGUA} (Modelo lineal)	454
Tabla 5.519	Resultados para la curva del modelo lineal	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	454
Tabla 5.520	Datos para análisis Tiempo vs T admisión	454
Tabla 5.521	Medidas de dispersión Tiempo vs T admisión	455
Tabla 5.522	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T admisión	456

Tabla 5.523	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	456
Tabla 5.524	Datos para análisis Tiempo vs T agua	456
Tabla 5.525	Medidas de dispersión Tiempo vs T agua	457
Tabla 5.526	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T agua	458
Tabla 5.527	Resultados para la curva del modelo logarítmico	
	Tiempo vs T agua	458
Tabla 5.528	Datos para análisis Tiempo vs T block	458
Tabla 5.529	Medidas de dispersión Tiempo vs T block	459
Tabla 5.530	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T block	460
Tabla 5.531	Resultados para la curva del modelo logarítmico	
	Tiempo vs T block	460
Tabla 5.532	Datos para análisis Tiempo vs T carter	460
Tabla 5.533	Medidas de dispersión Tiempo vs T carter	461
Tabla 5.534	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T carter	462
Tabla 5.535	Resultados para la curva del modelo logarítmico	
	Tiempo vs T carter	462
Tabla 5.536	Datos para análisis Tiempo vs T escape	462
Tabla 5.537	Medidas de dispersión Tiempo vs T escape	463
Tabla 5.538	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T escape	464
Tabla 5.539	Resultados para la curva del modelo logarítmico	
	Tiempo vs T escape	464
Tabla 5.540	Datos para análisis Tiempo vs T múltiple	464
Tabla 5.541	Medidas de dispersión Tiempo vs T múltiple	465
Tabla 5.542	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T múltiple	466
Tabla 5.543	Resultados para la curva del modelo logarítmico	
	Tiempo vs T múltiple	466
Tabla 5.544	Datos para análisis ΔT_{AGUA} vs Humedad relativa	467

Tabla 5.545	Medidas de dispersión ΔT_{AGUA} vs Humedad relativa	468
Tabla 5.546	Datos del comportamiento de la humedad en función	
	de la ΔT_{AGUA} (modelo lineal)	469
Tabla 5.547	Resultados para la curva del modelo logarítmico	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa	469
Tabla 5.548	Datos para análisis $\Delta T_{\rm\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	469
Tabla 5.549	Medidas de dispersión $\Delta T_{\rm AGUA}$ vs Velocidad del ventilador	470
Tabla 5.550	Datos del comportamiento de la velocidad en función	
	de la ΔT_{AGUA} (Modelo lineal)	471
Tabla 5.551	Resultados para la curva del modelo logarítmico	
	$\Delta T_{\scriptscriptstyle AGUA}$ vs Velocidad del ventilador	471
Tabla 5.552	Datos para análisis Tiempo vs T admisión	471
Tabla 5.553	Medidas de dispersión Tiempo vs T admisión	472
Tabla 5.554	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T admisión	473
Tabla 5.555	Resultados para la curva del modelo logarítmico	
	Tiempo vs T admisión	473
Tabla 5.556	Datos para análisis Tiempo vs T agua	473
Tabla 5.557	Medidas de dispersión Tiempo vs T agua	474
Tabla 5.558	Datos del comportamiento de la temperatura en función	
	del Tiempo vs T agua	475
Tabla 5.559	Resultados para la curva del modelo logarítmico	
	Tiempo vs T agua	475
Tabla 5.560	Datos para análisis Tiempo vs T block	476
Tabla 5.561	Medidas de dispersión Tiempo vs T block	477
Tabla 5.562	Datos del comportamiento de la temperatura en función del	
	Tiempo vs T block	477
Tabla 5.563	Resultados para la curva del modelo logarítmico	
	Tiempo vs T block	477
Tabla 5.564	Datos para análisis Tiempo vs T carter	478
Tabla 5.565	Medidas de dispersión Tiempo vs T carter	478

Tabla 5.566	Datos del comportamiento de la temperatura en	
	función del Tiempo vs T carter	479
Tabla 5.567	Resultados para la curva del modelo logarítmico	
	Tiempo vs T carter	479
Tabla 5.568	Datos para análisis Tiempo vs T escape	480
Tabla 5.569	Medidas de dispersión Tiempo vs T escape	481
Tabla 5.570	Datos del comportamiento de la temperatura en	
	función del Tiempo vs. T escape	481
Tabla 5.571	Resultado para la curva del modelo logarítmico	
	Tiempo vs. T escape	481
Tabla 5.572	Datos para análisis Tiempo vs. T múltiple	482
Tabla 5.573	Medidas de dispersión Tiempo vs. T múltiple	483
Tabla 5.574	Datos del comportamiento de la temperatura en función	
	del tiempo Tiempo vs. T múltiple	483
Tabla 5.575	Resultado para la curva del modelo logarítmico	
	Tiempo vs T múltiple	483

LISTADO DE FIGURAS

		Pág.
Figura 2.1	Sistema y Entorno	7
Figura 2.2	Sistemas	9
Figura 2.3	Transferencia de calor por convección desde una	
	superficie	23
Figura 2.4	Valores representativos del coeficiente convectivo de	
	transferencia de calor	24
Figura 2.5	Introducción de impurezas en el silicio	26
Figura 2.6	Difusión de dos gases a través de una membrana porosa	30
Figura 2.7	Densidad de corriente de difusión de huecos	31
Figura 2.8	Acumulador para automóvil	33
Figura 2.9	Disipador	33
Figura 3.1	Pozo de recogida de aguas en la central térmica	39
Figura 3.2	Las válvulas deben estar calibradas de acuerdo al nivel	
	del agua del caldero, normalmente estas vienen junto a	
	los controles de nivel	43
Figura 3.3	Sección de un intercambiador de calor tipo U	45
Figura 3.4	Transmisión de Calor por convección	46
Figura 3.5	Túnel de Secado serie T	49
Figura 3.6	Emisiones de contaminantes	52
Figura 4.1	Esquema Carter (Selección de puntos)	105
Figura 4.2	Esquema Block (Selección de puntos)	107
Figura 4.3	Esquema admisión (Selección de puntos)	108
Figura 4.4	Esquema múltiple (selección de puntos)	109
Figura 4.5	Esquema reservorio (selección de puntos)	110
Figura 5.1	Curva Tiempo vs T Carter	149
Figura 5.2	Curva Tiempo vs Múltiple	152
Figura 5.3	Curva Tiempo vs T Admisión	154
Figura 5.4	Curva Tiempo vs T escape	157
Figura 5.5	Curva Tiempo vs T block	160
Figura 5.6	Curva Tiempo vs T agua	162

Figura 5.7	Curva Tiempo vs Humedad relativa	165
Figura 5.8	Diferencia de Temperatura vs Velocidad	168
Figura 5.9	Curva Tiempo vs T carter	171
Figura 5.10	Curva Tiempo vs T múltiple	173
Figura 5.11	Curva Tiempo vs T block	176
Figura 5.12	Curva Tiempo vs T escape	178
Figura 5.13	Curva Tiempo vs T admisión	181
Figura 5.14	Curva Tiempo vs T agua	183
Figura 5.15	Curva diferencia de temperatura de Agua vs Velocidad	186
Figura 5.16	Curva diferencia de Temperatura vs Humedad relativa	188
Figura 5.17	Curva Tiempo vs T Escape	191
Figura 5.18	Curva Tiempo vs T múltiple	194
Figura 5.19	Curva Tiempo vs T Block	196
Figura 5.20	Curva Tiempo vs T admisión	199
Figura 5.21	Curva Tiempo vs T carter	201
Figura 5.22	Curva Tiempo vs T agua	204
Figura 5.23	Curva diferencia de Temperatura vs Humedad relativa	206
Figura 5.24	Diferencia de Temperatura vs Velocidad	209
Figura 5.25	Curva Tiempo vs T admisión	211
Figura 5.26	Curva Tiempo vs T múltiple	214
Figura 5.27	Curva Tiempo vs T escape	216
Figura 5.28	Curva Tiempo vs T Block	219
Figura 5.29	Curva Tiempo vs T Carter	221
Figura 5.30	Curva Tiempo vs T agua	224
Figura 5.31	Curva diferencia de Temperatura vs Velocidad del radiador	226
Figura 5.32	Diferencia de Temperatura vs Humedad	229
Figura 5.33	Curva Tiempo vs T carter	232
Figura 5.34	Curva Tiempo vs T block	234
Figura 5.35	Curva Tiempo vs T escape	237
Figura 5.36	Curva Tiempo vs T múltiple	239
Figura 5.37	Curva Tiempo vs T admisión	242
Figura 5.38	Curva Tiempo vs T agua	244
Figura 5.39	Curva diferencia de Temperatura vs Velocidad del radiador	247
Figura 5.40	Diferencia de Temperatura vs Humedad	249

Figura 5.41	Curva diferencia de Temperatura vs Velocidad del radiador	252
Figura 5.42	Curva diferencia de temperatura de	
	Agua vs Humedad relativa	254
Figura 5.43	Curva Tiempo vs T admisión	257
Figura 5.44	Curva Tiempo vs T agua	260
Figura 5.45	Curva Tiempo vs T Block	263
Figura 5.46	Curva Tiempo vs T Carter	265
Figura 5.47	Curva Tiempo vs T escape	268
Figura 5.48	Curva Tiempo vs T múltiple	270
Figura 5.49	Curva diferencia de Temperatura vs Velocidad del radiador	273
Figura 5.50	Curva diferencia de Temperatura vs Humedad relativa	275
Figura 5.51	Curva Tiempo vs T admisión	278
Figura 5.52	Curva Tiempo vs T agua	281
Figura 5.53	Curva Tiempo vs T block	284
Figura 5.54	Curva Tiempo vs T carter	286
Figura 5.55	Curva Tiempo vs T escape	289
Figura 5.56	Curva Tiempo vs T múltiple	291
Figura 5.57	Curva diferencia de Temperatura vs Humedad relativa	294
Figura 5.58	Curva diferencia de	
	Temperatura vs Velocidad del ventilador del radiador	297
Figura 5.59	Curva Tiempo vs T admisión	299
Figura 5.60	Curva Tiempo vs T agua	302
Figura 5.61	Curva Tiempo vs T block	305
Figura 5.62	Curva Tiempo vs T carter	307
Figura 5.63	Curva Tiempo vs T escape	310
Figura 5.64	Curva Tiempo vs. T múltiple	312
Figura 5.65	Curva Diferencia de temperatura vs Humedad relativa	315
Figura 5.66	Curva Diferencia de Temperatura de Agua vs Velocidad	318
Figura 5.67	Curva Tiempo vs T admisión	319
Figura 5.68	Curva Tiempo vs T agua	321
Figura 5.69	Curva Tiempo vs. T Block	323
Figura 5.70	Curva Tiempo vs. T Carter	325
Figura 5.71	Curva Tiempo vs. T escape	327

Figura 5.72	Curva Tiempo vs. T múltiple	329
Figura 5.73	Curva diferencia de Temperatura de	
	Agua vs. Humedad relativa	331
Figura 5.74	Curva diferencia de Temperatura de Agua vs. Velocidad del	
	ventilador	334
Figura 5.75	Curva Tiempo vs. T admisión	336
Figura 5.76	Curva Tiempo vs. T agua	338
Figura 5.77	Curva Tiempo vs. T block	340
Figura 5.78	Curva Tiempo vs. T Carter	342
Figura 5.79	Curva tiempo vs. T Escape	344
Figura 5.80	Curva Tiempo vs. T múltiple	346
Figura 5.81	Curva diferencia de Temperatura de	
	Agua vs. Humedad relativa	348
Figura 5.82	Curva diferencia de Temperatura de	
	Agua vs. Velocidad del ventilador	351
Figura 5.83	Curva Tiempo vs. T admisión	353
Figura 5.84	Curva Tiempo vs. T agua	355
Figura 5.85	Curva Tiempo vs. T block	357
Figura 5.86	Curva Tiempo vs. T carter	359
Figura 5.87	Curva Tiempo vs. T escape	361
Figura 5.88	Curva Tiempo vs. T múltiple	363
Figura 5.89	Curva diferencia de Temperatura de	
	Agua vs. Humedad relativa	365
Figura 5.90	Curva diferencia de Temperatura de	
	Agua vs Velocidad del ventilador	368
Figura 5.91	Curva Tiempo vs. T admisión	370
Figura 5.92	Curva Tiempo vs T agua	372
Figura 5.93	Curva Tiempo vs T block	374
Figura 5.94	Curva Tiempo vs T carter	376
Figura 5.95	Curva Tiempo vs T escape	378
Figura 5.96	Curva Tiempo vs T múltiple	380
Figura 5.97	Curva diferencia de Temperatura de	
	Agua vs Humedad relativa	382

Figura 5.98	Curva diferencia de Temperatura de	
	Agua vs Velocidad del ventilador	385
Figura 5.99	Curva Tiempo vs T admisión	387
Figura 5.100	0 Curva Tiempo vs T agua	389
Figura 5.101	1Curva tiempo vs T block	391
Figura 5.102	2 Curva Tiempo vs T carter	393
Figura 5.103	3Curva Tiempo vs T escape	395
Figura 5.104	4 Curva Tiempo vs T múltiple	397
Figura 5.10	5Curva diferencia de Temperatura de	
	Agua vs Humedad relativa	399
Figura 5.106	6Curva diferencia de Temperatura de	
	Agua vs. Velocidad del ventilador	342
Figura 5.107	7 Curva Tiempo vs T admisión	404
Figura 5.108	8 Curva tiempo vs T agua	406
Figura 5.109	9 Curva Tiempo vs T block	408
Figura 5.110	0 Curva Tiempo vs T carter	410
Figura 5.111	1Curva Tiempo vs T escape	412
Figura 5.112	2 Curva Tiempo vs T múltiple	414
Figura 5.113	3Curva diferencia de Temperatura de	
	Agua vs Humedad relativa	416
Figura 5.114	4 Curva diferencia de Temperatura	
	de Agua vs Velocidad del ventilador	419
Figura 5.115	5 Curva Tiempo vs T admisión	421
Figura 5.116	6Curva Tiempo vs T agua	423
Figura 5.117	7 Curva Tiempo vs T block	425
Figura 5.118	8 Curva Tiempo vs T carter	427
Figura 5.119	9 Curva Tiempo vs T escape	429
Figura 5.120	0 Curva Tiempo vs T múltiple	431
Figura 5.121	1Curva diferencia de Temperatura	
	de Agua vs Humedad relativa	433
Figura 5.122	2Curva diferencia de Temperatura de	
	Agua vs Velocidad del ventilador	436
Figura 5.123	3Curva Tiempo vs T admisión	438
Figura 5.124	4Curva Tiempo vs T agua	440

Figura 5.125Curva Tiempo vs T block	442
Figura 5.126Curva Tiempo vs T carter	444
Figura 5.127Curva Tiempo vs T escape	446
Figura 5.128Curva Tiempo vs T múltiple	448
Figura 5.129Curva diferencia de Temperatura	
de Agua vs Humedad relativa	450
Figura 5.130 Curva diferencia de Temperatura	
de Agua vs Velocidad del ventilador	453
Figura 5.131 Curva Tiempo vs T admisión	455
Figura 5.132Curva Tiempo vs T agua	457
Figura 5.133Curva Tiempo vs T block	459
Figura 5.134Curva Tiempo vs T carter	461
Figura 5.135Curva Tiempo vs T escape	463
Figura 5.136Curva Tiempo vs T múltiple	465
Figura 5.137Curva diferencia de Temperatura	
de Agua vs. Humedad relativa	467
Figura 5.138Curva diferencia de Temperatura	
de Agua vs Velocidad del ventilador	470
Figura 5.139Curva Tiempo vs T admisión	472
Figura 5.140 Curva Tiempo vs. T agua	474
Figura 5.141 Curva Tiempo vs T block	476
Figura 5.142Curva Tiempo vs T carter	478
Figura 5.143 Curva Tiempo vs T escape	480
Figura 5.144Curva Tiempo vs T múltiple	482

LISTADO DE FOTOGRAFIAS

		Pág.
Fotografía 3.1	Autobús	50
Fotografía 4.1	Bus de transporte de Personal ESPE	
	(Bus de Prueba)	82
Fotografía 4.2	Vista frontal Termómetro digital tipo láser	84
Fotografía 4.3	Vista Superior Termómetro digital tipo láser	84
Fotografía 4.4	Higrómetro digital	85
Fotografía 4.5	Vista Superior Hygro Thermo Anemometer	
	(Medición de temperatura)	85
Fotografía 4.6	Vista Superior Hygro Thermo Anemometer	
	(Medición velocidad aire)	86
Fotografía 4.7	Global Position System Medición de Coordenadas	
	en el área de transportes ESPE	86
Fotografía 4.8	Vista frontal Carter	106
Fotografía 4.9	Toma de temperatura carter	106
Fotografía 4.10	Medición de temperatura block	106
Fotografía 4.11	Toma de temperatura admisión	108
Fotografía 4.12	Múltiple de Escape	109
Fotografía 4.13	Toma de temperatura múltiple	110
Fotografía 4.14	Reservorio de refrigeración	111
Fotografía 4.15	Toma de temperatura reservorio	111
Fotografía 4.16	Toma de lectura velocidad del radiador	112

LISTADO DE ECUACIONES

		Pág
Ecuación 2.1	$Q_{ent} - W_{sale} = E_{T1} - ET2$	8
Ecuación 2.2	masa inicial + masa que entra =	
	masa final + masa que sale	9
Ecuación 2.3	$Q_{ent} - W_{sale} = E_{sale} - E_{ent} + E_2 - E1$	9
Ecuación 2.4	$E_T = Q - W$	12
Ecuación 2.5	$E_T = E_c + E_p + U$	12
Ecuación 2.6	$E_c = \frac{1}{2} m(v^*v)$	12
Ecuación 2.7	$\Delta E_T = \Delta E_C + \Delta E p + \Delta_u$	13
Ecuación 2.8	$\Delta E_c + \Delta E_p + \Delta U = Q - W$	13
Ecuación 2.9	$\Delta U = Q - W$	13
Ecuación 2.10	$U = E_{c int} + E_{p int}$	13
Ecuación 2.11	$W = \int F \delta I$	14
Ecuación 2.12	$Q = nc (T_B - T_A)$	15
Ecuación 2.13	$C_{v} = \left(\frac{\partial u}{\partial T}\right)_{v} \left[\frac{kJ}{kg\ K}\right]$	16
Ecuación 2.14	$C_{p} = \left(\frac{\partial h}{\partial T}\right)_{p} \left[\frac{kJ}{kg\ K}\right]$	16
Ecuación 2.15	$\gamma = \frac{Cp}{Cv}$	16
Ecuación 2.16	$Cp = 0.240 [BTU/lb^{\circ}R]$	16
Ecuación 2.17	$Cv = 0.171 [BTU/lb^{\circ}R]$	16
Ecuación 2.18	H = U + P V	16
Ecuación 2.19	h = u + Pv	17
Ecuación 2.20	$e_b = \sigma T^4$	19
Ecuación 2.21	$Q = \frac{KA(T_{\text{int}} - T_{ext})}{L}$	20
Ecuación 2.22	Q= h A(Ts-T∞)	23
Ecuación 2.23	$Q = \frac{\Delta T_{sobretotal}}{\Sigma Ri}$	24

Ecuación 2.24	$J_e = {}_e n(qE)$	28
Ecuación 2.25	$J_h = {}_h p(qE)$	29
Ecuación 2.26	$J = J_h + J_e = {}_h p(qE) + {}_e n(qE)$	30
Ecuación 2.27	$J = -D \frac{dc}{dx}$	31
Ecuación 2.28	$J_{\text{diffision}} = qD_{e} \frac{dn}{dx} - qD_{h} \frac{dp}{dx}$	32
Ecuación 2.29	$R_{d-a} = \frac{T_d - T_a}{P}$	34

ANEXOS

Anexo No.1	Tabla disipadores térmicos
Anexo No.2	Tabla disipadores para relay de estado sólido
Anexo No.3	Hoja de revisión Corpaire
Anexo No.4	Detalle revisión Corpaire

CAPÍTULO 1

GENERALIDADES

1.1 Antecedentes

La atmósfera ordinariamente puede albergar sustancias contaminantes, generalmente se presentan en forma gaseosa, líquida o sólida. Sin embargo, a partir de determinado nivel de concentración se pueden producir efectos nocivos, sobre los seres vivos y también sobre los materiales.

La relación del hombre con el ambiente, no es nueva, es una relación y una problemática que se estableció desde el comienzo del hombre en el mundo, que continuó en la sucesión de las edades y que continuará por siempre ya que el hombre y el planeta están el uno para el otro relacionados en su existencia al igual que con el resto de los seres vivos que lo habitan.

Aunque existen fuentes contaminantes naturales, ejemplo de las actividades volcánicas o los incendios forestales, que emiten gases y partículas que quedan en suspensión, éstas suelen ser por lo general depuradas por la propia atmósfera. Pero es la contaminación generada por el hombre la que excede la capacidad de la atmósfera para procesarla, dando lugar a una concentración amenazante para la vida.

Quizás, el mayor desafío medioambiental de nuestro tiempo es afrontar el cambio climático, el calentamiento global del planeta causado por las excesivas

emisiones a la atmósfera de gases de efecto invernadero. La solución del problema pasa por estabilizar las concentraciones de gases a niveles aceptables.

En este país industrializado la contaminación del aire procede, más o menos a partes iguales, de los sistemas de transporte el cual esta compuesto por un motor diesel que es un motor de combustión interna cuya función se basa en un ciclo termodinámico, en el cual se inyecta en la cámara de combustión el combustible después de haberse realizado una compresión de aire por el pistón. La relación de compresión de la carga del aire es lo suficientemente alta como para encender el combustible inyectado.

Este motor utiliza varios tipos de combustible, que se caracterizan por una mayor eficiencia térmica y por las ventajas económicas para las aplicaciones que tiene.

En los sistemas que funcionan con combustible líquido (los que predominan), se producen complicaciones técnicas (en las bombas de inyección, en las boquillas inyectoras y en las cámaras de combustión en las cuales se realizan los procesos de entrega, automatización y quema del combustible).

Es importante que los habitantes de las grandes ciudades tomen conciencia de que el ambiente ecológico es una necesidad primaria. Se debería legislar sobre las sustancias que pueden ir a la atmósfera y no puede superarse la concentración en el medio ambiente.

En las grandes ciudades, la contaminación del aire se debe a consecuencia de los escapes de gases de los motores de explosión, a los aparatos domésticos de la calefacción, a las industrias que es liberado en la atmósfera, ya sea como gases, vapores o partículas sólidas capaces de mantenerse en suspensión, con valores superiores a los normales, perjudican la vida y la salud del ser humano.

El aumento de anhídrido carbónico en la atmósfera se debe a la combustión del carbón y del petróleo, lo que lleva a un recalentamiento del aire y de los mares,

con lo cual se produce un desequilibrio químico en la biosfera, produciendo una alta cantidad de monóxido de carbono, sumamente tóxica para los seres vivos.

La contaminación atmosférica proviene fundamental-mente de la contaminación industrial por combustión, y las principales causas son la generación de electricidad y los bus.

El ingrediente principal del smog urbano es el ozono, uno de los peores contaminantes producidos por los automóviles. Este gas se forma cuando la luz solar hace reaccionar los hidrocarburos con los óxidos de nitrógeno.

La contaminación en términos científicos es la Impregnación del aire, el agua o el suelo con productos que afectan a la salud del hombre, la calidad de vida o el funcionamiento natural de los ecosistemas. Sobre la contaminación de la atmósfera por emisiones industriales, incineradoras, motores de combustión interna y otras fuentes.

La combustión de carbón, petróleo y gasolina es el origen de buena parte de los contaminantes atmosféricos. Más de un 80% del dióxido de azufre, un 50% de los óxidos de nitrógeno, y de un 30 a un 40% de las partículas en suspensión emitidos a la atmósfera en Estados Unidos proceden de las centrales eléctricas que queman combustibles fósiles, las calderas industriales y las calefacciones.

Un 80% del monóxido de carbono y un 40% de los óxidos de nitrógeno e hidrocarburos emitidos proceden de la combustión de la gasolina y el gasóleo en los motores de los coches y camiones.

1.2 Definición del Problema

La determinación de los parámetros de operación y que influyen en la eficiencia y su variación de las unidades por medio de una Auditoria Energética,

permitirán realizar los correctivos necesarios para obtener el mejor rendimiento de los motores de 200hp de la ESPE,

1.3 Objetivos

1.3.1 General

 Analizar la contaminación térmica generada por el proceso de combustión interna de un motor diesel de 200 HP.

1.3.2 Específicos

- Analizar los aspectos mas relevantes en la contaminación térmica y proponer alternativas de remediación.
- Analizar los puntos críticos de generación de calor y transferencia.
- Determinar las condiciones de operación y conversión energética del motor de 200HP.
- Concientizar sobre el impacto ambiental generado por la contaminación térmica en los motores de combustión interna.

1.4 Alcance

Con el desarrollo del presente proyecto se propone cuantificar la cantidad de energía térmica que se genera en el proceso de combustión de 200HP.

Con el proceso de caracterizar los diferentes parámetros de generación térmica que presentan se pretende obtener un modelo de referencia que sirva de base para la cuantificación de la energía térmica que disipan similares motores de combustión interna y proponer alternativas de reducción del impacto ambiental originado por la contaminación térmica

1.5 Justificación e Importancia

La contaminación en términos científicos es la Impregnación del aire, el agua o el suelo con productos que afectan a la salud del hombre, la calidad de vida o el funcionamiento natural de los ecosistemas. Sobre la contaminación de la atmósfera por emisiones industriales, incineradoras, motores de combustión interna y otras fuentes.

La combustión de carbón, petróleo y gasolina es el origen de buena parte de los contaminantes atmosféricos. Más de un 80% del dióxido de azufre, un 50% de los óxidos de nitrógeno, y de un 30 a un 40% de las partículas en suspensión emitidos a la atmósfera en Estados Unidos proceden de las centrales eléctricas que queman combustibles fósiles, las calderas industriales y las calefacciones. Un 80% del monóxido de carbono y un 40% de los óxidos de nitrógeno e hidrocarburos emitidos proceden de la combustión de la gasolina y el gasóleo en los motores de los coches y camiones.

Somos consientes del grado de contaminación que posee quito y a las enfermedades que nos exponemos diariamente, estos son algunos motivos que nos impulsaron a realizar la presente investigación con la finalidad de encontrar soluciones idóneas a la contaminación ambiental, como prevenir y como actuar frente a este problema.

A través de este trabajo de campo lograremos concientizar a los trabajadores de la sección transportes ESPE las formas y técnicas que uno debería de usar para protegerse de la contaminación ambiental, además servirá como ayuda académica a otros compañeros sobre el problema de la contaminación

CAPITULO 2

MARCO TEORICO

2.1 Definición

2.1.1 Sistemas

Un sistema puede ser cualquier objeto, cualquier cantidad de materia, cualquier región del espacio, etc., seleccionado para estudiarlo y aislarlo (mentalmente) de todo lo demás, lo cual se convierte entonces en el entorno del sistema.

El sistema y su entorno forman el universo como se muestra en la Figura 2.1:

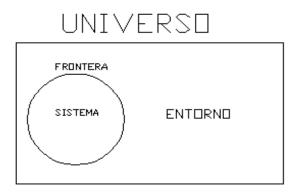


Figura 2.1 Sistema y Entorno

La envoltura imaginaria que encierra un sistema y lo separa de sus inmediaciones (entorno) se llama frontera del sistema y puede pensarse que tiene propiedades especiales que sirven para:

- a) Aislar el sistema de su entorno.
- b) Permitir la interacción de un modo específico entre el sistema y su ambiente.

Llamamos sistema, o medio interior, la porción del espacio limitado por una superficie real o ficticia, donde se sitúa la materia estudiada. El resto del universo es el medio exterior. La distinción entre sistema y entorno es arbitraria: el sistema es lo que el observador ha escogido para estudiar.

2.1.1.1 Sistema Cerrado

Es un sistema cuya materia permanece constante y solamente intercambia energía con el medio o sus alrededores. En este tipo de sistemas el volumen puede aumentar o disminuir como el caso de un arreglo cilindro – pistón, o podría permanecer constante como el caso de un recipiente rígido cerrado, pero siempre y cuando se cumpla la condición que la masa se mantenga fija y no exista ningún cruce de masa por las fronteras del sistema. La ecuación de energía para sistemas cerrados se la puede expresar de la siguiente manera:

$$Q_{ent} - W_{sale} = E_{T1} - E_{T2}$$
 (2.1)

Donde: E_T es la energía total del sistema en un estado determinado y es la suma de sus energías interna, cinética y potencial.

2.1.1.2 Sistema Abierto

Es un sistema que puede intercambiar tanto energía como materia y se lo denomina también volumen de control. Hay que tomar en cuenta que cada

partícula de masa que entra al sistema, introduce al mismo, su energía interna, más la energía cinética asociada con su velocidad y su energía potencial gravitacional. El principio de conservación de la masa para un sistema abierto señala que:

masa inicial + masa que entra = masa final + masa que sale
$$(2.2)$$

La ecuación de energía para sistemas abiertos puede obtenerse modificando la ecuación de energía para sistemas cerrados, expresándola de la siguiente manera:

$$Q_{ent} - W_{sale} = E_{sale} - E_{ent} + E_2 - E_1$$
 (2.3)

W_{sale} incluye todas las formas de trabajo mecánico de eje, así como el trabajo hecho por o sobre la sustancia del sistema en las aberturas físicas.

2.1.1.3 Sistema Aislado

Es un sistema en que ni materia ni energía, cruzan sus fronteras. En la Figura 2.2 se muestran los diferentes tipos de sistemas:

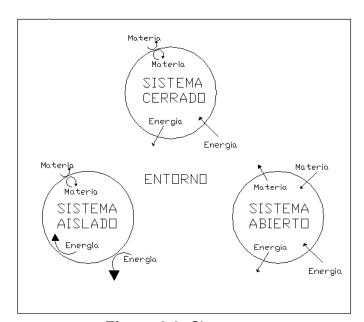


Figura 2.2 Sistemas

2.1.2 Propiedad Termodinámica

El estado termodinámico de una sustancia se describe especificando las propiedades termodinámicas de las sustancias en dicho estado (presión, temperatura, volumen, masa). Para un estado dado de la misma, cada una de las propiedades termodinámicas tiene un y sólo un valor. Una propiedad termodinámica implica que dicha propiedad es la misma en todos los puntos del sistema. Esta situación en la cual el valor de una propiedad tiene un significado preciso para un sistema completo se denomina "Equilibrio Termodinámico". Por ejemplo si se dice que la temperatura de un sistema es 20 °C, se quiere decir que la temperatura en cada punto por todo el sistema completo es de 20 °C.

2.1.2.1 Propiedad Extensiva (H)

Cuando la propiedad intensiva se multiplica por la cantidad de sustancia (masa) se tiene una propiedad que si depende de la cantidad de sustancia presente y se llama propiedad extensiva, Depende de la cantidad de masa de la sustancia presente en el sistema como ocurre con la masa, con la cantidad de movimiento y con el momento de la cantidad de movimiento.

2.1.2.2 Propiedad Intensiva (η)

Son independientes de la masa de la sustancia presente en el sistema. Si una sustancia es uniforme y homogénea, el valor de la propiedad intensiva será el mismo en cada punto de la sustancia. Todas las propiedades específicas están definidas como propiedades por unidad de masa y por tanto son intensivas, por ejemplo volumen específico (volumen por unidad de masa), la presión (fuerza / área), la densidad (masa/volumen) que es el recíproco de volumen específico y la temperatura.

2.1.2.3 Relación entre propiedades intensivas y extensivas

Si se denota por H la propiedad extensiva y □ por la propiedad intensiva asociada se puede establecer la relación que define cualquier propiedad intensiva como la cantidad de propiedad extensiva por unidad de masa, así

$$\eta=dH/dm$$

$$dH=\eta dm=\eta \rho dVol$$

$$H=\int \eta \rho dvol$$

La propiedad intensiva podrá ser una función continua en el espacio y dar así origen a la cantidad extensiva H en una determinada región. La propiedad extensiva si es acumulable con la acumulación de sustancia La naturaleza escalar vectorial la comparten los dos tipos de propiedades.

2.1.2.4 Propiedades Específicas

Es la relación entre una propiedad extensiva y la masa del mismo, por ejemplo: densidad, volumen específico, la energía, la entalpía.

2.1.3 Escalas de temperaturas

La temperatura es una manifestación de la energía cinética promedio de las moléculas de una sustancia, y es una medida que indica que tan frío o tan caliente.

Tabla 2.1 Relación entre las escalas de temperatura

Escala de	Ebullición del	Congelación del	Cero
Temperatura	agua	agua	Absoluto
Celsius [°C]	100	0	- 273
Kelvin [°K]	373	273	0
Farenheit [°F]	212	32	- 460
Rankine [°R]	672	492	0

Fuente: Ayala Cueva, Galo Ing. "Combustión y Combustibles para Motores Industriales" ,2004

2.1.4 Leyes de la termodinámica

2.1.4.1 Primera Ley de la Termodinámica

La primera ley de la termodinámica afirma que la energía total de cualquier sistema aislado se conserva e identifica el calor como una forma de energía. Esta ley es conocida como "Ley de conservación de la energía".

Para un sistema cerrado, de masa constante, la primera ley de la termodinámica se expresa matemáticamente por medio de:

$$\mathsf{E}_\mathsf{T} = \mathsf{Q} - \mathsf{W} \tag{2.4}$$

Donde:

 E_T es el cambio total de energía del sistema, Q es el calor agregado al sistema y W el trabajo realizado por el sistema.

La primera ley de la termodinámica sólo proporciona la expresión cuantitativa del principio de conservación de la energía. En palabras, expresa que el cambio total de energía de un sistema cerrado es igual al calor transferido al sistema, menos el trabajo efectuado por el sistema.

La energía total se descompone en una suma de términos que se llaman las diferentes formas de la energía.

En general la energía total, E_T , de un sistema puede descomponerse en energía cinética, E_c , energía potencial, E_p , y energía interna, U, es decir:

$$E_T = E_c + E_p + U \tag{2.5}$$

$$E_c = \frac{1}{2} \text{ mv}^2$$
 (2.6)

E_p depende de los campos externos a los que está sometido el sistema y viene dada por una función de la posición.

U considera la energía de las partículas que constituyen el sistema y sus interacciones a corta distancia.

En realidad, esta descomposición permite distinguir entre las formas de energía "mecánica" (E_c y E_p) y una forma de energía "termodinámica" (U).

El cambio de energía total del sistema puede descomponerse en:

$$\Delta E_T = \Delta E_C + \Delta E p + \Delta_u \tag{2.7}$$

Donde:

 E_c y E_p representan el cambio de su energía externa, cinética y potencial respectivamente, y ΔU representa el cambio de su energía interna, dada por la energía cinética y potencial de las moléculas, átomos y partículas subatómicas que constituyen el sistema.

Si se expande ΔE_T en la expresión de la primera ley, se obtiene la ecuación:

$$\Delta E_c + \Delta E_p + \Delta U = Q - W \tag{2.8}$$

En el caso frecuente donde las energías potencial y cinética (energía externa) del sistema no cambian, esta ecuación se convierte en:

$$\Delta U = Q - W \tag{2.9}$$

Energía interna (U)

La energía interna de un sistema, tiene la forma de energía cinética y potencial de las moléculas, átomos y partículas subatómicas que constituyen el sistema, es decir:

$$U = E_{c int} + E_{p int}$$
 (2.10)

En general la energía interna es la energía asociada con el movimiento de átomos y moléculas que conforman la materia y con la posición relativa de unas respecto a otras. Teniendo en cuenta el hecho de que la materia en un sistema se encuentra en permanente movimiento, la energía interna integra las formas microscópicas resultantes del movimiento molecular en el sistema y las separa de la velocidad, posición o campo gravitacional del sistema como grupo.

Trabajo (W)

El trabajo en termodinámica siempre representa un intercambio de energía entre un sistema y su entorno. Cuando un sistema sufre una transformación, este puede provocar cambios en su entorno. Si tales cambios implican el desplazamiento (variación) de las fuerzas que ejerce el entorno sobre el sistema, o más precisamente sobre la frontera entre el sistema y el entorno, entonces ha habido producción de trabajo. El trabajo tiene dimensiones de energía y representa un intercambio de energía entre el sistema y su entorno. El trabajo mecánico ocurre cuando una fuerza que actúa sobre el sistema lo mueve a través de una distancia. Tal como en mecánica este trabajo se define por la integral:

$$W = \int F \, \delta I \tag{2.11}$$

Donde:

F es la componente de la fuerza que actúa en la dirección del desplazamiento δl . No es necesario que la fuerza F en realidad provoque el desplazamiento δl ; sin embargo, debe ser una fuerza externa. La convención de signos usual establece que el valor de W es negativo cuando el trabajo se hace sobre el sistema y positivo cuando es hecho por éste.

Calor (Q)

El calor, al igual que el trabajo, se considera en termodinámica como energía en tránsito a través de la frontera que separa a un sistema de su entorno. Sin embargo, a diferencia del trabajo, la transferencia de calor se origina por una diferencia de temperatura entre el sistema y su entorno. No se considera el calor que se almacena en un sistema.

Cuando se le agrega energía en forma de calor a un sistema se almacena como energía cinética y potencial de las partículas microscópicas que lo integran. Las unidades de calor son las de trabajo y energía.

La convención de signos utilizada para una cantidad de calor Q es opuesta a la que se utiliza para el trabajo. El calor añadido a un sistema se da con un número positivo, en tanto que el calor extraído de un sistema se da con un número negativo.

Cuando una sustancia incrementa su temperatura de T_A a T_B , el calor absorbido se obtiene multiplicando la masa (o el número de moles n) por el calor específico c y por la diferencia de temperatura T_B - T_A .

$$Q = nc (T_B - T_A)$$
 (2.12)

Cuando no hay intercambio de energía (en forma de calor) entre dos sistemas, decimos que están en equilibrio térmico. Las moléculas individuales pueden intercambiar energía, pero en promedio, la misma cantidad de energía fluye en ambas direcciones, no habiendo intercambio neto. Para que dos sistemas estén en equilibrio térmico deben de estar a la misma temperatura.

Calor Específico (C)

De acuerdo con la termodinámica se tiene que los 2 calores específicos importantes son: Cv y Cp llamados calores específicos a volumen y presión constante respectivamente.

El calor específico a volumen constante se define como el cambio de energía molecular interna, u, por unidad de masa por grado de temperatura, cuando los estados finales corresponden al equilibrio del mismo volumen., como unidad derivada para el sistema internacional es:

$$C_{v} = \left(\frac{\partial u}{\partial T}\right)_{v} \left[\frac{kJ}{kg\ K}\right] \tag{2.13}$$

El calor específico a presión constante se define como el cambio en la entalpía para una unidad de masa (o un mol), entre dos estados de equilibrio a la misma presión, por grado de cambio en la temperatura, como unidad derivada para el sistema internacional es:

$$C_{p} = \left(\frac{\partial h}{\partial T}\right)_{p} \left[\frac{kJ}{kg\ K}\right] \tag{2.14}$$

Mientras el exponente calorimétrico del gas esta representado por γ (gamma) y es la relación:

$$\gamma = \frac{Cp}{Cv} \tag{2.15}$$

Los valores de Cp y Cv para el aire en condiciones estándar son:

$$Cp = 0.240 [BTU/lb^{\circ}R]$$
 (2.16)

$$Cv = 0.171 [BTU/lb^{\circ}R]$$
 (2.17)

Entalpía (H)

La entalpía es una propiedad que en su forma más simple se define como la cantidad total de energía que contiene una sustancia que fluye (debido a todas sus propiedades termodinámicas), esto es la suma de la energía interna y la energía de flujo expresada de la siguiente manera:

$$H = U + P V \tag{2.18}$$

Cuando se toma por unidad de masa de la sustancia, se llama Entalpía Específica (h), expresada en [kJ/kg] y al igual que la energía interna, es una propiedad de la sustancia, lo que significa que tendrá un único valor en cada estado, se lo expresa de la siguiente manera:

$$h = u + Pv \tag{2.19}$$

En vista de que la energía interna u y el producto P.v tienen unidades de energía, h también tiene unidades de energía. Por otra parte, como u, P y v son todas propiedades del sistema, h también lo debe ser.

2.1.4.2 Segunda Ley de la Termodinámica

La segunda ley nos habla de las restricciones que existen al utilizar la energía en diferentes procesos. Esta no es una consecuencia de la primera, sino una ley independiente. En otros términos se diría lo siguiente: "No existe un proceso cuyo único resultado sea la absorción de calor de una fuente y la conversión íntegra de este calor en trabajo". Siendo este el principio de Kelvin-Planck. No es posible convertir completamente calor en trabajo, pero sí trabajo en calor. Así pues, mientras, según la primera ley, calor y trabajo son formas equivalentes de intercambio de energía, la segunda ley varía radicalmente su equivalencia, ya que el trabajo puede pasar íntegramente a calor pero el calor no puede transformarse íntegramente en trabajo. Desde el punto de vista de la primera ley de la termodinámica, los dos procesos (trabajo y calor) son equivalentes. El calor puede transformarse en trabajo, o el trabajo en calor. Esta equivalencia se pierde si consideramos la segunda ley. El trabajo es una forma más "coherente" de energía. Siempre podemos transformarlo en calor, pero la inversa no siempre es posible.

Procesos Reversibles e Irreversibles

Una transformación es reversible si se realiza mediante una sucesión de estados de equilibrio del sistema con su entorno y es posible devolver al sistema y su entorno al estado inicial por el mismo camino. Reversibilidad y equilibrio son, por tanto, equivalentes. Si una transformación no cumple estas condiciones se llama irreversible. En la realidad, las transformaciones reversibles no existen. En los procesos irreversibles aumenta la entropía del sistema. Y viceversa, si un sistema experimenta un aumento de entropía tras un proceso, éste es irreversible.

Entropía (S)

La entropía es una medida del orden (o desorden) de un sistema o de la falta de grados de restricción; la manera de utilizarla es medirla en nuestro sistema inicial, es decir, antes de remover alguna restricción, y volverla a medir al final del proceso que sufrió el sistema.

Hay que tener claro que el desorden viene dado por el número de estados en los que un sistema puede estar. Un sistema estará más desordenado que otro cuando el número de estados diferentes en los que podemos encontrar al primero es mayor que los del segundo.

La entropía es la propiedad que permanece constante en algunas transformaciones y que aumenta en otras, sin disminuir jamás.

La entropía permanece constante en un proceso adiabático reversible. Esto quiere decir el proceso sin intercambio de calor al exterior y reversible (ideal).

Aquellas trasformaciones en las cuales la entropía aumenta, se denominan "procesos irreversibles".

La segunda ley de la termodinámica se aplica solamente a sistemas aislados, es decir, a sistemas en los cuales las transformaciones implicadas quedan todas incluidas en ellos.

En sistemas abiertos la energía puede pasar de un sistema a otro y entonces mientras uno la pierde, el otro la gana, pero el balance total es igual a cero, lo mismo acontece con la entropía: si un sistema gana en entropía, su alrededor (que es otro sistema) la pierde, pero el balance total es nulo. Vale decir, al sistema más su alrededor se le considera como un sistema aislado. Éste es el caso, sin embargo, de los procesos reversibles, los cuales son procesos ideales (ya que no existen en la naturaleza). En los sistemas reales (procesos irreversibles), el balance final de entropía es siempre positivo. Además, es muy importante señalar que la entropía aumenta en un sistema aislado hasta alcanzar un máximo, que es su estado de equilibrio (porque espontáneamente permanece en él).

2.2 Fenómenos de Transferencia de Calor

2.2.1 Radiación

No se requiere que intervenga un espacio lleno de materia para que las superficies intercambien calor por radiación .Esto es así por que la radiación térmica es radiación electromagnética que se emite en la banda de longitud de onda entre 0.1 y 100 micrómetros (1 micra es igual a 10^{-6} metros) como resultado únicamente de la temperatura en la superficie. Por lo tanto, dicha radiación posee las mismas propiedades que los rayos X, la luz visible, y las ondas de radio, el rasgo de distinción de la radiación térmica es su banda de longitud de onda. La radiación visible ocurre entre longitudes de onda de 0.35 y 0.75 micrómetros, los rayos x ocurren entre longitudes de onda de 10^{-5} y $2x10^{-2}$ micrómetros. Los líquidos, sólidos y algunos gases (especialmente vapor de agua y hidrocarburos) emiten radiación térmica como resultado de sus temperaturas. Un emisor ideal, que se llama cuerpo negro emite radiación térmica según la ecuación de Stefan Boltzmann:

$$e_b = \sigma T^4 \tag{2.20}$$

Donde eh es la potencia emisiva del cuerpo negro, y es la energía emitida por unidad de área de la superficie y unidad de tiempo; σ es la constante de Stefan Boltzmann; y T es la temperatura en grados absolutos. Las dos escalas de temperatura absoluta que se usan son las escalas de Ranking y Kelvin, donde se utilizan las siguientes transformaciones:

$$T(^{\circ}R) = T(^{\circ}F) + 459.7^{\circ} = T(^{\circ}F) + 460^{\circ}$$

 $T(^{\circ}K) = T(^{\circ}C) + 273.15^{\circ} = T(^{\circ}C) + 273^{\circ}$

Donde:

T(°F) y T(°C) son las temperaturas en grados Fahrenheit y Celsius, respectivamente. Los valores de la constante de Stefan Boltzmann en el sistema británico y SI son los siguientes:

$$\sigma = 0.173x10^{-8} \frac{Btu}{h - pie^2 \bullet^{\circ} R^4}$$
$$\sigma = 5.668x10^{-5} \frac{W}{m^2 \bullet K^4}$$

2.2.2 Conducción

Los primeros adelantos acerca de la conducción de calor se deben, en gran parte a los esfuerzos del matemático francés Fourier (1822), que propuso la ley de la conducción de calor de Fourier. La ley de Fourier es una generalización de la información empírica. Dicha ley predice como se conduce el calor a través de un medio, partiendo de una región alta de temperatura a una región de baja temperatura. Permítanos considerar un horno, caliente en el interior y frió en su exterior. La razón de calor transferido, desde dentro del horno hasta el exterior, es directamente proporcional al área de la superficie de la pared, A, que se encuentra normal a la dirección de flujo de calor, directamente proporcional a la diferencia de temperaturas entre las paredes, (Tint-Text), e inversamente proporcional al espesor de las paredes. Por lo tanto:

$$Q = \frac{KA(T_{\text{int}} - T_{ext})}{L}$$
 (2.21)

Donde:

K: Constante de proporcionalidad y se llama conductividad termica de la pared, dicha constante es una propiedad física del material en cuestión Debe insistirse en que para mantener las temperaturas con valores $T_{\rm int}$ y $T_{\rm ext}$, se debe suministrar a la cara de la pared que tiene $T_{\rm int}$ una cantidad de calor Q Donde:

Q= razón de flujo de calor Btu/h, A= área de la pared normal al flujo de calor, $pies^2$ o m^2 , Tint = Temperatura de la superficie interior de la pared, °F o °C, Text = Temperatura de la superficie exterior de la pared, °F o °C, k = Conductividad termica de la pared $\frac{Btu}{h-pies^\circ F}$

Con frecuencia, la conductividad térmica se da en unidades $\frac{Btu}{h-pies^{2} \circ F}$. Esto ocurre en especial cuando de trata de materiales que se usan en la industria de la construcción. Cuando se usan dichas unidades se debe dividir el valor dado entre 12 con el fin de obtener unidades $\frac{Btu}{h-pies^{\circ}F}$. Además, ya que un grado Fahrenheit es igual en magnitud a un grado Ranking, la conductividad térmica se puede escribir en unidades de $\frac{Btu}{h-pies^{\circ}R}$. Esto quiere decir que se conducirá el mismo número de Btu por hora a través de un material dado con un pie de espesor, por cada grado Fahrenheit o Ranking que se imprima a travès del mismo. De igual modo, ya que un grado Celsius tiene la misma magnitud que un grado Kelvin, se puede escribir la conductividad térmica en unidades de $\frac{W}{m*K}$, reiterando:

$$\frac{1Btu}{h - pie^{\circ}F} = \frac{1Btu}{hr - ft^{\circ}R}$$
$$\frac{1W}{m \cdot C} = \frac{1W}{m \cdot K}$$

2.2.3 Convección

Los problemas de convección en la transferencia de calor son considerablemente más difíciles que los que se encuentran en la conducción y con demasiada frecuencia es imposible encontrar soluciones analíticas. Dichas dificultades surgen del hecho de que el mecanismo básico para la convección es una combinación de conducción y movimientos de fluidos. La convección ocurre siempre que una superficie esta en contacto con un fluido que tiene una temperatura diferente a la de la superficie en cuestión. Por ejemplo, considere una pared caliente vertical y en contacto con un fluido muy frío. Con el transcurso del tiempo, el fluido en contacto inmediato con la pared se calienta

por conducción, provocando que el fluido se haga menos denso. Debido a la diferencia de densidad, se obtiene una fuerza de flotación resultante, provocando que el fluido más ligero se eleve y reemplace otra cantidad del fluido más frió, repitiéndose continuamente este proceso. Puesto que el movimiento del fluido queda establecido por fuerzas naturales, a este tipo de convección se le llama convección natural o libre. Otros ejemplos de convección natural libre se dan en los mecanismos asociados con el aire caliente que sale de los radiadores de calor caseros y el flujo de humo de cigarrillos que sale de una habitación.

Si la pared que antes mencionamos fuera de la habitación en una casa y se pusiera a funcionar un ventilador dirigido hacia la pared, entonces una fuerza externa provocaría el movimiento del fluido, dando por resultado un efecto de convección forzada. Tenemos un ejemplo más de convección forzada en los radiadores de auto. De nuevo, hay una pequeña transferencia de calor por radiación de una radiador de un auto, pero más bien el mecanismo para el flujo de calor es el de convección forzada. Si la velocidad del aire debida a la acción de un ventilador dirigido hacia la pared fuera suficientemente baja, digamos 0.5 pies/seg., entonces el movimiento total del aire seria el resultado en parte debido al ventilador y parte a la fuerza de flotación, resultando una convección combinada. En la práctica, los ingenieros usan la siguiente expresión para determinar razones de transferencia de calor por convección:

$$Q = h A(Ts-T\infty)$$

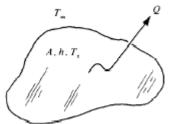


Figura 2.3 Transferencia de calor por convección desde una superficie

Donde:

Q= Calor transferido de la superficie al fluido circulante, Btu/h, A= Área de la superficie $pies^2, m^2$, Ts= Temperatura en la superficie, °F o °C, T ∞ =

Temperatura del fluido circundante, ${}^{\circ}F$ o ${}^{\circ}C$. Se usa el subíndice ${}^{\infty}$ para identificar aquella parte del fluido que está suficientemente alejado de la superficie como para que no le afecte esta por medio del proceso de transferencia de calor, h = Coeficiente convectivo de transferencia de calor

$$\frac{Btu}{h - pie^2 \bullet^{\circ} F}$$
 o bien $\frac{W}{m^2 \bullet K}$

Esta ecuación no explica el mecanismo de transferencia de calor por convección sino más bien define el coeficiente convectivo de transferencia de calor. En consecuencia, se invierte un gran esfuerzo en la determinación de h, que es una función demasiada complicada, flujo de fluidos y propiedades de los fluidos. Se puede introducir el concepto de resistencia térmica para el flujo de calor por convección en forma semejante a la que presentamos para la conducción de calor a través de una pared. Partiendo de la ecuación general para la transferencia de calor por convección se tiene:

$$Q= h A(Ts-T\infty)$$
 (2.22)

Y rescribiéndole en la forma:

$$Q = \frac{Ts - T\infty}{(\frac{1}{hA})}$$

Podemos observar que el flujo de corriente es Q, la fuerza de empuje es $(Ts-T\infty)$ y puesto que:

$$Q = \frac{\Delta T_{sobretotal}}{\Sigma Ri} \tag{2.23}$$

Condición	h Btu/h-pie ² °F	h W/m²•°C
Aire, convección libre	1-3	5-15
Aire o vapor sobrecalentado		
convección forzada	3-50	15-300
Aceite, convección forzada	10-300	50-1700
Agua, convección forzada	50-2,000	300-12,000
Agua, hirviendo	500-10,000	3000-55,000
Vapor, condensándose	1,000-20,000	5500-100,000

Figura 2.4 Valores representativos del coeficiente convectivo de transferencia de calor

2.3 Procesos de Generación Térmica

Generación Térmica de Portadores. El Electrón y el Hueco

Si se eleva la temperatura del monocristal de silicio por encima de 0 K, parte de la energía térmica permite liberar alguno de los electrones. Ello produce dos efectos:

- Aparece un electrón libre capaz de moverse a través de la red en presencia de un campo eléctrico.
- En el átomo al que se asociaba el electrón aparece un defecto de carga negativa, es decir, una carga positiva, que se denomina hueco.

Globalmente, el cristal mantiene la neutralidad eléctrica, ya que no ha ganado ni perdido cargas. Cuando se producen electrones libres en un semiconductor únicamente por agitación térmica, existen huecos y electrones en números iguales, porque cada electrón térmicamente excitado deja detrás de sí un hueco. Un semiconductor con un número igual de huecos y electrones se denomina intrínseco.

Recapitulando, los semiconductores se diferencian:

De los aislantes: La energía para liberar un electrón es menor en el semiconductor que en el aislante. Así a temperatura ambiente el primero dispone ya de portadores libres.

De los conductores: Los semiconductores poseen dos tipos de portadores de carga: el electrón y el hueco.

En el caso del silicio puro monocristalino, el número de portadores libres a temperatura ambiente es lo suficientemente bajo como para asegurar una alta resistividad.

Recombinación de Pares Electrón - Hueco

Tal y como se acaba de explicar, el hueco es un enlace covalente "no satisfecho". Si un electrón atraviesa la zona en la que se encuentra el hueco puede quedar atrapado en él. A este fenómeno se le denomina *recombinación*, y supone la desaparición de un electrón y de un hueco. Sin embargo, como en el caso anterior, el material mantiene su neutralidad eléctrica.

Impurificación o Dopado de los Semiconductores

En un semiconductor intrínseco las concentraciones de huecos y de electrones pueden alterarse mediante la adición de pequeñas cantidades de elementos llamados impurezas o dopantes, a la composición cristalina. Como veremos a lo largo de este curso, es esta característica de los semiconductores la que permite la existencia de circuitos electrónicos integrados.

La cuestión es: ¿Qué sucede si además de elevar la temperatura por encima de 0 K consideramos la presencia de impurezas en el silicio?. Supongamos que sustituimos un átomo de silicio (que pertenece al grupo IV) por otro de fósforo (grupo V), pentavalente. Como sólo hay la posibilidad de establecer cuatro enlaces covalentes con los átomos de silicio adyacentes, un electrón quedará libre. Teniendo en cuenta esto, es fácil deducir que es lo que ocurrirá si se sustituye un átomo de silicio por otro de un elemento perteneciente al

grupo III, el boro por ejemplo: evidentemente se introducirá un hueco, ya que el boro solo aporta tres electrones de valencia.

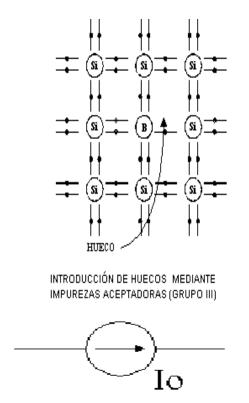


Figura 2.5 Introducción de impurezas en el silicio

Si la introducción de impurezas se realiza de manera controlada pueden modificarse las propiedades eléctricas en zonas determinadas del material. Así, se habla de dopado tipo P ó N (en su caso, de silicio P ó N) según se introduzcan huecos o electrones respectivamente.

Centrémonos ahora en el silicio tipo P. En la práctica, a temperatura mayor que cero este material estará formado por:

Huecos procedentes del dopado.

Huecos procedentes de la generación térmica de pares e⁻/h⁺.

Electrones procedentes de la generación térmica de pares e /h⁺.

Electrones y huecos procedentes de impurezas no deseadas.

Habitualmente, a temperatura ambiente, el nivel de dopado es tal que los huecos procedentes de él superan en varios órdenes de magnitud al resto de portadores. Ello confiere el carácter global P del material. Sin embargo, ha de tenerse en cuenta que existen electrones. En este caso, los huecos son los portadores mayoritarios, y los electrones los minoritarios. Si se trata de un

material de tipo N, los portadores mayoritarios serán los electrones, y los minoritarios los huecos. Con la tabla siguiente se pretende rematar estos conceptos.

Tabla 2.2 Tabla de materiales de portadores mayoritarios y minoritarios

Material	Portadores mayoritarios	Portadores minoritarios
Silicio Puro	-	-
Silicio tipo P	Huecos	Electrones
Silicio tipo N	Electrones	Huecos

Fuente Wilson Jerry, Fundamentos de Física, Pág. 165

Hay que resaltar nuevamente que el dopado no altera la neutralidad eléctrica global del material.

Influencia de la Temperatura Sobre los Semiconductores

Al presentar el concepto de portadores mayoritarios y minoritarios se ha asumido una hipótesis de trabajo: que a temperatura ambiente (25°C) la concentración de portadores provocada por generación térmica es mucho menor que la causada por los dopados. Pues bien, si se eleva la temperatura sobre la de ambiente se aumentará la tasa de pares electrón/hueco generados. Llegará un momento en el que, si la temperatura es lo suficientemente elevada, la cantidad de pares generados enmascare a los portadores presentes debidos a la impurificación. En ese momento se dice que el semiconductor es degenerado, y a partir de ahí no se puede distinguir si un material es de tipo N ó P: es la temperatura a la cual los dispositivos electrónicos dejan de operar correctamente. En el caso del silicio, esta temperatura es de 125 °C.

Conducción Eléctrica en Semiconductores

Dada la especial estructura de los semiconductores, en su interior pueden darse dos tipos de corrientes:

- Corrientes por arrastre de campo
- Corrientes por difusión

En los siguientes subapartados se explica cada unos de estos tipos de conducción.

Corriente por Arrastre de Campo

Supongamos que disponemos de un semiconductor con un cierto número de electrones y de huecos, y que aplicamos en su interior un campo eléctrico. Veamos que sucede con los portadores de carga:

Electrones libres

Obviamente, la fuerza que el campo eléctrico ejerce sobre los electrones provocará el movimiento de estos, en sentido opuesto al del campo eléctrico. De este modo se originará una corriente eléctrica. La densidad de la corriente eléctrica (número de cargas que atraviesan la unidad de superficie en la unidad de tiempo) dependerá de la fuerza que actúa (qE), del número de portadores existentes y de la "facilidad" con que estos se mueven por la red, es decir:

$$J_e = {}_e n(qE) \tag{2.24}$$

Donde:

J_e = Densidad de corriente de electrones

e = Movilidad de los electrones en el material

n = Concentración de electrones

q = Carga eléctrica

E = Campo eléctrico aplicado

La movilidad _e es característica del material, y está relacionada con la capacidad de movimiento del electrón a través de la red cristalina.

Huecos

El campo eléctrico aplicado ejerce también una fuerza sobre los electrones asociados a los enlaces covalentes. Esa fuerza puede provocar que un electrón perteneciente a un enlace cercano a la posición del hueco salte a ese espacio.

Así, el hueco se desplaza una posición en el sentido del campo eléctrico. Si este fenómeno se repite, el hueco continuará desplazándose. Aunque este movimiento se produce por los saltos de electrones, podemos suponer que es el hueco el que se está moviendo por los enlaces. La carga neta del hueco vacante es positiva y por lo tanto, se puede pensar en el hueco como una carga positiva moviéndose en la dirección del campo eléctrico. Obsérvese que los electrones individuales de enlace que se involucran en el llenado de los espacios vacantes por la propagación del hueco, no muestran movimiento continuo a gran escala. Cada uno de estos electrones se mueve únicamente una vez durante el proceso migratorio. En contraste, un electrón libre se mueve de forma continua en la dirección opuesta al campo eléctrico.

Análogamente al caso de los electrones libres, la densidad de corriente de huecos viene dada por:

$$J_h = {}_h p(qE) \tag{2.25}$$

Donde:

J_h = Densidad de corriente de huecos

h = Movilidad de los huecos en el material

p = Concentración de huecos

q = Carga eléctrica del hueco: igual y de signo opuesto a la del electrón

E = Campo eléctrico aplicado

La movilidad h es característica del material, y está relacionada con la capacidad de movimiento del hueco a través de los enlaces de la red cristalina. La "facilidad" de desplazamiento de los huecos es inferior a la de los electrones.

Consideremos ahora el caso de un semiconductor que disponga de huecos y electrones, al que sometemos a la acción de un campo eléctrico. Hemos visto cómo los electrones se moverán en el sentido opuesta a la del campo eléctrico, mientras que los huecos lo harán en según el campo. El resultado es un flujo neto de cargas positivas en el sentido indicado por el campo, o bien un flujo neto de cargas negativas en sentido contrario. En definitiva, se mire por donde se mire, la densidad de corriente global es la suma de las densidades de corriente de electrones y de huecos:

$$J = J_h + J_e = {}_h p(qE) + {}_e n(qE)$$
 (2.26)

Conducción por Difusión de Portadores

Antes de entrar en el fenómeno de conducción por difusión vamos a explicar el concepto de difusión. Imaginar que tenemos una caja con dos compartimentos separados por una pared común. En un compartimiento introducimos un gas A, y en el otro un gas B.

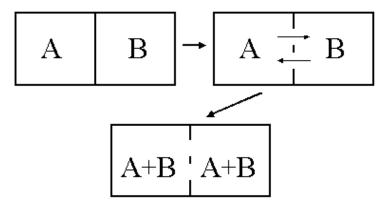


Figura 2.6 Difusión de dos gases a través de una membrana porosa

Si en un momento determinado se abre una comunicación entre las dos estancias parte del gas A atravesará la pared para ocupar el espacio contiguo, al igual que el B. El resultado final es que en ambas estancias tendremos la misma mezcla de gases A+B. La difusión de partículas es un mecanismo de transporte puramente estadístico, que lleva partículas "de donde hay más, a donde hay menos", siempre que no haya ninguna fuerza externa que sea capaz de frenar dicho proceso. Matemáticamente puede expresarse esta idea mediante la primera ley de Fick, que establece que el flujo de partículas que atraviesa una superficie (J partículas/s/m²) es proporcional al gradiente de concentración (c partículas/m³) de dichas partículas:

$$J = -D \frac{dc}{dx}$$
 (2.27)

A la constante de proporcionalidad se le denomina difusividad, y tiene dimensiones de m²/s.

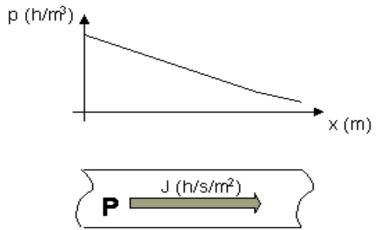


Figura 2.7 Densidad de corriente de difusión de huecos

La difusión no depende del valor absoluto de la concentración de portadores, sino de solamente de su derivada espacial, es decir, de su gradiente.

En los metales, la difusión no es un proceso de importancia, porque no existe un mecanismo mediante el cual se pueda generar un gradiente de densidad. Dado que un metal únicamente hay portadores negativos de carga, cualquier gradiente de portadores que se pudiera formar desequilibraría la neutralidad de la carga. El campo eléctrico resultante crearía una corriente de arrastre, que de manera instantánea anularía el gradiente antes de que pudiera darse la difusión. Por contra, en un semiconductor hay portadores positivos y negativos de carga, por lo que es posible la existencia de un gradiente de densidad de huecos y de electrones, mientras se mantiene la neutralidad de la carga.

En un semiconductor, los componentes de la densidad de corriente de difusión pueden expresarse de forma unidimensional mediante la ecuación:

$$J_{\text{diffusion}} = qD_{e} \frac{dn}{dx} - qD_{h} \frac{dp}{dx}$$
 (2.28)

Donde:

J_{difusión} = Densidad de corriente de difusión

q = Carga del electrón

 D_e , D_h = Difusividad de los electrones y de los huecos

n = Concentración de electrones

p = Concentración de huecos

El segundo término de la expresión tiene signo negativo porque la pendiente negativa de los huecos da lugar a una corriente de los huecos.

2.4 Acumuladores

Acumulador, pila en la que sus sustancias químicas, que al reaccionar en los electrodos producen energía eléctrica, se pueden regenerar al pasar a través de ellas una corriente eléctrica.

Los acumuladores pueden servir para almacenar el excedente de energía eléctrica producida por dispositivos eólicos o fotovoltaicos. Un concepto más global es la entrega del excedente de energía eléctrica a las redes existentes y el uso de éstas como fuentes suplementarias si la disponibilidad solar es insuficiente. Sin embargo, la economía y la fiabilidad de este proyecto plantean límites a esta alternativa.

Figura 2.8 Acumulador para automóvil

2.5 Disipadores

Un 'disipador (heat sink)' es un elemento físico, sin partes móviles, destinado a eliminar el exceso de <u>calor</u> de cualquier elemento.

Figura 2.9 Disipador

Su funcionamiento se basa en la <u>Segunda ley de la termodinámica</u>, transfiriendo el calor de la parte caliente que se desea disipar al <u>aire</u>. Este proceso se propicia aumentando la superficie de contacto con el aire permitiendo una eliminación más rápida del calor excedente. Cada disipador tiene un <u>coeficiente</u> de disipación específico que se calcula de esta manera:

$$R_{d-a} = \frac{T_d - T_a}{P} (2.29)$$

Donde:

 R_{d-a} es el coeficiente de disipación específico de cada disipador (°C/W), T_d es la temperatura del disipador (°C), T_a es la temperatura ambiental (°C), P es la <u>energía</u> disipada por unidad de tiempo (W).

Al usar esta fórmula hay que tener en cuenta que el flujo de aire que recibe el disipador influye en el valor del coeficiente de disipación, siendo menor el coeficiente cuanto mayor sea el flujo. Dicho de otra manera, cuanto mayor sea

la corriente de aire que roce con el disipador menor tendrá que ser la diferencia de temperaturas para disipar la misma cantidad de calor.

En los aparatos electrónicos se suelen usar para evitar un aumento de <u>temperatura</u> en algunos componentes. Por ejemplo se emplea sobre <u>transistores</u> en circuitos de potencia para evitar que las altas <u>corrientes</u> puedan llegar a quemarlos.

En los <u>ordenadores</u> su uso es intensivo, como por ejemplo en algunas <u>tarjetas</u> <u>gráficas</u> o en el <u>microprocesador</u> para evacuar el calor procedente de la conmutación de los transistores, sin embargo, en ocasiones el calor generado en los componentes es demasiado elevado como para poder emplear disipadores de dimensiones razonables, llegando a ser necesarias emplear otras formas de refrigeración como la <u>refrigeración líquida</u>.

En la imagen se muestra un procesador <u>Pentium III</u> a 800 <u>MHz</u> (con conexión <u>Slot 1</u>), que lleva incorporado un disipador alargado, y dos ventiladores, cada uno de ellos con un cable de alimentación para ser conectado a la <u>placa base</u>. Los fabricantes de ordenadores acostumbran incluir un disipador y un o más ventiladores aunque no sean estrictamente necesarios, ya que es una forma barata de prevenir los posibles problemas que pueda haber por picos de potencia disipada en el componente o incrementos en la temperatura ambiente del entorno de trabajo.

Los disipadores térmicos son componentes metálicos que utilizan para evitar que algunos elementos electrónicos como los <u>transistores bipolares</u> se calienten demasiado y se dañen.

El calor que produce un transistor no se transfiere con facilidad hacia el aire que lo rodea. Algunos transistores son de plástico y otros metálicos. Los que son metálicos transfieren con más facilidad el calor que generan hacia el aire que lo rodea y si su tamaño es mayor, mejor.

Es importante aclarar que el elemento transistor que uno ve, es en realidad la envoltura de un pequeño "chip" que es el que hace el trabajo, al cual se le llama "juntura" o "unión".

La habilidad de transmitir el calor se llama conductancia térmica y a su recíproco se le llama resistencia térmica (Rth) que tiene unidad de °C / W (grado Centígrado / Watt).

2.6 Aislamientos

2.6.1 Aislamiento Térmico.

Aislamiento térmico es la capacidad de los materiales para oponerse al paso del calor por conducción. Se evalúa por la resistencia térmica que tienen. La medida de la resistencia térmica o, lo que es lo mismo, de la capacidad de aislar térmicamente, se expresa, en el Sistema Internacional de Unidades (SI) en m².K/W (metro cuadrado y kelvin por vatio). La resistencia térmica es inversamente proporcional a la conductividad térmica. Todos los materiales oponen resistencia, en mayor o menor medida, al paso del calor a través de ellos. Algunos, muy escasa, como los metales, por lo que se dice de ellos que son buenos conductores; los materiales de construcción (vesos, ladrillos, morteros) tienen una resistencia media. Aquellos materiales que ofrecen una resistencia alta, se llaman aislantes térmicos específicos o, más sencillamente, aislantes térmicos. Cuando se produce un "agujero" en el aislamiento, producido por un material muy conductor o un agujero físico, se habla de un puente térmico.

2.6.2 Tipos de aislamiento térmico

La mejor manera de evaluar los tipos diferentes de aislamiento térmico consiste en comparar sus valores R. R es por resistencia. Cuanto más alto sea el valor R, más resistente será el aislamiento térmico. El aislamiento térmico altamente resistente elimina las corrientes de aire y hace que su casa esté más acogedora que el aislamiento térmico con un valor R más bajo. El aislamiento térmico se ofrece en una serie de materiales y formas para las diferentes partes de su casa. La información que sigue le ayudará a entender los diferentes tipos de aislamiento térmico.

Aislante de relleno

Este tipo de aislamiento térmico incluye fibra de vidrio, lana de escoria, celulosa, perlita y vermiculita, y se puede colocar o soplar en el lugar. Se utiliza en pisos sin terminar del ático, sobre aislamiento térmico existente en los pisos terminados del ático y en paredes interiores terminadas. Sólo los profesionales capacitados deben instalar el aislante de relleno.

Aguatas o mantas

Este tipo de aislamiento térmico incluye lana de escoria y fibra de vidrio. Las aguatas se ofrecen en pedazos precortados y las mantas en rollos grandes. Ambos se utilizan en pisos sin terminar del ático, entre las vigas y los travesaños de la pared y en el fondo de los pisos de planta baja. Las aguatas y las mantas están disponibles con o sin una barrera antivapor y son fáciles de instalar.

Tablero rígido

Este tipo de aislamiento incluye fibra de vidrio, poli estireno y uretano, y se vende como tableros de construcción, lámina o tablero para tabiques. Se utiliza comúnmente para aislar las paredes y los techos del sótano en hogares móviles o para cubrir los cerramientos existentes. Algunos tipos de tableros aislantes rígidos son combustibles y se deben cubrir con un material retardante del fuego.

Aislamiento térmico reflectante

Este tipo de aislamiento térmico incluye papel de aluminio, hoja metálica revestida y productos de papel cubiertos con un material reflectante. El aislamiento térmico reflectante se utiliza para aislar las paredes y los pisos y también se puede utilizar para aislar techos y azoteas.

CAPITULO 3

INSTALACIONES Y EQUIPOS TERMICOS

3.1 Contaminación Térmica

La contaminación es la introducción en un medio cualquiera de un contaminante, es decir, la introducción de cualquier sustancia o forma de energía con potencial para provocar daños, irreversibles o no, en el medio inicial.

Se refiere a la emisión de fluidos a elevada temperatura; se puede producir en cursos de agua. El incremento de la temperatura del medio disminuye la solubilidad del oxígeno en el agua.

La mayor parte del calor residual producido es eliminado en el condensador mediante el agua de refrigeración.

En las Centrales Térmicas se producen descargas de tipo térmico. Es decir, se afluyen aguas residuales que podrían ocasionar una eventual contaminación térmica del medio hídrico receptor. Este calor se disipa al medio ambiente mediante dos posibles sistemas:

Refrigeración en circuito abierto.

Refrigeración en circuito cerrado.

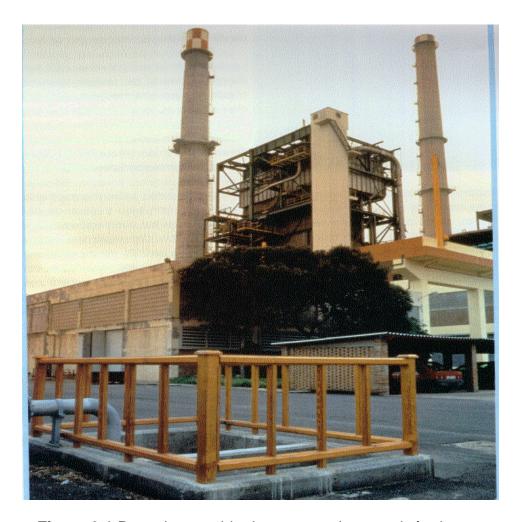


Figura 3.1 Pozo de recogida de aguas en la central térmica

El primer sistema se emplea en las centrales refrigeradas con agua de mar. Se vierte la totalidad del agua tomada y se produce la descarga térmica en el mar.

El segundo sistema se emplea en las centrales que utilizan agua dulce. Se emplean torres de refrigeración en las que, debido a la evaporación, se produce un incremento de la concentración salina. Para evitar incrustaciones en el sistema se realiza una purga de la torre. Este efluente líquido que se elimina también hay que tratarlo.

Existen límites legales de exigencia para la temperatura del agua a verter dependiendo del lugar de la central, de si se vierte a río o mar.

3.2 Instalaciones Industriales

3.2.1 Calderos

Caldero es un recipiente a presión, con fuego, que genera vapor o agua caliente, vamos a hablar de aquellos calderos que generan vapor, y se los clasifica de la siguiente manera.

Clasificación de los Calderos de Vapor:

a) Por el combustible:

Búnker

Diesel

Otros (Gas, Bagazo, etc.)

b) Por la transmisión de calor:

Piro tubulares.- Son los que el fuego va por dentro de ellos.

Acuotubulares.- Son los que el agua va por dentro de los tubos.

c) Por su posición:

Horizontales.- Los tubos van paralelos al suelo.

Verticales.- Los tubos son perpendiculares al suelo.

d) Por la presión:

Baja presión.- Menor a 14.7 PSI.

Alta presión.- Todos los calderos cuya W.P. (Work Presion o Presión de Diseño) es mayor o igual a 14.7 PSI, o sea un caldero de 14.7 PSI es un caldero de alta presión, este es el caso de los tanques de agua caliente, pues el índice de expansión es de 1 a 1700, lo que significa que para cubrir 1 m3 de agua se necesita 1700 m3 de aire, en caso que no exista este volumen se produce una onda expansiva muy fuerte.

Identificación de un Caldero:

Se identifica realmente por una placa existente en el domo del caldero que identifica:

Si es de agua o vapor.

Si el caldero es reparado o no¹.

Marca.

Presión de Trabajo o de Diseño (W.P.)

Área de transmisión de calor.

No. de constructor.

No. del inspector del ASME.

Espesor de la lámina.

Fecha de construcción o Reparación.

Controles y Equipos de Seguridad mínimos:

De acuerdo a las normas internacionales hay un mínimo de controles y equipos de seguridad que debe tener un caldero y son:

Medidor del caudal de agua de reemplazo:

Este es indispensable para que el ingeniero o jefe que revisa los formularios de operación diaria sepa la cantidad de químicos que debe agregar al caldero.

Dos controles de nivel bajo de agua:

Estos son instalados eléctricamente en serie pues ambos deben estar operativos, se instalan al mismo nivel y cualquiera de ellos debe apagar el caldero, prender la bomba de alimentación y hacer sonar la alarma de bajo de agua. Por tanto se debe considerar que ninguno de los dos controles es primario o secundario, ambos estarán totalmente operativos.

Control de presión alta:

Este control funciona cuando no han trabajado los controles de operación, y normalmente se lo calibra en un 20 % mas que la presión de operación alta pero no puede calibrase en un 10 % menos que la W.P. o Presión de Diseño, en todo caso si la calibración esta muy ajustada se la puede dejar máximo en un 10 % menos que la W.P.

Termómetro de la Chimenea:

Este es un control de seguridad muy importante del caldero, pues nos indicará si el caldero se esta incrustando o no, debido a que un aumento paulatino de la temperatura indica que la transmisión de calor al agua esta disminuyendo y por lo tanto los tubos están incrustándose. Pero si hay un cambio brusco de temperatura nos indica que el combustible tiene alguna falla, pues la combustión esta fallando. Normalmente hay tres valores que se deben leer al mismo tiempo que se encuentran íntimamente relacionados entre sí y son:

Temperatura de la chimenea.

Presión de vapor y

Presión del agua de ingreso.

Válvulas de seguridad:

Son los únicos equipos que no deben fallar nunca, pues con una falla de estos el caldero puede explotar, normalmente se diseñan de tal forma que la válvula abra por presión y evacue mínimo la misma cantidad de calor que el caldero genera. Así pues se instalan válvulas de seguridad que la suma sea mínimo un 10 % mayor que la capacidad del caldero y la presión sea un 5 % menor a la W.P. del caldero. Estos equipos deben instalarse en todos los recipientes a presión existentes (marmitas, distribuidor de vapor, tanques de agua caliente, etc.)

Manómetro de presión de vapor:

Este es un equipo que sirve fundamentalmente para la operación del caldero, se lo calibrará cada año en una institución reconocida, pues de este manómetro depende la calibración de la operación del caldero ya que se calibra la presión alta, baja y de seguridad del caldero. Si este manómetro falla, colapsan todos los sistemas de seguridad por presión del caldero. Este es otro de las mediciones que hay que tomar al mismo tiempo que la presión de agua y la temperatura de la chimenea.

Válvulas de control de nivel de agua:

Estas sirven para controlar manualmente el nivel del agua en el caldero y se usan cuando temporalmente se eliminan los controles automáticos de bajo nivel de agua. A estos equipos se los debe controlar cada hora su operatividad y deberán funcionar de la siguiente manera:

Figura 3.2 Las válvulas deben estar calibradas de acuerdo al nivel del agua del caldero, normalmente estas vienen junto a los controles de nivel.

Fotocélula del quemador:

Esta debe existir en todo caldero, cuando controla el quemador del caldero debe apagar el caldero, y cuando es de bagazo debe cortar el ingreso del mismo.

Manómetro de la bomba de alimentación de agua:

Este control es vital pues nos indica que la bomba esta funcionando bien o no; se debe calibrar cada año o cuando se dañe; este es el otro control que se debe tomar junto a la presión de vapor y a la temperatura de la chimenea.

Visor de Nivel:

Se debe revisar cada hora, el controlar el visor nos indica además del funcionamiento del visor, la operación del caldero, pues si se ven partículas de combustible en los calderos de vapor hay que parar inmediatamente, pues, el caldero se esta rompiendo, y la explosión esta muy próxima.

Válvula de seguridad para el arrastre de gases:

Esta válvula viene como equipo estándar desde 1.995, pues cuando se produce una explosión por existencia de gases, esta válvula se abre y evita que el caldero se mueva del sitio con las consecuencias graves que se producen. En los calderos más antiguos es indispensable colocar en la parte posterior.

Válvula de Seguridad del Deareador

Esta válvula debe ser escogida de acuerdo a la W.P. del deareador.

Estos son los equipos mínimos que debe tener un caldero y que además de seguridad sirven para la operación correcta y segura del caldero. Si el operador y el jefe conocen a fondo todos estos equipos, se garantizará una operación segura y una vida útil del caldero de más de 50 años.

3.2.2 Intercambiadores de Calor

U-tube heat exchanger

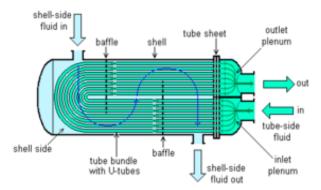


Figura 3.3 Sección de un intercambiador de calor tipo U.

Un intercambiador de calor es un dispositivo diseñado para transferir <u>calor</u> de un fluido a otro, sea que estos estén separados por una barrera sólida o que se encuentren en contacto. Son parte esencial de los dispositivos de <u>refrigeración</u>, <u>acondicionamiento de aire</u>, producción de <u>energía</u> y procesamiento <u>químico</u>. Un intercambiador típico es el <u>radiador</u> del motor de un <u>automóvil</u>, en el que el fluido refrigerante, calentado por la acción del motor, se refrigera por la corriente de aire que fluye sobre él y, a su vez, reduce la temperatura del motor volviendo a circular en el interior del mismo. <u>Simon Singh</u> (1998) describe los diferentes tipos de intercambiadores de calor.

Transmisión de calor por conducción

La conducción de calor es un proceso de transferencia de <u>energía térmica</u> que tiene lugar en los medios <u>materiales</u> entre regiones de diferente <u>temperatura</u>. Cuando las <u>moléculas</u> absorben energía térmica vibran alrededor de sus posiciones medias, aumentan la <u>amplitud</u> de la vibración y, por lo tanto, aumentan su <u>energía cinética</u>. La conducción puede darse en cualquier <u>estado de agregación de la materia</u>, pero no en el vacío. Una teoría ampliamente aceptada sugiere que la transferencia de calor por conducción es debida, por una parte a la transmisión de las vibraciones entre moléculas adyacentes, y por otra parte al movimiento de los <u>electrones</u> libres, transportando energía. Esta teoría es acorde con que los materiales que son buenos <u>conductores del calor</u>, también suelen ser buenos <u>conductores eléctricos</u>.

Transmisión de calor por convección

Cuando un fluido circula en contacto con un sólido, por ejemplo por el interior de una tubería, existiendo una diferencia de temperatura entre ambos, tiene lugar un intercambio de calor. Esta transmisión de calor se debe al mecanismo de convección. El calentamiento y enfriamiento de gases y líquidos son los ejemplos más habituales de transmisión de calor por convección. Dependiendo de si el flujo del fluido es provocado artificialmente o no, se distinguen dos tipos: convección forzada y convección libre (también llamada natural). La convección forzada implica el uso de algún medio mecánico, como una bomba o un ventilador, para provocar el movimiento del fluido. Ambos mecanismos pueden provocar un movimiento laminar o turbulento del fluido.

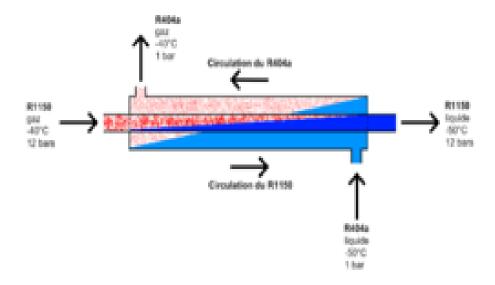


Figura 3.4 Transmisión de Calor por convección

Tipos de intercambiadores de calor:

Dada la multitud de aplicaciones de estos dispositivos, se puede realizar una clasificación dependiendo de su construcción. Para la elección del mismo se consideran aspectos como tipo de <u>fluido</u>, <u>densidad</u>, <u>viscosidad</u>, contenido en sólidos, límite de temperaturas, <u>conductividad térmica</u>, etc.

De placas:

Formados por un conjunto de placas de metal corrugadas (<u>acero inoxidable</u>, <u>titanio</u>, etc.) contenidas en un bastidor. El sellado de las placas se realiza mediante juntas o bien pueden estar soldadas.

Tubulares:

Formados por un haz de tubos corrugados o no, realizado en diversos materiales. El haz de tubos se ubica dentro de una carcasa para permitir el intercambio con el fluido a calentar o enfriar.

Tubo aleteado:

Se compone de un tubo o haz de tubos a los que se sueldan aletas de diferentes tamaños y grosores para permitir el intercambio entre fluidos y gases. P. Ej., radiador de un vehículo.

Superficie rascada:

Muy similar al tubular, con la particularidad de ubicar dentro del tubo un dispositivo mecánico helicoidal que permite el paso del fluido que, por sus características, impide un trasiego normal con los medios de bombeo habituales.

Aplicaciones industriales frecuentes

Son prácticamente innumerables dada su tipología. Entran a formar parte de cualquier proceso donde se requiera intercambio térmico. Cabría destacar:

Industria alimentaría: enfriamiento, terminación y pasteurización de leche, zumos, bebidas carbonatadas, salsas, vinagres, vino, jarabe de azúcar, aceite, etc.

Industria química y petroquímica: producción de combustibles, etanol, biodiesel, disolventes, pinturas, pasta de papel, aceites industriales, plantas de cogeneración, etc.

Industria del <u>aire acondicionado</u>: cualquier proceso que implique enfriamiento o calentamiento de los gases. Calefacción y <u>energía solar</u>: producción de agua caliente sanitaria, calentamiento de piscinas, producción de agua caliente mediante paneles solares, etc.

Industria marina: enfriamiento de motores y lubricantes mediante el empleo del agua del mar.

3.2.3 Hornos Secado

Son compartimientos de tamaño variable según sean las características del materia u objetos a seca, por ejemplo los hay para acelerar el secado de la pintura de los automóviles, también para producción de alimentos deshidratados, y las temperaturas y los modelos serán acordes con cada uno de ellos, los combustibles para lograr las temperaturas necesarias también varían, los hay eléctricos, a gas, a combustibles líquidos o sólidos.

A continuación presentamos algunas Empresas que realizan Hornos de secados:

Túneles de secado series "T".

Nuestros túneles de secado u hornos de secado en continuo, están preparados para controlar temperaturas de hasta 600 °C, al igual que nuestra serie "H" de hornos de secado estáticos su construcción se basa en el empleo de paneles tipo "sandwich" con sistema de unión específico, garantizamos siempre las temperaturas deseadas en las zonas estipuladas. con errores de hasta ± 0,5°C

Características

Marcado CE.

Fabricación Propia.

Control y Regulación independiente.

Panelado específico.

Rendimiento optimo.

Figura 3.5 Túnel de Secado serie T

Tipos de Energía

Convección (Circulación de Aire).

Gas.

Gas - oil.

Eléctricos.

Radiación (Sin circulación de aire).

3.3 Sistemas de Transporte

3.3.1 Autobuses

Transporte Público Urbano

Los transportes públicos en una <u>ciudad</u> procuran el desplazamiento de personas de un punto a otro en el área de esa ciudad. La gran mayoría de las áreas urbanas de medio y gran tamaño poseen algún tipo de transporte público urbano. Su suministro adecuado, en varios <u>países</u>, es, generalmente, de responsabilidad municipal, aunque el municipio pueda conceder <u>licencias</u>, a veces acompañadas de <u>subsidios</u>, a las compañías particulares. El transporte público urbano es parte esencial de una ciudad. Disminuye la <u>contaminación</u>, ya que se usan menos <u>coches</u> para el transporte de personas, además de permitir el desplazamiento de personas que, no teniendo coche y necesitan recorrer largas distancias. Tampoco debemos olvidar que hay personas que, teniendo coche, a veces no lo usan por los atascos o las dificultades de aparcar y prefieren (al menos en algunas ocasiones) el transporte público.

Fotografía 3.1 Autobús

Los autobuses son prácticos y eficientes en rutas de corta y media distancia, siendo frecuentemente el medio de transporte más utilizado a nivel de transportes públicos, por constituir una opción económica. Las compañías de transporte buscan establecer una ruta basada en un número aproximado de pasajeros en el área a ser tomada. Una vez establecida la ruta, se construyen las paradas de autobuses a lo largo de esa ruta. Sin embargo, dada su baja

capacidad de pasajeros, no son eficientes en rutas de mayor uso. Los autobuses, en rutas altamente usadas, producen mucha contaminación, debido al mayor número de autobuses que son necesarios para el transporte eficiente de pasajeros en esa ruta dada. En este caso, es considerada la sustitución de la línea de autobús por otra línea usando tranvías o aún un metro. Otra posibilidad es la construcción de un tramo único y especial para los autobuses, es decir, la implementación de un Sistema de Buses de Tránsito Rápido, con lo cual es posible llegar a capacidades cercanas a las de un sistema de metro, y mucho mayores que las de un sistema de tranvías.

3.3.2 Carga Pesada

Los sistemas de transporte de carga pesada hacen referencia a todos los que llevan más de 2 toneladas de su capacidad ,podemos encontrar aquí varios los cuales podemos mencionar:

Cabezales

Plataformas

Retroexcavadoras

Payloders

3.3.3 Carga Liviana

Los sistemas de transporte de carga liviana hacen referencia a todos los que llevan menos de una tonelada de su capacidad. Podemos encontrar aquí a varios los cuales podemos mencionar: Vehículos (4x4; 4x2; automóviles)

3.4 Comparación de niveles de Contaminación Térmica

El sistema de transporte hoy en día el problema de la contaminación es un problema que nos ataña a todos, que debemos dar soluciones coherentes todos para que la sociedad en general podamos vivir en paz pero sobre todo podamos estar con un aire más limpio y puro el cual podamos respirar, en el cual en cada reporte sobre el smog en Quito se muestra el tubo de escape de

una micro. Ya sabemos que el transporte es el sector más contaminante, pero al interior de él, ¿Será que los buses son los principales responsables? Es evidente que un bus contamina más que un auto, basta observar los tubos de escape de ambos vehículos con el motor funcionando. Sin embargo, concluir a partir de esto que los buses contaminan más que los autos no solo es aventurado, sino que derechamente erróneo. El objetivo de la ingeniería de transporte y de la ingeniería de tránsito en particular es transportar personas, no vehículos. Luego, lo relevante no es comparar las emisiones de cada vehículo por sí solo, sino cuánto contamina cada cual por pasajero transportado (o viaje realizado). Al realizar este ejercicio, los números son elocuentes: los automóviles particulares emiten 38 veces más monóxido de carbono (CO) que los buses por persona transportada, 12.5 veces más compuestos orgánicos volátiles (COV), 3 veces más óxidos de nitrógeno (NOx), el doble de dióxido de azufre (SO2) y un 25% más de material particulado (PM10) (Fuente: CONAMA).

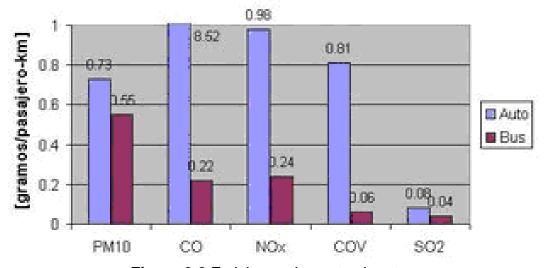


Figura 3.6 Emisiones de contaminantes

Por ejemplo, para transportar el mismo número de personas, digamos 30, en Quito se utilizan unos 20 automóviles si todas se transportan en vehículos particulares(1), y solamente un bus si éstas optan por el transporte público. Un bus contamina más que un auto, pero menos que 20 pues tiene la capacidad de llevar el mismo número de personas con un solo motor funcionando, de ahí que finalmente el bus sea menos contaminante.

El panorama empeora si se amplía la visión a todos los tipos de emisiones. Comúnmente se piensa que las emisiones de gases por parte de los vehículos motorizados corresponden sólo a las emanadas por el tubo de escape. Sin embargo existen otras pérdidas menos visibles y tan importantes como las del tubo de escape, cuales son las emisiones por evaporación, especialmente hidrocarburos (HC), muchos de ellos tóxicos y potencialmente cancerígenos como el benceno. En este caso el análisis anterior también es válido, pero no se tienen datos exactos pues estas emisiones no se pueden medir con certeza.

En las instalaciones industriales tenemos información sobre.

NORMA DE EMISIONES AL AIRE DESDE CENTRALES TERMOELECTRICAS LIBRO VI ANEXO 3^a

El presente Anexo Normativo Técnico Ambiental, que es complementario al Anexo 3 Norma de Emisiones al Aire desde Fuentes Fijas de Combustión, del Libro VI De La Calidad Ambiental, del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente, y que se somete a sus disposiciones, es dictado al amparo de la Ley de Gestión Ambiental, del Reglamento a la Ley de Gestión Ambiental para la Prevención y Control de la Contaminación Ambiental y del Reglamento Ambiental para Actividades Eléctricas. El presente instrumento es de aplicación obligatoria en las centrales de generación termoeléctrica en todo el territorio nacional.

Este instrumento es de cumplimiento obligatorio por parte de los regulados quienes sean propietarios, administradores, operadores o arrendatarios de centrales termoeléctricas que posean una capacidad de generación mayor a 1 MW.

Motor de Combustión Interna (MCI)

Para efectos de aplicación de la presente norma, los motores de combustión interna son aquellos cuyo proceso de combustión se produce por compresión de la mezcla aire/combustible, pueden operar con combustibles líquidos o gaseosos, y el tiempo anual de operación es igual o mayor a 850 horas (para cada unidad).

Norma de Emisión

Es el valor que señala la descarga máxima permitida de los contaminantes del aire definidos.

Puerto de Muestreo

Son los orificios circulares que se hacen en las chimeneas o conductos para facilitar la introducción de los elementos necesarios para mediciones y toma de muestras.

Puntos de Medición

Son puntos específicos, localizados en las líneas de muestreo, en los cuales se realizan las mediciones y se extrae la muestra respectiva.

Clasificación

Esta normativa establece los límites máximos permisibles de emisión para centrales termoeléctricas que utilizan tecnologías de calderos generadores de vapor, turbinas a gas y motores de combustión interna. Se establecen además los requerimientos para el monitoreo y reporte de emisiones. Estos límites y métodos se establecen en los siguientes ámbitos:

- 1. De los límites máximos permisibles de emisión de contaminantes del aire en centrales termoeléctricas que operan con calderos generadores de vapor.
- 2. De los límites máximos permisibles de emisión de contaminantes del aire en centrales termoeléctricas que operan con turbinas a gas.
- 3. De los límites máximos permisibles de emisión de contaminantes del aire en centrales termoeléctricas que operan con motores de combustión interna.
- 4. De los métodos y equipos de medición de emisiones desde fuentes fijas de combustión en centrales termoeléctricas.

DE LOS LIMITES MAXIMOS PERMISIBLES DE EMISION DE CONTAMINANTES AL AIRE EN CENTRALES TERMOELECTRICAS QUE OPERAN CON CALDEROS GENERADORES DE VAPOR

Para calderos generadores de vapor, los límites máximos permisibles de emisión son los establecidos en las tablas 1 y 2, según aplique, y que son los establecidos en el Anexo 3 Norma de Emisiones al Aire desde Fuentes Fijas de Combustión, del presente Libro VI De La Calidad Ambiental. La aplicación de las tablas se realizará en concordancia con el tipo de combustible empleado por la fuente fija.

Tabla 3.1 Limites máximos permisibles de emisiones al aire para calderos generadores de vapor norma para fuentes en operación antes de enero del 2003

Contaminante Emitido	Combustible	Valor	Unidades ^[1]
	Utilizado		
Partículas	Sólido	355	mg/Ndm ³
Totales	Líquido [2]	355	mg/Ndm³
	Gaseoso	No Aplicable	No Aplicable
Oxidos de	Sólido	1 100	mg/Ndm³
Nitrógeno	Líquido [2]	700	mg/Ndm ³
	Gaseoso	500	mg/Ndm³
Dióxido de	Sólido	1 650	mg/Ndm³
Azufre	Líquido [2]	1 650	mg/Ndm³
	Gaseoso	No Aplicable	No Aplicable

Tabla 3.2 Limites máximos permisibles de emisiones al aire para calderos generadores de vapor norma para fuentes en operación a partir de enero del 2003

Contaminante Emitido	Combustible	Valor	Unidades [1]
	Utilizado		
Particulas	Sólido	150	mg/Ndm³
Totales	Líquido [2]	150	mg/Ndm³
	Gaseoso	No Aplicable	No Aplicable
Oxidos de	Sólido	850	mg/Ndm³
Nitrógeno	Líquido [2]	550	mg/Ndm ³
	Gaseoso	400	mg/Ndm³
Dióxido de	Sólido	1 650	mg/Ndm³
Azufre	Líquido [2]	1 650	mg/Ndm ³
	Gaseoso	No Aplicable	No Aplicable

Para el caso de calderos generadores de vapor que utilicen combustible derivado de biomasa, se aplicarán los límites máximos permisibles de emisión establecidos en la Tabla 3, y que son los establecidos en la Tabla 10 del Anexo 3 del presente Libro VI. El contaminante común del aire que es regulado para estas fuentes son las partículas.

Tabla 3.3 Limites máximos permisibles de emisiones al aire desde combustión de biomasa en calderos generadores de vapor

Contaminante	Fuentes	Fuentes	Unidades
Emitido	Existentes ^[1]	Nuevas ^[1]	
Partículas Totales	300	150	mg/Ndm ^{3 [2]}

La actualización por la Autoridad Ambiental Nacional de los límites máximos permisibles de emisión establecidos en el Anexo 3 (Norma de Emisiones al Aire desde Fuentes Fijas de Combustión) del Libro VI del Texto Unificado de Legislación Ambiental Secundaria del Ministerio del Ambiente dará lugar a la actualización inmediata de los límites máximos permisibles de emisión establecidos en la presente normativa.

DE LOS LIMITES MAXIMOS PERMISIBLES DE EMISION DE CONTAMINANTES AL AIRE EN CENTRALES TERMOELECTRICAS QUE OPERAN CON TURBINAS A GAS

Para turbinas a gas, en operación antes de enero del 2003, los límites máximos permisibles para los contaminantes del aire se presentan en la siguiente Tabla 4. Las turbinas a gas que operen con combustible gaseoso no requerirán demostrar cumplimiento con los límites máximos permisibles para los contaminantes: dióxido de azufre y partículas totales.

Para turbinas a gas que entraron en funcionamiento a partir de enero del 2003, los límites máximos permisibles, se establecen en la Tabla 5. Las centrales con turbinas a gas que operen con combustible gaseoso no requerirán demostrar cumplimiento con los límites máximos permisibles de emisión para dióxido de azufre y partículas totales.

Tabla 3.4 Límites máximos permisibles de emisiones al aire para turbinas a gas norma para fuentes en operación antes de enero del 2003

Contaminante Emitido	Combustible Utilizado	Valor	Unidades ^[1]
Partículas	Líquido [2]	150	mg/Ndm³
Totales	Gaseoso	No Aplicable	No Aplicable
Oxidos de	Líquido [2]	400	mg/Ndm³
Nitrógeno	Gaseoso	300	mg/Ndm ³
Dióxido de	Líquido [2]	700	mg/Ndm³
Azufre	Gaseoso	No Aplicable	No Aplicable

Tabla 3.5 Limites máximos permisibles de emisiones al aire para turbinas a gas norma para fuentes en operación a partir de enero del 2003

Contaminante	Combustible	Valor	Unidades [1]
Emitido	Utilizado		
Partículas	Líquido [2]	50	mg/Ndm³
Totales	Gaseoso	No Aplicable	No Aplicable
Oxidos de	Líquido [2]	165	mg/Ndm³
Nitrógeno	Gaseoso	125	mg/Ndm³
Dióxido de	Líquido [2]	700	mg/Ndm³
Azufre	Gaseoso	No Aplicable	No Aplicable

Para centrales termoeléctricas que operen turbinas a gas en ciclo combinado, a partir de enero del 2003, los valores de límites máximos permisibles de emisión serán aquellos que se determinen en los gases de escape de la turbina a gas, o en su lugar, aquellos determinados en el conducto o chimenea final, esto es

posterior al caldero recuperador de calor y al quemador suplementario de ducto, permitiendo en este caso que el límite máximo permisible para NOx establecidos en la Tabla 5, sea de hasta 400 mg/Nm3, corregido a 15% de oxígeno, y asegurando que no se produzca un deterioro en los niveles actuales de calidad de aire ambiente.

DE LOS LIMITES MAXIMOS PERMISIBLES DE EMISION DE CONTAMINANTES AL AIRE EN CENTRALES TERMOELECTRICAS QUE OPERAN CON MOTORES DE COMBUSTION INTERNA.

Para motores de combustión interna, en operación antes de enero del 2003, se aplicarán los límites máximos permisibles de emisión de la Tabla 6.

Tabla 3.6 Límites máximos permisibles de emisiones al aire para motores de combustión interna norma para fuentes en operación antes de enero del 2003

Contaminante	Combustible	Valor	Unidades [1]
Emitido	Utilizado		
Partículas	Líquido [2]	350	mg/Ndm³
Totales	Gaseoso	No Aplicable	No Aplicable
Oxidos de Nitrógeno	Líquido ^[2] Gaseoso	2 300 2 300	mg/Ndm³ mg/Ndm³
Dióxido de Azufre	Líquido ^[2] Gaseoso	1 500 No Aplicable	mg/Ndm³ No Aplicable

Para motores de combustión interna, en operación a partir de enero del 2003, se aplicarán los límites máximos permisibles de emisión de la siguiente Tabla 7.

Tabla 3.7 Limites máximos permisibles de emisiones al aire para motores de combustión interna norma para fuentes en operación a partir de enero del 2003

Contaminante Emitido	Combustible Utilizado	Valor	Unidades ^[1]
Partículas	Líquido [2]	150	mg/Ndm³
Totales	Gaseoso	No Aplicable	No Aplicable
Oxidos de	Líquido [2]	2 000	mg/Ndm³
Nitrógeno	Gaseoso	2 000	mg/Ndm³
Dióxido de	Líquido [2]	1 500	mg/Ndm³
Azufre	Gaseoso	No Aplicable	No Aplicable

En caso de que la autoridad ambiental nacional efectúe el proceso de revisión y actualización de los límites máximos permisibles de emisión, establecidos en el Anexo 3 Norma de Emisiones al Aire desde Fuentes Fijas de Combustión del RLGAPCCA, entonces los límites de emisión establecidos en la presente normativa serán consecuentemente actualizados.

DE LOS METODOS Y EQUIPOS DE MEDICION DE EMISIONES AL AIRE DESDE FUENTES FIJAS DE COMBUSTION EN CENTRALES TERMOELECTRICAS

Los métodos y de medición de emisiones al aire desde centrales termoeléctricas que operan con calderos de vapor, turbinas a gas y motores de combustión interna, serán los siguientes:

Tabla 3.8 Métodos de medición de emisiones al aire para centrales termoeléctricas

Parámetros	Calderos Generadores de Vapor	Turbinas a Gas	Motores de Combustión Interna
Partículas Totales	EPA Método 5	EPA Método 5	EPA 17 o ISO 9096
Dióxido de Azufre	EPA Método 6C SE ^[1]	EPA Método 20 SE	Calculado en base a ISO 8178, o EPA Método 6C
Oxidos de Nitrógeno	EPA Método 7E SE	EPA Método 20 SE	EPA Método 7E SE

3.5 Normas Corpaire

Las normas que son utilizadas por la Corpaire son las siguientes:

NTE INEN 2204:2002

NTE INEN 2207:2002

NORMAS DE GESTION AMBIENTAL ACTUALES

NTE INEN 2204:2002

Gestión ambiental. Aire. Vehículos automotores. Límites permitidos de emisiones producidas por fuentes móviles terrestres de gasolina.

1. Objeto

1.1. Esta norma establece los límites permitidos de emisiones de contaminantes producidas por fuentes móviles terrestres (vehículos automotores) de gasolina.

2. Alcance

- 2.1. Esta norma se aplica a las fuentes móviles terrestres de más de tres ruedas.
- 2.2. Esta norma no se aplica a las fuentes móviles que utilicen combustibles diferentes a gasolina.
- 2.3. Esta norma no se aplica a motores de pistón libre, motores fijos, motores náuticos, motores para tracción sobre rieles, motores para aeronaves, motores para tractores agrícolas, maquinarias y equipos para uso en construcciones y aplicaciones industriales.

3. Definiciones

Para los efectos de esta norma se adoptan las siguientes definiciones:

- Año modelo. Año que identifica el de producción del modelo de la fuente móvil.
- 3.2. Área frontal. Área determinada por la proyección geométrica de las distancias básicas del vehículo sobre su eje longitudinal el cual incluye llantas pero excluye espejos y deflectores de aire a un plato perpendicular al eje longitudinal del vehículo.
- 3.3. Certificado de la casa fabricante. Documento expedido por la casa fabricante de un vehículo automotor en el cual se consignan los resultados de la medición de las emisiones de contaminantes del aire (por el escape y evaporativas) provenientes de los vehículos prototipo seleccionados como representativos de los modelos nuevos que saldrán al mercado.
- 3.4. Ciclo. Es el tiempo necesario para que el vehículo alcance la temperatura normal de operación en condiciones de marcha mínima o ralentí. Para las fuentes móviles equipadas con electro ventilador, es el período que transcurre entre el encendido del ventilador del sistema de enfriamiento y el momento en que el ventilador se detiene.
- 3.5. Ciclos de prueba. Un ciclo de prueba es una secuencia de operaciones estándar a la que es sometido un vehículo automotor o un motor, para determinar el nivel de emisiones que producen. Para los propósitos de esta norma, los ciclos que se aplican son los siguientes:

- 3.5.1. Ciclo ECE 15 + EUDC. Es el ciclo de prueba dinámico establecido por la Unión Europea para los vehículos livianos y medianos, de diesel o gasolina, definidos en la directiva 93/59/EEC.
- 3.5.2. Ciclo FTP 75. Es el ciclo de prueba dinámico establecido por la agencia de Protección de Medio Ambiente de los Estados Unidos (EPA), para los vehículos livianos y medianos, de gasolina o diesel, y publicado en el Código Federal de Regulación, partes 86 a 99.
- 3.5.3. Ciclo transiente pesado. Es el ciclo de prueba de estado transitorio establecido por la Agencia de Protección del Medio Ambiente de los Estados Unidos (EPA), para la medición de emisión de motores diesel y gasolina utilizada en vehículos pesados el cual se encuentra especificado en el Código Federal Regulación de ese país, CFR, título 40, Partes 86 a 99, subparte N.
- 3.6. Dinamómetro. Aparato utilizado para medir la potencia generada por un vehículo automotor o motor solo, a través de aplicaciones de velocidad y torque.
- 3.7. Emisión de escape. Es la descarga al aire de una o más sustancias en estado sólido, líquido o gaseoso o, de alguna combinación de estos, proveniente el sistema de escape de una fuente móvil.
- 3.8. Emisiones evaporativas. Es la descarga al aire de una o más sustancias gaseosas, producto del funcionamiento normal del vehículo o de la volatilidad del combustible. Las emisiones evaporativas se desprenden desde varios puntos a lo largo del sistema de combustible de un vehículo automotor.
- 3.9. Equipo de medición. Es el conjunto completo de dispositivos, incluyendo todos los accesorios, para la operación normal de medición de las emisiones.
- 3.10. Fuente móvil. Es la fuente de emisión que por razón de su uso o propósito es susceptible de desplazarse propulsando por su propia

fuente motriz. Para propósitos de esta norma, son fuentes móviles todos los vehículos automotores.

- 3.11. Homologación. Es el reconocimiento de la autoridad ambiental competente a los procedimientos de evaluación de emisiones o a los equipos o sistemas de medición o de inspección de emisiones, que dan resultados comparables o equivalentes a los procedimientos, equipos o sistemas definidos en esta norma.
- 3.12. Informe técnico. Documento que contiene los resultados de la medición de las emisiones del motor, operando en las condiciones contempladas en esta norma.
- 3.13. Marcha mínima o ralentí. Es la especificación de velocidad del motor establecidas por el fabricante o ensamblador del vehículo, requerida para mantenerlo funcionando sin carga y en neutro (para cajas manuales) y en parqueo (para cajas automáticas). Cuando no se disponga de la especificación del fabricante o ensamblador del vehículo, la condición de marcha mínima o ralentí se establecerá en un máximo de 1 100 rpm.
- 3.14. Masa máxima. Es la masa equivalente al peso bruto del vehículo.
- 3.15. Método SHED. Procedimiento aprobado por la Agencia de Protección Ambiental de los Estados Unidos (EPA) para determinar las emisiones evaporativas en vehículos de gasolina mediante la recolección de estas en una cabina sellada en la que se ubica el vehículo sometido a prueba. SHED son las siglas correspondientes al nombre de dicho método (Sealed Housing for Evaporative Determination). Los procedimientos, equipos y métodos de medición utilizados se encuentran consignados en el Código Federal de Regulaciones en los Estados Unidos, partes 86 y 99; o en las directivas 91/441 EEC y 93/59 EEC.
- 3.16. Motor. Es la principal fuente de poder de un vehículo automotor que

- convierte la energía de un combustible líquido o gaseoso en energía cinética.
- 3.17. Peso bruto del vehículo. Es el peso neto del vehículo más la capacidad de carga útil o de pasajeros, definida en kilogramos.
- 3.18. Peso neto del vehículo. Es el peso real solo del vehículo en condiciones de operación normal con todo el equipo estándar de fábrica, más el combustible a la capacidad nominal del tanque.
- 3.19. Peso de referencia. Es el peso neto del vehículo más 100 kg.
- Peso del vehículo cargado. Es el peso neto del vehículo más 136.08 kg
 (300 lb).
- 3.21. Prueba estática. Es la medición de emisiones que se realiza con el vehículo a temperatura normal de operación, en marcha mínima (ralentí), sin carga, en neutro (para cajas manuales) y en parqueo (para cajas automáticas).
- 3.22. Prueba dinámica. Es la medición de emisiones que se realiza con el vehículo o motor sobre un dinamómetro, aplicando los ciclos de prueba descritos en la presente norma.
- 3.23. Temperatura normal de operación. Es aquella que alcanza el motor después de operar un mínimo de 10 minutos en marcha mínima (ralentí), o cuando en estas mismas condiciones la temperatura del aceite en el carter del motor alcance 75°C o más. En las fuentes móviles equipadas con electro ventilador esta condición es confirmada después de operar un ciclo.
- 3.24. Vehículo automotor. Vehículo de transporte terrestre, de carga o de pasajeros, que se utiliza en la vía pública, propulsado por su propia fuente motriz.

3.25. Vehículo o motor prototipo o de certificados. Vehículo o motor de desarrollo o nuevo, representativo de la producción de un nuevo modelo.

4. Clasificación

Para los propósitos de esta norma, se establece la siguiente clasificación de los vehículos automotores:

- 4.1. Según la agencia de protección ambiental de los Estados Unidos (EPA), la siguiente clasificación se aplica únicamente para los ciclos de prueba FTP – 75 y ciclo transiente pesado:
- 4.1.1. Vehículo liviano. Es aquel vehículo automotor tipo automóvil de derivado de éste, diseñado para transportar hasta 12 pasajeros.
- 4.1.2. Vehículo mediano. Es aquel vehículo automotor cuyo peso bruto vehicular es menor o igual a 3 860 kg, cuyo peso neto vehicular es menor o igual a 2 724 kg y cuya área frontal no exceda de 4.18 m². Este vehículo debe estar diseñado para:
- 4.1.2.1. Transportar carga o para convertirse en un derivado de vehículos de este tipo.
- 4.1.2.2. Transportar más de 12 pasajeros.
- 4.1.2.3. Ser utilizado u operado fuera de carreteras o autopistas y contar para ello con características especiales.
- 4.1.3. Vehículo pesado. Es aquel vehículo automotor cuyo peso bruto del vehículo sea superior a 3 860 kg, o cuyo peso neto del vehículo sea superior a 2 724 kg, o cuya área frontal excede de 4.18 m².
- 4.2. Según la Unión Europea, la siguiente clasificación se aplica únicamente para el ciclo de prueba ECE 15 + EUDC.

- 4.2.1. Categoría M. Vehículos automotores destinados al transporte de personas y que tengan por lo menos cuatro ruedas.
- 4.2.1.1. Categoría M1. Vehículos automotores destinados al transporte de hasta 8 personas más el conductor.
- 4.2.2. Categoría N. Vehículos automotores destinados al transporte de carga, que tengan por lo menos cuatro ruedas.
- 4.2.2.1. Categoría N1. Vehículos automotores destinados al transporte de carga con una masa máxima no superior a 3.5 toneladas.

5. Disposiciones Generales

- 5.1. Los importadores y ensambladores de vehículos nuevos deben obtener la certificación de emisiones expedidas por la casa fabricante o propietaria del diseño de vehículos y avalada por la autoridad competente del país de origen o de un laboratorio autorizado por ella. Los procedimientos de evaluación base para las certificaciones serán los establecidos para los ciclos FTP 75, ciclo transiente pesado ECE 15 + EUDC, SHED (EEC 91/441 y 93/59 EEC), según las características del vehículo.
- 5.2. Los importadores y ensambladores están obligados a suministrar copias de la certificación de emisiones a quienes adquieran los vehículos.
- 5.3. La autoridad competente podrá en cualquier momento verificar la legalidad de las certificaciones presentadas por los importadores y ensambladores sobre el cumplimiento de los requisitos establecidos en esta norma, así como las características de funcionamiento de los equipos y procedimientos utilizados para la medición de las emisiones

de escape, en condición de marcha o ralentí.

6. Requisitos

- 6.1. Límites máximos de emisiones permitidos para fuentes móviles con motores de gasolina. Marcha mínima o ralentí (prueba estática).
- 6.1.1. Toda fuente móvil con motor de gasolina durante su funcionamiento en condición de marcha mínima o ralentí y temperatura normal de operación, no debe emitir al aire monóxido de carbono (CO) e hidrocarburos (HC) en cantidades superiores a las señaladas en la siguiente tabla.

Tabla 3.9 Límites máximos de emisiones permitidos para fuentes móviles con motor de gasolina. Marcha mínima o ralentí (prueba estática)

Año modelo	% (CO	ppm HC		
	0 -1500	1500 – 3000	0 – 1500	1500 – 3000	
2000 y posteriores	1.0	1.0	200	200	
1990 a 1999	3.5	4.5	650	750	
1989 y anteriores	5.5	6.5	1000	1200	

6.2. Límites máximos de emisiones para fuentes móviles de gasolina. Ciclos FTP – 75 y ciclo transiente pesado (prueba dinámica).

Tabla 3.10 Límites máximos de emisiones para fuentes móviles con motor de gasolina (prueba dinámica)* a partir del año modelo 2000 (ciclos americanos)

Categoría	Peso bruto del vehículo kg	Peso del vehículo cargado Kg	CO g/km	HC g/km	NOx g/km	CICLOS DE PRUEBA	Evaporativas G/ensayo SHED
Vehículos livianos			2.10	0.25	0.62	FTP – 75	2
Vehículos	=< 3 860	=< 1 700	6.2	0.5	0.75		2
medianos		1 700 -3 860	6.2	0.5	1.1		2
Vehículos pesados**	> 3 860 = < 6 350		14.4	1.1	5.0	Transiente Pesado	3
	> 6 350		37.1	1.9	5.0		4

- * prueba realizada a nivel del mar
- ** en g/bHP-h (gramos/brake Horse Power hora)
- 6.2.1. Toda fuente móvil de gasolina que se importe o se ensamble en el país emitir al aire monóxido de carbono (CO), hidrocarburos (HC), óxido de nitrógeno (NOx) y emisiones evaporativas, en cantidades superiores a las indicadas en la siguiente tabla.
- 6.3. Límites máximos de emisiones para fuentes móviles de gasolina. Ciclo
 ECE 15 + EUDC (Prueba dinámica).
- 6.3.1. Toda fuente móvil con motor de gasolina no podrá emitir al aire monóxido de carbono (CO), hidrocarburos (HC), óxidos de nitrógeno (NOx) y emisiones evaporativas, en cantidades superiores indicadas en la siguiente tabla.

Tabla 3.11 Límites máximos de emisiones para fuentes móviles con motor de gasolina (prueba dinámica) * a partir del año modelo 2000 (ciclos europeos)

Categoría	Peso bruto del vehículo kg	Peso del vehículo cargado Kg	CO g/km	HC + NOx g/km	CICLOS DE PRUEBA	Evaporativas g/ensayo SHED
M1 ⁽¹⁾	=< 3 500		2.72	0.97	ECE 15 +	2
M1 ⁽²⁾ , N1		< 1 250	2.72	0.97	EUCD	2
		>1250<1700	5.17	1.4		2
		> 1 700	6.9	1.7		2

Prueba realizada a nivel del mar

7. Método de ensayo

- 7.1. Determinación de la concentración de emisiones del tubo de escape en condiciones de marcha mínima o ralentí.
- 7.1.1. Seguir el procedimiento descrito en la NTE INEN 2 203.

⁽¹⁾ Vehículos que transportan hasta 5 pasajeros más el conductor y con un peso bruto del vehículo menor o igual a 2.5 toneladas.

Vehículos que transportan más de 5 pasajeros más el conductor o cuyo peso bruto del vehículo exceda de 2.5 toneladas.

NTE INEN 2207:2002

Gestión ambiental. Aire. Vehículos automotores. Límites permitidos de emisiones producidas por fuentes móviles terrestres de diesel.

1. Objeto

1.1. Esta norma establece los límites permitidos de emisiones de contaminantes producidas por fuentes móviles terrestres (vehículos automotores) de diesel.

2. ALCANCE

- 2.1. Esta norma se aplica a las fuentes móviles terrestres de más de tres ruedas.
- 2.2. Esta norma no se aplica a las fuentes móviles que utilicen combustibles diferentes a diesel.
- 2.3. Esta norma no se aplica a motores de pistón libre, motores fijos, motores náuticos, motores para tracción sobre rieles, motores para aeronaves, motores para tractores agrícolas, maquinarias y equipos para uso en construcciones y aplicaciones industriales.

3. Definiciones

Para los efectos de esta norma se adoptan las siguientes definiciones:

- 3.1. Aceleración libre. Es el aumento de revoluciones del motor de la fuente móvil, lleva rápidamente a máxima aceleración estable, sin carga y neutro (para cajas manuales) y en parqueo (para cajas automáticas).
- 3.2. Año modelo. Año que identifica el de producción del modelo de la fuente móvil.

- 3.3. Área frontal. Área determinada por la proyección geométrica de las distancias básicas del vehículo sobre su eje longitudinal el cual incluye llantas pero excluye espejos y deflectores de aire a un plato perpendicular al eje longitudinal del vehículo.
- 3.4. Certificado de la casa fabricante. Documento expedido por la casa fabricante de un vehículo automotor en el cual se consignan los resultados de la medición de las emisiones de contaminantes del aire (por el escape y evaporativas) provenientes de los vehículos prototipo seleccionados como representativos de los modelos nuevos que saldrán al mercado.
- 3.5. Ciclo. Es el tiempo necesario para que el vehículo alcance la temperatura normal de operación en condiciones de marcha mínima o ralentí. Para las fuentes móviles equipadas con electroventilador, es el período que transcurre entre el encendido del ventilador del sistema de enfriamiento y el momento en que el ventilador se detiene.
- 3.6. Ciclos de prueba. Un ciclo de prueba es una secuencia de operaciones estándar a la que es sometido un vehículo automotor o un motor, para determinar el nivel de emisiones que producen. Para los propósitos de esta norma, los ciclos que se aplican son los siguientes:
- 3.6.1. Ciclo ECE 15 + EUDC. Es el ciclo de prueba dinámico establecido por la Unión Europea para los vehículos livianos y medianos, de diesel o gasolina, definidos en la directiva 93/59/EEC.
- 3.6.2. Ciclo FTP 75. Es el ciclo de prueba dinámico establecido por la agencia de Protección de Medio Ambiente de los Estados Unidos (EPA), para los vehículos livianos y medianos, de gasolina o diesel, y publicado en el Código Federal de Regulación, partes 86 a 99.
- 3.6.3. Ciclo ECE 49. Es el ciclo de prueba estacionario establecido por la Unión Europea para los vehículos pesados de diesel, definido en la directiva 88/77/EEC.
- 3.6.4. Ciclo transiente pesado. Es el ciclo de prueba de estado transitorio

establecido por la Agencia de Protección del Medio Ambiente de los Estados Unidos (EPA), para la medición de emisión de motores diesel y gasolina utilizada en vehículos pesados el cual se encuentra especificado en el Código Federal Regulación de ese país, CFR, título 40, Partes 86 a 99, subparte N.

- 3.7. Dinamómetro. Aparato utilizado para medir la potencia generada por un vehículo automotor o motor solo, a través de aplicaciones de velocidad y torque.
- 3.8. Equipo de medición. Es el conjunto completo de dispositivos, incluyendo todos los accesorios, para la operación normal de medición de las emisiones.
- 3.9. Emisión de escape. Es la descarga al aire de una o más sustancias en estado sólido, líquido o gaseoso o, de alguna combinación de estos, proveniente el sistema de escape de una fuente móvil.
- 3.10. Fuente móvil. Es la fuente de emisión que por razón de su uso o propósito es susceptible de desplazarse propulsando por su propia fuente motriz. Para propósitos de esta norma, son fuentes móviles todos los vehículos automotores.
- 3.11. Humo. Residuo resultante de la combustión incompleta, que se compone en su mayoría de carbón y cenizas, y de partículas sólidas visibles en el medio ambiente.
- 3.12. Homologación. Es el reconocimiento de la autoridad ambiental competente a los procedimientos de evaluación de emisiones o a los equipos o sistemas de medición o de inspección de emisiones, que dan resultados comparables o equivalentes a los procedimientos, equipos o sistemas definidos en esta norma.

- 3.13. Informe técnico. Documento que contiene los resultados de la medición de las emisiones del motor, operando en las condiciones contempladas en esta norma.
- 3.14. Marcha mínima o ralentí. Es la especificación de velocidad del motor establecidas por el fabricante o ensamblador del vehículo, requerida para mantenerlo funcionando sin carga y en neutro (para cajas manuales) y en parqueo (para cajas automáticas). Cuando no se disponga de la especificación del fabricante o ensamblador del vehículo, la condición de marcha mínima o ralentí se establecerá en un máximo de 1 100 rpm.
- 3.15. Masa máxima. Es la masa equivalente al peso bruto del vehículo.
- 3.16. Motor. Es la principal fuente de poder de un vehículo automotor que convierte la energía de un combustible líquido o gaseoso en energía cinética.
- 3.17. Opacidad. Grado de reducción de la intensidad de la luz visible que ocasiona una sustancia al pasar aquella a través de esta.
- 3.18. Partículas. Son sustancias sólidas emitidas a través del escape de un vehículo automotor o de un motor en prueba, producto de una combustión incompleta o de la presencia de elementos extraños en el combustible.
- 3.19. Peso bruto del vehículo. Es el peso neto del vehículo más la capacidad de carga útil o de pasajeros, definida en kilogramos.
- 3.20. Peso neto del vehículo. Es el peso real solo del vehículo en condiciones de operación normal con todo el equipo estándar de fábrica, más el combustible a la capacidad nominal del tanque.

- 3.21. Peso de referencia. Es el peso neto del vehículo más 100 kg.
- 3.22. Peso del vehículo cargado. Es el peso neto del vehículo más 136.08 kg (300 lb).
- 3.23. Porcentaje Opacidad. Unidad de medición que define el grado de opacidad del gas de escape de una fuente móvil emisora.
- 3.24. Prueba dinámica. Es la medición de emisiones que se realiza con el vehículo o motor sobre un dinamómetro, aplicando los ciclos de prueba descritos en la presente norma.
- 3.25. Temperatura normal de operación. Es aquella que alcanza el motor después de operar un mínimo de 10 minutos en marcha mínima (ralentí), o cuando en estas mismas condiciones la temperatura del aceite en el carter del motor alcance 75°C o más. En las fuentes móviles equipadas con electro ventilador esta condición es confirmada después de operar un ciclo.
- 3.26. Vehículo automotor. Vehículo de transporte terrestre, de carga o de pasajeros, que se utiliza en la vía pública, propulsado por su propia fuente motriz.
- 3.27. Vehículo o motor prototipo o de certificados. Vehículo o motor de desarrollo o nuevo, representativo de la producción de un nuevo modelo.

4. Clasificación

Para los propósitos de esta norma, se establece la siguiente clasificación de los vehículos automotores:

4.1. Según la agencia de protección ambiental de los Estados Unidos (EPA), la siguiente clasificación se aplica únicamente para los ciclos de prueba

FTP – 75 y ciclo transiente pesado:

- 4.1.1. Vehículo liviano. Es aquel vehículo automotor tipo automóvil de derivado de éste, diseñado para transportar hasta 12 pasajeros.
- 4.1.2. Vehículo mediano. Es aquel vehículo automotor cuyo peso bruto vehicular es menor o igual a 3 860 kg, cuyo peso neto vehicular es menor o igual a 2 724 kg y cuya área frontal no exceda de 4.18 m². Este vehículo debe estar diseñado para:
- 4.1.2.1. Transportar carga o para convertirse en un derivado de vehículos de este tipo.
- 4.1.2.2. Transportar más de 12 pasajeros.
- 4.1.2.3. Ser utilizado u operado fuera de carreteras o autopistas y contar para ello con características especiales.
- 4.1.3. Vehículo pesado. Es aquel vehículo automotor cuyo peso bruto del vehículo sea superior a 3 860 kg, o cuyo peso neto del vehículo sea superior a 2 724 kg, o cuya área frontal excede de 4.18 m².
- 4.2. Según la Unión Europea, la siguiente clasificación se aplica únicamente para el ciclo de prueba ECE 15 + EUDC.
- 4.2.1. Categoría M. Vehículos automotores destinados al transporte de personas y que tengan por lo menos cuatro ruedas.
- 4.2.1.1. Categoría M1. Vehículos automotores destinados al transporte de hasta 8 personas más el conductor.
- 4.2.1.2. Categoría M2. Vehículos automotores destinados al transporte de más de 8 personas más el conductor y cuya masa máxima no supere las 5 toneladas.
- 4.2.1.3. Categoría M3. Vehículos destinados al transporte de más de 8 personas más el conductor y cuya masa máxima supere las 5 toneladas.

- 4.2.2. Categoría N. Vehículos automotores destinados al transporte de carga, que tengan por lo menos cuatro ruedas.
- 4.2.2.1. Categoría N1. Vehículos automotores destinados al transporte de carga con una masa máxima no superior a 3.5 toneladas.
- 4.2.2.2. Categoría N2. Vehículos automotores destinados al transporte de carga con una masa máxima superior a 3.5 toneladas e inferior a 12 toneladas.
- 4.2.2.3. Categoría N3. Vehículos automotores destinados al transporte de carga con una masa máxima superior a 12 toneladas.

5. Disposiciones Generales

- 5.1. Los importadores y ensambladores de vehículos nuevos deben obtener la certificación de emisiones expedidas por la casa fabricante o propietaria del diseño de vehículos y avalada por la autoridad competente del país de origen, o de un laboratorio autorizado por ella. Los procedimientos de evaluación base para las certificaciones serán los establecidos para los ciclos FTP 75, ciclo transiente pesado ECE 15 + EUDC, SHED (EEC 91/441 y 93/59 EEC), según las características del vehículo.
- 5.2. Los importadores y ensambladores están obligados a suministrar copias de la certificación de emisiones a quienes adquieran los vehículos.
- 5.3. La autoridad competente podrá en cualquier momento verificar la legalidad de las certificaciones presentadas por los importadores y ensambladores sobre el cumplimiento de los requisitos establecidos en esta norma, así como las características de funcionamiento de los equipos y procedimientos utilizados para la medición de la opacidad en aceleración libre.

6. Requisitos

6.1. Límites máximos de emisiones permitidos para fuentes móviles con motores de diesel. Ciclos FTP – 75 y ciclo transiente pesado (prueba dinámica).

Tabla 3.12 Límites máximos de emisiones permitidos para fuentes móviles con motor de diesel (prueba dinámica)* a partir del año modelo 2000 (ciclos americanos)

Categoría	Peso bruto del vehículo kg	Peso del vehículo cargado kg	CO g/km	HC g/km	NOx g/km	Partículas g/km	CICLOS DE PRUEBA
Vehículos livianos			2.10	0.25	0.62	0.12	FTP – 75
Vehículos	=< 3 860	=< 1 700	6.2	0.5	0.75	0.16	
medianos		1 700 -3 860	6.2	0.5	1.1	0.08	
Vehículos pesados**	> 3 860		15.5	1.3	5.0	0.1***	Transiente Pesado

^{*} Prueba realizada a nivel del mar

- 6.1.1. Toda fuente móvil de diesel que se importe o se ensamble en el país no podrá emitir al aire monóxido de carbono (CO) e hidrocarburos (HC), óxidos de nitrógeno (NOx) en cantidades superiores a las señaladas en la siguiente tabla.
- 6.2. Límites máximos de emisiones para fuentes móviles de diesel. Ciclos ECE 15 + EUDC o ECE 49 (prueba dinámica).
- 6.2.1. Toda fuente móvil con motor de diesel no podrá emitir al aire monóxido de carbono (CO), hidrocarburos (HC), óxido de nitrógeno (NOx) y partículas, en cantidades superiores a las indicadas en la siguiente tabla.

Tabla 3.13 Límites máximos de opacidad de emisiones para fuentes móviles con motor de diesel (prueba de aceleración libre)

1110 11	method den meter de dieder (praeba de decieración libro)							
Categoría	Peso bruto del vehículo kg	Peso del vehículo cargado kg	CO g/km	HC g/km	NOx g/km	Partículas g/km	CICLOS DE PRUEBA	
M1 ⁽¹⁾	=< 3 500		2.72	0.9	7 ⁽⁴⁾	0.14	ECE - 15 +	

^{**} en g/bHP- (gramos / brake Horse Power – hora)

^{***} para buses urbanos el valor es 0.07 g/bHP-h

M1 ⁽²⁾ , N1		< 1 250	2.72	0.9	7 ⁽⁴⁾	0.14	EUCD
		>1250<1700	5.17	1.4	1 ⁽⁴⁾	0.19	
		> 1 700	6.9	1.7	7 ⁽⁴⁾	0.25	
N2, N3, M2, M3 ⁽³⁾	> 3 500		4.0	1.1	7.0	0.15	ECE – 49

^{*} Prueba realizada a nivel del mar

- 6.3. Requisitos máximos de opacidad de humos para fuentes móviles de diesel. Prueba de aceleración libre.
- 6.3.1. Toda fuente móvil con motor de diesel, en condición de aceleración libre, no podrá descargar al aire humos en cantidades superiores a las indicadas en la siguiente tabla.

Tabla 3.14 Opacidad

Año Modelo	% Opacidad
2000 y posteriores	50
1999 y anteriores	60

7. Método de ensayo

- 7.1. Determinación de la opacidad de gases de motores diesel mediante la prueba estática de aceleración libre.
- 7.1.1. Seguir el procedimiento descrito en la NTE INEN 2 203.

⁽²⁾ Vehículos que transportan hasta 5 pasajeros más el conductor y con un peso bruto del vehículo menor o igual a 2.5 toneladas.

⁽³⁾ Vehículos que transportan más de 5 pasajeros más el conductor o cuyo peso bruto del vehículo exceda de 2.5 toneladas.

⁽⁴⁾ Unidades g/kWh

⁽⁵⁾ HC + Nox

CAPITULO 4

MODELIZACION TÉRMICA DE UN MOTOR DE 200 HP.

4.1 Análisis Comparativo

Los cuadros de los valores referenciales que deben poseer los vehículos son los siguientes (a gasolina y a diesel):

Tabla 4.1 Límites máximos de emisiones permitidos para fuentes móviles con motor de gasolina. Marcha mínima o ralentí (prueba estática)

Año modelo	% (CO	ppm H	IC
	0 -1500	1500 – 3000	0 – 1500	1500 – 3000
2000 y posteriores	1.0	1.0	200	200
1990 a 1999	3.5	4.5	650	750
1989 y anteriores	5.5	6.5	1000	1200

Tabla 4.2 Límites máximos de emisiones para fuentes móviles con motor de qasolina (prueba dinámica)* a partir del año modelo 2000 (ciclos americanos).

Peso bruto del vehículo kg	Peso del vehículo cargado Kg	CO g/km	HC g/km	NOx g/km	CICLOS DE PRUEBA	Evaporativas G/ensayo SHED
		2.10	0.25	0.62	FTP – 75	2
=< 3 860	=< 1 700	6.2	0.5	0.75		2
	1 700 -3 860	6.2	0.5	1.1		2
> 3 860 = < 6 350		14.4	1.1	5.0	Transiente Pesado	3
> 6 350		37.1	1.9	5.0		4
	bruto del vehículo kg =< 3 860 > 3 860 = < 6 350	bruto del vehículo cargado Kg	bruto del vehículo cargado kg 2.10 =< 3 860 = < 1 700 6.2 1 700 -3 860 6.2 > 3 860 = < 6 350 14.4	bruto del vehículo cargado kg 2.10 0.25 =< 3 860 = < 1 700 6.2 0.5 > 3 860 = < 6 350 14.4 1.1	bruto del vehículo cargado kg 2.10 0.25 0.62 2.10 0.25 0.75 1.10 3.860 = < 6.350 14.4 1.1 5.0	bruto del vehículo kg vehículo cargado kg g/km g/km g/km DE PRUEBA =< 3 860

prueba realizada a nivel del mar

^{*} en g/bHP-h (gramos/brake Horse Power – hora)

Motores a Diesel

Son las siguientes tablas:

Tabla 4.3 Límites máximos de emisiones permitidos para fuentes móviles con motor de diesel (prueba dinámica)* a partir del año modelo 2000 (ciclos americanos)

Categoría	Peso bruto del vehículo Kg.	Peso del vehículo cargado Kg.	CO g/Km.	HC g/Km.	NOx g/Km.	Partículas g/Km.	CICLOS DE PRUEBA
Vehículos livianos			2.10	0.25	0.62	0.12	FTP – 75
Vehículos	=< 3 860	=< 1 700	6.2	0.5	0.75	0.16	
medianos		1 700 -3 860	6.2	0.5	1.1	0.08	
Vehículos pesados**	> 3 860		15.5	1.3	5.0	0.1***	Transiente Pesado

^{*} Prueba realizada a nivel del mar

Tabla 4.4 Límites máximos de opacidad de emisiones para fuentes móviles con motor de diesel (prueba de aceleración libre)

Categoría	Peso bruto del vehículo Kg.	Peso del vehículo cargado Kg.	CO g/Km.	HC g/Km.	NOx g/Km.	Partículas g/Km.	CICLOS DE PRUEBA
M1 ⁽¹⁾	=< 3 500		2.72	0.9		0.14	ECE – 15 +
M1 ⁽²⁾ , N1		< 1 250	2.72	0.9		0.14	EUCD
		>1250<1700	5.17		1 ⁽⁴⁾	0.19	
		> 1 700	6.9	1.7	7 ⁽⁴⁾	0.25	
N2, N3, M2, M3 ⁽³⁾	> 3 500		4.0	1.1	7.0	0.15	ECE - 49

^{*} Prueba realizada a nivel del mar

- (8) Unidades g/Kwh.
- (9) HC + Nox

Toda fuente móvil con motor de diesel, en condición de aceleración libre, no

^{**} en g/bHP- (gramos / brake Horse Power – hora)

^{***} para buses urbanos el valor es 0.07 g/bHP-h

⁽⁶⁾ Vehículos que transportan hasta 5 pasajeros más el conductor y con un peso bruto del vehículo menor o igual a 2.5 toneladas.

⁽⁷⁾ Vehículos que transportan más de 5 pasajeros más el conductor o cuyo peso bruto del vehículo exceda de 2.5 toneladas.

podrá descargar al aire humos en cantidades superiores a las indicadas en la siguiente tabla.

Tabla 4.5 Opacidad

Año Modelo	% Opacidad
2000 y posteriores	50
1999 y anteriores	60

4.2 Características.

Las características técnicas del motor corresponden a un bus Marca Isuzu perteneciente a la sección Transportes de la Escuela Politécnica del Ejército las cuales vamos a detallar a continuación:

Tabla 4.6 Características Técnicas del Vehiculo

Ord.	Características del	Distancias y pesos
	vehiculo	(Catalogo Bus)
1	Distancia entre ejes	238,2 plg
2	Mínima distancia al suelo	8,66 plg
3	Radio mínimo de giro	452,7 plg
4	Peso bruto del vehiculo	16000 Kg
5	Ejes (Parte delantera)	6300 Kg
6	Ejes (Parte trasera)	13000 Kg
7	Capacidad tanque combustible	53 gal

Motor: 6SD1

Fotografía 4.1 Bus de transporte de Personal ESPE (Bus de Prueba)

4.3 Selección de Componentes Estudio.

Las componentes que hemos seleccionado para el estudio de la termodinámica del motor son las siguientes

Tabla 4.7 Identificación de variables

Ord	Componente de	Nomenclatura	Unidades								
	estudio										

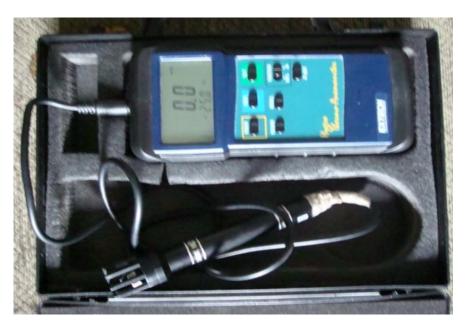
1	Temperatura	T∞	°C
	ambiente		
2	Temperatura carter	Tc	°C
3	Temperatura admisión	Та	°C
4	Temperatura escape	Те	°C
5	Temperatura múltiple escape	Tm	°C
6	Temperatura block	Tb	°C
7	Temperatura entrada agua	T1	°C
8	Temperatura salida agua	T2	°C
9	Humedad relativa	HR	%

4.4 Mediciones

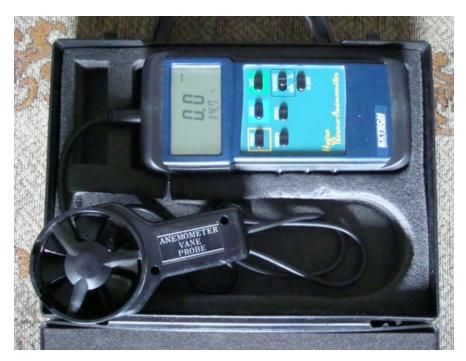
Las mediciones se realizaron en el área de transportes con la utilización de los siguientes equipos:

Nombre	Marca	Procedencia	Serie	Modelo	Alcance	Apreciación	Obs.
Termómetro	Raytec	E.E.U.U	7865	MX2	30-900	0.1	OK
Infrarrojo					°C		
Tipo láser							

Fotografía 4.2. Vista frontal Termómetro digital tipo láser


Fotografía 4.3. Vista Superior Termómetro digital tipo láser

Nombre	Marca	Procedencia	Serie	Modelo	Alcance	Apreciación	Obs.
Higrometro	XTECH	E.E.U.U	7834	МЗЕ	0-100 °C	0.1	OK
digital							



Fotografía 4.4. Higrometro digital

Nombre	Marca	Procedencia	Serie	Modelo	Alcance	Apreciación	Obs.
Hygro Thermo Anemometer	XTECH	E.E.U.U	7864	M45E	0-100 °C	0.1	OK

Fotografía 4.5. Vista Superior Hygro Thermo Anemometer (Medición de temperatura)

Fotografía 4.6. Vista Superior Hygro Thermo Anemometer (Medición velocidad aire)

Nombre	Marca	Procedencia	Serie	Modelo	Alcance	Apreciación	Obs.
Global Position System	Maggelan	E.E.U.U	7864	M75E	0-100 m	0.1	OK

Fotografía 4.7. Global Position System (Medición de Coordenadas en el área de transportes ESPE Los datos tomados son los siguientes:

_

PE-01

FECHA: 19 de Febrero del 2008

LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de transporte de personal de la ESPE placas FTF 626 Marca

Isuzu

POTENCIA: 200 Hp

VOLUMEN DEL H20: 5 galones.

					T motor modelo					UA	%
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR
1	10:09	0	22,2	57,5	28,3	64,5	81,3	42,9	23	24,2	55
2	10:14	5	24,6	58,5	29,5	66,5	71,5	43,8	20,7	21,2	48
3	10:19	10	39,3	68,8	25,2	69,9	93	46,3	22,4	21,3	38
4	10:24	15	34,0	75,7	29,4	71,4	98,9	49,2	24,7	22,7	29
5	10:29	20	32,8	81	28,8	73,5	102,7	52,5	27,8	28,3	27
6	10:34	25	30,2	83,1	29,7	71,6	104,9	55,9	26,3	28,8	28
7	10:39	30	30,9	88,1	29,9	75,5	106,5	59,3	25,6	28,3	30
8	10:44	35	30,5	91,9	31,2	75,8	108,1	60,4	26,8	31	28
9	10:49	40	31,4	90,9	31,5	77,7	108,8	59,7	27,7	29,3	29
10	10:54	45	31	93,8	34,3	76,1	108,2	61,7	26,5	30	28
11	10:59	50	31,3	93,7	35,4	76,2	109,0	62	27,7	29,3	27
12	11:04	55	31,4	94	36,1	78,1	110,3	61,4	26,4	29,4	28
13	11:09	60	32	92,1	35,1	75,3	108,4	60,2	28,9	29,2	29

VELOCIDAD
1,5
1,6
1,8
1,9
2,1
2,3 2,4
2,4
2,4
2,3
2,1
2,3
2,1 2,4
2,4

REGISTRO DE DATOS ANALISIS DE CONTAMINACION TERMICA

PE-02

FECHA: 20 de Febrero del 2008

LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca

Isuzu

POTENCIA: 200 Hp

VOLUMEN DEL H20: 5 galones

					T motor modelo					AGUA		
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	
1	7:55	0	21,1	73,5	41,6	41,9	81,3	62,3	23	24,2	55	
2	8:01	5	15,7	71,3	45,3	46,5	86,1	70,6	20,6	21	75	
3	8:06	10	17,0	83,7	28,8	73,4	98,3	57,4	22,6	21,4	73	
4	8:11	15	17,9	86,1	28,8	75,8	102,3	55,6	24,6	22,5	73	
5	8:16	20	18,3	88,7	27,4	77,5	105,6	56,9	27,4	28,2	71	
6	8:21	25	18,8	91,7	26,4	77,8	112,5	56,8	27,8	28,5	71	
7	8:26	30	19,4	90,2	32,2	77,1	106,1	57,8	26,2	28,9	69	
8	8:31	35	19,9	93,3	29,7	76,8	106,1	57,8	25,7	28,2	68	
9	8:36	40	21,9	92,2	31,9	77,9	106,8	56,8	26,2	27,7	70	
10	8:41	45	22,2	92,9	30,5	77,8	105,3	59,4	26,9	30	58	
11	8:46	50	21,9	90,9	30,9	77,8	106,9	59,4	27,7	29,2	58	
12	8:51	55	21,8	90,1	32,7	78,7	106,4	59,1	26,3	28,4	57	
13	8:56	60	22,4	92,2	31,8	78,2	107,2	59,7	25,8	29,1	57	

VELOCIDAD
1,6
1,8
1,9
2,6
2,7
3,2
3,3
3,6
3,3
3,9
3,8
3,7
3,5

REGISTRO DE DATOS ANALISIS DE CONTAMINACION TERMICA

PE-03

FECHA: 21 de febrero del 2008

LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca

Isuzu

POTENCIA: 200 Hp

VOLUMEN DEL H20: 5 galones

					T motor modelo					UA	%
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR
1	8:29	0	21,1	73,5	30,9	41,9	81,3	62,3	23	24,2	55
2	8:34	5	20,5	99,4	31,9	112,4	235,9	67,2	31,7	31,3	73
3	8:39	10	20,9	96,3	38,1	99,5	193,8	65,2	30,2	31,6	68
4	8:44	15	21,1	95,6	32,4	89,3	156,4	65,3	27,7	31,9	64
5	8:49	20	21,7	92,1	30,5	79,4	135,3	64,5	28,8	31,4	61
6	8:54	25	21,6	97,7	33,6	73,6	126,2	60,9	28,6	30,2	59
7	8:59	30	21,2	94,5	32,4	75,1	114,8	59	28,9	30,6	57
8	9:04	35	21,3	93,0	30,6	73,2	112,3	56,1	26,9	30,7	57
9	9:09	40	21,9	91,2	30,2	72,5	113,2	57,3	28,7	31,2	56
10	9:14	45	22,7	93,2	32,2	75,7	110,7	59,2	27,8	29,4	55
11	9:19	50	23,2	91,5	33,5	74,4	113,4	59,2	27,1	28,9	54
12	9:24	55	22,9	93,1	33,1	71,7	114,6	60,6	29,4	30,3	54
13	9:29	60	23	91,6	33,2	74,5	117,2	59	28,6	30,2	53

VELOCIDAD
1,6
1,5
1,7
1,6
2,5 2,2 3,1
2,2
3,1
3 2
3,5
3,4
3,3
3,7
3,5

NOTA: El bus llego a las 8:28 proveniente del IASA por lo tanto se encontraba caliente

REGISTRO DE DATOS ANALISIS DE CONTAMINACION TERMICA

PE-04

FECHA: 22 de febrero del 2008

LUGAR: Sangolquí ESPE **Sección Transportes**

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca

Isuzu

POTENCIA: 200 Hp

					T mo	AG	UA	%			
Orden	Hora	Tiempo	T∞	Тс	Та	Te	Tm	Tb	T1	T2	HR
1	7:50	0	17	73,5	31,3	41,9	81,3	54,6	23	24,2	55
2	7:55	5	18	73,6	32,2	60,1	93,3	55,7	21	23	68
3	8:00	10	21,5	80,9	31,9	69,3	100,7	53	23,4	24,8	70
4	8:05	15	23,6	87,3	30,1	69,9	99,6	52,5	24,9	25,9	72
5	8:10	20	22,8	88,9	29,4	71,2	101,3	48,6	24,8	26,1	63
6	8:15	25	22,1	89,8	29,9	73,8	103,7	50,9	25,3	27,5	59
7	8:20	30	21,7	91,7	28,8	73,5	104,7	51,9	26,3	27,5	59
8	8:25	35	21,6	89,9	30,2	73,7	109,1	51,5	27,1	28,3	58
9	8:30	40	21,5	91,5	29,9	73,6	104,2	53,1	27,3	27,9	58
10	8:35	45	21,7	92,2	29,5	73,7	104,4	53,6	27,9	29,3	58
11	8:40	50	22	91,9	30,1	73,4	102,7	52,8	27,0	28,6	57
12	8:45	55	21,8	90,8	31	73,1	101,9	52,6	26,9	28,3	57
1	8:50	60	21,6	91,9	30,3	73,4	102,9	54,1	26,7	27,7	57

VELOCIDAD
3,9
4,1
3,1
4,1
3,9
3,1
3,5
3,7
3,2
3,7
4,3
3,6
4,3

FECHA: 25 de febrero del 2008

LUGAR: Sangolquí ESPE **Sección Transportes VEHICULO**: Bus de Transporte de personal de la ESPE placas FTF 626 Marca

Isuzu

POTENCIA: 200 Hp

VOLUMEN DEL H20: 5 galones

					T mo	AG	AGUA				
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR
1	8:31	0	21,1	73,5	50,6	41,9	81,3	62,3	23	24,2	55
2	8:36	5	22,3	77,4	37,6	61,1	90,5	56,9	23,2	24,8	55
3	8:41	10	23,3	83,5	34,3	72,2	98,2	54,2	26,8	28,1	55
4	8:46	15	24,3	86,2	32,4	71,9	102,9	53,8	27,8	29,7	54
5	8:51	20	24,5	88,1	30,6	72,7	98,9	54,5	29,7	30,1	53
6	8:56	25	24,6	88,2	30,8	72,2	104,3	55,6	29,2	30,4	52
7	9:01	30	25,5	88,4	33,2	72,4	102,7	58,2	29,3	29,7	51
8	9:06	35	25,6	91,5	31,9	72,2	103,1	56,8	29,7	30,6	51
9	9:11	40	25,8	88,9	32,7	71,3	103,4	53,6	29	30,7	50
10	9:16	45	25,6	90,6	31,9	73	102,1	54,9	29,7	31,2	49
11	9:21	50	25,9	91	30,5	72,8	103,7	57	30,4	31,5	49
12	9:26	55	26,3	93,2	32,7	73,3	102,5	57,8	31,2	32,9	48
13	9:31	60	27,4	91,3	31,7	73,3	104,6	57,5	30,1	32,1	40

VELOCIDAD
3,9
4,1
4,3
4,9
5,4
4,3
5,4
6,3
5,7
6,3
5,1
5,3
5,2

REGISTRO DE DATOS ANALISIS DE CONTAMINACION TERMICA

PE-06

FECHA: 26 de febrero del 2008

LUGAR: Sangolquí ESPE Sección Transportes VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca

Isuzu

POTENCIA: 200 Hp

VOLUMEN DEL H20: 5 galones

					T mo	AG	UA	%			
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR
1	8:30	0	18,7	67,6	41,8	45,8	77,1	57,7	24,4	25,5	67
2	8:35	5	22,7	79,2	32	67,6	88,1	54,8	22,8	23,7	62
3	8:40	10	23	83,7	30,2	69,6	97,3	51,2	26,9	28,6	60
4	8:45	15	23,2	86,5	28,2	70,5	101,0	52,9	27,1	28,6	59
5	8:50	20	23,3	88,3	30,5	70,3	97,3	53	28,2	28,6	58
6	8:55	25	23,7	89,2	28,9	72,2	102,5	54,9	27,2	30,2	58
7	9:00	30	24	91,2	30,4	72,6	101,9	53,9	29	31,3	56
8	9:05	35	24,4	91,2	29	72,9	101,6	54,2	28,4	31,1	56
9	9:10	40	24,7	91,3	28,1	73	101,9	54,7	29,6	31,5	55
10	9:15	45	24,9	91,3	29,8	73,2	101,0	57,5	29,4	32,8	55
11	9:20	50	25,2	91,5	30,7	72,7	102,3	57,2	29,7	31,4	53
12	9:25	55	25,5	91,3	30,5	73,2	102,8	57,7	29,8	32,3	53
13	9:30	60	25,8	91,2	30,9	72,9	102,8	57,9	30,5	32,9	52

VELOCIDAD
3,2
4,4
5,3
6
5,3
5,6
5,3
5,3
4,8
5,0
4,5
4,3
4,5

REGISTRO DE DATOS ANALISIS DE CONTAMINACION TERMICA

PE-07

FECHA: 27 de febrero del 2008

LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca

Isuzu

POTENCIA: 200 Hp

VOLUMEN DEL H20: 5 galones

					T mo	AG	UA	%			
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR
1	8:40	0	19,4	66,5	41,9	46,8	78,1	57,6	25	26,1	67
2	8:45	5	23,1	79,4	33	68,6	88,1	54,6	23	24,1	62
3	8:50	10	23	83,2	31	69,5	98,3	51,1	26,9	28,7	61
4	8:55	15	23,4	87,0	28,4	70,4	102,0	52,6	28,1	28,7	58
5	9:00	20	23,8	88,1	30,6	70,2	98,3	53	27,4	28,7	57
6	9:05	25	23,9	89,2	27,9	72,3	103,5	55	29	30,4	57
7	9:10	30	24	92,1	30,6	72,5	101,9	54,1	28,5	31,5	55
8	9:15	35	24,1	92,1	28	72,8	101,5	54,4	29,7	31,4	55
9	9:20	40	24,6	92,3	27,1	73,1	101,9	54,6	29,5	31,6	54
10	9:25	45	24,3	92,3	29,0	73,3	101,1	57,6	29,8	32,9	54
11	9:30	50	25,4	92,6	30,5	72,5	102,4	57,4	29,9	31,6	52
12	9:35	55	25,9	92,3	30,3	73,1	102,7	57,8	29,8	32,7	52
13	9:40	60	26,3	92,2	30,8	72,8	102,7	57,9	30,3	32,9	51

VELOCIDAD
3,2
4,5
5,7
6,1
5,6
5,7
5,7
5,2
5,2
5,4
4,7
4,6
4,5

REGISTRO DE DATOS ANALISIS DE CONTAMINACION TERMICA

PE-08

FECHA: 28 de febrero del 2008

LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca

Isuzu

POTENCIA: 200 Hp

VOLUMEN DEL H20: 5 galones

					T mo	tor mo	odelo		AG	UA	%
Orden	Hor	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR
1	8:30	0	19,1	64,5	31,0	70,3	75,8	50,8	19,5	20,4	71
2	8:35	5	18,3	69,7	31,4	81,9	85,4	51,9	19,7	20,7	64
3	8:40	10	18,2	71,7	32,5	85,9	88,9	53,5	20,3	22,3	64
4	8:45	15	19,3	69,3	31,3	84,2	90,2	53,2	20,5	21,8	63
5	8:50	20	20,3	75,1	31,3	88,4	92,4	56,9	19,4	20,4	62
6	8:55	25	21,3	73,5	31,4	90,4	93,4	53,7	19,7	20,5	57
7	9:00	30	21,6	74,9	31,3	91,0	92,8	53,6	19,4	21,5	54
8	9:05	35	24,0	71,6	32,1	92,1	93,5	54,2	19,5	21,7	50
9	9:10	40	25,1	71,3	33,7	89,8	93,4	54,9	21,4	23	43
10	9:15	45	27,0	72,3	34,1	89,2	94,4	55,6	22,9	24,6	43
11	9:20	50	31,6	70,2	34,4	91,7	92,1	56,1	24,5	25,9	34
12	9:25	55	33,0	70,7	32,7	84,5	91,2	54,2	24,2	25,4	31
13	9:30	60	33,8	73,1	33,2	84,9	90,6	53,6	22,2	25,6	31

VELOCIDAD
7,8
7,1
7,5
7,7
7,6
7,4
7,6
7,6
7,6
7,5
7,6
7,6
7,6

PM-01

FECHA: 29 de febrero del 2008 (**Pruebas en Móv.**) **LUGAR**: Sangolquí ESPE **Sección Transportes**

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

				T MOTOR MODELO					AG	UA	%	
Orden	Hora	Tiempo	T∞	Тс	Ta	Те	Tm	Tb	T1	T2	HR	Observación
1	10:25		22,1	65,5	21,6	68	89,5	25,1	20,4	20,7	56	Salida U
2	10:45		29,3	117,2	45,6	235,6	412,3	81,6	49,7	54,3	46	Puente 1
3	11:10		25,3	104,7	38,9	150,3	260,5	64,6	43,2	44,6	45	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
3,3	11,8 (ida)	23,6 Km
7,2	11,8 (vuelta)	
6,7		

Hora salida ESPE:	Capacidad Tanque Combustible: 53 Galones	
10:30		
Hora Ilegada Puente	Velocidad del Bus: 50-60 Km./h, 18 Rev./min ;	40 Km./h , 17 Rev./min ; 80-90 Km/h , 20 rev/min
1 :10:45:		<u> </u>
	75 Km./h, 20 Rev/min; 80 Km./h, 24 Rev/min	
Hora Ilegada ESPE:	Combustible salida: mitad del tanque	Combustible llegada: mitad tanque
11:10	·	·

PM-02

FECHA: 3 de marzo del 2008 (Pruebas en Móv.) LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

				T MOTOR MODELO						UA	%	
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
1	11:01		21,9	64,1	22,6	66	89,5	24,4	19,9	20,1	62	Salida U
2	11:20		28,4	117,2	44,6	230,1	414,9	80,9	49	54,3	48	Puente 1
3	11:41		24,2	101,7	37,8	149,5	261,1	66,1	41,7	46,7	39	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
6,1	11,8 (ida)	23,6 Km
7,6	11,8 (vuelta)	
6,5		

Hora salida ESPE:	Capacidad Tanque Combustible: 53 Galones	
11:01		
Hora Ilegada Puente	Velocidad del Bus: 50-60 Km./h, 18 Rev./min ; 4	10 Km./h , 17 Rev./min ; 80-90 Km/h , 20 rev/min
1 :11:21		
	75 Km./h, 20 Rev/min; 80 Km./h, 24 Rev/min	
Hora Ilegada ESPE:	Combustible salida: mitad del tanque	Combustible llegada: mitad tanque
11:40		-

PM-03

FECHA: 4 de marzo del 2008 (Pruebas en Móv.) LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

					T MOTOR MODELO AGUA						%	
Orden	Hora	Tiempo	T∞	Тс	Ta	Те	Tm	Tb	T1	T2	HR	Observación
1	8:54		22	90,3	46,5	60,5	148,3	64,5	32,1	35,1	65	Salida U
2	9:33		24,2	119,4	46,7	270,8	431,6	79,3	50	52	49	Puente 1
3	10:08		32,6	98,2	36,1	111,1	192,6	61,9	42,9	43,3	27	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
5,2	11,8	23,6
5,1	11,8	
2,5		

Hora salida ESPE:	Capacidad Tanque Combustible: 53 galon	es
9:19		
Hora llegada Puente	Velocidad del Bus: 60 Km./h, 20 Rev./min ;	50 Km./h , 15 Rev./min ; 90 Km/h , 22 rev/min
1:9:33		
	80 Km./h, 24 Rev/min ; 50 Km./h , 15 Rev/min	n; 70 Km./h, 21 Rev/min
Hora Ilegada ESPE: 9:37	Combustible salida: más de la mitad	Combustible llegada: más de la mitad

PM-04

FECHA: 5 de marzo del 2008 (**Pruebas en Móv.**) **LUGAR**: Sangolquí ESPE **Sección Transportes**

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

				T MOTOR MODELO						UA	%	
Orden	Hora	Tiempo	T∞	Тс	Ta	Те	Tm	Tb	T1	T2	HR	Observación
1	9:35		21,6	81,3	45,3	55,8	159,3	63,9	27,1	29,3	75	Salida U
2	10:05		20,3	119,3	42,2	241,5	451,3	73,4	49,6	51	63	Puente 1
3	10:25		21,0	104,2	27,4	169,8	284	65,9	44,2	46,4	61	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
6,9	11,8	23,8Km
7,2	12	
5,1		
7,3 (Vehiculo mov)		

Hora salida ESPE:	Capacidad Tanque Combustible: 53 galones
9:45	
Hora llegada Puente 1:	Velocidad del Bus: 70 Km./h, 20 Rev./min ; 40 Km./h , 14 Rev./min ; 80 Km/h , 14 rev/min
10:05	
	60 Km./h, 19 Rev/min; 50 Km./h, 15 Rev/min; 40 Km./h, 18 Rev/min
Hora llegada ESPE:	Combustible salida: medio tanque Combustible llegada: medio tanque
10:25	

PM-05

FECHA: 6 de marzo del 2008 (Pruebas en Móv.) LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

				T MOTOR MODELO						UA	%	
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
1	9:10		15	84,3	44,4	56,9	189,0	64,5	27,9	29,1	70	Salida U
2	9:37		16,1	115,4	41,3	243,0	467,9	74,4	48,5	54	68	Puente 1
3	9:59		18	102,2	28,9	170,9	298	63,9	44,5	46,7	66	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
6,3	11,8	23,6
7,2	11,8	
6,7		
7,8(vehiculo mov)		

Hora salida ESPE:	Capacidad Tanque Combustible: 53 galones					
9:17						
Hora llegada Puente 1:	Velocidad del Bus: 70 Km./h, 20 Rev./min ; 40 Km./h , 14 Rev./min ; 80 Km/h , 14 rev/min					
9:37						
	60 Km./h, 19 Rev/min; 50 Km./h, 15 Rev/min; 40 Km./h, 18 Rev/min					
Hora llegada ESPE:	Combustible salida: mitad del tanque Combustible llegada: mitad del tanque					
9:59						

PM-06

FECHA: 10 de marzo del 2008 (**Pruebas en Móv.**) **LUGAR**: Sangolquí ESPE **Sección Transportes**

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

					T MOTOR MODELO			AGUA		%		
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
1	8:35		15,4	85	45	56,9	189,0	64,5	28,2	29,3	71	Salida U
2	8:55		16,8	117	42,3	242,0	465,3	74,4	48,1	54,5	67	Puente 1
3	9:15		18,9	102,2	28,9	171	298	63,9	45,3	45,1	65	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
6,4	11,8	23,6 Km.
7,4	11,8	
6,7		
7,9(vehiculo móv.)		

Hora salida ESPE:	Capacidad Tanque Combustible: 53 galones					
8:35						
Hora llegada Puente 1:	Velocidad del Bus: 70 Km./h, 20 Rev./min ; 40 Km./h , 14 Rev./min ; 80 Km/h , 14 rev/min					
8:55						
	60 Km./h, 19 Rev/min; 50 Km./h, 15 Rev/min; 40 Km./h, 18 Rev/min					
Hora llegada ESPE:	Combustible salida mitad del tanque Combustible llegada: mitad del tanque					
9:15						

PM-07

FECHA: 11 de marzo del 2008 (Pruebas en Móv.) LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

					T MO1	TOR MC	DELO		AG	UA	%	
Orden	Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
1	8:35		22,6	68,9	49,5	35,8	78	58	22,3	25,6	69	Salida U
2	8:55		19,6	123,4	34,7	244,5	470	82	43,1	47,8	72	Puente 1
3	9:25		15,5	106,5	32,1	165,3	312,4	67,3	37,2	36,6	65	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
5,5	11,8	23,6 Km
5,8	11,8	
6,9		
7,9 (Vehiculo en mov)		

Hora salida ESPE:	Capacidad Tanque Combustible: 53 galones
8:35	
Hora llegada Puente 1:	Velocidad del Bus: 50 Km./h, 15 Rev./min ; 60 Km./h , 19 Rev./min ; 50 Km/h , 16 rev/min
8:55	
	25 Km./h, 10 Rev/min; 75 Km./h, 23 Rev/min; 80 Km./h, 25 Rev/min
Hora llegada ESPE:	Combustible salida mitad del tanque Combustible llegada: mitad del tanque
9:25	

PM-08

FECHA: 12 de marzo del 2008 (Pruebas en Móv.) LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

					T MO1	TOR MC	DELO		AG	UA	%	
Orden	Hora	Tiempo	T∞	Тс	Та	Te	Tm	Tb	T1	T2	HR	Observación
1	8:18		23,6	67,9	47,5	36,8	77	57,8	21,3	24,6	49	Salida U
2	8:52		17,6	121,6	34,7	245,5	475	83,5	42,1	45,8	60	Puente 1
3	9:10		18,5	107,1	38,1	166,3	314,5	68,3	35,2	39,6	59	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
5,5	11,8	23,6 Km
5,6	11,8	
6,5		
7,5 (Vehiculo en mov)		

Hora salida ESPE:	Capacidad Tanque Combustible: 53 galones
Hora Ilegada Puente 1: 8:50	Velocidad del Bus: 50 Km./h, 15 Rev./min; 60 Km./h, 19 Rev./min; 50 Km/h, 16 rev/min
	25 Km./h, 10 Rev/min; 75 Km./h, 23 Rev/min; 80 Km./h, 25 Rev/min
Hora Ilegada ESPE: 9:09	Combustible salida mitad del tanque Combustible llegada: mitad del tanque

PM-09

FECHA: 13 de marzo del 2008 (**Pruebas en Móv.**) **LUGAR**: Sangolquí ESPE **Sección Transportes**

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

					T MO1	TOR MC	DELO		AG	UA	%	
Orden	Hora	Tiempo	T∞	Тс	Ta	Te	Tm	Tb	T1	T2	HR	Observación
1	8:58		20,6	63,5	44,9	29,1	69,5	53,4	24,4	25,3	58	Salida U
2	9:40		18,8	105,7	40,1	145,6	302,2	69,2	40,6	42,8	58	Comandancia
												Ejercito
3	10:18		19,6	106,3	36,7	161,3	269,8	63,7	42,1	43,1	59	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
3,2	17,9	35km
7,1	17,1	
7,4		
7,2 (Vehiculo Móv.)		

Hora salida ESPE: 9:10	Capacidad Tanque Combustible: 53 galones
Hora Ilegada Puente 1:	Velocidad del Bus: 40 Km./h, 13 Rev./min ; 45 Km./h , 15 Rev./min ; 80 Km/h , 24 rev/min
9:40	
	60 Km./h, 20 Rev/min; 50 Km./h, 24 Rev/min; 100 Km./h, 23 Rev/min; 70 Km/h, 21 rev/min
Hora Ilegada ESPE:	Combustible salida mitad del tanque Combustible llegada: mitad del tanque
10:18	

PM-10

FECHA: 14 de marzo del 2008 (Pruebas en Móv.) LUGAR: Sangolquí ESPE Sección Transportes

VEHICULO: Bus de Transporte de personal de la ESPE placas FTF 626 Marca Isuzu

POTENCIA: 200 Hp

					T MO1	OR MC	DELO		AG	UA	%	
Orden	Hora	Tiempo	T∞	Тс	Ta	Те	Tm	Tb	T1	T2	HR	Observación
1	10:00		22,6	68,8	49,5	34,3	74,9	58,3	29,1	30,3	63	Salida U
2	10:40		20,8	110,3	45,4	150,6	323,2	76,2	45,8	47,8	76	Puente 1
3	11:08		21,6	111,2	41,6	167,4	285,8	69,7	47,3	48,1	74	Llegada U

Velocidad	Kms recorridos	Tramo recorrido
4,2	17,9	35km
7,2	17,1	
7,6		
7,4 (Vehiculo Móv.)		

Hora salida ESPE:	Capacidad Tanque Combustible: 53 galones
10:10	
Hora llegada Puente 1:	Velocidad del Bus: 40 Km./h, 13 Rev./min ; 45 Km./h , 15 Rev./min ; 80 Km/h , 24 rev/min
10:40	
	60 Km./h, 20 Rev/min; 50 Km./h, 24 Rev/min; 100 Km./h, 23 Rev/min; 70 Km/h, 21 rev/min
Hora Ilegada ESPE:	Combustible salida mitad del tanque Combustible llegada: mitad del tanque
11:18	

4.5 Selección de Puntos Críticos.

La selección de puntos críticos la hemos realizado de acuerdo a la temperatura que hemos tomado en las pruebas realizadas, ya que ha ido variando día por día, también influye en este aspecto el estado del medio ambiente en el que nos encontrábamos aquellos días

Cárter

La selección de los puntos en el Carter que hemos tomado es la siguiente:

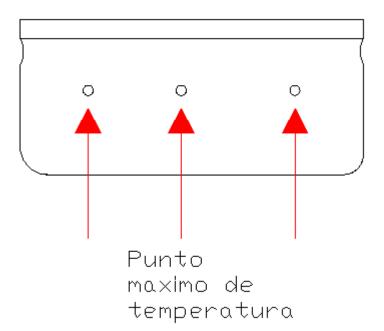


Figura 4.1 Esquema Carter (Selección de puntos)

Fotografía 4.8 Vista frontal Carter

Fotografía 4.9 Toma de temperatura carter

Block

La selección de los puntos en el block es la siguiente

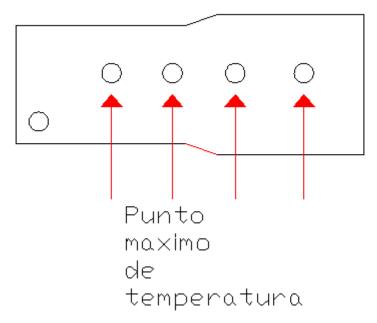


Figura 4.2 Esquema Block (Selección de puntos)

Fotografía 4.10 Medición de temperatura block

Admisión

La selección de los puntos en admisión es la siguiente:

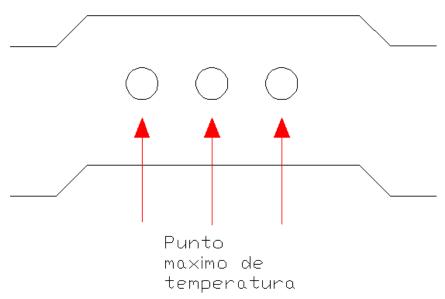


Figura 4.3 Esquema admisión (Selección de puntos)

Fotografía 4.11 Toma de temperatura admisión

Múltiple

La selección de los puntos en el múltiple es la siguiente:

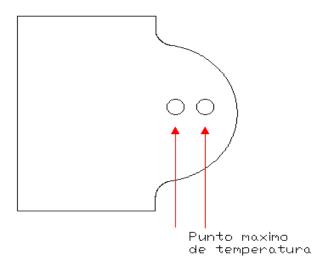
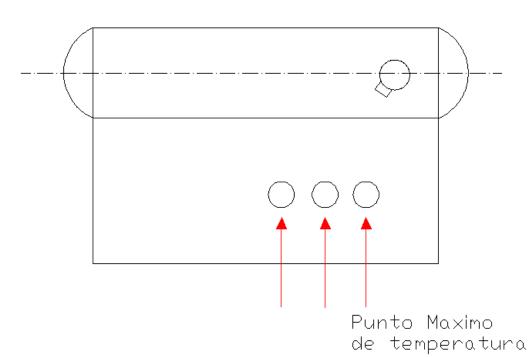



Figura 4.4 Esquema múltiple (selección de puntos)


Fotografía 4.12 Múltiple de Escape

Fotografía 4.13 Toma de temperatura múltiple

Reservorio de refrigerante

La selección de los puntos en el reservorio es la siguiente:

Fotografía 4.14 Reservorio de refrigeración

Fotografía 4.15 Toma de temperatura reservorio Ventilador del radiador

Aquí no encontramos puntos críticos ya que al rato de medir en varias posiciones daba la misma lectura siempre.

Fotografía 4.16 Toma de lectura velocidad del radiador

4.6 Análisis Exergético

El análisis exergético esta basado en el programa SIVETEV (Sistema de verificación Termica de vehículos). Dicho software realiza los siguientes pasos los cuales son fundamentales:

SIVETEV

(Sistema de Verificación Térmica de vehículos)

Escuela Politécnica del Ejército Carrera de Ingeniería Mecánica

Características del Vehiculo

Empresa: ESPE (Parámetro definido, esto debe salir siempre)

Fecha de revisión: 3-05-2008

Clase: Chasis para Bus

Marca: Chevrolet

Modelo: Bus FTR 32 Interprovincial Número de Motor: 6HE1-406897

Número de Chasis: 8LHFTR32M6700199

Año: 2006

Todos estos parámetros se guardan en el sistema para que el usuario solo se acerque, digite y le salgan los resultados, si se desea ingresar otro vehiculo debe salir de nuevo todo en blanco a partir de fecha de revisión

Tipos de prueba

Que tipo de prueba	a desea realizar	
Estático Movimiento		

El usuario debe seleccionar que tipo de prueba desea realizar, para ir al siguiente punto que es el ingreso de datos

Ingreso de Datos

Temperatura ambiente $(T \infty)$

Temperatura carter (Tc)

Temperatura admisión (Ta)

Temperatura escape (Te)

Temperatura múltiple de escape (Tm)

Temperatura block (Tb)

Temperatura entrada de agua (T1)

Temperatura salida de agua (T2)

Humedad relativa (HR)

Velocidad de ventilador del radiador (V)

Parámetros pruebas Estáticas

Tabla 4.8 Parámetros pruebas Estáticas

T ambiente	°C	0<=T<=30
T cárter	°C	0<=T<=86
T admisión	°C	0<=T<=32
T escape	°C	0<=T<=74
T múltiple	°C	0<=T<=103
T block	°C	0<=T<=57
T entrada agua	°C	0<=T<=27
T salida agua	°C	0<=T<=28
Humedad relativa	%	0<=T<=55
V	m/s	0<=T<=5

Parámetros pruebas en Movimiento

Tabla 4.9 Parámetros pruebas Movimiento

T ambiente	0<=x<=30
T carter	0<=x<=99

T admisión	0<=x<=40
T escape	0<=x<=145
T múltiple	0<=x<=272
T block	0<=x<=66
T entrada agua	0<=x<=39
T salida agua	0<=x<=41
Humedad relativa	0<=x<=60
V	0<=x<=7

Resultado

Si al ingresar los datos son menores a los que están como parámetro el vehiculo pasa, por lo tanto debe salir un mensaje diciendo **VEHICULO APROBADO** por lo tanto debe salir los valores junto con los parámetros indicados y al lado de cada una OK

Si los datos son mayores a los que están como parámetro el vehiculo no aprueba por lo tanto debe salir un mensaje diciendo **VEHICULO NO APROBADO**, por lo tanto debe salir los valores junto con los parámetros indicados (por un valor que este mayor y el resto sean menores el vehiculo igual no aprueba).

Al salir este mensaje de **VEHICULO NO APROBADO** automáticamente debe salir un menú de las posibles causas y soluciones.

CAUSAS GENERALES

 Tiene incompleta la combustión, por lo tanto genera mayor expulsión de contaminantes en los gases de escape.

- Formación de sustancias solidas (partículas) contenidas en los gases de escape.
- Un número elevado de revoluciones del motor significa una mayor fricción en el mismo.
- Envenenamiento del catalizador por los residuos del aceite del motor.
- Combustión incompleta de una mezcla de aire y combustible a causa de falta de aire CO (Monóxido de Carbono).
- Rotura de escape.
- Cono de pulverización deformado genera una combustión incompleta por lo tanto el cono perfora o funde los pistones.
- Una mezcla aire combustible muy rica es producida por una cantidad excesiva de combustible.
- Una combustión incompleta se debe a que los inyectores están descalibrados o desgastados.

SOLUCIONES GENERALES

- Revisar el vehiculo en el Scanner, se debe ingresar todos los datos correspondientes al vehículo, esto es en caso de que el vehículo posea un sistema de inyección electrónica.
- Examinar de forma visual el sistema de escape, inspección visual respecto a su existencia, integridad, deterioro.
- Comprobación Visual de la lámpara MI (Malfunction Indicator Lamp) al conectar el encendido y después de haber arrancado el motor.
- Verificación del numero de revoluciones y de la temperatura del motor.
- Verificación del valor de CO y del valor lambda en un margen de revoluciones definido.
- Revisión de conos ya que estos deben ser perfectos debido a que la cámara de combustión esta diseñada y construida en los pistones del motor.

- Calibración de bomba de inyección de acuerdo a especificaciones técnicas del fabricante.
- Revisión de inyectores y que cumplan los tres principios básicos presión de pulverización periodo de mantenimiento y el goteo.
- Para solucionar el numero elevado de las revoluciones del motor se debe tomar en cuenta que este bien calibrado la bomba de inyección.

CAUSAS Y SOLUCIONES INDIVIDUALES

CAUSAS DEL BLOCK

- El problema que se puede estar ocasionando en el block es la oxidación.
- Otro problema es el agua ya que es muy dura y existe mucha concentración de sales debido a esto se forma una costra en los cilindros lo que ocasiona el recalentamiento en las temperaturas del motor.

SOLUCIONES DEL BLOCK

- Utilizar aditivos desincrustante para limpiar las costras que se generan.
- Saber utilizar el aditivo adecuado.

CAUSAS DEL VENTILADOR

- Banda del ventilador floja.
- Si el ventilador no se mueve a velocidad correcta afecta la bomba de agua lo que ocasiona el descenso de caudal en la bomba.

SOLUCIONES DEL VENTILADOR

- Ajustar la banda del ventilador de acuerdo a las especificaciones que esta conlleva.
- Verificación de velocidad correcta con un Hygro Thermo Anemometer.

CAUSAS DEL AGUA

- Fugas del reservorio de agua.
- Fugas de mangueras.
- Debido a las fugas genera un recalentamiento al motor.

SOLUCIONES DEL AGUA

 Revisión total del sistema de refrigeración esto incluye reservorio y mangueras.

CAUSAS DEL CARTER

 La sedimentación es un problema generado por el cambio de aceite y esto ocasiona los problemas de transferencia de calor.

SOLUCIONES DEL CARTER

 Se debe dar un mantenimiento preventivo al carter dos veces al año :incluye el desarmaje, limpieza, y montaje del carter.

CAUSAS DEL MULTIPLE DEL ESCAPE

- Indirectamente se tiene problemas por el freno de maquina ya que es una compuerta que funciona en el escape.
- Acumulación de gases que ocasiona el recalentamiento en el motor.

SOLUCIONES DEL MULTIPLE DEL ESCAPE

Revisión del sistema de freno de maquina.

CAUSAS DEL ESCAPE

- Rotura de escape.
- Combustión incompleta.
- Motor mal calibrado produce humo negro.

SOLUCIONES DEL ESCAPE

 Inspección, revisión y si existe alguna anomalía reparación del sistema de escape.

CAUSAS DE ADMISIÓN

- Un sistema de admisión ineficiente afectará de manera adversa el desempeño, las emisiones y la vida útil del motor.
- Mal funcionamiento de los filtros de aire.

SOLUCIONES DE ADMISIÓN

- Revisión limpieza o cambio de los filtros de aire.
- El incremento máximo del aire en la entrada al filtro de aire con respecto a la temperatura ambiente debe de revisarse en la Curva de Desempeño para el motor en cuestión, generalmente no debe de ser mayor a 8 °C (15 °F).

4.7 Programa de Cálculo

4.7.1 Datos de Diseño

Los datos para el diseño del programa tanto para pruebas estáticas y pruebas en movimiento son los siguientes:

PARAMETROS PRUEBAS ESTATICAS

T ambiente	0<=T<=30
------------	----------

T cárter	0<=T<=86
T admisión	0<=T<=32
T escape	0<=T<=74
T múltiple	0<=T<=103
T block	0<=T<=57
T entrada agua	0<=T<=27
T salida agua	0<=T<=28
Humedad	
relativa	0<=T<=55
V	0<=T<=5

PARAMETROS PRUEBAS EN MOVIMIENTO

T ambiente	0<=T<=30
T carter	0<=T<=99
T admisión	0<=T<=40
T escape	0<=T<=145
T múltiple	0<=T<=272
T block	0<=T<=66
T entrada agua	0<=T<=39
T salida agua	0<=T<=41
Humedad	
relativa	0<=T<=60
V	0<=T<=7

Cabe resaltar que estos datos fueron obtenidos de las pruebas tanto estáticas y en movimiento que se realizaron al bus que pertenece a la ESPE.

4.7.2 Caracterización de variables

Las variables para la realización del programa son las siguientes:

- Temperatura ambiente (T∞)
- Temperatura carter (Tc)
- Temperatura admisión (Ta)
- Temperatura escape (Te)
- Temperatura múltiple de escape (Tm)

- Temperatura block (Tb)
- Temperatura entrada de agua (T1)
- Temperatura salida de agua (T2)
- Humedad relativa (HR)
- Velocidad de ventilador del radiador (V)

4.7.3 Elaboración de algoritmos

La elaboración de algoritmos utilizamos el condicional IF, que quiere decir que si cumple un cierto valor pasa, caso contrario el vehiculo no va a pasar.

La elaboración del algoritmo es de acuerdo a las necesidades que tuvimos para realizar el programa, ya que debían cumplir los parámetros encomendados para que el programa salga de una manera correcta y mas que todo que sirva para el área de transportes.

Esto con el propósito de que se haga mas eficiente esta área y mas que todo tengan de una manera operativa todos los vehículos que están a su cargo.

La elaboración del algoritmo no lo presentamos debido a que nosotros como realizadores del programa conjuntamente con los Ingenieros Directores, esto para evitar la futura copia del programa y mas que todo poder salvaguardar la realización de este programa para que no le vayan a dar un mal uso y que se respete los derechos de autor que nos pertenece

Para la realización del condicional nos asesoramos de instituciones que están a cargo del transporte y que saben del tema, las cuales nos apoyaron para la finalización correcta de este Software

Las instituciones que nos ayudaron fue el Consejo Nacional de Transito y la Corpaire, ya que ellos estaban muy interesados en la finalización de este programa

4.7.4 Elaboración del programa de cálculo

La elaboración del programa se la realizo en Microsoft Access, cumpliendo los siguientes parámetros:

Los datos tomados en las pruebas estáticas y en movimiento van a servir como parámetro fijo.

Cualquier dato que sea ingresado y que resultare mayor a los datos que están como base, en el programa va a salir un mensaje el cual indique que el vehiculo no va a pasar, por lo tanto al final va a salir un menú de las posibles causas y soluciones que se debe hacer para que el vehiculo apruebe la revisión.

Si los datos ingresados resultan que son menores a los que están como parámetro, el vehiculo aprueba y se encontraría apto para la circulación vehicular.

El programa que va a poseer estos dos parámetros se denominara SIVETEV (Sistema de Verificación Térmica de Vehículos), el cual va a tener la función de determinar si el vehículo se encuentra en condiciones ambientales favorables los cuales van a facilitar que el vehículo se pueda movilizar dentro y fuera de la ciudad de Quito.

4.7.5 Verificación

La verificación de este programa la hemos hecho con el siguiente vehiculo:

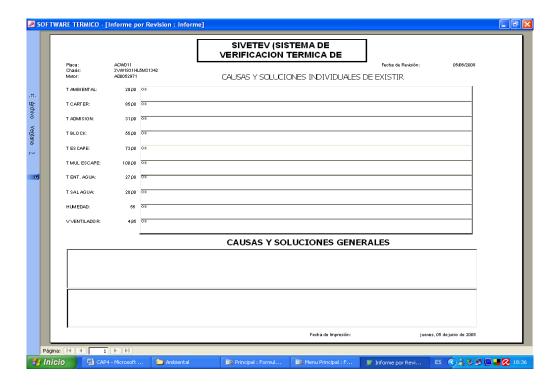
Marca: Chevrolet
Modelo: Dmax

Año: 2006

Para el manejo del programa se debe realizar los siguientes pasos:

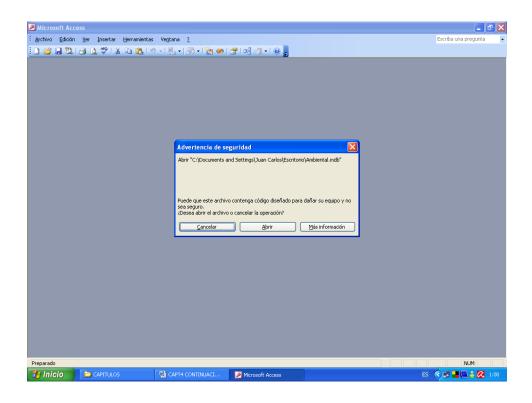
Se debe ingresar los datos del vehiculo y guardamos el registro

Como se realizo pruebas estáticas, vamos a la opción estática y procedemos a agregar nuevo registro, después vamos a la opción vehiculo y buscamos la placa con la que se ingreso, al finalizar el ingreso de los datos vamos a la opción actualizar y automáticamente sale el resultado de la revisión.



Para visualizar el informe presionamos el icono de informe

Visualización del informe


4.7.6 Guía del Usuario

El manual de usuario es el siguiente:

 Seleccionar el icono ambiental que se encuentra en el escritorio y dar clic dos veces para su ingreso

 Al dar doble clic en el icono ambiental va a parecer una pantalla tal y como esta en la figura, se selecciona la opción abrir para que aparezca el programa.

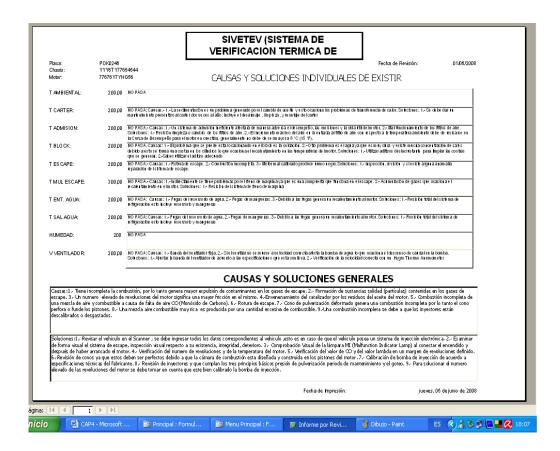
 Al seleccionar la opción abrir aparece esta pantalla, después se le da clic en la opción continuar para el ingreso de los datos del vehiculo.

 Para el ingreso de los datos del vehiculo, se le debe dar clic en la opción vehiculo, los parámetros que no van a poder ser cambiados es el numero de motor, numero de chasis y placa, es decir que a la finalización del ingreso de los datos esos no se van a poder cambiar, al termino del ingreso se debe seleccionar el botón guardar registro que se encuentra en la parte inferior.

 Para seleccionar la prueba estática se debe hacer un clic en la parte superior donde se encuentra la opción estático.

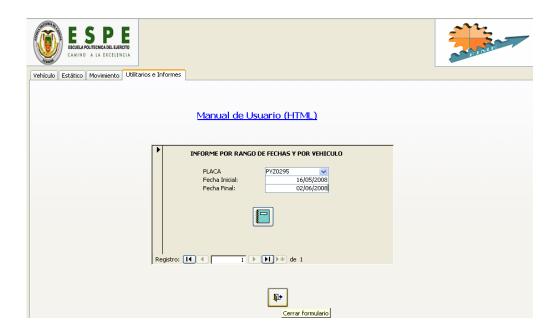
Para comenzar a realizar el ingreso de los datos medidos primero se debe verificar el número de placa en la opción vehiculo, como es una base de datos, va a aparecer enseguida el número de placa, se le debe seleccionar de acuerdo al que tenga el vehiculo, y posteriormente se comienza a hacer el ingreso de los datos de las temperaturas y velocidad del ventilador las cuales van a tener una aproximación de una centésima a excepción de la opción de humedad relativa.

 Al termino del ingreso de los datos se debe dar clik en la opción actualizar para que automáticamente salga el resultado final de la revisión estática.



 Para realizar las pruebas en movimiento se le debe dar clik en la opción movimiento y volver a realizar los dos pasos anteriores

 Al finalizar de todos estos pasos se debe dar clic en el icono de informe para que salga los resultados finales y poder observar cuales son las posibles causas y soluciones de no pasar la revisión.


- Para imprimir la hoja de revisión se debe buscar la opción imprimir que se encuentra en la barra de herramientas, y así poder ver el resultado final.
- Para visualizar las revisiones anteriores, se debe seleccionar la opción de utilitarios e informes. El programa es una base de datos el cual va a guardar todas las revisiones hechas ya sea en estático y movimiento.

Se ingresa primero el número de placa del carro que se desea observar

Después se ingresa la fecha inicial del período que se desea revisar y posteriormente ingresamos la fecha final correspondiente al periodo.

Ya ingresado todos estos datos damos click en el librito verde para poder observar las revisiones que están hechas al vehículo. Para cerrar el formulario se da click en el icono que esta señalado.

CAPITULO 5

ANALISIS ESTADISTICO

5.1. Datos de Prueba.

Los datos son los medidos en las pruebas realizadas los cuales los detallamos con los códigos que tienen cada día que son los siguientes:

Pruebas estáticas

PE-01

PE-02

PE-03

PE-04

PE-05

PE-06

PE-07

PE-08

Pruebas en movimiento

PM-01

PM-02

PM-03

PM-05

PM-06

PM-07

PM-08

PM-09

PM-10

5.2. Estructuración de Datos.

La estructuración es la siguiente:

PE-01

Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	VELOCIDAD
5	24,6	58,5	29,5	66,5	71,5	43,8	20,7	21,2	48	1,6
10	39,3	68,8	25,2	69,9	93	46,3	22,4	21,3	38	1,8
15	34,0	75,7	29,4	71,4	98,9	49,2	24,7	22,7	29	1,9
20	32,8	81	28,8	73,5	102,7	52,5	27,8	28,3	27	2,1
25	30,2	83,1	29,7	71,6	104,9	55,9	26,3	28,8	28	2,3
30	30,9	88,1	29,9	75,5	106,5	59,3	25,6	28,3	30	2,4
35	30,5	91,9	31,2	75,8	108,1	60,4	26,8	31	28	2,4
40	31,4	90,9	31,5	77,7	108,8	59,7	27,7	29,3	29	2,3
45	31	93,8	34,3	76,1	108,2	61,7	26,5	30	28	2,1
50	31,3	93,7	35,4	76,2	109,0	62	27,7	29,3	27	2,3
55	31,4	94	36,1	78,1	110,3	61,4	26,4	29,4	28	2,1
60	32	92,1	35,1	75,3	108,4	60,2	28,9	29,2	29	2,4

Tiempo	T∞	Тс	Ta	Te	Tm	Tb	T1	T2	HR	VELOCIDAD
5	15,7	71,3	45,3	46,5	86,1	70,6	20,6	21	75	3,5
10	17,0	83,7	28,8	73,4	98,3	57,4	22,6	21,4	73	3,5
15	17,9	86,1	28,8	75,8	102,3	55,6	24,6	22,5	73	3,5
20	18,3	88,7	27,4	77,5	105,6	56,9	27,4	28,2	71	3,5
25	18,8	91,7	26,4	77,8	112,5	56,8	27,8	28,5	71	3,5
30	19,4	90,2	32,2	77,1	106,1	57,8	26,2	28,9	69	3,5
35	19,9	93,3	29,7	76,8	106,1	57,8	25,7	28,2	68	3,5
40	21,9	92,2	31,9	77,9	106,8	56,8	26,2	27,7	70	3,5
45	22,2	92,9	30,5	77,8	105,3	59,4	26,9	30	58	3,5
50	21,9	90,9	30,9	77,8	106,9	59,4	27,7	29,2	58	3,5
55	21,8	90,1	32,7	78,7	106,4	59,1	26,3	28,4	57	3,5
60	22,4	92,2	31,8	78,2	107,2	59,7	25,8	29,1	57	3,5

PE-03

Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	VELOCIDAD
5	20,5	99,4	31,9	112,4	235,9	67,2	31,7	31,3	73	1,5
10	20,9	96,3	38,1	99,5	193,8	65,2	30,2	31,6	68	1,7
15	21,1	95,6	32,4	89,3	156,4	65,3	27,7	31,9	64	1,6
20	21,7	92,1	30,5	79,4	135,3	64,5	28,8	31,4	61	2,5
25	21,6	97,7	33,6	73,6	126,2	60,9	28,6	30,2	59	2,2
30	21,2	94,5	32,4	75,1	114,8	59	28,9	30,6	57	3,1
35	21,3	93,0	30,6	73,2	112,3	56,1	26,9	30,7	57	3,2
40	21,9	91,2	30,2	72,5	113,2	57,3	28,7	31,2	56	3,5
45	22,7	93,2	32,2	75,7	110,7	59,2	27,8	29,4	55	3,4
50	23,2	91,5	33,5	74,4	113,4	59,2	27,1	28,9	54	3,3
55	22,9	93,1	33,1	71,7	114,6	60,6	29,4	30,3	54	3,7
60	23	91,6	33,2	74,5	117,2	59	28,6	30,2	53	3,5

Tiempo	T∞	Tc	Ta	Те	Tm	Tb	T1	T2	HR	VELOCIDAD
5	18	73,6	32,2	60,1	93,3	55,7	21	23	68	4,1
10	21,5	80,9	31,9	69,3	100,7	53	23,4	24,8	70	3,1
15	23,6	87,3	30,1	69,9	99,6	52,5	24,9	25,9	72	4,1
20	22,8	88,9	29,4	71,2	101,3	48,6	24,8	26,1	63	3,9
25	22,1	89,8	29,9	73,8	103,7	50,9	25,3	27,5	59	3,1
30	21,7	91,7	28,8	73,5	104,7	51,9	26,3	27,5	59	3,5
35	21,6	89,9	30,2	73,7	109,1	51,5	27,1	28,3	58	3,7
40	21,5	91,5	29,9	73,6	104,2	53,1	27,3	27,9	58	3,2
45	21,7	92,2	29,5	73,7	104,4	53,6	27,9	29,3	58	3,7
50	22	91,9	30,1	73,4	102,7	52,8	27,0	28,6	57	4,3
55	21,8	90,8	31	73,1	101,9	52,6	26,9	28,3	57	3,6
60	21,6	91,9	30,3	73,4	102,9	54,1	26,7	27,7	57	4,3

Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	VELOCIDAD
0	21,1	73,5	50,6	41,9	81,3	62,3	23	24,2	55	3,9
5	22,3	77,4	37,6	61,1	90,5	56,9	23,2	24,8	55	4,1
10	23,3	83,5	34,3	72,2	98,2	54,2	26,8	28,1	55	4,3
15	24,3	86,2	32,4	71,9	102,9	53,8	27,8	29,7	54	4,9
20	24,5	88,1	30,6	72,7	98,9	54,5	29,7	30,1	53	5,4
25	24,6	88,2	30,8	72,2	104,3	55,6	29,2	30,4	52	4,3
30	25,5	88,4	33,2	72,4	102,7	58,2	29,3	29,7	51	5,4
35	25,6	91,5	31,9	72,2	103,1	56,8	29,7	30,6	51	6,3
40	25,8	88,9	32,7	71,3	103,4	53,6	29	30,7	50	5,7
45	25,6	90,6	31,9	73	102,1	54,9	29,7	31,2	49	6,3
50	25,9	91	30,5	72,8	103,7	57	30,4	31,5	49	5,1
55	26,3	93,2	32,7	73,3	102,5	57,8	31,2	32,9	48	5,3
60	27,4	91,3	31,7	73,3	104,6	57,5	30,1	32,1	40	5,2

PE-06

Tiempo	T∞	Тс	Та	Te	Tm	Tb	T1	T2	HR	VELOCIDAD
0	18,7	67,6	41,8	45,8	77,1	57,7	24,4	25,5	67	3,2
5	22,7	79,2	32	67,6	88,1	54,8	22,8	23,7	62	4,4
10	23	83,7	30,2	69,6	97,3	51,2	26,9	28,6	60	5,3
15	23,2	86,5	28,2	70,5	101,0	52,9	27,1	28,6	59	6
20	23,3	88,3	30,5	70,3	97,3	53	28,2	28,6	58	5,3
25	23,7	89,2	28,9	72,2	102,5	54,9	27,2	30,2	58	5,6
30	24	91,2	30,4	72,6	101,9	53,9	29	31,3	56	5,3
35	24,4	91,2	29	72,9	101,6	54,2	28,4	31,1	56	5,3
40	24,7	91,3	28,1	73	101,9	54,7	29,6	31,5	55	4,8
45	24,9	91,3	29,8	73,2	101,0	57,5	29,4	32,8	55	5,0
50	25,2	91,5	30,7	72,7	102,3	57,2	29,7	31,4	53	4,5
55	25,5	91,3	30,5	73,2	102,8	57,7	29,8	32,3	53	4,3
60	25,8	91,2	30,9	72,9	102,8	57,9	30,5	32,9	52	4,5

Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	VELOCIDAD
0	19,4	66,5	41,9	46,8	78,1	57,6	25	26,1	67	3,2
5	23,1	79,4	33	68,6	88,1	54,6	23	24,1	62	4,5
10	23	83,2	31	69,5	98,3	51,1	26,9	28,7	61	5,7
15	23,4	87,0	28,4	70,4	102,0	52,6	28,1	28,7	58	6,1
20	23,8	88,1	30,6	70,2	98,3	53	27,4	28,7	57	5,6
25	23,9	89,2	27,9	72,3	103,5	55	29	30,4	57	5,7
30	24	92,1	30,6	72,5	101,9	54,1	28,5	31,5	55	5,7
35	24,1	92,1	28	72,8	101,5	54,4	29,7	31,4	55	5,2
40	24,6	92,3	27,1	73,1	101,9	54,6	29,5	31,6	54	5,2
45	24,3	92,3	29,0	73,3	101,1	57,6	29,8	32,9	54	5,4
50	25,4	92,6	30,5	72,5	102,4	57,4	29,9	31,6	52	4,7
55	25,9	92,3	30,3	73,1	102,7	57,8	29,8	32,7	52	4,6
60	26,3	92,2	30,8	72,8	102,7	57,9	30,3	32,9	51	4,5

PE-08

Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	VELOCIDAD
0	19,1	64,5	31,0	70,3	75,8	50,8	19,5	20,4	71	7,8
5	18,3	69,7	31,4	81,9	85,4	51,9	19,7	20,7	64	7,1
10	18,2	71,7	32,5	85,9	88,9	53,5	20,3	22,3	64	7,5
15	19,3	69,3	31,3	84,2	90,2	53,2	20,5	21,8	63	7,7
20	20,3	75,1	31,3	88,4	92,4	56,9	19,4	20,4	62	7,6
25	21,3	73,5	31,4	90,4	93,4	53,7	19,7	20,5	57	7,4
30	21,6	74,9	31,3	91,0	92,8	53,6	19,4	21,5	54	7,6
35	24,0	71,6	32,1	92,1	93,5	54,2	19,5	21,7	50	7,6
40	25,1	71,3	33,7	89,8	93,4	54,9	21,4	23	43	7,6
45	27,0	72,3	34,1	89,2	94,4	55,6	22,9	24,6	43	7,5
50	31,6	70,2	34,4	91,7	92,1	56,1	24,5	25,9	34	7,6
55	33,0	70,7	32,7	84,5	91,2	54,2	24,2	25,4	31	7,6
60	33,8	73,1	33,2	84,9	90,6	53,6	22,2	25,6	31	7,6

PM-01

Hora	Tiempo	T∞	Тс	Ta	Те	Tm	Tb	T1	T2	HR	Observación
10:25		22,1	65,5	21,6	68	89,5	25,1	20,4	20,7	56	Salida U
10:45		29,3	117,2	45,6	235,6	412,3	81,6	49,7	54,3	46	Puente 1
11:10		25,3	104,7	38,9	150,3	260,5	64,6	43,2	44,6	45	Llegada U

Velocidad	1
3,3	ı
7,2	
6,7	-

Velocidad del Bus: 50-60 Km./h, 18 Rev./min ; 40 Km./h , 17

Rev./min; 80-90 Km/h, 20 rev/min 75 Km./h, 20 Rev/min; 80 Km./h, 24 Rev/min

Hora	Tiempo	T∞	Тс	Ta	Те	Tm	Tb	T1	T2	HR	Observación
11:01		21,9	64,1	22,6	66	89,5	24,4	19,9	20,1	56	Salida U
11:20		28,4	117,2	44,6	230,1	414,9	80,9	49	54,3	46	Puente 1
11:41		24,2	101,7	37,8	149,5	261,1	66,1	41,7	41,7	45	Llegada U

Velocidad	Velocidad del Bus: 50-60 Km./h, 18 Rev./min ; 40 Km./h , 17
3,3	Rev./min; 80-90 Km/h, 20 rev/min
7,2	75 Km./h, 20 Rev/min ; 80 Km./h , 24 Rev/min
6.7	

PM-03

Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
8:54		22	90,3	46,5	60,5	148,3	64,5	32,1	35,1	65	Salida U
9:33		24,2	119,4	46,7	270,8	431,6	79,3	50	52	49	Puente 1
10:08		32,6	98,2	36,1	111,1	192,6	61,9	42,9	43,3	27	Llegada U

Velocidad	Velocidad del Bus: 60 Km./h, 20 Rev./min ; 50 Km./h , 15
5,2	Rev./min; 90 Km/h, 22 rev/min
5,1	80 Km./h, 24 Rev/min; 50 Km./h, 15 Rev/min; 70 Km./h, 21
2,5	Rev/min

PM-04

Hora	Tiempo	8	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
9:35		21,6	81,3	45,3	55,8	159,3	63,9	27,1	29,3	75	Salida U
10:05		20,3	119,3	42,2	241,5	451,3	73,4	49,6	51	63	Puente 1
10:25		21,0	104,2	27,4	169,8	284	65,9	44,2	46,4	61	Llegada U

Velocidad	Valacided del Due, 70 km /b. 20 Day /min , 40 km /b
6,9	Velocidad del Bus: 70 Km./h, 20 Rev./min ; 40 Km./h ,
7.2	<u>14 Rev./min</u> ; <u>80 Km/h,14 rev/min</u>
	60 Km./h, 19 Rev/min; 50 Km./h, 15 Rev/min; 40 Km./h,
5,1	18 Rev/min
7,3 (Vehículo mov.)	

Hora	Tiempo	8	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
9:10		15	84,3	44,4	56,9	189,0	64,5	27,9	29,1	70	Salida U
9:37		16,1	115,4	41,3	243,0	467,9	74,4	48,5	54	68	Puente 1
9:59		18	102,2	28,9	170,9	298	63,9	44,5	46,7	66	Llegada U

Velocidad
6,3
7,2
6,7
7,8(Vehículo mov.)

Velocidad del Bus: 70 Km./h, 20 Rev./min ; 40 Km./h , 14 Rev./min ; 80 Km/h , 14 rev/min 60 Km./h, 19 Rev/min ; 50 Km./h , 15 Rev/min; 40 Km./h, 18 Rev/min

PM-06

Hora	Tiempo	T 8	Тс	Ta	Te	Tm	Tb	T1	T2	HR	Observación
8:35		15,4	85	45	56,9	189,0	64,5	28,2	29,3	71	Salida U
8:55		16,8	117	42,3	242,0	465,3	74,4	48,1	54,5	67	Puente 1
9:15		18,9	102,2	28,9	171	298	63,9	45,3	45,1	65	Llegada U

Velocidad
6,4
7,4
6,7
7,9(Vehículo mov.)

Velocidad del Bus: 70 Km./h, 20 Rev./min ; 40 Km./h , 14 Rev./min ; 80 Km/h , 14 rev/min 60 Km./h, 19 Rev/min ; 50 Km./h , 15 Rev/min; 40 Km./h, 18 Rev/min

PM-07

Hora	Tiempo	T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
8:35		22,6	68,9	49,5	35,8	78	58	22,3	25,6	71	Salida U
8:55		19,6	123,4	34,7	244,5	470	82	43,1	47,8	67	Puente 1
9:25		15,5	106,5	32,1	165,3	312,4	67,3	37,2	36,6	65	Llegada U

Velocidad
5,5
5,8
6,9
7,9 (Vehículo mov.)

Velocidad del Bus: 50 Km./h, 15 Rev./min ; 60 Km./h , 19 Rev./min ; 50 Km/h , 16 rev/min 25 Km./h, 10 Rev/min ; 75 Km./h , 23 Rev/min; 80 Km./h , 25 Rev/min

Hora Tier	npo T∞	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
-----------	--------	----	----	----	----	----	----	----	----	-------------

8:18	23,6	67,9	47,5	36,8	77	57,8	21,3	24,6	49	Salida U
8:52	17,6	121,6	34,7	245,5	475	83,5	42,1	45,8	60	Puente 1
9:10	18,5	107,1	38,1	166,3	314,5	68,3	35,2	39,6	59	Llegada U

Velocidad				
5,5				
5,6				
6,5				
7,5 (Vehículo mov.)				

Velocidad del Bus: 50 Km./h, 15 Rev./min ; 60 Km./h

, 19 Rev./min ; 50 Km/h , 16 rev/min

25 Km./h, 10 Rev/min; 75 Km./h, 23 Rev/min; 80

Km./h, 25 Rev/min

PM-09

Hora	Tiempo	T &	Тс	Та	Те	Tm	Tb	T1	T2	HR	Observación
8:35		15,4	85	45	56,9	189,0	64,5	28,2	29,3	71	Salida U
8:55		16,8	117	42,3	242,0	465,3	74,4	48,1	54,5	67	Puente uno
9:15		18,9	102,2	28,9	171	298	63,9	45,3	45,1	65	Llegada U

Velocidad				
6,4				
7,4				
6,7				
7,9(Vehículo				
mov.)				

14 Rev./min; 80 Km/h, 14 rev/min

60 Km./h, 19 Rev/min; 50 Km./h, 15 Rev/min; 40 Km./h,

18 Rev/min

PM-10

Hora	Tiempo	T ⊗	Tc	Та	Te	Tm	Tb	T1	T2	HR	Observación
8:58		20,6	63,5	44,9	29,1	69,5	53,4	24,4	25,3	58	Salida U
9:40		18,8	105,7	40,1	145,6	302,2	69,2	40,6	42,8	58	Comandancia
											Ejercito
10:18		19,6	106,3	36,7	161,3	269,8	63,7	42,1	43,1	59	Llegada U

Velocidad
3,2
7,1
7,4
7.2 (Vehículo mov.)

Velocidad del Bus: 40 Km./h, 13 Rev./min; 45 Km./h,

15 Rev./min; 80 Km/h, 24 rev/min

60 Km./h, 20 Rev/min; 50 Km./h, 24 Rev/min; 100

Km./h, 23 Rev/min; 70 Km/h, 21 rev/m

5.3. Análisis de Variables.

El análisis de las variables se lo ha realizado día por día y es el siguiente:

- PE - 01

ANÁLISIS ESTADÍSTICO TIEMPO VS. T CARTER

Tabla 5.1 Datos para análisis Tiempo vs T carter

	la GII Bato		
Tiempo	T Carter	Cambio T	
0	57,5	35,3	
5	58,5	1	
10	68,8	10,3	
15	75,7	6,9	
20	81	5,3	
25	83,1	2,1	
30	88,1	5	
35	91,9	3,8	Incremento de temperatura
40	90,9	-1	
45	93,8	2,9	
50	93,7	-0,1	
55	94	0,3	
60	92,1	-1,9	Periodo de estabilización

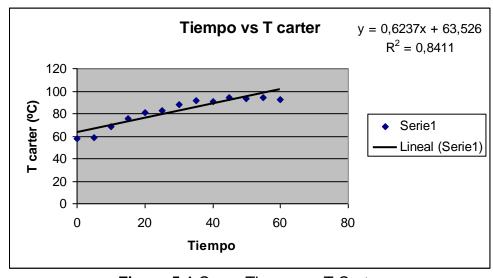


Figura 5.1 Curva Tiempo vs T Carter

r 0,91711504

Análisis

La temperatura se incrementa en forma significativa hasta aproximadamente 35 minutos que se prende el auto. A partir de los 35 minutos en adelante se tiende a estabilizar la temperatura. En este tiempo llega a actuar el refrigerante debido a que mantiene una temperatura de estabilización. El ajuste de la recta es bastante bueno ya que el coeficiente de correlación da menor que uno.

Tabla 5.2 Medidas de Dispersión Tiempo vs T carter

	Υ	(y-y media)	(y-y media)^2
	90,9	2	4
	93,8	0,9	0,81
	93,7	0,8	0,64
	94	1,1	1,21
	92,1	0,8	0,64
Sumatoria	92,9	5,6	7,3

Desviación Media	1,12	°C
Desviación Estándar	1,350925609	ô
Y Estabilización	92,9 ℃ -	+/- 1,12 ºC

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas

Tabla 5.3 Datos del comportamiento de la Temperatura en función del tiempo Tiempo vs T carter

Υ	Logy	x	x^2	x*logy
57,5	1,759667845	0	0	0
58,5	1,767155866	5	25	8,83577933
68,8	1,837588438	10	100	18,3758844
75,7	1,87909588	15	225	28,1864382
81	1,908485019	20	400	38,1697004
83,1	1,919601024	25	625	47,9900256
88,1	1,944975908	30	900	58,3492773
91,9	1,963315511	35	1225	68,7160429
90,9	1,958563883	40	1600	78,3425553
93,8	1,972202838	45	2025	88,7491277
93,7	1,971739591	50	2500	98,5869795
94	1,973127854	55	3025	108,522032

	92,1	1,96425963	60	3600	117,855578
Sumatoria	1069,1	24,81977929	390	16250	760,67942

Tabla 5.4 Resultado para la curva del modelo logarítmico Tiempo vs T carter

ricinpo vo i	oartor
logb	0,003535394
loga	1,803151977
b	1,00817377

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,803151977 + 0,003535394 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del carter, y podemos comprobar que los datos del carter están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.5 Datos para análisis Tiempo vs T múltiple

Tiempo	T Múltiple	Cambio T	
0	81,3	59,1	
5	71,5	-9,8	
10	93	21,5	
15	98,9	5,9	
20	102,7	3,8	
25	104,9	2,2	
30	106,5	1,6	
35	108,1	1,6	
40	108,8	0,7	Incremento de temperatura
45	108,2	-0,6	
50	109	0,8	
55	110,3	1,3	
60	108,4	-1,9	Periodo de estabilización

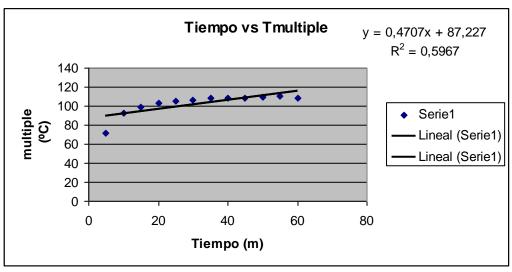


Figura 5.2 Curva Tiempo vs Múltiple

r	0,77246359

Análisis

La temperatura en el múltiple se incrementa en forma significativa hasta aproximadamente 40 minutos que se prende el auto. A partir de los 40 minutos en adelante se tiende a estabilizar la temperatura. En este tiempo llega a actuar el refrigerante debido a que mantiene una temperatura de estabilización y no afecta a las demás partes del motor, en caso de que no existiera refrigerante existiría un recalentamiento del motor que podría dañar partes principales como son el cabezote, válvulas. El ajuste de la recta es bastante bueno debido a que el coeficiente de correlación es menor que uno.

Tabla 5.6 Medidas de dispersión Tiempo vs T múltiple

	Υ	(y-ymedia)	(y-ymedia)^2
	108,2	0,775	0,600625
	109	0,025	0,000625
	110,3	1,325	1,755625
	108,4	0,575	0,330625
Sumatoria	108,975	2,7	2,6875

Desviación Media	0,675	°C
Desviación Estándar	0,946484724	Ô
Y Estabilización	108,975 °C	+/-0,675 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.7 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T múltiple

	Υ	Logy	x	x^2	x*logy
	81,3	1,9100905	0	0	0
	71,5	1,854306042	5	25	9,27153021
	93	1,968482949	10	100	19,6848295
	98,9	1,995196292	15	225	29,9279444
	102,7	2,011570444	20	400	40,2314089
	104,9	2,020775488	25	625	50,5193872
	106,5	2,027349608	30	900	60,8204882
	108,1	2,033825694	35	1225	71,1838993
	108,8	2,036628895	40	1600	81,4651558
	108,2	2,034227261	45	2025	91,5402267
	109	2,037426498	50	2500	101,871325
	110,3	2,042575512	55	3025	112,341653
	108,4	2,035029282	60	3600	122,101757
Sumatoria	1311,6	26,00748451	390	16250	790,959605

Tabla 5.8 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

ricinpo va i manipio		
logb	0,002359356	
loga	1,929795051	
b	1,005447401	

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,929795051 + 0,002359356 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del múltiple, y podemos comprobar que los datos del múltiple están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISIÓN

Tabla 5.9 Datos para análisis Tiempo vs T admisión

Tabla 3.9 Datos para arialisis Tierripo vs T aurilision				
Tiempo	T admisión	Cambio T		
0	28,3	6,1		
5	29,5	1,2	Incremento de temperatura	
10	25,2	-4,3		
15	29,4	4,2		
20	28,8	-0,6		
25	29,7	0,9		
30	29,9	0,2		
35	31,2	1,3		
40	31,5	0,3		
45	34,3	2,8		
50	35,4	1,1		
55	36,1	0,7		
60	35,1	-1	Periodo de estabilización	

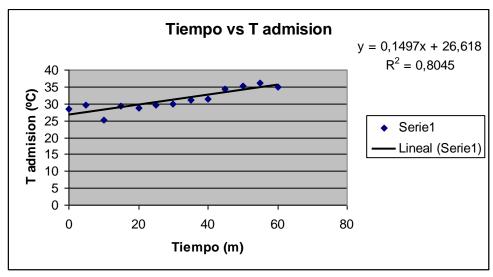


Figura 5.3 Curva Tiempo vs T Admisión

r	0.89693924

Análisis

La temperatura en admisión se incrementa en forma significativa hasta aproximadamente 5 minutos que se prende el auto. A partir de los 10 minutos en adelante se tiende a estabilizar la temperatura. En este tiempo llega a actuar el refrigerante debido a que mantiene una temperatura de estabilización y no afecta a las demás partes del motor, en caso de que no existiera refrigerante existiría un recalentamiento del motor que podría dañar partes principales como son el cabezote, válvulas. En el sistema de admisión solo es entrada de aire, por eso el valor de temperaturas no sobrepasa de los 36°C, es decir el aire que entra del ambiente. El ajuste de la recta es bastante bueno porque su valor de coeficiente de correlación es cercano a uno.

Tabla 5.10 Medidas de dispersión Tiempo vs T admisión

	Υ	(y-ymedia)	(y-ymedia)^2
	25,2	0,163636364	0,02677686
	29,4	4,363636364	19,04132231
	28,8	3,763636364	14,16495868
	29,7	4,663636364	21,74950413
	29,9	4,863636364	23,65495868
	31,2	6,163636364	37,99041322
	31,5	6,463636364	41,77859504
	34,3	9,263636364	85,81495868
	35,4	10,36363636	107,4049587
	36,1	11,06363636	122,4040496
	35,1	10,06363636	101,2767769
Sumatoria	25,03636364	71,2	575,3072727

Desviación Media	6,472727273	ô
Desviación Estándar	7,58490127	°C
Y Estabilización	25,0363 °C	+/-6,4727 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla5.11 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

	Υ	Logy	X	x^2	x*logy
	28,3	1,4517864	0	0	0
	29,5	1,469822016	5	25	7,34911008
	25,2	1,401400541	10	100	14,0140054
	29,4	1,46834733	15	225	22,02521
	28,8	1,459392488	20	400	29,1878498
	29,7	1,472756449	25	625	36,8189112
	29,9	1,475671188	30	900	44,2701356
	31,2	1,494154594	35	1225	52,2954108
	31,5	1,498310554	40	1600	59,9324222
	34,3	1,53529412	45	2025	69,0882354
	35,4	1,549003262	50	2500	77,4501631
	36,1	1,557507202	55	3025	85,6628961
	35,1	1,545307116	60	3600	92,718427
Sumatoria	376,1	17,92696686	390	16250	590,812777

logb	0,002076962
loga	1,428364466
b	1,004793836

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,4283466 + 0,002076962 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del admisión, y podemos comprobar que los datos de admisión están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.12 Datos para análisis Tiempo vs T escape

Table 9:12 Dates para arransis Tierripo vs 1 cocape			
Tiempo	T escape	Cambio T	
0	64,5	42,3	
5	66,5	2	
10	69,6	3,1	
15	71,4	1,8	
20	73,5	2,1	Incremento de temperatura
25	71,6	-1,9	
30	75,5	3,9	
35	75,8	0,3	
40	77,7	1,9	
45	76,1	-1,6	
50	76,5	0,4	
55	78,1	1,6	
60	75,3	-2,8	Periodo de estabilización

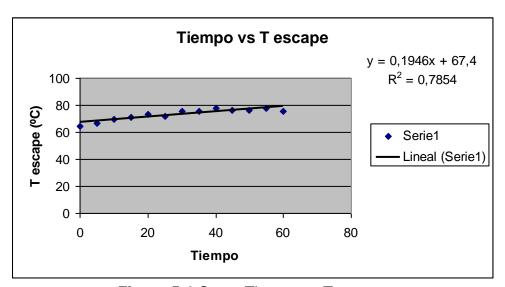


Figura 5.4 Curva Tiempo vs T escape

r	0,88622796

Análisis

La temperatura en escape se incrementa en forma significativa hasta aproximadamente 20 minutos que se prende el auto. A partir de los 25 minutos en adelante se tiende a estabilizar la temperatura. En este tiempo llega a actuar

el refrigerante debido a que mantiene una temperatura de estabilización y no afecta a las demás partes del motor, en caso de que no existiera refrigerante existiría un recalentamiento del motor que podría dañar partes principales como son el cabezote, válvulas.

Tabla 5.13 Medidas de dispersión Tiempo vs T escape

	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	Υ	(y-ymedia)	(y-ymedia)^2
	71,6	4,225	17,850625
	75,5	0,325	0,105625
	75,8	0,025	0,000625
	77,7	1,875	3,515625
	76,1	0,275	0,075625
	76,5	0,675	0,455625
	78,1	2,275	5,175625
	75,3	0,525	0,275625
Sumatoria	75,825	10,2	27,455

Desviación Media	1,275	ç
Desviación Estándar	1,980440067	°C
Y Estabilización	75,825 °C +/-1,275 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.14 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T escape

	Υ	Logy	Х	x^2	x*logy
	66,5	1,822821645	5	25	9,11410823
	69,6	1,84260924	10	100	18,4260924
	71,4	1,853698212	15	225	27,8054732
	73,5	1,866287339	20	400	37,3257468
	71,6	1,854913022	25	625	46,3728256
	75,5	1,877946952	30	900	56,3384085
	75,8	1,879669206	35	1225	65,7884222
	77,7	1,890421019	40	1600	75,6168408
	76,1	1,881384657	45	2025	84,6623096
	76,5	1,883661435	50	2500	94,1830718
	78,1	1,892651034	55	3025	104,095807
	75,3	1,876794976	60	3600	112,607699
Sumatoria	887,6	22,42285874	390	16250	732,336804

Tabla 5.15 Resultado para la curva del modelo logarítmico Tiempo vs T escape

logb	0,001005285
loga	1,835899784
b	1,002317435

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,835899 + 0,001005285 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del escape, y podemos comprobar que los datos del escape están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.16 Datos para análisis Tiempo vs T block

· unic	OTTO Batoo	dia ananois	riciipo va i biock
Tiempo	T Block	Cambio T	
0	42,9	20,7	
5	43,8	0,9	
10	46,3	2,5	
15	49,2	2,9	
20	52,5	3,3	
25	55,9	3,4	
30	59,3	3,4	
35	60,4	1,1	Incremento de temperatura
40	59,7	-0,7	
45	61,7	2	
50	62	0,3	
55	61,4	-0,6	
60	60,2	-1,2	Periodo de estabilización

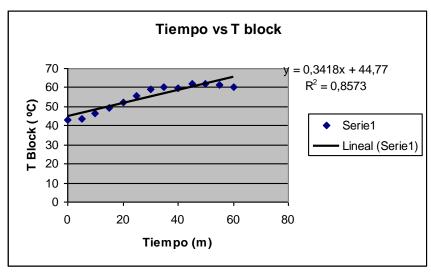


Figura 5.5 Curva Tiempo vs T block

r	0,92590496
---	------------

Análisis

La temperatura en escape se incrementa en forma significativa hasta aproximadamente 35 minutos que se prende el auto. A partir de los 40 minutos en adelante se tiende a estabilizar la temperatura. En este tiempo llega a actuar el refrigerante debido a que mantiene una temperatura de estabilización y no afecta a las demás partes del motor, en caso de que no existiera refrigerante existiría un recalentamiento del motor que podría dañar partes principales como son el cabezote, válvulas. El ajuste de la recta es bastante bueno ya que el coeficiente de correlación es menor que uno

Tabla 5.17 Medidas de dispersión Tiempo vs T block

	59,7	1,3	1,69
	61,7	0,7	0,49
	62	1	1
	61,4	0,4	0,16
	60,2	0,8	0,64
Sumatoria	61	4,2	3,98

Desviación Media	0,84	٥C
Desviación Estándar	0,997496867	٥C
Y Estabilización	61 °C +/	′-0,84 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.18 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T block

	Υ	Logy	X	x^2	x*logy
	42,9	1,632457292	0	0	0
	43,8	1,641474111	5	25	8,20737055
	46,3	1,665580991	10	100	16,6558099
	49,2	1,691965103	15	225	25,3794765
	52,5	1,720159303	20	400	34,4031861
	55,9	1,747411808	25	625	43,6852952
	59,3	1,773054693	30	900	53,1916408
	60,4	1,781036939	35	1225	62,3362929
	59,7	1,775974331	40	1600	71,0389732
	61,7	1,790285164	45	2025	80,5628324
	62	1,792391689	50	2500	89,6195845
	61,4	1,788168371	55	3025	98,3492604
	60,2	1,779596491	60	3600	106,775789
Sumatoria	715,3	22,57955629	390	16250	690,205512

Tabla 5.19 Resultados para la curva del modelo logarítmico

riempo vs. r block		
logb	0,002817324	
loga	1,652369231	
b	1,006508215	

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,652369231+0,002817324 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del block, y podemos comprobar que los datos del block están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.20 Datos para análisis Tiempo vs T agua

			J
Tiempo	T Agua	Cambio T	
0	23,6	1,4	
5	20,95	-2,65	
10	21,85	0,9	
15	23,7	1,85	
20	28,05	4,35	Incremento de temperatura
25	27,55	-0,5	
30	26,95	-0,6	
35	28,9	1,95	
40	28,5	-0,4	
45	28,25	-0,25	
50	28,5	0,25	
55	27,9	-0,6	
60	29,05	1,15	Periodo de estabilización

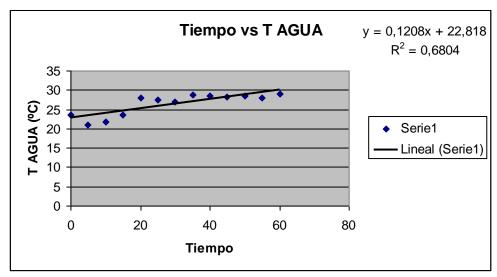


Figura 5.6 Curva Tiempo vs T agua

r 0,82486363

Análisis

La temperatura en el reservorio se incrementa en forma significativa hasta aproximadamente 20 minutos que se prende el auto.

A partir de los 25 minutos en adelante se tiende a estabilizar la temperatura.

En este tiempo llega a actuar el refrigerante debido a que mantiene una temperatura de estabilización y no afecta a las demás partes del motor, en caso de que no existiera refrigerante existiría un recalentamiento del motor que podría dañar partes principales como son el cabezote, válvulas.

El ajuste de la recta es bastante bueno ya que el coeficiente de correlación es menor que uno.

Tabla 5.21 Medidas de dispersión Tiempo vs T aqua

	Υ	(y-ymedia)	(y-ymedia)^2		
	27,55	0,65	0,4225		
	26,95	1,25	1,5625		
	28,9	0,775	0,600625		
	28,5	0,3	0,09		
	28,25	0,05	0,0025		
	28,5	0,575	0,330625		
	27,9	0,3	0,09		
	29,05	0,85	0,7225		
Sumatoria	28,2	4,75	3,82125		

Desviación Media	0,59375	ô
Desviación estándar	0,738845625 °C	
Y estabilización	28,2 °C +/-0,59375 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.22 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T aqua

	Υ	Logy	X	x^2	x*logy
	23,6	1,372912	0	0	0
	20,95	1,321184027	5	25	6,60592014
	21,85	1,339451441	10	100	13,3945144
	23,7	1,374748346	15	225	20,6212252
	28,05	1,447932866	20	400	28,9586573
	27,55	1,440121603	25	625	36,0030401
	26,95	1,43055877	30	900	42,9167631
	28,9	1,460897843	35	1225	51,1314245
	28,5	1,45484486	40	1600	58,1937944
	28,25	1,451018452	45	2025	65,2958303
	28,5	1,45484486	50	2500	72,742243
	27,9	1,445604203	55	3025	79,5082312
	29,05	1,463146137	60	3600	87,7887682
Sumatoria	343,75	18,45726541	390	16250	563,160412

Tabla 5.23 Resultado para la curva del modelo logarítmico Tiempo vs T agua

logb	0,002075264
loga	1,357531738
b	1,005447401

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,357531738 + 0,002075264 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del reservorio de agua, y podemos comprobar que los datos del reservorio están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.24 Datos para análisis $\Delta T_{\it AGUA}$ vs Humedad relativa

	ı	1	ngen
ΔT_{AGUA}	Humedad Relativa	Cambio H	
1,2	55	22,38462	
0,5	48	-7	
-1,1	38	-10	Decremento de humedad
-2	29	-9	
0,5	27	-2	
2,5	28	1	
2,7	30	2	
4,2	28	-2	
1,6	29	1	
3,5	28	-1	
1,6	27	-1	
3	28	1	
0,3	29	1	Periodo de estabilización

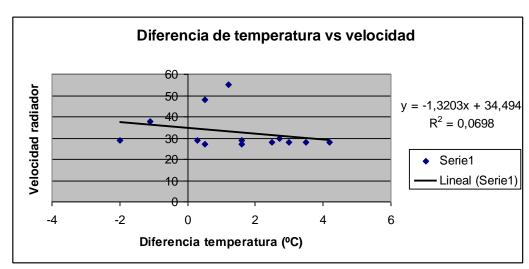


Figura 5.7 Curva Tiempo vs Humedad relativa

Análisis

Durante las primeras tres tomas existe un decremento de la humedad ya que comienza a descender paulatinamente hasta poder quedarse estable que eso va a suceder durante los próximos minutos.

A partir de la siguiente toma comienza a existir una estabilidad de la humedad ya que se mantiene en niveles de 27 -30 aproximadamente.

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación de curva es menor que uno.

Tabla 5.25 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	Υ	(y-ymedia)	(y-ymedia)^2
	29	0,7	0,49
	27	1,3	1,69
	28	0,3	0,09
	30	1,7	2,89
	28	0,3	0,09
	29	0,7	0,49
	28	0,3	0,09
	27	1,3	1,69
	28	0,3	0,09
	29	0,7	0,49
Sumatoria	28,3	7,6	8,1

Desviación Media	0,76
Desviación estándar	0,948683298
Y estabilización	28,3 +/-0,76

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.26 Datos del comportamiento de la humedad en función de $\Delta T_{\rm \tiny AGUA}$ (Modelo lineal)

	Y	Х	x^2	ху
	55	1,2	1,44	66
	48	0,5	0,25	24
	38	-1,1	1,21	-41,8
	29	-2	4	-58
	27	0,5	0,25	13,5
	28	2,5	6,25	70
	30	2,7	7,29	81
	28	4,2	17,64	117,6
	29	1,6	2,56	46,4
	28	3,5	12,25	98
	27	1,6	2,56	43,2
	28	3	9	84
	29	0,3	0,09	8,7
Sumatoria	424	18,5	64,79	552,6

Tabla 5.27 Resultados para la curva del modelo lineal $\Delta T_{\rm \scriptscriptstyle AGUA}$ vs Humedad relativa

b	-1,320347186
а	34,49434023

Y = 34,49434023 -1,320347186X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del agua de acuerdo a la humedad, y podemos comprobar que los datos de humedad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR RADIADOR

Tabla 5.28 Dato para análisis ΔT_{AGUA} vs velocidad del ventilador

ΔT_{AGUA}	Velocidad	Cambio T	
1,2	1,5	-0,59231	
0,5	1,6	0,1	
-1,1	1,8	0,2	
-2	1,9	0,1	
0,5	2,1	0,2	
2,5	2,3	0,2	
2,7	2,4	0,1	
4,2	2,4	0	Incremento de velocidad
1,6	2,3	-0,1	
3,5	2,1	-0,2	
1,6	2,3	0,2	
3	2,1	-0,2	
0,3	2,4	0,3	Periodo de estabilización

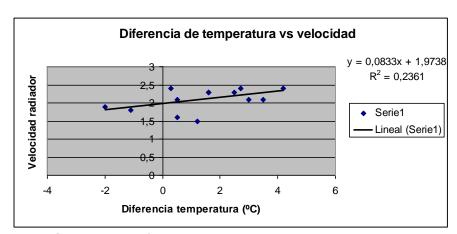


Figura 5.8 Diferencia de Temperatura vs Velocidad

r	0,48590122

Análisis

La velocidad tiende a un incremento significativo en las primeras ocho tomas de la diferencia de temperatura de agua de transcurrido la prueba. Transcurrido esta toma, la velocidad tiende a estabilizar. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación es menor que uno. El ventilador se prende ya que existe un sensor electromecánico que el rato que

se prende es que significa que esta pasando refrigerante al motor y procede a mantener su temperatura de estabilización, si el sensor se daña no va aprender el sensor electromecánico por lo tanto no va a pasar agua al radiador, por esto hemos hecho la comparación ya que influye bastante la velocidad del ventilador del radiador con la temperatura del agua.

Tabla 5.29 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	•	710071	
	Υ	(y-ymedia)	(y-ymedia)^2
	2,3	0,06	0,0036
	2,1	0,14	0,0196
	2,3	0,06	0,0036
	2,1	0,14	0,0196
	2,4	0,16	0,0256
Sumatoria	2,24	0,56	0,072

Desviación Media	0,112	
Desviación Estándar	0,134164079	
Y Estabilización	2,24 +/-0,112	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas

Tabla 5.30 Datos del comportamiento de la velocidad en función de ΔT_{AGUA} (Modelo lineal)

Υ	Х	x^2	Ху
1,5	1,2	1,44	1,8
1,6	0,5	0,25	0,8
1,8	-1,1	1,21	-1,98
1,9	-2	4	-3,8
2,1	0,5	0,25	1,05
2,3	2,5	6,25	5,75
2,4	2,7	7,29	6,48
2,4	4,2	17,64	10,08
2,3	1,6	2,56	3,68
2,1	3,5	12,25	7,35
2,3	1,6	2,56	3,68
2,1	3	9	6,3
2,4	0,3	0,09	0,72
27,2	18,5	64,79	41,91

Sumatoria

Tabla 5.31 Resultados para la curva del modelo lineal ΔT_{AGUA} vs Velocidad del ventilador

b	0,08325667
а	1,973827047

Y = 1,973827047 + 0,08325667 X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura de acuerdo a la velocidad y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación

- PE - 02

ANALISIS ESTADISTICO TIEMPO VS TCARTER

Tabla 5.32 Datos para análisis Tiempo vs T carter

	3 Hempe vs i carter		
Tiempo	T carter	Cambio T	
0	73,5	52,4	
5	71,3	-2,2	
10	83,7	12,4	
15	86,1	2,4	
20	88,7	2,6	
25	91,7	3	Incremento de temperatura
30	90,2	-1,5	·
35	93,3	3,1	
40	92,2	-1,1	
45	92,9	0,7	
50	90,9	-2	
55	90,1	-0,8	
60	92,2	2,1	Periodo de estabilización

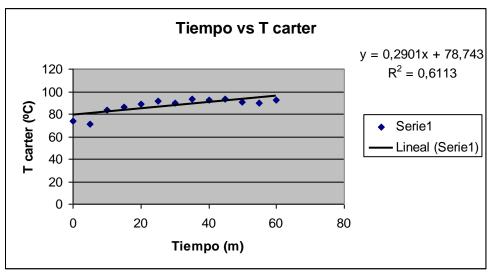


Figura 5.9 Curva Tiempo vs Tcarter

Análisis

La temperatura del carter sufre un incremento paulatino hasta los primeros 25 minutos de las pruebas. Transcurridos los 25 minutos, comienza a haber una estabilización de la temperatura según la curva que esta presentada. En el transcurso de este tiempo el refrigerante comienza a actuar sobre todo los componentes del vehiculo debido a que comienza a haber una estabilización de la temperatura, para que no sufra daños posteriores como por ejemplo un recalentamiento del motor. El ajuste de la curva es bastaste bueno ya que el coeficiente de correlación da menor que uno.

Tabla 5.33 Medidas de Dispersión Tiempo vs T carter

	o modiado do Diop		1
	Υ	(y-ymedia)	(y-ymedia)^2
	90,2	1,485714286	2,207346939
	93,3	1,614285714	2,605918367
	92,2	0,514285714	0,264489796
	92,9	1,214285714	1,474489796
	90,9	0,785714286	0,617346939
	90,1	1,585714286	2,514489796
	92,2	0,514285714	0,264489796
Sumatoria	91,68571429	7,714285714	9,948571429

Desviación Media	1,102040816	°C
Desviación Estándar	1,28767047	ô
Y estabilización	91,68 °C +	/- 1,102 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.34 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T carter

	Υ	Logy	X	x^2	x*logy
	71,3	1,85308953	5	25	9,26544765
	83,7	1,922725458	10	100	19,2272546
	86,1	1,935003151	15	225	29,0250473
	88,7	1,94792362	20	400	38,9584724
	91,7	1,962369336	25	625	49,0592334
	90,2	1,955206538	30	900	58,6561961
	93,3	1,969881644	35	1225	68,9458575
	92,2	1,964730921	40	1600	78,5892368
	92,9	1,968015714	45	2025	88,5607071
	90,9	1,958563883	50	2500	97,9281942
	90,1	1,954724791	55	3025	107,509864
	92,2	1,964730921	60	3600	117,883855
Sumatoria	1063,3	23,35696551	390	16250	763,609366

Tabla 5.35 Resultados para la curva del modelo logarítmico

Hellipo va i cartei		
logb	0,001519073	
loga	1,89467804	
b	1,003503919	

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

$$Log Y = 1,89467804 + 0,001519073 X$$

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del carter y podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.36 Datos para an	álisis Tiempo	vs T	múltiple
---------------------------------	---------------	------	----------

	Table 0.00 Batos para ananois mempe vs i matapie					
Tiempo	T múltiple	Cambio T				
0	81,3	60,2				
5	86,1	4,8				
10	98,3	12,2				
15	102,3	4				
20	105,6	3,3				
25	112,5	6,9	Incremento de temperatura			
30	106,1	-6,4				
35	106,1	0				
40	106,8	0,7				
45	105,3	-1,5				
50	106,9	1,6				
55	106,4	-0,5				
60	107,2	0,8	Periodo de estabilización			

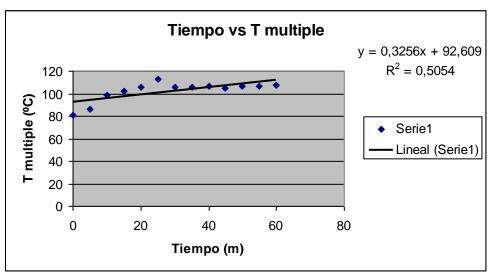


Figura 5.10 Curva Tiempo vs T múltiple

r	0,61245408

Análisis

La temperatura del múltiple tiende a incrementarse durante los primeros 25 minutos de realizada la prueba. A partir de los 30 minutos en adelante la

temperatura tiende a estabilizarse y a no sufrir incrementos posteriores. En el periodo de estabilización comienza a actuar el refrigerante ya que se mantiene estable las temperaturas y por lo tanto evita que hay un recalentamiento del motor.

Tabla 5.37 Medidas de dispersión Tiempo vs T múltiple

	miculation and anopolitical recomposition in an april				
	У	(y-ymedia)	(y-ymedia)^2		
	106,1	0,3	0,09		
	106,1	0,3	0,09		
	106,8	0,4	0,16		
	105,3	1,1	1,21		
	106,9	0,5	0,25		
	106,4	0	0		
	107,2	0,8	0,64		
Sumatoria	106,4	3,4	2,26		

Desviación Media	0,485714286	°C	
Desviación Estándar	0,613731755	°C	
Y Estabilización	106,4 °C +/- 0,4857 °C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.38 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T múltiple

	Y	logy	Х	x^2	x*logy
	81,3	1,910090546	0	0	0
	86,1	1,935003151	5	25	9,67501576
	98,3	1,992553518	10	100	19,9255352
_	102,3	2,009875634	15	225	30,1481345
	105,6	2,023663918	20	400	40,4732784
	112,5	2,051152522	25	625	51,2788131
	106,1	2,025715384	30	900	60,7714615
	106,1	2,025715384	35	1225	70,9000384
	106,8	2,028571253	40	1600	81,1428501
	105,3	2,022428371	45	2025	91,0092767
	106,9	2,028977705	50	2500	101,448885
	106,4	2,026941628	55	3025	111,48179
	107,2	2,030194785	60	3600	121,811687
Sumatoria	1330,9	26,1108838	390	16250	790,066766

Tabla 5.39 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

nompo vo i maiapio		
logb	0,001481374	
loga	1,964088304	
b	1,003416814	

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

$$Log Y = 1,964088304+0,001481374X$$

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del múltiple y podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.40 Datos para análisis Tiempo vs T block

I abia	3.40 Datus pa	Hempo vs. i block	
Tiempo	T block	Cambio T	
0	62,3	42,3	
5	70,6	8,3	Incremento de temperatura
10	57,4	-13,2	
15	55,6	-1,8	
20	56,9	1,3	
25	56,8	-0,1	
30	57,8	1	
35	57,8	0	
40	56,8	-1	
45	59,4	2,6	
50	59,4	0	
55	59,1	-0,3	
60	59,7	0,6	Periodo de estabilización

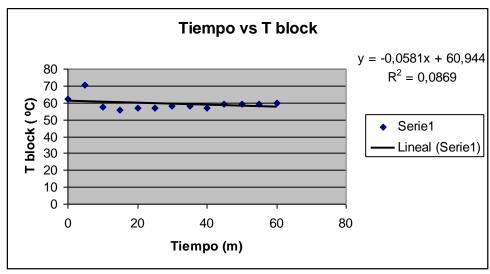


Figura 5.11 Curva Tiempo vs T block

La temperatura tiende a sufrir un incremento en los primeros diez minutos de realizada la prueba. A partir de los diez minutos en adelante la temperatura se tiende a estabilizarse. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno.

Tabla 5.41 Medidas de dispersión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	57,4	0,4818182	0,2321488
	55,6	2,2818182	5,2066942
	56,9	0,9818182	0,9639669
	56,8	1,0818182	1,1703306
	57,8	0,0818182	0,0066942
	57,8	0,0818182	0,0066942
	56,8	1,0818182	1,1703306
	59,4	1,5181818	2,304876
	59,4	1,5181818	2,304876
	59,1	1,2181818	1,4839669
	59,7	1,8181818	3,3057851
Sumatoria	57,88181818	12,145455	18,156364

Desviación Media	1,104132231	°C
Desviación Estándar	1,347455515	ô
Y Estabilización	57,93 °C +/- 1,104132231°C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.42 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T block

	Υ	logy	X	x^2	x*logy
	62,3	1,794488	0	0	0
	70,6	1,848804701	5	25	9,24402351
	57,4	1,758911892	10	100	17,5891189
	55,6	1,745074792	15	225	26,1761219
	56,9	1,755112266	20	400	35,1022453
	56,8	1,754348336	25	625	43,8587084
	57,8	1,761927838	30	900	52,8578352
	57,8	1,761927838	35	1225	61,6674743
	56,8	1,754348336	40	1600	70,1739334
	59,4	1,773786445	45	2025	79,82039
	59,4	1,773786445	50	2500	88,6893222
	59,1	1,771587481	55	3025	97,4373114
	59,7	1,775974331	60	3600	106,55846
Sumatoria	769,6	23,03007875	390	16250	689,174945

Tabla 5.43 Resultado para la curva del modelo logarítmico Tiempo vs T block

logb	-0,000379652
loga	1,782934088
b	1,002283279

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,782934088 - 0,000379652 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del Block y podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

	-	/ 11 1		_
1 ahla 5 44	1)atos	para análisis	LIEMPO VS	I ASCANA
I abia Jitt	Daios	Dala allalisis		I COCADC

Tiempo	T escape	Cambio T	
0	41,9	20,8	
5	46,5	4,6	
10	73,4	26,9	
15	75,8	2,4	
20	77,5	1,7	
25	77,8	0,3	Incremento de temperatura
30	77,1	-0,7	
35	76,8	-0,3	
40	77,9	1,1	
45	77,8	-0,1	
50	77,8	0	
55	78,7	0,9	
60	78,2	-0,5	Periodo de estabilización

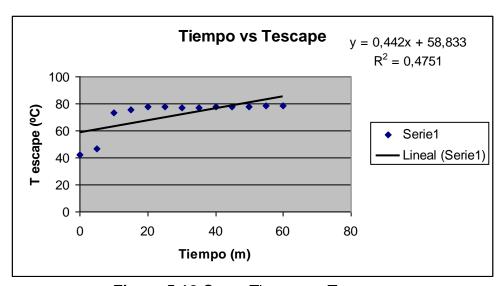


Figura 5.12 Curva Tiempo vs T escape

r	0,68927498

Análisis

La temperatura de escape tiende a sufrir un incremento durante los primeros 25 minutos de realizada la prueba. A partir de los 25 minutos en adelante la temperatura de escape se tiende a estabilizar ya que comienza a actuar el

refrigerante en todas las partes del motor y comienza a mantenerles estable para no sufrir un posterior recalentamiento. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación es menor a uno.

Tabla 5.45 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	77,1	0,6571429	0,4318367
	76,8	0,9571429	0,9161224
	77,9	0,1428571	0,0204082
	77,8	0,0428571	0,0018367
	77,8	0,0428571	0,0018367
	78,7	0,9428571	0,8889796
	78,2	0,4428571	0,1961224
Sumatoria	77,75714286	3,2285714	2,4571429

Desviación Media	0,46122449	°C	
Desviación Estándar	0,639940473	ô	
Y Estabilización	77,75 °C +/- 0,46122 °C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.46 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T escape

	Y	Logy	X	x^2	x*logy
	41,9	1,622214	0	0	0
	46,5	1,667452953	5	25	8,33726476
	73,4	1,86569606	10	100	18,6569606
	75,8	1,879669206	15	225	28,1950381
	77,5	1,889301703	20	400	37,7860341
	77,8	1,890979597	25	625	47,2744899
	77,1	1,887054378	30	900	56,6116313
	76,8	1,88536122	35	1225	65,9876427
	77,9	1,891537458	40	1600	75,6614983
	77,8	1,890979597	45	2025	85,0940819
	77,8	1,890979597	50	2500	94,5489798
	78,7	1,895974732	55	3025	104,27861
	78,2	1,893206753	60	3600	113,592405
Sumatoria	937,2	24,05040728	390	16250	736,024637

Tabla 5.47 Resultados para la curva del modelo logarítmico Tiempo vs T escape

11011100 10 1	oodapo	
logb	0,003189543	
loga	1,754345052	
b	1,004588844	

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,754345052 + 0,003189543 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura del escape y podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.48 Datos para análisis Tiempo vs T admisión

Tabla	5.46 Daios pa	ara arialisis	Hempo vs I admision
Tiempo	T admisión	Cambio T	
0	41,6	20,5	
5	45,3	3,7	Incremento de temperatura
10	28,8	-16,5	
15	28,8	0	
20	27,4	-1,4	
25	26,4	-1	
30	32,2	5,8	
35	29,7	-2,5	
40	31,9	2,2	
45	30,5	-1,4	
50	30,9	0,4	
55	32,7	1,8	
60	31,8	-0,9	Periodo de estabilización

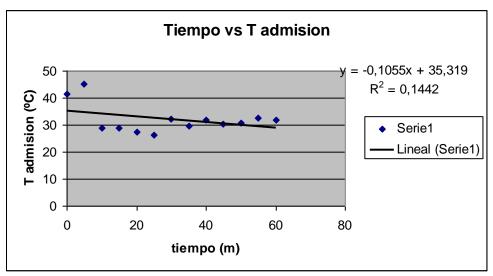


Figura 5.13 Curva Tiempo vs T admisión

r 0,37973675

La temperatura sufre un incremento en los primeros 10 minutos de realizada la prueba. Se tiende a estabilizar después de transcurridos los 10 minutos, es decir desde los quince en adelante, ya que comienza a actuar el refrigerante para mantener una temperatura de estabilización. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación es menor a 1.

Tabla 5.49 Medidas de dispersión Tiempo vs T admisión

	modiado do diopor		
	у	(y-ymedia)	(y-ymedia)^2
	28,8	1,3	1,69
	28,8	1,3	1,69
	27,4	2,7	7,29
	26,4	3,7	13,69
	32,2	2,1	4,41
	29,7	0,4	0,16
	31,9	1,8	3,24
	30,5	0,4	0,16
	30,9	0,8	0,64
	32,7	2,6	6,76
	31,8	1,7	2,89
Sumatoria	30,1	18,8	42,62

Desviación Media	1,709090909	°C
Desviación Estándar	2,064461189	°C
Y Estabilización	30,1 °C +/-	1,709090 °C

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.50 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

	Υ	logy	X	x^2	x*logy
	41,6	1,6190933	0	0	0
	45,3	1,656098202	5	25	8,28049101
	28,8	1,459392488	10	100	14,5939249
	28,8	1,459392488	15	225	21,8908873
	27,4	1,437750563	20	400	28,7550113
	26,4	1,421603927	25	625	35,5400982
	32,2	1,507855872	30	900	45,2356762
	29,7	1,472756449	35	1225	51,5464757
	31,9	1,503790683	40	1600	60,1516273
	30,5	1,484299839	45	2025	66,7934928
	30,9	1,489958479	50	2500	74,497924
	32,7	1,514547753	55	3025	83,3001264
	31,8	1,50242712	60	3600	90,1456272
Sumatoria	418	19,52896719	390	16250	580,731362

Tabla 5.51 Resultados para la curva del modelo logarítmico Tiempo vs T admisión

riempe re i aanneren		
logb	-0,001129155	
loga	1,536102885	
b	1,004588844	

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

$$Log Y = 1,53610285 - 0,001129155 X$$

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión y podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.52 Datos pa	ara analisis	TIEMDO VS I	adua
---------------------	--------------	-------------	------

	•		po ro r agaa
Tiempo	T agua	Cambio T	
0	23,6	2,5	
5	20,8	-2,8	
10	22	1,2	
15	23,55	1,55	
20	27,8	4,25	
25	28,15	0,35	Incremento de temperatura
30	27,55	-0,6	
35	26,95	-0,6	
40	26,95	0	
45	28,45	1,5	
50	28,45	0	
55	27,35	-1,1	
60	27,45	0,1	Periodo de estabilización

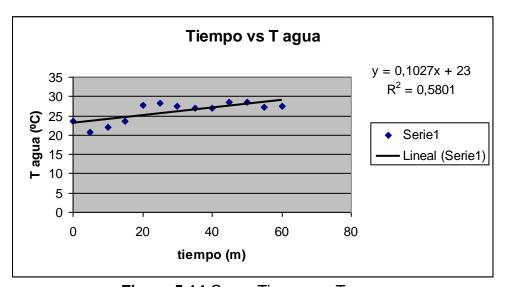


Figura 5.14 Curva Tiempo vs T agua

Análisis

La temperatura del reservorio de agua sufre un incremento significativo durante los primeros 25 minutos de realizadas las pruebas. Transcurridos los 25 minutos, es decir a partir de los 30 minutos, se comienza a estabilizar la temperatura del agua debido a que el refrigerante comienza a actuar para

estabilizar al motor para evitar que se recaliente y pueda dañar otros componentes. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal da menor que uno.

Tabla 5.53 Medidas de dispersión Tiempo vs T agua

	у	(y-ymedia)	(y-ymedia)^2
	27,55	0,0428571	0,0018367
	26,95	0,6428571	0,4132653
	26,95	0,6428571	0,4132653
	28,45	0,8571429	0,7346939
	28,45	0,8571429	0,7346939
	27,35	0,2428571	0,0589796
	27,45	0,1428571	0,0204082
Sumatoria	27,59285714	3,4285714	2,3771429

Desviación Media	0,489795918	٥C
Desviación Estándar	0,629436634	°C
Y Estabilización	27,5928 °C +/	′- 0,489795 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.54 Datos del comportamiento de la Temperatura en función del tiempo Tiempo vs T agua

	Υ	logy	х	x^2	x*logy
	23,6	1,372912003	0	0	0
	20,8	1,318063335	5	25	6,59031667
	22	1,342422681	10	100	13,4242268
	23,55	1,371990911	15	225	20,5798637
	27,8	1,444044796	20	400	28,8808959
	28,15	1,449478399	25	625	36,23696
	27,55	1,440121603	30	900	43,2036481
	26,95	1,43055877	35	1225	50,0695569
	26,95	1,43055877	40	1600	57,2223508
	28,45	1,454082271	45	2025	65,4337022
	28,45	1,454082271	50	2500	72,7041135
	27,35	1,436957331	55	3025	79,0326532
	27,45	1,438542349	60	3600	86,3125409
Sumatoria	339,05	18,38381549	390	16250	559,690829

Tabla 5.55 Resultado para la curva del modelo logarítmico Tiempo vs T agua

ricilipo vo ragad		
logb 0,00179700		
loga	1,36022956	
b	1,00414632	

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,36022956 + 0,001797003 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua y podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

Tabla 5.56 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{ extit{ iny AGUA}}$	Velocidad	Cambio V	
1,2	1,6	-1,39231	
0,4	1,8	0,2	
-1,2	1,9	0,1	
-2,1	2,6	0,7	
0,8	2,7	0,1	
0,7	3,2	0,5	
2,7	3,3	0,1	
2,5	3,6	0,3	Incremento de velocidad
1,5	3,3	-0,3	
3,1	3,9	0,6	
1,5	3,8	-0,1	
2,1	3,7	-0,1	
3,3	3,5	-0,2	Periodo de estabilización

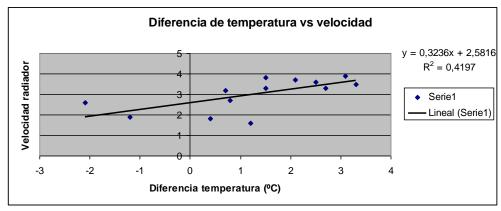


Figura 5.15 Curva diferencia de temperatura de Agua vs Velocidad

r	0,64784257
---	------------

La velocidad tiende a un incremento significativo en las primeras ocho tomas de la diferencia de temperatura de agua de transcurrido la prueba. Transcurrido esta toma, la velocidad tiende a estabilizar. El ventilador se prende ya que existe un sensor electromecánico que el rato que se prende es que significa que esta pasando refrigerante al motor y procede a mantener su temperatura de estabilización, si el sensor se daña no va aprender el sensor electromecánico por lo tanto no va a pasar agua al radiador, por esto hemos hecho la comparación ya que influye bastante la velocidad del ventilador del radiador con la temperatura del agua

Tabla 5.57 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	Υ	(y-ymedia)	(y-ymedia)^2
	3,3	0,34	0,1156
	3,9	0,26	0,0676
	3,8	0,16	0,0256
	3,7	0,06	0,0036
	3,5	0,14	0,0196
Sumatoria	3,64	0,96	0,232

Desviación Media	0,192 m/s	
Desviación Estándar	0,240831892 m/s	
Y Estabilización	2,24 +/-0,112 m/s	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.58 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	AGUA	`	,	
	у	x	x^2	Ху
	1,6	1,2	1,44	1,92
	1,8	0,5	0,25	0,9
	1,9	-1,1	1,21	-2,09
	2,6	-2	4	-5,2
	2,7	0,5	0,25	1,35
	3,2	2,5	6,25	8
	3,3	2,7	7,29	8,91
	3,6	4,2	17,64	15,12
	3,3	1,6	2,56	5,28
	3,9	3,5	12,25	13,65
	3,8	1,6	2,56	6,08
	3,7	3	9	11,1
	3,5	0,3	0,09	1,05
Sumatoria	38,9	18,5	64,79	66,07

Tabla 5.59 Resultados para la curva del modelo lineal ΔT_{AGUA} vs. Velocidad del ventilador del radiador

b	0,27850886
а	2,595968161

Y=2,595968161+0,27850886X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 3.60 Datos para analisis ΔI_{AGUA} vs Humedad relativa				
ΔT_{AGUA}	Humedad	Cambio H		
1,2	55	-10,7692		
0,4	75	20	Incremento de humedad	
-1,2	73	-2		
-2,1	73	0		
0,8	71	-2		
0,7	71	0		
2,7	69	-2		
2,5	68	-1		
1,5	70	2		
3,1	58	-12		
1,5	58	0		
2,1	57	-1		
3,3	57	0	Periodo de estabilización	

Tabla 5.60 Datos para análisis ΔT_{AGIIA} vs Humedad relativa

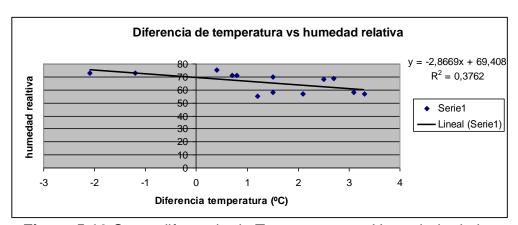


Figura 5.16 Curva diferencia de Temperatura vs Humedad relativa

r	0,61335145

Análisis

Durante las primeras dos tomas existe un incremento de la humedad ya que comienza a ascender paulatinamente hasta poder quedarse estable que eso va a suceder durante los próximos minutos. A partir de la siguiente toma comienza a existir una estabilidad de la humedad ya que se mantiene en niveles de

58 -71 aproximadamente. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación de curva es menor que uno.

Tabla 5.61 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	73	7,0909091	50,280992
	73	7,0909091	50,280992
	71	5,0909091	25,917355
	71	5,0909091	25,917355
	69	3,0909091	9,553719
	68	2,0909091	4,3719008
	70	4,0909091	16,735537
	58	7,9090909	62,553719
	58	7,9090909	62,553719
	57	8,9090909	79,371901
	57	8,9090909	79,371901
Sumatoria	65,90909091	67,272727	466,90909

Desviación Media	6,115702479	m/s
Desviación Estándar	6,833074644	m/s
Y Estabilización	65,90 +/-6,11	15702479 m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.62 Comportamiento de la humedad en función de la $\Delta T_{\rm AGUA}$ (Modelo lineal)

Sumatoria

у	X	x^2	Ху
55	1,2	1,44	66
75	0,5	0,25	37,5
73	-1,1	1,21	-80,3
73	-2	4	-146
71	0,5	0,25	35,5
71	2,5	6,25	177,5
69	2,7	7,29	186,3
68	4,2	17,64	285,6
70	1,6	2,56	112
58	3,5	12,25	203
58	1,6	2,56	92,8
57	3	9	171
57	0,3	0,09	17,1
855	18,5	64,79	1158

Tabla 5.63 Resultados para la curva del modelo lineal ΔT_{AGUA} vs Humedad relativa

b	-1,526938922
a	67,94218231

Y = 67,94218231 - 1,526938922X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del agua de acuerdo a la humedad y podemos comprobar que los datos de la humedad están de acuerdo a la curva que se esta presentando ya que existe una variación.

- PE - 03

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.64 Datos para análisis Tiempo vs T escape

	·		·
Tiempo	T escape	Cambio T	
0	100,5	79,4	
5	112,4	70,5	Incremento de temperatura
10	99,5	-12,9	
15	89,3	-10,2	
20	79,4	-9,9	
25	73,6	-5,8	
30	75,1	1,5	
35	73,2	-1,9	
40	72,5	-0,7	
45	75,7	3,2	
50	74,4	-1,3	
55	71,7	-2,7	
60	74,5	2,8	Periodo de estabilización

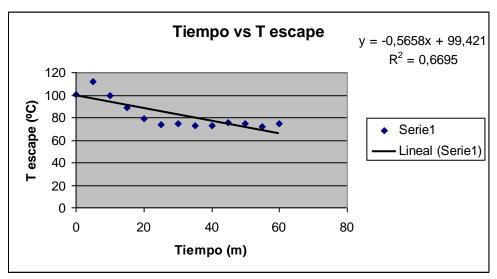


Figura 5.17 Curva Tiempo vs T Escape

Existe una tendencia de incremento de temperatura en los primeros 5 minutos de realizada la prueba ya que llega a un nivel y en los instrumentos del carro se observa que debe llegar aun cierto nivel por lo tanto cuando llega tiende a bajar y a subir por lo tanto se encuentra en los rangos normales.

A partir de los 10 minutos la temperatura del escape se tiende a estabilizar y se mantiene en rangos estables.

Como podemos observar el ajuste de la curva es bastante bueno debido a que el coeficiente de correlación es menor a uno.

La variación también existe ya que el bus vino procedente del IASA, por lo tanto llego caliente entonces hasta que se estabilice y llegue a la temperatura normal que debe marcar el sensor de temperatura demoro tiempo, por este asunto es el descenso de temperatura que existe

 Tabla 5.65
 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	99,5	21,41818182	458,73851
	89,3	11,218182	125,8476
	79,4	1,318181818	1,7376033
	73,6	4,4818182	20,086694
	75,1	2,9818182	8,8912397
	73,2	4,8818182	23,832149
	72,5	5,5818182	31,156694
	75,7	2,3818182	5,6730579
	74,4	3,6818182	13,555785
	71,7	6,3818182	40,727603
	74,5	3,5818182	12,829421
Sumatoria	78,08181818	67,909091	743,07636

Desviación Media	6,173553719	°C
Desviación Estándar	8,620187722	°C
Y Estabilización	78,081818 +/	′- 6,173553 °C

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.66 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T escape

	Υ	logy	Х	x^2	x*logy
	100,5	2,002166062	0	0	0
	112,4	2,050766311	5	25	10,2538316
	99,5	1,997823081	10	100	19,9782308
	89,3	1,950851459	15	225	29,2627719
	79,4	1,899820502	20	400	37,99641
	73,6	1,866877814	25	625	46,6719454
	75,1	1,875639937	30	900	56,2691981
	73,2	1,864511081	35	1225	65,2578878
	72,5	1,860338007	40	1600	74,4135203
	75,7	1,87909588	45	2025	84,5593146
	74,4	1,871572936	50	2500	93,5786468
	71,7	1,855519156	55	3025	102,053554
	74,5	1,872156273	60	3600	112,329376
Sumatoria	1071,8	24,8471385	390	16250	732,624687

Tabla 5.67 Resultados para la curva del modelo logarítmico Tiempo vs T escape

logb	-0,002810872
loga	1,995644507
b	0,993548628

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,995644507 - 0,002810872 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura y podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.68 Datos para análisis Tiempo vs T múltiple

			l
Tiempo	T múltiple	Cambio T	
0	212,5	191,3	
5	235,9	23,4	Incremento de temperatura
10	193,8	-42,1	
15	156,4	-37,4	
20	135,3	-21,1	
25	126,2	-9,1	
30	114,8	-11,4	
35	112,3	-2,5	
40	113,2	0,9	
45	110,7	-2,5	
50	113,4	2,7	
55	114,6	1,2	
60	117,2	2,6	Periodo de estabilización

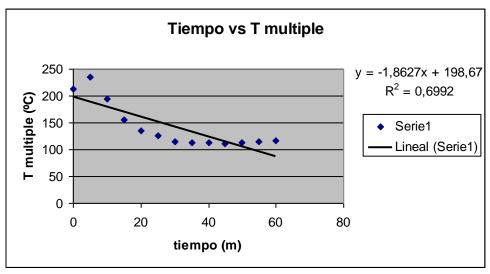


Figura 5.18 Curva Tiempo vs T múltiple

Podemos observar que existe un incremento de la temperatura en los primeros 5 minutos debido a que el motor del bus, esta retomando a su temperatura normal, ya que dicho transporte vino procedente del IASA y vino caliente. A partir de los 10 minutos en adelante la temperatura se tiende a estabilizar y llegar a tener una variación aceptable dentro de los límites apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno

Tabla 5.69 Medidas de Dispersión Tiempo vs T múltiple

	Υ	(y-ymedia)	(y-ymedia)^2
	193,8	65,809091	4330,8364
	156,4	28,409091	807,07645
	135,3	7,3090909	53,42281
	126,2	1,7909091	3,2073554
	114,8	13,190909	174,00008
	112,3	15,690909	246,20463
	113,2	14,790909	218,77099
	110,7	17,290909	298,97554
	113,4	14,590909	212,89463
	114,6	13,390909	179,31645
	117,2	10,790909	116,44372
Sumatoria	127,9909091	203,05455	6641,1491

Desviación Media	18,45950413	°C
Desviación Estándar	25,77042703	°C
Y estabilización	127,9909 +/-	18,4595 °C

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.70Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T múltiple

	Υ	logy	X	x^2	x*logy
	212,5	2,3273589	0	0	0
	235,9	2,372727941	5	25	11,8636397
	193,8	2,287353773	10	100	22,8735377
	156,4	2,194236749	15	225	32,9135512
	135,3	2,131297797	20	400	42,6259559
	126,2	2,101059355	25	625	52,5264839
	114,8	2,059941888	30	900	61,7982566
	112,3	2,050379756	35	1225	71,7632915
	113,2	2,053846427	40	1600	82,1538571
	110,7	2,044147621	45	2025	91,9866429
	113,4	2,054613055	50	2500	102,730653
	114,6	2,059184618	55	3025	113,255154
	117,2	2,068927612	60	3600	124,135657
Sumatoria	1856,3	27,80507552	390	16250	810,62668

Tabla 5.71Resultados para la curva del modelo logarítmico

Hempo va i multiple		
logb	-0,005170458	
loga	2,293965715	
b	0,98816517	

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 2,293965715 - 0,005170458 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentado ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tiempo	T block	Cambio T	
0	62,3	41,2	
5	67,2	4,9	Incremento de temperatura
10	65,2	-2	
15	65,3	0,1	
20	64,5	-0,8	
25	60,9	-3,6	
30	59	-1,9	
35	56,1	-2,9	
40	57,3	1,2	
45	59,2	1,9	
50	59,2	0	
55	60,6	1,4	
60	59	-1,6	Periodo de estabilización

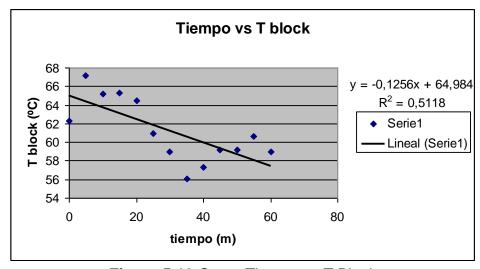


Figura 5.19 Curva Tiempo vs T Block

r	0,71540198

Análisis

Podemos observar que existe un incremento de la temperatura en los primeros 5 minutos debido a que el motor del bus, esta retomando a su temperatura normal, ya que dicho transporte vino procedente del IASA y vino caliente. A partir de los 10 minutos en adelante la temperatura se tiende a estabilizar y

llegar a tener una variación aceptable dentro de los límites apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno.

Tabla 5.73 Medidas de Dispersión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	65,2	4,6272727	21,411653
	65,3	4,7272727	22,347107
	64,5	3,9272727	15,423471
	60,9	0,3272727	0,1071074
	59	1,5727273	2,4734711
	56,1	4,4727273	20,005289
	57,3	3,2727273	10,710744
	59,2	1,3727273	1,8843802
	59,2	1,3727273	1,8843802
	60,6	0,0272727	0,0007438
	59	1,5727273	2,4734711
Sumatoria	60,57272727	27,272727	98,721818

Desviación Media	2,479338843	°C	
Desviación Estándar	3,142002835	°C	
Y Estabilización	60,572727 +/-	2,479338	Ô

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.74 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T block

	Υ	logy	X	x^2	x*logy
	62,3	1,794488	0	0	0
	67,2	1,827369273	5	25	9,13684637
	65,2	1,814247596	10	100	18,142476
	65,3	1,814913181	15	225	27,2236977
	64,5	1,809559715	20	400	36,1911943
	60,9	1,784617293	25	625	44,6154323
	59	1,770852012	30	900	53,1255603
	56,1	1,748962861	35	1225	61,2137001
	57,3	1,758154622	40	1600	70,3261849
	59,2	1,772321707	45	2025	79,7544768
	59,2	1,772321707	50	2500	88,6160853
	60,6	1,782472624	55	3025	98,0359943
	59	1,770852012	60	3600	106,251121
Sumatoria	795,8	23,22113265	390	16250	692,632769

Tabla 5.75 Resultado para la curva del modelo logarítmico Tiempo vs T block

logb	-0,000879387
loga	1,812622579
b	0,98816517

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,812622575 - 0,000879387 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentado ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.76 Datos para análisis Tiempo vs T admisión

	- C Dates part		
Tiempo	T Admisión	Cambio T	
0	30,9	9,8	
5	31,9	1	
10	38,1	6,2	Incremento de temperatura
15	32,4	-5,7	
20	30,5	-1,9	
25	33,6	3,1	
30	32,4	-1,2	
35	30,6	-1,8	
40	30,2	-0,4	
45	32,2	2	
50	33,5	1,3	
55	33,1	-0,4	
60	33,2	0,1	Periodo de estabilización

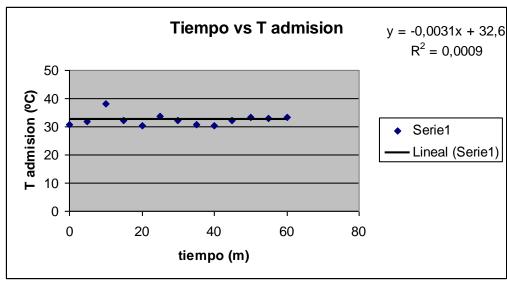


Figura 5.20 Curva Tiempo vs T admisión

r	0,03

Podemos observar que existe un incremento de la temperatura en los primeros 10minutos debido a que el motor del bus, esta retomando a su temperatura normal, ya que dicho transporte vino procedente del IASA y vino caliente. A partir de los 10 minutos en adelante la temperatura se tiende a estabilizar y llegar a tener una variación aceptable dentro de los límites apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno.

Tabla 5.77 Medidas de dispersión Tiempo vs T admisión

	у	(y-ymedia)	(y-ymedia)^2
	32,4	0,23	0,0529
	30,5	1,67	2,7889
	33,6	1,43	2,0449
	32,4	0,23	0,0529
	30,6	1,57	2,4649
	30,2	1,97	3,8809
	32,2	0,03	0,0009
	33,5	1,33	1,7689
	33,1	0,93	0,8649
	33,2	1,03	1,0609
Sumatoria	32,17	10,42	14,981

Desviación Media	1,042	°C
Desviación Estándar	1,29017656	ô
Y Estabilización	32,17 +/- 1,042 °C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.78 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

	Y	logy	X	x^2	x*logy
	30,9	1,4899585	0	0	0
	31,9	1,503790683	5	25	7,51895342
	38,1	1,580924976	10	100	15,8092498
	32,4	1,51054501	15	225	22,6581752
	30,5	1,484299839	20	400	29,6859968
	33,6	1,526339277	25	625	38,1584819
	32,4	1,51054501	30	900	45,3163503
	30,6	1,485721426	35	1225	52,0002499
	30,2	1,480006943	40	1600	59,2002777
	32,2	1,507855872	45	2025	67,8535142
	33,5	1,525044807	50	2500	76,2522404
	33,1	1,519827994	55	3025	83,5905397
	33,2	1,521138084	60	3600	91,268285
Sumatoria	422,6	19,6459984	390	16250	589,312314

Tabla 5.79 Resultados para la curva del modelo logarítmico Tiempo vs T admisión

logb	-1,48654E-05
loga	1,51167661
b	0,999965772

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

$$Log Y = 1,511676615 - 1,48654E - 05 X$$

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.80 Datos para análisis Tiempo vs T carter

	·		
Tiempo	T carter	Cambio T	
0	73,5	52,4	
5	99,4	25,9	Incremento de temperatura
10	96,3	-3,1	
15	95,6	-0,7	
20	92,1	-3,5	
25	97,7	5,6	
30	94,5	-3,2	
35	93	-1,5	
40	91,2	-1,8	
45	93,2	2	
50	91,5	-1,7	
55	93,1	1,6	
60	91,6	-1,5	Periodo de estabilización

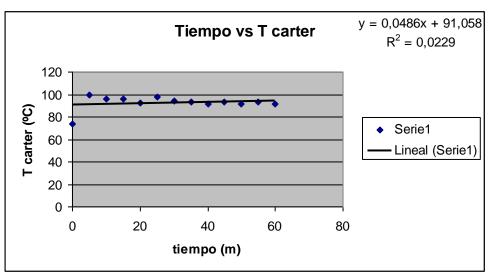


Figura 5.21 Curva Tiempo vs T carter

|--|

Análisis

Podemos observar que existe un incremento de la temperatura en los primeros 5minutos debido a que el motor del bus, esta retomando a su temperatura normal, ya que dicho transporte vino procedente del IASA y vino caliente. A partir de los 10 minutos en adelante la temperatura se tiende a estabilizar y

llegar a tener una variación aceptable dentro de los límites apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno.

Tabla 5.81 Medidas de dispersión Tiempo vs T carter

	у	(y-ymedia)	(y-ymedia)^2
	96,3	2,681818182	7,19214876
	95,6	1,9818182	3,9276033
	92,1	1,5181818	2,304876
	97,7	4,0818182	16,66124
	94,5	0,8818182	0,7776033
	93	0,6181818	0,3821488
	91,2	2,4181818	5,8476033
	93,2	0,4181818	0,174876
	91,5	2,1181818	4,4866942
	93,1	0,5181818	0,2685124
	91,6	2,0181818	4,0730579
Sumatoria	93,61818182	19,254545	46,096364

Desviación Media	1,750413223	°C	
Desviación Estándar	2,147006373	Ô	
Y estabilización	93,6181 +/- 1,750413223 °C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.82 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T carter

	Υ	logy	х	x^2	x*logy
	73,5	1,8662873	0	0	0
	99,4	1,997386384	5	25	9,98693192
	96,3	1,983626287	10	100	19,8362629
	95,6	1,980457892	15	225	29,7068684
	92,1	1,96425963	20	400	39,2851926
	97,7	1,989894564	25	625	49,7473641
	94,5	1,975431809	30	900	59,2629543
	93	1,968482949	35	1225	68,8969032
	91,2	1,959994838	40	1600	78,3997935
	93,2	1,969415912	45	2025	88,6237161
	91,5	1,961421094	50	2500	98,0710547
	93,1	1,968949681	55	3025	108,292232
	91,6	1,961895474	60	3600	117,713728
Sumatoria	1202,7	25,54750385	390	16250	767,823002

Tabla 5.83 Resultados para la curva del modelo logarítmico Tiempo vs T carter

riompo ro i carto.			
logb	0,000307228		
loga	1,955975767		
b	1,000707669		

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Log Y = 1,955975767 + 0,000307228 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS TIEMPO VS T AGUA

Tabla 5.84 Datos para análisis Tiempo vs T agua

			Hompo to Fagua
Tiempo	T agua	Cambio T	
0	23,6	2,5	
5	31,5	7,9	Incremento de temperatura
10	30,9	-0,6	
15	29,8	-1,1	
20	30,1	0,3	
25	29,4	-0,7	
30	29,75	0,35	
35	28,8	-0,95	
40	29,95	1,15	
45	28,6	-1,35	
50	28	-0,6	
55	29,85	1,85	
60	29,4	-0,45	Periodo de estabilización

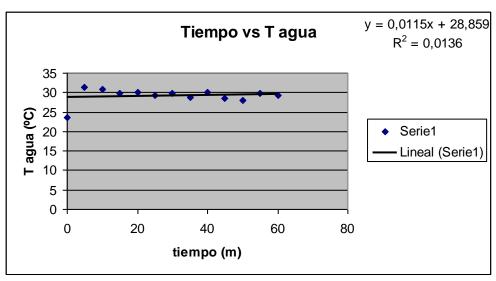


Figura 5.22 Curva Tiempo vs T agua

r 0,11661904

Podemos observar que existe un incremento de la temperatura en los primeros 5minutos debido a que el motor del bus, esta retomando a su temperatura normal, ya que dicho transporte vino procedente del IASA y vino caliente. A partir de los 10 minutos en adelante la temperatura se tiende a estabilizar y llegar a tener una variación aceptable dentro de los límites apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno.

Tabla 5.85 Medidas de dispersión Tiempo vs T agua

у	(y-ymedia)	(y-ymedia)^2
30,9	1,395454545	1,947293388
29,8	0,2954545	0,0872934
30,1	0,5954545	0,3545661
29,4	0,1045455	0,0109298
29,75	0,2454545	0,0602479
28,8	0,7045455	0,4963843
29,95	0,4454545	0,1984298
28,6	0,9045455	0,8182025
28	1,5045455	2,263657
29,85	0,3454545	0,1193388
29,4	0,1045455	0,0109298
29,50454545	6,6454545	6,3672727
	30,9 29,8 30,1 29,4 29,75 28,8 29,95 28,6 28 29,85 29,4	30,9 1,395454545 29,8 0,2954545 30,1 0,5954545 29,4 0,1045455 29,75 0,2454545 28,8 0,7045455 29,95 0,4454545 28,6 0,9045455 28 1,5045455 29,85 0,3454545 29,4 0,1045455

Desviación Media	0,604132231	°C	
Desviación Estándar	0,797951924	°C	
Y Estabilización	29,504545 +/- 0,60413231		Ô

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.86 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T agua

	Υ	logy	X	x^2	x*logy
	23,6	1,372912	0	0	0
	31,5	1,498310554	5	25	7,49155277
	30,9	1,489958479	10	100	14,8995848
	29,8	1,474216264	15	225	22,113244
	30,1	1,478566496	20	400	29,5713299
	29,4	1,46834733	25	625	36,7086833
	29,75	1,47348697	30	900	44,2046091
	28,8	1,459392488	35	1225	51,0787371
	29,95	1,476396827	40	1600	59,0558731
	28,6	1,456366033	45	2025	65,5364715
	28	1,447158031	50	2500	72,3579016
	29,85	1,474944335	55	3025	81,1219385
	29,4	1,46834733	60	3600	88,1008398
Sumatoria	379,65	19,03840314	390	16250	572,240765

Tabla 5.87 Resultados para la curva del modelo logarítmico Tiempo ys T agua

riompo to i agua		
logb	0,000239268	
loga	1,457314499	
b	1,000707669	

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

$$Log Y = 1,45731449 + 0,000239268X$$

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Table 5100 Batto para arranolo Ar _{AGUA} vo Framodad Foldava				
$\Delta T_{ extit{AGUA}}$	Humedad	Cambio H		
1,2	55	-3,92307692		
-0,4	73	18	Incremento de humedad	
1,4	68	-5		
4,2	64	-4		
2,6	61	-3		
1,6	59	-2		
1,7	57	-2		
3,8	57	0		
2,5	56	-1		
1,6	55	-1		
1,8	54	-1		
0,9	54	0		
1,6	53	_1	Periodo de estabilización	

Tabla 5.88 Datos para análisis ΔT_{AGUA} vs Humedad relativa

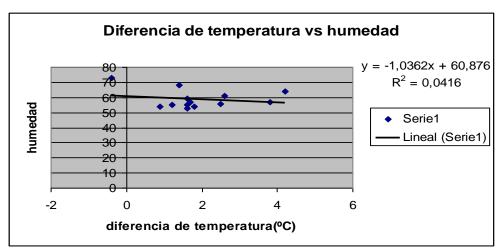


Figura 5.23 Curva diferencia de Temperatura vs Humedad relativa

r	0,20396078

Análisis

Durante las primeras dos tomas existe un incremento de la humedad ya que comienza a ascender paulatinamente hasta poder quedarse estable que eso va a suceder durante los próximos minutos. A partir de la siguiente toma comienza a existir una estabilidad de la humedad ya que se mantiene en niveles de 50 -

68 aproximadamente. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación de curva es menor que uno.

Tabla 5.89 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	68	10	100
	64	6	36
	61	3	9
	59	1	1
	57	1	1
	57	1	1
	56	2	4
	55	3	9
	54	4	16
	54	4	16
	53	5	25
Sumatoria	58	40	218

Desviación Media	3,636363636
Desviación Estándar	4,669047012
Y Estabilización	58 +/-3,63636

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.90 Datos del comportamiento de la humedad en función de la ΔT_{AGUA} (Modelo lineal)

Sumatoria

у	х	x^2	ху
55	1,2	1,44	66
73	0,5	0,25	36,5
68	-1,1	1,21	-74,8
64	-2	4	-128
61	0,5	0,25	30,5
59	2,5	6,25	147,5
57	2,7	7,29	153,9
57	4,2	17,64	239,4
56	1,6	2,56	89,6
55	3,5	12,25	192,5
54	1,6	2,56	86,4
54	3	9	162
53	0,3	0,09	15,9
766	18,5	64,79	1017,4

Tabla 5.91 Resultados para la curva del modelo lineal $\Delta T_{\rm AGUA}$ vs Humedad relativa

b	-1,889524419
а	61,61201552

Y = 61,61201552-1,889524419X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura de agua de acuerdo a la humedad podemos comprobar que los datos de la humedad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR

Tabla 5.92 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

	-	AOUA	
$\Delta T_{ extit{AGUA}}$			
	Velocidad	Cambio V	
1,2	1,6	-1,07692	
-0,4	1,5	-0,1	
1,4	1,7	0,2	
4,2	1,6	-0,1	
2,6	2,5	0,9	Incremento de velocidad
1,6	2,2	-0,3	
1,7	3,1	0,9	
3,8	3,2	0,1	
2,5	3,5	0,3	
1,6	3,4	-0,1	
1,8	3,3	-0,1	
0,9	3,7	0,4	
1,6	3,5	-0,2	Periodo de estabilización

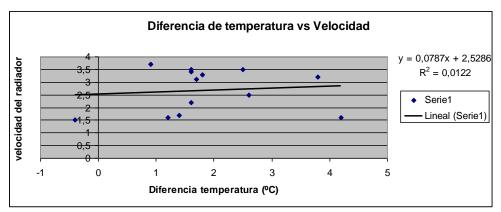


Figura 5.24 Diferencia de Temperatura vs Velocidad

r 0,11045361

La velocidad tiende a un incremento significativo en las primeras cinco tomas de la diferencia de temperatura de agua de transcurrido la prueba. Transcurrido esta toma, la velocidad tiende a estabilizar. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación es menor que uno. El ventilador se prende ya que existe un sensor electromecánico que el rato que se prende es que significa que esta pasando refrigerante al motor y procede a mantener su temperatura de estabilización, si el sensor se daña no va aprender el sensor electromecánico por lo tanto no va a pasar agua al radiador, por esto hemos hecho la comparación ya que influye bastante la velocidad del ventilador del radiador con la temperatura del agua.

Tabla 5.93 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	2,2	1,0375	1,0764063
	3,1	0,1375	0,0189062
	3,2	0,0375	0,0014062
	3,5	0,2625	0,0689063
	3,4	0,1625	0,0264063
	3,3	0,0625	0,0039063
	3,7	0,4625	0,2139063
	3,5	0,2625	0,0689063
Sumatoria	3,2375	2,425	1,47875

Desviación Media	0,303125	m/s
Desviación estándar	0,459619408	m/s
Y estabilización	3,2375 +/-0,303125 m/s	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.94 Comportamiento de la velocidad en función de la $\Delta T_{\rm \scriptscriptstyle AGUA}$ (Modelo lineal)

xy 1,92 0,75 -1,87
0,75
·
-1,87
-3,2
1,25
5,5
8,37
13,44
5,6
11,9
5,28
11,1
1,05
61,09

Tabla 5.95 Resultados para la curva del modelo lineal ΔT_{AGUA} vs Velocidad del ventilador

b	0,300727971	
а	2,248964041	

Y = 2,248964041+0,300727971X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.96 Datos para análisis Tiempo vs T admisión

	oo Batoo part	a dilaliolo 11	chipo va i admision
Tiempo	T admisión	Cambio T	
0	31,3	14,3	
5	32,2	0,9	Incremento de temperatura
10	31,9	-0,3	
15	30,1	-1,8	
20	29,4	-0,7	
25	29,9	0,5	
30	28,8	-1,1	
35	30,2	1,4	
40	29,9	-0,3	
45	29,5	-0,4	
50	30,1	0,6	
55	31	0,9	
60	30,3	-0,7	Periodo de estabilización

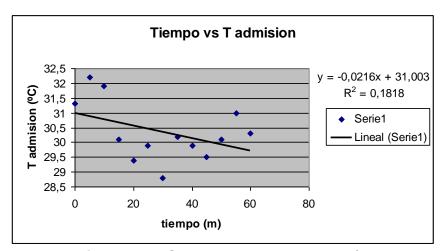


Figura 5.25 Curva Tiempo vs T admisión

r	0,42638011
---	------------

Análisis

Podemos observar que existe un incremento de la temperatura en los primeros 5 minutos. A partir de los 10 minutos en adelante la temperatura se tiende a estabilizar y llegar a tener una variación aceptable dentro de los límites

apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno.

Tabla 5.97 Medidas de Dispersión Tiempo vs T admisión

	Υ	(y-ymedia)	(y-ymedia)^2
	31,9	1,8	3,24
	30,1	0	0
	29,4	0,7	0,49
	29,9	0,2	0,04
	28,8	1,3	1,69
	30,2	0,1	0,01
	29,9	0,2	0,04
	29,5	0,6	0,36
	30,1	0	0
	31	0,9	0,81
	30,3	0,2	0,04
Sumatoria	30,1	6	6,72

Desviación Media	0,545454545	°C
Desviación Estándar	0,819756061	°C
Y Estabilización	30,1 +/- 0,	54545 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.98 Medidas de Dispersión Tiempo vs T admision

	Υ	logy	х	x^2	x*logy
	31,3	1,4955443	0	0	0
	32,2	1,507855872	5	25	7,53927936
	31,9	1,503790683	10	100	15,0379068
	30,1	1,478566496	15	225	22,1784974
	29,4	1,46834733	20	400	29,3669466
	29,9	1,475671188	25	625	36,8917797
	28,8	1,459392488	30	900	43,7817746
	30,2	1,480006943	35	1225	51,800243
	29,9	1,475671188	40	1600	59,0268475
	29,5	1,469822016	45	2025	66,1419907
	30,1	1,478566496	50	2500	73,9283248
	31	1,491361694	55	3025	82,0248932
	30,3	1,481442629	60	3600	88,8865577
Sumatoria	394,6	19,26603936	390	16250	576,605041

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.99 Resultado para la curva del modelo logarítmico Tiempo vs T admisión

logb	-0,000302448	
loga	1,491076474	
b	0,99930383	

Log Y = 1,491076474 - 0,000302448 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.100 Datos para análisis Tiempo vs T múltiple

Tabla of Too Batoo para arranolo			
Tiamara	T ma élatinal -	Camabia T	
Tiempo	T múltiple	Cambio T	
0	81,3	64,3	
5	93,3	12	
10	100,7	7,4	Incremento de temperatura
15	99,6	-1,1	
20	101,3	1,7	
25	103,7	2,4	
30	104,7	1	
35	109,1	4,4	
40	104,2	-4,9	
45	104,4	0,2	
50	102,7	-1,7	
55	101,9	-0,8	
60	102,9	1	Periodo de estabilización

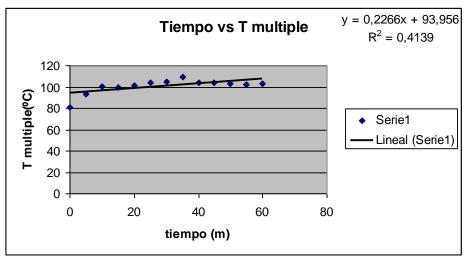


Figura 5.26 Curva Tiempo vs T múltiple

r	0,6433506
	0,040000

Análisis

Podemos observar que existe un incremento de la temperatura en los primeros 10 minutos. A partir de los 10 minutos en adelante la temperatura se tiende a estabilizar y llegar a tener una variación aceptable dentro de los límites apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno. Se llega a dar la estabilización ya que el motor llega a la temperatura normal de trabajo y por ende se tiende a estabilizar la temperatura paulatinamente.

Tabla 5.101 Medidas de dispersión Tiempo vs T múltiple

	Υ	(y-ymedia)	(y-ymedia)^2
	99,6	3,85	14,8225
	101,3	2,15	4,6225
	103,7	0,25	0,0625
	104,7	1,25	1,5625
	109,1	5,65	31,9225
	104,2	0,75	0,5625
	104,4	0,95	0,9025
	102,7	0,75	0,5625
	101,9	1,55	2,4025
	102,9	0,55	0,3025
Sumatoria	103,45	17,7	57,725

Desviación Media	1,77 °C	
Desviación Estándar	2,532565673 °C	
Y Estabilización	103,45 +/- 1,77 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.102 Datos del comportamiento de la temperatura en función del tiempo

	Υ	logy	X	x^2	x*logy
	81,3	1,9100905	0	0	0
	93,3	1,969881644	5	25	9,84940822
	100,7	2,003029471	10	100	20,0302947
	99,6	1,998259338	15	225	29,9738901
	101,3	2,005609445	20	400	40,1121889
	103,7	2,015778756	25	625	50,3944689
	104,7	2,019946682	30	900	60,5984005
	109,1	2,037824751	35	1225	71,3238663
	104,2	2,017867719	40	1600	80,7147088
	104,4	2,018700499	45	2025	90,8415224
	102,7	2,011570444	50	2500	100,578522
	101,9	2,008174184	55	3025	110,44958
	102,9	2,012415375	60	3600	120,744922
Sumatoria	1309,8	26,02914885	390	16250	785,611774

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos

Tabla 5.103 Resultado para la curva del modelo logarítmico Tiempo ys T múltiple

Tiempo vs i	munipie
logb	0,001041167
loga	1,971007222
b	1,002400252

Log Y = 1,971007222 + 0,001041167 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

	- 40	4	/ i · · · · · · · · · · · · · · · · · ·	-
I ahia	5 10	a i latos nara	ι análisis Tiempo	IVE LACCADA
I abia	J. I V	T Daibs Daic	. anansısı 1 611100	, vo i cocabe

	•		
Tiempo	T escape	Cambio T	
0	41,9	24,9	
5	60,1	18,2	
10	69,3	9,2	
15	69,9	0,6	
20	71,2	1,3	
25	73,8	2,6	Incremento de temperatura
30	73,5	-0,3	
35	73,7	0,2	
40	73,6	-0,1	
45	73,7	0,1	
50	73,4	-0,3	
55	73,1	-0,3	
60	73,4	0,3	Periodo de estabilización

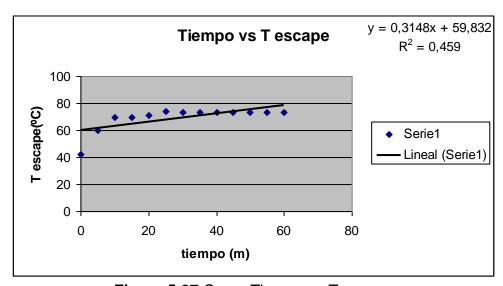


Figura 5.27 Curva Tiempo vs T escape

r	0,67749539
---	------------

Análisis

Podemos observar que existe un incremento de la temperatura en los primeros 25 minutos .A partir de los 25 minutos en adelante la temperatura se tiende a estabilizar y llegar a tener una variación aceptable dentro de los límites

apropiados .El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno. Se llega a dar la estabilización ya que el motor llega a la temperatura normal de trabajo y por ende se tiende a estabilizar la temperatura paulatinamente.

Tabla 5.105 Medidas de dispersión Tiempo vs T escape

	Υ	(y-ymedia)	(y-ymedia)^2
	73,5	0,0142857	0,0002041
	73,7	0,2142857	0,0459184
	73,6	0,1142857	0,0130612
	73,7	0,2142857	0,0459184
	73,4	0,0857143	0,0073469
	73,1	0,3857143	0,1487755
	73,4	0,0857143	0,0073469
Sumatoria	73,48571429	1,1142857	0,2685714

Desviación Media	0,159183673	°C
Desviación Estándar	0,211570094	°C
Y Estabilización	73,48571429 +	-/- 0,15918 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.106 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T escape

Sumatoria

Υ	logy	Х	x^2	x*logy
41,9	1,622214	0	0	0
60,1	1,778874472	5	25	8,89437236
69,3	1,840733235	10	100	18,4073323
69,9	1,844477176	15	225	27,6671576
71,2	1,852479994	20	400	37,0495999
73,8	1,868056362	25	625	46,701409
73,5	1,866287339	30	900	55,9886202
73,7	1,867467488	35	1225	65,3613621
73,6	1,866877814	40	1600	74,6751126
73,7	1,867467488	45	2025	84,036037
73,4	1,86569606	50	2500	93,284803
73,1	1,863917377	55	3025	102,515456
73,4	1,86569606	60	3600	111,941764
900,6	23,87024489	390	16250	726,523025

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.107 Resultado para la curva del modelo logarítmico Tiempo vs T escape

logb	0,00228916
loga	1,767497879
b	1,005284902

Log Y = 1,767497879 + 0,00228916 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.108 Datos para análisis Tiempo vs T block

Tabla 3.100 Datos para arialisis Tierripo vs T block					
Tiempo	T block	Cambio T			
0	54,6	37,6			
5	55,7	1,1	Incremento de temperatura		
10	53	-2,7			
15	52,5	-0,5			
20	48,6	-3,9			
25	50,9	2,3			
30	51,9	1			
35	51,5	-0,4			
40	53,1	1,6			
45	53,6	0,5			
50	52,8	-0,8			
55	52,6	-0,2			
60	54,1	1,5	Periodo de estabilización		

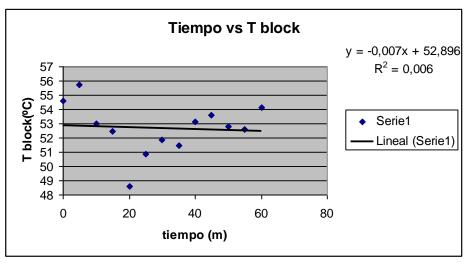


Figura 5.28Curva Tiempo vs T Block

r	0,07745967
---	------------

Análisis

Podemos observar que existe un incremento de la temperatura en los primeros 5 minutos. A partir de los 10 minutos en adelante la temperatura se tiende a estabilizar y llegar a tener una variación aceptable dentro de los límites apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno. Se llega a dar la estabilización ya que el motor llega a la temperatura normal de trabajo y por ende se tiende a estabilizar la temperatura paulatinamente.

Tabla 5.109 Medidas de dispersión Tiempo vs T block

	Υ	(y-ymedia)	(y-ymedia)^2
	53	0,7636364	0,583140496
	52,5	0,2636364	0,069504132
	48,6	3,6363636	13,2231405
	50,9	1,3363636	1,785867769
	51,9	0,3363636	0,1131405
	51,5	0,7363636	0,5422314
	53,1	0,8636364	0,7458678
	53,6	1,3636364	1,8595041
	52,8	0,5636364	0,317686
	52,6	0,3636364	0,1322314
	54,1	1,8636364	3,4731405
Sumatoria	52,23636364	12,090909	22,845455

Desviación Media	1,099173554	°C	
Desviación estándar	1,511471288	°C	
Y estabilización	52,23636364 +/-	1,099173554	οС

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.110 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T block

	Υ	Logy	X	x^2	x*logy
	54,6	1,7371926	0	0	0
	55,7	1,7458552	5	25	8,729276
	53	1,7242759	10	100	17,24276
	52,5	1,7201593	15	225	25,80239
	48,6	1,6866363	20	400	33,73273
	50,9	1,7067178	25	625	42,66794
	51,9	1,7151674	30	900	51,45502
	51,5	1,7118072	35	1225	59,91325
	53,1	1,7250945	40	1600	69,00378
	53,6	1,7291648	45	2025	77,81242
	52,8	1,7226339	50	2500	86,1317
	52,6	1,7209857	55	3025	94,65422
	54,1	1,7331973	60	3600	103,9918
Sumatoria	684,9	22,37888789	390	16250	671,137312

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.111 Resultado para la curva del modelo logarítmico
Tiempo ys T block

Hellipo va i block		
logb	-5,0401E-05	
loga	1,722964944	
b	0,999883954	

Log Y = 1,722964944 - 5,0401E - 5 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

T-11- E 440	D	/ P T .	.	F 🔿
Tabla 5.112	Datos para	analisis II	empo vs	ı Carter

Tiempo	T carter	Cambio T	
0	73,5	56,5	
5	73,6	0,1	
10	80,9	7,3	
15	87,3	6,4	
20	88,9	1,6	
25	89,8	0,9	
30	91,7	1,9	Incremento de temperatura
35	89,9	-1,8	
40	91,5	1,6	
45	92,2	0,7	
50	91,9	-0,3	
55	90,8	-1,1	
60	91,9	1,1	Periodo de estabilización

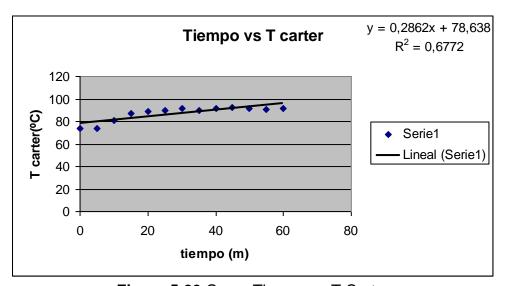


Figura 5.29 Curva Tiempo vs T Carter

r	0,82292162
---	------------

Análisis

Podemos observar que existe un incremento de la temperatura en los primeros 30 minutos. A partir de los 35 minutos en adelante la temperatura se tiende a estabilizar y llegar a tener una variación aceptable dentro de los límites

apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno. Se llega a dar la estabilización ya que el motor llega a la temperatura normal de trabajo y por ende se tiende a estabilizar la temperatura paulatinamente.

Tabla 5.113 Medidas de dispersión Tiempo vs T Carter

	Y	(y-ymedia)	(y-ymedia)^2
	51,5	1,45	2,1025
	53,1	0,15	0,0225
	53,6	0,65	0,4225
	52,8	0,15	0,0225
	52,6	0,35	0,1225
	54,1	1,15	1,3225
Sumatoria	52,95	3,9	4,015

Desviación Media	0,65	ç
Desviación Estándar	0,896102673	°C
Y Estabilización	52,95 +/- 0,65 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.114 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T Carter

	Y	Logy	х	x^2	x*logy
	73,5	1,8662873	0	0	0
	73,6	1,8668778	5	25	9,334389
	80,9	1,9079485	10	100	19,07949
	87,3	1,9410142	15	225	29,11521
	88,9	1,9489018	20	400	38,97804
	89,8	1,9532763	25	625	48,83191
	91,7	1,9623693	30	900	58,87108
	89,9	1,9537597	35	1225	68,38159
	91,5	1,9614211	40	1600	78,45684
	92,2	1,9647309	45	2025	88,41289
	91,9	1,9633155	50	2500	98,16578
	90,8	1,9580858	55	3025	107,6947
	91,9	1,9633155	60	3600	117,7989
Sumatoria	1133,9	25,21130393	390	16250	763,120864

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.115 Resultado para la curva del modelo logarítmico
Tiempo ys T carter

riempo va i cartei		
logb	0,001490494	
loga	1,894616262	
b	1,003437885	

Log Y = 1,894616262 + 0,001490494 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISITICO TIEMPO VS TAGUA

Tabla 5.116 Datos para análisis Tiempo vs T agua

Tiempo	T agua	Cambio T	
0	23,6	6,6	
5	22	-1,6	
10	24,1	2,1	
15	25,4	1,3	
20	25,45	0,05	
25	26,4	0,95	
30	26,9	0,5	
35	27,7	0,8	Incremento de temperatura
40	27,6	-0,1	
45	28,6	1	
50	27,8	-0,8	
55	27,6	-0,2	
60	27,2	-0,4	Periodo de estabilización

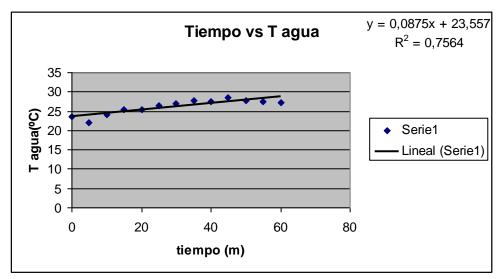


Figura 5.30 Curva Tiempo vs T agua

r	0.8697126
---	-----------

Análisis

Podemos observar que existe un incremento de la temperatura en los primeros 35 minutos. A partir de los 40 minutos en adelante la temperatura se tiende a estabilizar y llegar a tener una variación aceptable dentro de los límites apropiados. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor a uno. Se llega a dar la estabilización ya que el motor llega a la temperatura normal de trabajo y por ende se tiende a estabilizar la temperatura paulatinamente.

Tabla 5.117 Medidas de dispersión Tiempo vs T agua

raiota ett <u>it mearade de dispersion frompe te t agua</u>			
	Y	(y-ymedia)	(y-ymedia)^2
	27,6	0,16	0,0256
	28,6	0,84	0,7056
	27,8	0,04	0,0016
	27,6	0,16	0,0256
	27,2	0,56	0,3136
Sumatoria	27,76	1,76	1,072

Desviación Media	0,352	°C
Desviación estándar	0,517687164	۰C
Y estabilización	27,76 +/-0,352 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.118 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T agua

	Υ	logy	X	x^2	x*logy
	23,6	1,372912	0	0	0
	22	1,3424227	5	25	6,712113
	24,1	1,382017	10	100	13,82017
	25,4	1,4048337	15	225	21,07251
	25,45	1,4056878	20	400	28,11376
	26,4	1,4216039	25	625	35,5401
	26,9	1,4297523	30	900	42,89257
	27,7	1,4424798	35	1225	50,48679
	27,6	1,4409091	40	1600	57,63636
	28,6	1,456366	45	2025	65,53647
	27,8	1,4440448	50	2500	72,20224
	27,6	1,4409091	55	3025	79,25
	27,2	1,4345689	60	3600	86,07413
Sumatoria	340,35	18,4185071	390	16250	559,337212

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.119 Resultado para la curva del modelo logarítmico

riempo vs. r agua			
logb 0,001490549			
loga	1,372091761		
b	1,003437885		

Log Y = 1,372091761+0,001490549 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura están de acuerdo a lo que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR RADIADOR

Tabla 5.120 Datos para análisis $\Delta T_{{\scriptscriptstyle AGUA}}$ vs Velocidad del ventilador

$\Delta T_{ extit{ iny AGUA}}$	Velocidad	Cambio V	
1,2	3,9	0,169231	
2	4,1	0,2	Incremento de Velocidad
1,4	3,1	-1	
1	4,1	1	
1,3	3,9	-0,2	
2,2	3,1	-0,8	
1,2	3,5	0,4	
1,2	3,7	0,2	
0,6	3,2	-0,5	
1,4	3,7	0,5	
1,6	4,3	0,6	
1,4	3,6	-0,7	
1	4,3	0,7	Periodo de estabilización

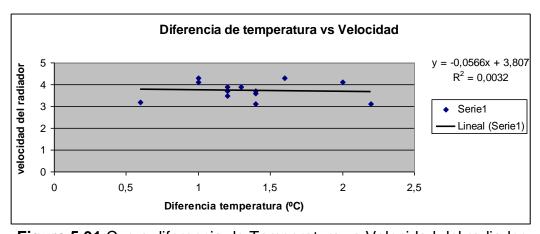


Figura 5.31 Curva diferencia de Temperatura vs Velocidad del radiador

r	0.05656854
ľ	U.USDSDB534

Análisis

La velocidad tiende a un incremento significativo en las primeras dos tomas de la diferencia de temperatura de agua de transcurrido la prueba. Transcurrido esta toma, la velocidad tiende a estabilizar. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación es menor que uno. El ventilador se prende ya que existe un sensor electromecánico que el rato que se prende es que significa que esta pasando refrigerante al motor y procede a mantener su temperatura de estabilización, si el sensor se daña no va aprender el sensor electromecánico por lo tanto no va a pasar agua al radiador, por esto hemos hecho la comparación ya que influye bastante la velocidad del ventilador del radiador con la temperatura del agua.

Tabla 5.121 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	Υ	(y-ymedia)	(y-ymedia)^2
	3,1	0,5818182	0,3385124
	4,1	0,4181818	0,174876
	3,9	0,2181818	0,0476033
	3,1	0,5818182	0,3385124
	3,5	0,1818182	0,0330579
	3,7	0,0181818	0,0003306
	3,2	0,4818182	0,2321488
	3,7	0,0181818	0,0003306
	4,3	0,6181818	0,3821488
	3,6	0,0818182	0,0066942
	4,3	0,6181818	0,3821488
Sumatoria	3,681818182	2,6	1,3753719

Desviación Media	0,325
Desviación estándar	0,443262563
Y Estabilización	3,2375 +/-0,303125 m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.122 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	у	Х	x^2	Ху
	3,9	1,2	1,44	4,68
	4,1	0,5	0,25	2,05
	3,1	-1,1	1,21	-3,41
	4,1	-2	4	-8,2
	3,9	0,5	0,25	1,95
	3,1	2,5	6,25	7,75
	3,5	2,7	7,29	9,45
	3,7	4,2	17,64	15,54
	3,2	1,6	2,56	5,12
	3,7	3,5	12,25	12,95
	4,3	1,6	2,56	6,88
	3,6	3	9	10,8
	4,3	0,3	0,09	1,29
Sumatoria	48,5	18,5	64,79	66,85

Tabla 5.123 Resultado para la curva del modelo lineal ΔT_{AGUA} vs Velocidad del ventilador

b	-0,056397744
а	3,811027559

Y = 3.811027559 - 0.056397744X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.124 Datos para análisis ΔT_{AGUA} vs Humedad relativa

$\Delta T_{ extit{AGUA}}$	Humedad relativa	Cambio H	
1,2	55	-5,84615	
2	68	13	
1,4	70	2	
1	72	2	Incremento de humedad
1,3	63	-9	
2,2	59	-4	
1,2	59	0	
1,2	58	-1	
0,6	58	0	
1,4	58	0	
1,6	57	-1	
1,4	57	0	
1	57	0	Periodo de estabilización

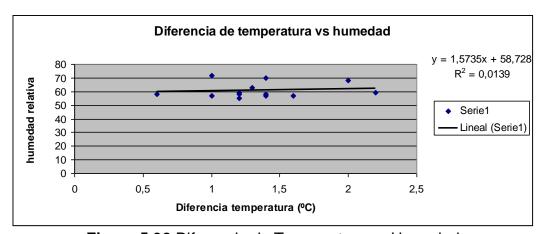


Figura 5.32 Diferencia de Temperatura vs Humedad

r 0,11789826

Análisis

Durante las primeras dos tomas existe un incremento de la humedad ya que comienza a ascender paulatinamente hasta poder quedarse estable que eso va a suceder durante los próximos minutos. A partir de la siguiente toma comienza

a existir una estabilidad de la humedad ya que se mantiene en niveles de 57-63aproximadamente. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación de curva es menor que uno.

Tabla 5.125 Medidas de dispersión $\Delta T_{{\scriptscriptstyle AGUA}}$ vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	63	4,555556	20,753086
	59	0,555556	0,308642
	59	0,555556	0,308642
	58	0,444444	0,1975309
	58	0,444444	0,1975309
	58	0,444444	0,1975309
	57	1,444444	2,0864198
	57	1,444444	2,0864198
	57	1,444444	2,0864198
Sumatoria	58,4444444	11,333333	28,222222

Desviación Media	1,259259259
Desviación estándar	1,878237945
Y Estabilización	58,444 +/-1,259259

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.126 Datos de comportamiento de la humedad en función de la ΔT_{AGUA} (Modelo lineal)

Sumatoria

Υ	x	x^2	ху
55	1,2	1,44	66
68	0,5	0,25	34
70	-1,1	1,21	-77
72	-2	4	-144
63	0,5	0,25	31,5
59	2,5	6,25	147,5
59	2,7	7,29	159,3
58	4,2	17,64	243,6
58	1,6	2,56	92,8
58	3,5	12,25	203
57	1,6	2,56	91,2
57	3	9	171
57	0,3	0,09	17,1
791	18,5	64,79	1036

Tabla 5.127 Resultados para la curva del modelo lineal ΔT_{AGUA} vs Humedad relativa

b	-2,330906764
а	64,16321347

Y = 64,16321347-2,330906764X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura de agua de acuerdo a la humedad podemos comprobar que los datos de la humedad están de acuerdo a la curva que se esta presentando ya que existe una variación.

- PE - 05

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.128 Datos para análisis Tiempo vs T carter

Tiempo	T Carter	Cambio T	
0	73,5	52,4	
5	77,4	3,9	
10	83,5	6,1	
15	86,2	2,7	
20	88,1	1,9	
25	88,2	0,1	
30	88,4	0,2	
35	91,5	3,1	Incremento de temperatura
40	88,9	-2,6	
45	90,6	1,7	
50	91	0,4	
55	93,2	2,2	
60	91,3	-1,9	Periodo de estabilización

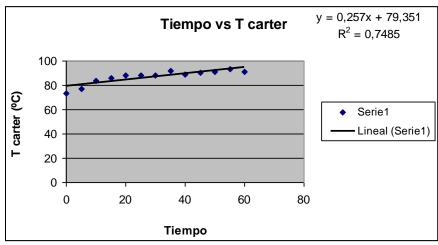


Figura 5.33 Curva Tiempo vs T carter

r 0,86486993

Análisis

Como podemos observar la temperatura tiende a un incremento durante los primeros 35 minutos de realizada la prueba. Pasados los 35 minutos, la temperatura tiende a estabilizar y a mantener los niveles normales de trabajo. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno.

Tabla 5.129 Medidas de dispersión Tiempo vs T carter

	dela elle				
	у	(y-ymedia)	(y-ymedia)^2		
	88,9	2,1	4,41		
	90,6	0,4	0,16		
	91	0	0		
	93,2	2,2	4,84		
	91,3	0,3	0,09		
Sumatoria	91	5	9,5		

Desviación Media	1	°C
Desviación Estándar	1,541103501	°C
Y Estabilización	91°C +/- 1	°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.130 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T carter

	Υ	logy	X	x^2	x*logy
	73,5	1,866287339	0	0	0
	77,4	1,888740961	5	25	9,4437048
	83,5	1,921686475	10	100	19,2168648
	86,2	1,935507266	15	225	29,032609
	88,1	1,944975908	20	400	38,8995182
	88,2	1,945468585	25	625	48,6367146
	88,4	1,946452265	30	900	58,393568
	91,5	1,961421094	35	1225	68,6497383
	88,9	1,948901761	40	1600	77,9560704
	90,6	1,957128198	45	2025	88,0707689
	91	1,959041392	50	2500	97,9520696
	93,2	1,969415912	55	3025	108,317875
	91,3	1,960470778	60	3600	117,628247
Sumatoria	1131,8	25,20549793	390	16250	762,197748

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.131 Resultado para la curva del modelo logarítmico

TIETIPO VS	Carter
logb	0,001325892
loga	1,899107685
b	1,003057644

Log Y = 1,899107685 + 0,001325892X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.132 Datos análisis Tiempo vs T Block

		1	Tompe ve i Bieek
Tiempo	T block	Cambio T	
0	62,3	41,2	Incremento de temperatura
5	56,9	-5,4	
10	54,2	-2,7	
15	53,8	-0,4	
20	54,5	0,7	
25	55,6	1,1	
30	58,2	2,6	
35	56,8	-1,4	
40	53,6	-3,2	
45	54,9	1,3	
50	57	2,1	
55	57,8	0,8	
60	57,5	-0,3	Periodo de estabilización

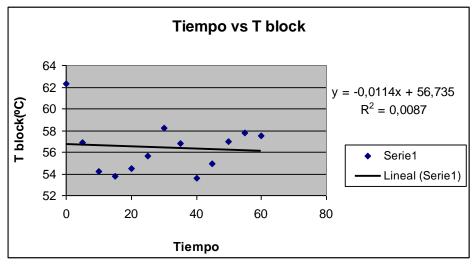


Figura 5.34 Curva Tiempo vs T block r 0,08944272

Análisis

Podemos observar que en la primera toma de dato existe un ligero incremento por causas del ambiente hasta que se caliente el bus en su totalidad. Transcurridos los cinco primeros minutos, podemos observar que existe una estabilidad en la toma de lecturas, debido a que paulatinamente el motor del vehiculo comienza a calentarse en forma razonable, por ende se tiende a

estabilizar la temperatura. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación es menor que uno.

Tabla 5.133 Medidas de dispersión Tiempo vs T Block

	Υ	(y-ymedia)	(y-ymedia)^2
	56,9	1	1
	54,2	1,7	2,89
	53,8	2,1	4,41
	54,5	1,4	1,96
	55,6	0,3	0,09
	58,2	2,3	5,29
	56,8	0,9	0,81
	53,6	2,3	5,29
	54,9	1	1
	57	1,1	1,21
	57,8	1,9	3,61
	57,5	1,6	2,56
Sumatoria	55,9	17,6	30,12

Desviación Media	1,466666667	°C
Desviación Estándar	1,654745243	°C
Y estabilización	55.9°C +/- 1.4	166666667 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.134 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T Block

Sumatoria

Υ	logy	X	x^2	x*logy
62,3	1,794488047	0	0	0
56,9	1,755112266	5	25	8,77556133
54,2	1,733999287	10	100	17,3399929
53,8	1,730782276	15	225	25,9617341
54,5	1,736396502	20	400	34,72793
55,6	1,745074792	25	625	43,6268698
58,2	1,764922985	30	900	52,9476895
56,8	1,754348336	35	1225	61,4021917
53,6	1,72916479	40	1600	69,1665916
54,9	1,739572344	45	2025	78,2807555
57	1,755874856	50	2500	87,7937428
57,8	1,761927838	55	3025	96,9060311
57,5	1,759667845	60	3600	105,580071
733,1	22,76133216	390	16250	682,509161

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.135 Resultados para la curva del modelo logarítmico Tiempo vs T Block

logb	-7,27041E-05
loga	1,753052828
b	0,999832607

Log Y = 1,753052828-7,27041E-05 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.136 Datos análisis Tiempo vs T escape

Tabla 3.130 Datos arialisis Tiempo vs T escape					
Tiempo	T escape	Cambio T			
0	41,9	20,8			
5	61,1	19,2			
10	72,2	11,1	Incremento de temperatura		
15	71,9	-0,3			
20	72,7	0,8			
25	72,2	-0,5			
30	72,4	0,2			
35	72,2	-0,2			
40	71,3	-0,9			
45	73	1,7			
50	72,8	-0,2			
55	73,3	0,5			
60	73,3	0	Periodo de estabilización		

Figura 5.35 Curva Tiempo vs T escape

r	0,61155539
---	------------

Análisis

Como podemos observar existe un leve incremento durante los primeros diez minutos de realizadas las pruebas. Transcurridos los diez minutos, comienza a existir una estabilización de las temperaturas debido al material de que esta hecho el escape, el cual llega hasta una temperatura el cual se va a mantener estable. Como podemos observar el ajuste de la curva es relativamente bueno ya que el coeficiente de correlación lineal sale menor a uno.

Tabla 5.137 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	71,9	0,61	0,3721
	72,7	0,19	0,0361
	72,2	0,31	0,0961
	72,4	0,11	0,0121
	72,2	0,31	0,0961
	71,3	1,21	1,4641
	73	0,49	0,2401
	72,8	0,29	0,0841
	73,3	0,79	0,6241
	73,3	0,79	0,6241
Sumatoria	72,51	5,1	3,649

Desviación Media	0,51	ô
Desviación Estándar	0,636745196	°C
Y Estabilización	72.51°C -	⊦/- 0.51ºC

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.138 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T escape

	Y	logy	X	x^2	x*logy
	41,9	1,622214023	0	0	0
	61,1	1,78604121	5	25	8,93020605
	72,2	1,858537198	10	100	18,585372
	71,9	1,85672889	15	225	27,8509334
	72,7	1,861534411	20	400	37,2306882
	72,2	1,858537198	25	625	46,4634299
	72,4	1,859738566	30	900	55,792157
	72,2	1,858537198	35	1225	65,0488019
	71,3	1,85308953	40	1600	74,1235812
	73	1,86332286	45	2025	83,8495287
	72,8	1,862131379	50	2500	93,106569
	73,3	1,865103975	55	3025	102,580719
	73,3	1,865103975	60	3600	111,906238
Sumatoria	900,3	23,87062041	390	16250	725,468224

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.139 Resultado para la curva del modelo logarítmico

Tiempo vs i	escape
logb	0,00205486
loga	1,774555777
b	1,004742701

Log Y = 1,774555777 + 0,00205486 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TEMPERATURA VS T MULTIPLE

Tabla 5.140 Datos análisis Tiempo vs T múltip	Tabla 5.140	Datos	análisis	Tiempo	VS	Т	múltiple
--	--------------------	--------------	----------	--------	----	---	----------

Table 91146 Bates analisis Tremps vo i marapis					
Tiempo	T múltiple	Cambio T			
0	81,3	60,2			
5	90,5	9,2			
10	98,2	7,7			
15	102,9	4,7	Incremento de temperatura		
20	98,9	-4			
25	104,3	5,4			
30	102,7	-1,6			
35	103,1	0,4			
40	103,4	0,3			
45	102,1	-1,3			
50	103,7	1,6			
55	102,5	-1,2			
60	104,6	2,1	Periodo de estabilización		

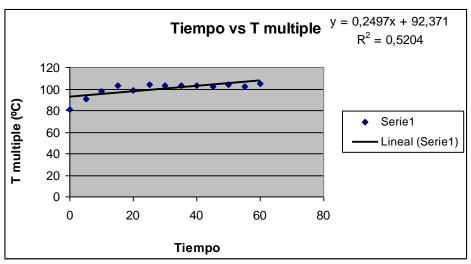


Figura 5.36 Curva Tiempo vs T múltiple

Análisis

Como podemos observar se produce un incremento durante los primeros quince minutos de transcurridos las pruebas. Después de este tiempo comienza a producirse una estabilización de las temperaturas, ya que se mantienen en un rango aceptable de trabajo. Se llega a dar la estabilización

cuando el motor comienza a calentarse paulatinamente, cuando existe un correcto paso de aire desde las cámaras de combustión para que trabaje eficientemente.

Tabla 5.141 Datos análisis Tiempo vs T múltiple

	Υ	(y-ymedia)	(y-ymedia)^2
	98,9	3,911111111	15,29679012
	104,3	1,488888889	2,216790123
	102,7	0,111111111	0,012345679
	103,1	0,288888889	0,08345679
	103,4	0,588888889	0,346790123
	102,1	0,711111111	0,505679012
	103,7	0,88888889	0,790123457
	102,5	0,311111111	0,096790123
	104,6	1,788888889	3,200123457
Sumatoria	102,8111111	10,08888889	22,54888889

Desviación Media	1,120987654	°C
Desviación Estándar	1,678871976	°C
Y Estabilización	102,8111°C +/- 1,1209876	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.142 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs Múltiple

	Υ	Logy	X	x^2	x*logy
	81,3	1,910090546	0	0	0
	90,5	1,956648579	5	25	9,7832429
	98,2	1,992111488	10	100	19,9211149
	102,9	2,012415375	15	225	30,1862306
	98,9	1,995196292	20	400	39,9039258
	104,3	2,018284308	25	625	50,4571077
	102,7	2,011570444	30	900	60,3471133
	103,1	2,013258665	35	1225	70,4640533
	103,4	2,014520539	40	1600	80,5808216
	102,1	2,009025742	45	2025	90,4061584
	103,7	2,015778756	50	2500	100,788938
	102,5	2,010723865	55	3025	110,589813
	104,6	2,019531685	60	3600	121,171901
Sumatoria	1298,2	25,97915628	390	16250	784,60042

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.143 Resultado para la curva del modelo logarítmico

Log Y = 1,963941265 + 0,001148512X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.144 Datos para análisis Tiempo vs T Admisión

Tiempo	T admisión	Cambio T	
0	50,6	29,5	Decremento de temperatura
5	37,6	-13	
10	34,3	-3,3	
15	32,4	-1,9	
20	30,6	-1,8	
25	30,8	0,2	
30	33,2	2,4	
35	31,9	-1,3	
40	32,7	0,8	
45	31,9	-0,8	
50	30,5	-1,4	
55	32,7	2,2	
60	31,7	-1	Periodo de estabilización

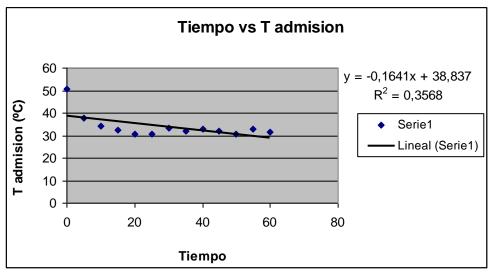


Figura 5.37 Curva Tiempo vs T admisión r 0,59665736

Análisis

Podemos observar que al comenzar existe un decremento de temperatura. A partir de los cinco minutos comienza a existir un periodo de estabilización de temperatura. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno

Tabla 5.145 Medidas de dispersión Tiempo vs T admisión

	у	(y-ymedia)	(y-ymedia)^2
	37,6	5,075	25,755625
	34,3	1,775	3,150625
	32,4	0,125	0,015625
	30,6	1,925	3,705625
	30,8	1,725	2,975625
	33,2	0,675	0,455625
	31,9	0,625	0,390625
	32,7	0,175	0,030625
	31,9	0,625	0,390625
	30,5	2,025	4,100625
	32,7	0,175	0,030625
	31,7	0,825	0,680625
Sumatoria	32,525	15,75	41,6825

Desviación Media	1,3125	٥C
Desviación estándar	1,946617112	°C
Y Estabilización	32.525°C +	/- 1.3125 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.146 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

	Υ	logy	х	x^2	x*logy
	50,6	1,704150517	0	0	0
	37,6	1,575187845	5	25	7,87593922
	34,3	1,53529412	10	100	15,3529412
	32,4	1,51054501	15	225	22,6581752
	30,6	1,485721426	20	400	29,7144285
	30,8	1,488550717	25	625	37,2137679
	33,2	1,521138084	30	900	45,6341425
	31,9	1,503790683	35	1225	52,6326739
	32,7	1,514547753	40	1600	60,5819101
	31,9	1,503790683	45	2025	67,6705807
	30,5	1,484299839	50	2500	74,214992
	32,7	1,514547753	55	3025	83,3001264
	31,7	1,501059262	60	3600	90,0635557
Sumatoria	440,9	19,84262369	390	16250	586,913233

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.147 Resultado para la curva del modelo logarítmico Tiempo vs T admisión

logb	-0,001838566
loga	1,581512662
b	0,995775

Log Y = 1,581512662-0,001838566 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.148 Datos análisis Tiempo vs Tagua

Tabla 3.140 Datus attalisis t		riempo va ragua	
Tiempo	T Agua	Cambio T	
0	_		
	23,6	2,5	
5	24	0,4	
10	27,45	3,45	
15	28,75	1,3	
20	29,9	1,15	Incremento de temperatura
25	29,8	-0,1	
30	29,5	-0,3	
35	30,15	0,65	
40	29,85	-0,3	
45	30,45	0,6	
50	30,95	0,5	
55	32,05	1,1	
60	31,1	-0,95	Periodo de estabilización

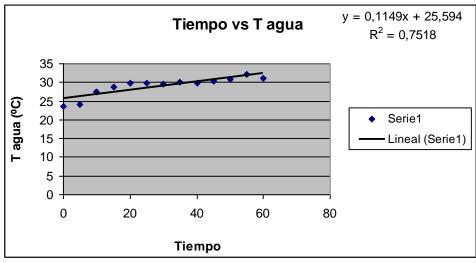


Figura 5.38 Curva Tiempo vs T agua r 0,866602562

Análisis

Como podemos observar durante los primeros 20 minutos existe un incremento de temperatura. Transcurridos los 20 minutos, existe una estabilización en los siguientes tomas de datos, esto se debe a que se prende el sensor electromecánico del ventilador por lo comienza a pasar refrigerante. El ajuste

de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.149 Medidas de dispersión Tiempo vs Tagua

	<u> </u>				
	у	(y-ymedia)	(y-ymedia)^2		
	29,8	0,68125	0,464101562		
	29,5	0,98125	0,962851562		
	30,15	0,33125	0,109726562		
	29,85	0,63125	0,398476562		
	30,45	0,03125	0,000976562		
	30,95	0,46875	0,219726563		
	32,05	1,56875	2,460976563		
	31,1	0,61875	0,382851563		
Sumatoria	30,48125	5,3125	4,9996875		

Desviación Media	0,6640625	ô
Desviación Estándar	0,845127843	ô
Y Estabilización	30.48125°C +/-	- 0.6640625 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.150 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T agua

	Υ	logy	X	x^2	x*logy
	23,6	1,372912003	0	0	0
	24	1,380211242	5	25	6,90105621
	27,45	1,438542349	10	100	14,3854235
	28,75	1,458637849	15	225	21,8795677
	29,9	1,475671188	20	400	29,5134238
	29,8	1,474216264	25	625	36,8554066
	29,5	1,469822016	30	900	44,0946605
	30,15	1,479287316	35	1225	51,7750561
	29,85	1,474944335	40	1600	58,9977734
	30,45	1,483587297	45	2025	66,7614284
	30,95	1,490660653	50	2500	74,5330327
	32,05	1,505828034	55	3025	82,8205419
	31,1	1,492760389	60	3600	89,5656233
Sumatoria	377,55	18,99708094	390	16250	578,082994

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.151 Resultado para la curva del modelo logarítmico

Iiempo vs	ı agua
logb	0,001795729
loga	1,407442055
b	1,004143379

Log Y = 1,4047442055 + 0,0011795729 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR RADIADOR

Tabla 5.152 Datos análisis $\Delta Tagua$ vs Velocidad del ventilador

ΔTagua	Velocidad	Cambio V	
1,2	3,9	-1,19231	
1,6	4,1	0,2	
1,3	4,3	0,2	
1,9	4,9	0,6	
0,4	5,4	0,5	Incremento de velocidad
1,2	4,3	-1,1	
0,4	5,4	1,1	
0,9	6,3	0,9	
1,7	5,7	-0,6	
1,5	6,3	0,6	
1,1	5,1	-1,2	
1,7	5,3	0,2	
2	5,2	-0,1	Periodo de estabilización

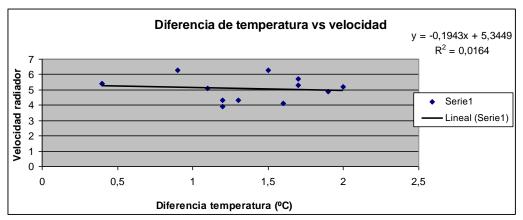


Figura 5.39 Curva diferencia de Temperatura vs Velocidad del radiador

_	0.40040444
r	0,12649111

Análisis

La velocidad tiende a un incremento significativo en las primeras dos tomas de la diferencia de temperatura de agua de transcurrido la prueba. Transcurrido esta toma, la velocidad tiende a estabilizar. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación es menor que uno. El ventilador se prende ya que existe un sensor electromecánico que el rato que se prende es que significa que esta pasando refrigerante al motor y procede a mantener su temperatura de estabilización, si el sensor se daña no va aprender el sensor electromecánico por lo tanto no va a pasar agua al radiador, por esto hemos hecho la comparación ya que influye bastante la velocidad del ventilador del radiador con la temperatura del agua.

Tabla 5.153 Medidas de dispersión *∆Tagua* vs Velocidad del ventilador

	Υ	(y-ymedia)	(y-ymedia)^2
	4,3	1,15	1,3225
	5,4	0,05	0,0025
	6,3	0,85	0,7225
	5,7	0,25	0,0625
	6,3	0,85	0,7225
	5,1	0,35	0,1225
	5,3	0,15	0,0225
	5,2	0,25	0,0625
Sumatoria	5,45	3,9	3,04

Desviación Media	0,4875
Desviación Estándar	0,659003577
Y Estabilización	5.45 +/-0.4875 m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.154 Datos del comportamiento de la velocidad en función de la $\Delta Tagua$ (Modelo lineal)

	у	Х	x^2	ху
	3,9	1,2	1,44	4,68
	4,1	1,6	2,56	6,56
	4,3	1,3	1,69	5,59
	4,9	1,9	3,61	9,31
	5,4	0,4	0,16	2,16
	4,3	1,2	1,44	5,16
	5,4	0,4	0,16	2,16
	6,3	0,9	0,81	5,67
	5,7	1,7	2,89	9,69
	6,3	1,5	2,25	9,45
	5,1	1,1	1,21	5,61
	5,3	1,7	2,89	9,01
	5,2	2	4	10,4
Sumatoria	66,2	16,9	25,11	85,45

Tabla 5.155 Resultados para la curva del modelo lineal $\Delta Tagua$ vs Velocidad del ventilador

b	-0,194267516
а	5,344855463

Y = 5,344855643-0,194267516X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.156 Datos análisis ∆Tagua vs Humedad relativa

$\Delta T_{\scriptscriptstyle AGUA}$	Humedad	Cambio H	
1,2	55	4,076923	
1,6	55	0	
1,3	55	0	Incremento de humedad
1,9	54	-1	
0,4	53	-1	
1,2	52	-1	
0,4	51	-1	
0,9	51	0	
1,7	50	-1	
1,5	49	-1	
1,1	49	0	
1,7	48	-1	
2	40	-8	Periodo de estabilización

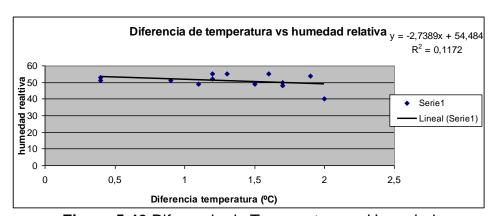


Figura 5.40 Diferencia de Temperatura vs Humedad

r 0	,61335145
-----	-----------

Análisis

Durante las primeras tres tomas existe un incremento de la humedad ya que comienza a ascender paulatinamente hasta poder quedarse estable que eso va a suceder durante los próximos minutos. A partir de las siguientes tomas comienza a existir una estabilidad de la humedad ya que se mantiene en

niveles de 48-64 aproximadamente. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación de curva es menor que uno.

Tabla 5.157 Medidas de Dispersión *∆Tagua* vs Humedad relativa

	Υ	(y-ymedia)	(y-ymedia)^2
	54	4,3	18,49
	53	3,3	10,89
	52	2,3	5,29
	51	1,3	1,69
	51	1,3	1,69
	50	0,3	0,09
	49	0,7	0,49
	49	0,7	0,49
	48	1,7	2,89
	40	9,7	94,09
Sumatoria	49,7	25,6	136,1

Desviación Media	2,56
Desviación Estándar	3,888730155
Y Estabilización	49.7 +/-2.56

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.158 Datos del comportamiento de la humedad en función de $\Delta Tagua$ (Modelo lineal)

Sumatoria

O	•	•	
Υ	Х	x^2	ху
55	1,2	1,44	66
55	1,6	2,56	88
55	1,3	1,69	71,5
54	1,9	3,61	102,6
53	0,4	0,16	21,2
52	1,2	1,44	62,4
51	0,4	0,16	20,4
51	0,9	0,81	45,9
50	1,7	2,89	85
49	1,5	2,25	73,5
49	1,1	1,21	53,9
48	1,7	2,89	81,6
40	2	4	80
662	16,9	25,11	852

Tabla 5.159 Resultado para la curva del modelo lineal $\Delta Tagua$ vs Humedad relativa

b	-2,738853503
а	54,48358648

Y = 54,48358648-2,738853503X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura de agua de acuerdo a la humedad podemos comprobar que los datos de la humedad están de acuerdo a la curva que se esta presentando ya que existe una variación.

- PE - 06

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR RADIADOR

Tabla 5.160 Datos análisis Δ*Tagua* vs Velocidad del ventilador

$\Delta T_{\scriptscriptstyle AGUA}$			
AGUA	Velocidad	Cambio V	
1,1	3,2	-1,68462	
0,9	4,4	1,2	
1,7	5,3	0,9	
1,5	6	0,7	Incremento de velocidad
0,4	5,3	-0,7	
3	5,6	0,3	
2,3	5,3	-0,3	
2,7	5,3	0	
1,9	4,8	-0,5	
3,4	5	0,2	
1,7	4,5	-0,5	
2,5	4,3	-0,2	
2,4	4,5	0,2	Periodo de estabilización

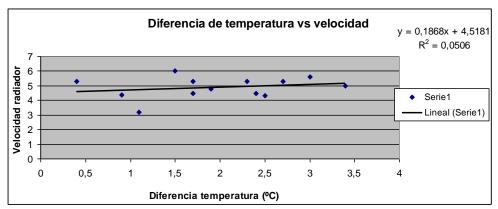


Figura 5.41 Curva diferencia de Temperatura vs Velocidad del radiador

r	0,2236068
---	-----------

Análisis

La velocidad tiende a un incremento significativo en las primeras cuatro tomas de la diferencia de temperatura de agua de transcurrido la prueba. Transcurrido esta toma, la velocidad tiende a estabilizar. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación es menor que uno. El ventilador se prende ya que existe un sensor electromecánico que el rato que se prende es que significa que esta pasando refrigerante al motor y procede a mantener su temperatura de estabilización, si el sensor se daña no va aprender el sensor electromecánico por lo tanto no va a pasar agua al radiador, por esto hemos hecho la comparación ya que influye bastante la velocidad del ventilador del radiador con la temperatura del agua.

Tabla 5.161 Medidas de dispersión Δ*Tagua* vs Velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	5,3	0,34444444	0,118642
	5,6	0,64444444	0,4153086
	5,3	0,34444444	0,118642
	5,3	0,34444444	0,118642
	4,8	0,15555556	0,0241975
	5	0,04444444	0,0019753
	4,5	0,45555556	0,2075309
	4,3	0,65555556	0,4297531
	4,5	0,45555556	0,2075309
Sumatoria	4,95555556	3,444444	1,5235802

Desviación Media	0,382716049 m/s
Desviación Estándar	0,436402946 m/s
Y Estabilización	4,95+/-0,382716049 m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.162 Datos del comportamiento de la velocidad en función de $\Delta Tagua$ (Modelo lineal)

		(1110 1110 1110 111)		
	у	Х	x^2	Xy
	3,2	1,1	1,21	3,52
	4,4	0,9	0,81	3,96
	5,3	1,7	2,89	9,01
	6	1,5	2,25	9
	5,3	0,4	0,16	2,12
	5,6	3	9	16,8
	5,3	2,3	5,29	12,19
	5,3	2,7	7,29	14,31
	4,8	1,9	3,61	9,12
	5	3,4	11,56	17
	4,5	1,7	2,89	7,65
	4,3	2,5	6,25	10,75
	4,5	2,4	5,76	10,8
Sumatoria	63,5	25,5	58,97	126,23

Tabla 5.163 Resultado para la curva del modelo lineal $\Delta Tagua$ vs Velocidad del ventilador

b	0,186833964
а	4,518133379

Y = 4,518133379 + 0,18683964X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.164 Datos análisis $\Delta Tagua$ vs Humedad relativa

ΔT_{AGUA}	Humedad	Cambio H	
1,1	67	9,769231	Incremento de humedad
0,9	62	-5	
1,7	60	-2	
1,5	59	-1	
0,4	58	-1	
3	58	0	
2,3	56	-2	
2,7	56	0	
1,9	55	-1	
3,4	55	0	
1,7	53	-2	
2,5	53	0	
2,4	52	-1	Periodo de estabilización

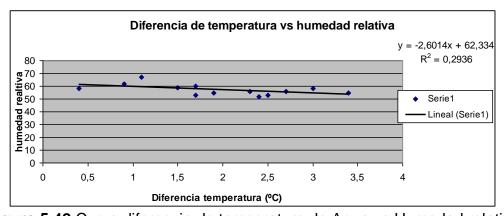


Figura 5.42 Curva diferencia de temperatura de Agua vs Humedad relativa

r 0,54129474

Análisis

En la primera toma existe un decremento de la humedad ya que comienza a descender paulatinamente hasta poder quedarse estable que eso va a suceder durante los próximos minutos. A partir de las siguientes tomas comienza a existir una estabilidad de la humedad ya que se mantiene en niveles de 50-60 aproximadamente. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación de curva es menor que uno. Uno de los factores más importantes del clima, que nos interesa, es la <a href="https://www.humedad.nih.gov.n

Tabla 5.165 Datos análisis Δ*Tagua* vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	62	5,583333333	31,173611
	60	3,583333333	12,840278
	59	2,583333333	6,6736111
	58	1,583333333	2,5069444
	58	1,583333333	2,5069444
	56	0,416666667	0,1736111
	56	0,416666667	0,1736111
	55	1,416666667	2,0069444
	55	1,416666667	2,0069444
	53	3,416666667	11,673611
	53	3,416666667	11,673611
	52	4,416666667	19,506944
Sumatoria	56,41666667	29,833333	102,91667

Desviación Media	2,486111111
Desviación estándar	3,058767825
Y estabilización	56,4 +/-2,48

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.166 Datos del comportamiento de la humedad en función de la $\Delta Tagua$ (Modelo lineal)

	у	х	x^2	Ху
	67	1,1	1,21	73,7
	62	0,9	0,81	55,8
	60	1,7	2,89	102
	59	1,5	2,25	88,5
	58	0,4	0,16	23,2
	58	3	9	174
	56	2,3	5,29	128,8
	56	2,7	7,29	151,2
	55	1,9	3,61	104,5
	55	3,4	11,56	187
	53	1,7	2,89	90,1
	53	2,5	6,25	132,5
	52	2,4	5,76	124,8
Sumatoria	744	25,5	58,97	1436,1

Tabla 5.167 Resultados para la curva del modelo lineal $\Delta Tagua$ vs Humedad relativa

b	-2,601409419
а	62.33353386

Y = 62,33353386-2,601409419X

Modelo Lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la humedad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

	Tabla 5.168	Datos	análisis	Tiempo	VS	Т	admisión
--	--------------------	-------	----------	--------	----	---	----------

	1		l
Tiamma	Tadmiaián	Combin T	
Tiempo	T admisión	Cambio T	
0	41,8	23,1	Decremento de temperatura
5	32	-9,8	
10	30,2	-1,8	
15	28,2	-2	
20	30,5	2,3	
25	28,9	-1,6	
30	30,4	1,5	
35	29	-1,4	
40	28,1	-0,9	
45	29,8	1,7	
50	30,7	0,9	
55	30,5	-0,2	
60	30,9	0,4	Periodo de estabilización

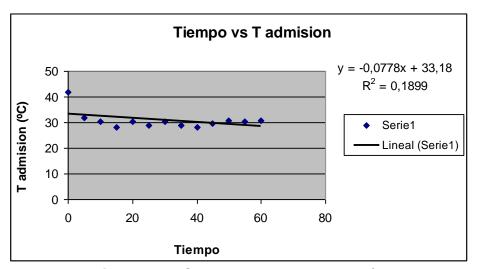


Figura 5.43 Curva Tiempo vs T admisión

r	0,4347413

Análisis

Podemos observar que existe un decremento de temperatura al comenzar la prueba. A partir de la segunda toma se comienza a estabilizar la temperatura

ya que comienza a entrar más aire al cilindro para que el pistón realice el recorrido desciende. Fase durante la cual se produce el llenado del cilindro. Se produce mientras la válvula de admisión está abierta y el pistón realiza el recorrido descendente, desde el punto muerto superior (PMS) hasta el punto muerto inferior (PMI). El vacío que deja el pistón se transmite por el conducto de admisión para recoger el aire de la atmósfera e introducirlo al motor. En los motores Otto la admisión se produce con aire y gasolina, mientras que en los motores Diesel la admisión se produce solamente con aire. Lo mismo sucede con los motores de gasolina de inyección directa. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.169 Medidas de regresión Tiempo vs T admisión

	у	(y-ymedia)	(y-ymedia)^2
	32	2,066666667	4,271111111
	30,2	0,266666667	0,071111111
	28,2	1,733333333	3,004444444
	30,5	0,566666667	0,321111111
	28,9	1,033333333	1,067777778
	30,4	0,466666667	0,217777778
	29	0,933333333	0,871111111
	28,1	1,833333333	3,361111111
	29,8	0,133333333	0,017777778
	30,7	0,766666667	0,587777778
	30,5	0,566666667	0,321111111
	30,9	0,966666667	0,93444444
Sumatoria	29,93333333	11,33333333	15,04666667

Desviación Media	0,94444444	°C
Desviación Estándar	1,169563503	°C
Y Estabilización	29.9333°C +/	- 0.944444 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.170 Datos del comportamiento de la Temperatura en función del Tiempo vs T admisión

	Υ	Log y	х	x^2	x*logy
	41,8	1,621176282	0	0	0
	32	1,505149978	5	25	7,52574989
	30,2	1,480006943	10	100	14,8000694
	28,2	1,450249108	15	225	21,7537366
	30,5	1,484299839	20	400	29,6859968
	28,9	1,460897843	25	625	36,5224461
	30,4	1,482873584	30	900	44,4862075
	29	1,462397998	35	1225	51,1839299
	28,1	1,44870632	40	1600	57,9482528
	29,8	1,474216264	45	2025	66,3397319
	30,7	1,487138375	50	2500	74,3569188
	30,5	1,484299839	55	3025	81,6364912
	30,9	1,489958479	60	3600	89,3975088
Sumatoria	401	19,33137085	390	16250	575,63704

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.171 Resultado para la curva del modelo logarítmico Tiempo vs T admisión

logb	-0,000945953
loga	1,515407116
b	0,997824233

Log Y = 1,515407116-0,000945953 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tahla	5 1	72	Datos	análicie	Tiempo vs	T anua
ıavıa	J. I	12	Daius	anansis	LICITION AS	ı auua

			gaa
Tiempo	T agua	Cambio T	
0	24,95	6,25	Decremento de temperatura
5	23,25	-1,7	
10	27,75	4,5	
15	27,85	0,1	
20	28,4	0,55	
25	28,7	0,3	
30	30,15	1,45	
35	29,75	-0,4	
40	30,55	0,8	
45	31,1	0,55	
50	30,55	-0,55	
55	31,05	0,5	
60	31,7	0,65	Periodo de estabilización

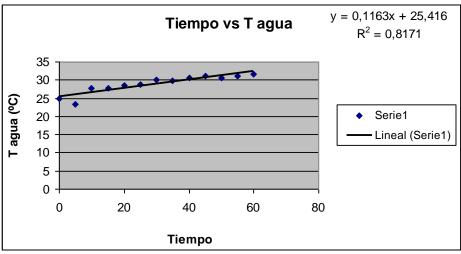


Figura 5.44 Curva Tiempo vs T agua r 0,903880523

Análisis

Como podemos observar al comienzo de la prueba existe un decremento de la temperatura ya que recién se comienza a calentar el motor y por lo tanto el sensor electromecánico aun no se activa, a medida que se va calentando el carro el sensor se prende y comienza a pasar refrigerante. A partir de los cinco minutos en adelante comienza a existir un periodo de estabilización que se

comienza a notar a partir de los 30 minutos de que pase prendido el carro. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.173 Medidas de regresión Tiempo vs T agua

	Υ	(y-ymedia)	(y-ymedia)^2
	23,25	5,983333333	35,80027778
	27,75	1,483333333	2,200277778
	27,85	1,383333333	1,913611111
	28,4	0,833333333	0,69444444
	28,7	0,533333333	0,28444444
	30,15	0,916666667	0,840277778
	29,75	0,516666667	0,266944444
	30,55	1,316666667	1,733611111
	31,1	1,866666667	3,48444444
	30,55	1,316666667	1,733611111
	31,05	1,816666667	3,300277778
	31,7	2,466666667	6,08444444
Sumatoria	29,23333333	10,75	17,72805556

Desviación Media	0,895833333	°C	
Desviación estándar	1,269504397	°C	
Y estabilización	29.2333333°C +/- 0.8958333333°C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.174 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T agua

	Υ	Log y	х	x^2	x*logy
	24,95	1,39707055	0	0	0
	23,25	1,366422957	5	25	6,83211479
	27,75	1,443262987	10	100	14,4326299
	27,85	1,4448252	15	225	21,672378
	28,4	1,45331834	20	400	29,0663668
	28,7	1,457881897	25	625	36,4470474
	30,15	1,479287316	30	900	44,3786195
	29,75	1,47348697	35	1225	51,572044
	30,55	1,485011215	40	1600	59,4004486
	31,1	1,492760389	45	2025	67,1742175
	30,55	1,485011215	50	2500	74,2505607
	31,05	1,492061605	55	3025	82,0633882
	31,7	1,501059262	60	3600	90,0635557
Sumatoria	375,75	18,9714599	390	16250	577,353371

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.175 Resultado para la curva del modelo logarítmico Tiempo vs T agua

logb	0,001804302
loga	1,40521401
b	1,004163201

Log Y = 1,40521401+0,001804302X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.176 Datos análisis Tiempo vs T block

			Tompo vo i biook
Tiempo	T block	Cambio T	
0	57,7	39	Decremento de temperatura
5	54,8	-2,9	
10	51,2	-3,6	
15	52,9	1,7	
20	53	0,1	
25	54,9	1,9	
30	53,9	-1	
35	54,2	0,3	
40	54,7	0,5	
45	57,5	2,8	
50	57,2	-0,3	
55	57,7	0,5	
60	57,9	0,2	Periodo de Estabilización

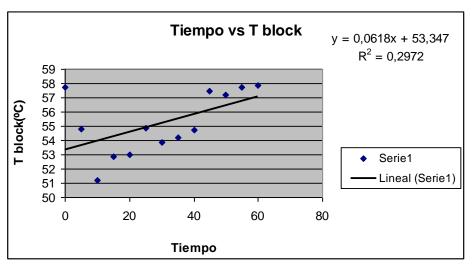


Figura 5.45 Curva Tiempo vs T Block

Análisis

Existe un decrecimiento de la temperatura del block al comienzo de la prueba. Transcurrido la primera toma, comienza a existir una estabilización de la temperatura del block. Como podemos apreciar el ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.177 Medidas de regresión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	54,8	0,191666667	0,036736111
	51,2	3,791666667	14,37673611
	52,9	2,091666667	4,375069444
	53	1,991666667	3,966736111
	54,9	0,091666667	0,008402778
	53,9	1,091666667	1,191736111
	54,2	0,791666667	0,626736111
	54,7	0,291666667	0,085069444
	57,5	2,508333333	6,291736111
	57,2	2,208333333	4,876736111
	57,7	2,708333333	7,335069444
	57,9	2,908333333	8,458402778
Sumatoria	54,99166667	20,66666667	51,62916667

Desviación Media	1,72222222	°C
Desviación Estándar	2,166462694	°C
Y Estabilización	54.9°C +/- 1.	72222222°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.178 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T block

	Υ	Log y	Х	x^2	x*logy
	57,7	1,761175813	0	0	0
	54,8	1,738780558	5	25	8,69390279
	51,2	1,709269961	10	100	17,0926996
	52,9	1,723455672	15	225	25,8518351
	53	1,72427587	20	400	34,4855174
	54,9	1,739572344	25	625	43,4893086
	53,9	1,731588765	30	900	51,947663
	54,2	1,733999287	35	1225	60,689975
	54,7	1,737987326	40	1600	69,5194931
	57,5	1,759667845	45	2025	79,185053
	57,2	1,757396029	50	2500	87,8698014
	57,7	1,761175813	55	3025	96,8646697
	57,9	1,762678564	60	3600	105,760714
Sumatoria	717,6	22,64102385	390	16250	681,450633

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.179 Resultado para la curva del modelo logarítmico

i iempo vs. i biock		
logb	0,000487894	
loga	1,726980403	
b	0,999832607	

Log Y = 1,726980403 + 0,000487894X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.180 Datos para análisis Tiempo vs T carter

			sie Hempe ve Fearter
T '	T 0 = 111 = 11	O	
Tiempo	T Carter	Cambio T	
0	67,6	48,9	
5	79,2	11,6	
10	83,7	4,5	
15	86,5	2,8	
20	88,3	1,8	
25	89,2	0,9	
30	91,2	2	
35	91,2	0	
40	91,3	0,1	
45	91,3	0	
50	91,5	0,2	Incremento de temperatura
55	91,3	-0,2	
60	91,2	-0,1	Periodo de estabilización

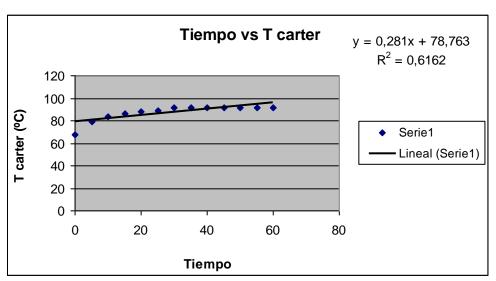


Figura 5.46 Curva Tiempo vs T Carter
r 0,78485667

Análisis

Como podemos observar la temperatura del carter tiende a incrementarse durante los primeros 50 minutos de realizadas las pruebas. Transcurridos los 50 minutos, comienza a existir una estabilización de las temperaturas debido al

material de que esta hecho el escape, el cual llega hasta una temperatura el cual se va a mantener estable.

Tabla 5.181 Medidas de regresión Tiempo vs T carter

	у	(y-ymedia)	(y-ymedia)^2	
	91,3	0,05	0,0025	
	91,2	0,05	0,0025	
Sumatoria	91,25	0,1	0,005	

Desviación Media	0,05	°C
Desviación estándar	0,070710678	ô
Y estabilización	91.25°C -	⊦/- 0.05°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.182 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T carter

	Υ	Log y	Х	x^2	x*logy
	67,6	1,829946696	0	0	0
	79,2	1,898725182	5	25	9,49362591
	83,7	1,922725458	10	100	19,2272546
	86,5	1,937016107	15	225	29,0552416
	88,3	1,945960704	20	400	38,9192141
	89,2	1,950364854	25	625	48,7591214
	91,2	1,959994838	30	900	58,7998451
	91,2	1,959994838	35	1225	68,5998193
	91,3	1,960470778	40	1600	78,4188311
	91,3	1,960470778	45	2025	88,221185
	91,5	1,961421094	50	2500	98,0710547
	91,3	1,960470778	55	3025	107,825893
	91,2	1,959994838	60	3600	117,59969
Sumatoria	1133,5	25,20755694	390	16250	762,990776

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.183 Resultado para la curva del modelo logarítmico Tiempo vs T carter

riompo vo i cartoi		
logb	0,001486608	
loga	1,894444594	
b	1,003428907	

Log Y = 1,894444594 + 0,001486608 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.184 Datos análisis Tiempo vs T escape

		1	The veri decape
Tiempo	T escape	Cambio T	
0	45,8	27,1	
5	67,6	21,8	
10	69,6	2	
15	70,5	0,9	Incremento de temperatura
20	70,3	-0,2	
25	72,2	1,9	
30	72,6	0,4	
35	72,9	0,3	
40	73	0,1	
45	73,2	0,2	
50	72,7	-0,5	
55	73,2	0,5	
60	72,9	-0,3	Periodo de estabilización

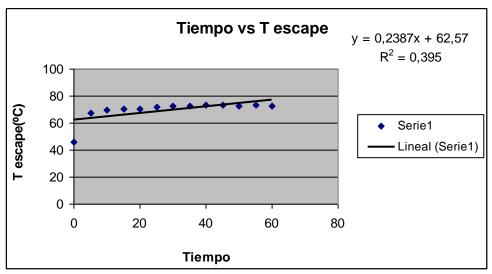


Figura 5.47 Curva Tiempo vs T escape

Análisis

Como podemos observar existe un leve incremento durante los primeros diez minutos de realizadas las pruebas. Transcurridos los diez minutos, comienza a existir una estabilización de las temperaturas debido al material de que esta hecho el escape, el cual llega hasta una temperatura el cual se va a mantener estable. Como podemos observar el ajuste de la curva es relativamente bueno ya que el coeficiente de correlación lineal sale menor a uno.

Tabla 5.185 Medidas de regresión Tiempo vs T escape

	Υ	(y-ymedia)	(y-ymedia)^2
	70,3	2,25555556	5,087530864
	72,2	0,35555556	0,126419753
	72,6	0,04444444	0,001975309
	72,9	0,34444444	0,118641975
	73	0,44444444	0,197530864
	73,2	0,64444444	0,415308642
	72,7	0,14444444	0,020864198
	73,2	0,64444444	0,415308642
	72,9	0,34444444	0,118641975
Sumatoria	72,5555556	5,22222222	6,502222222

Desviación Media	0,580246914	°C
Desviación Estándar	0,901541889	°C
Y Estabilización	72.55555	56°C +/- 0.580246914°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histograma.

Tabla 5.186 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T escape

	Y	logy	X	x^2	x*logy
	45,8	1,660865478	0	0	0
	67,6	1,829946696	5	25	9,14973348
	69,6	1,84260924	10	100	18,4260924
	70,5	1,848189117	15	225	27,7228368
	70,3	1,846955325	20	400	36,9391065
	72,2	1,858537198	25	625	46,4634299
	72,6	1,860936621	30	900	55,8280986
	72,9	1,862727528	35	1225	65,1954635
	73	1,86332286	40	1600	74,5329144
	73,2	1,864511081	45	2025	83,9029986
	72,7	1,861534411	50	2500	93,0767205
	73,2	1,864511081	55	3025	102,548109
	72,9	1,862727528	60	3600	111,763652
Sumatoria	906,5	23,92737416	390	16250	725,549156

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.187 Resultados para la curva del modelo logarítmico

Tiempo vs T escape		
logb	0,001698446	
loga	1,789613852	
b	1,003918474	

Log Y = 1,789613852+0,001698446 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.188 Datos análisi	s Tiempo vs T múltiple
---------------------------	------------------------

Tabla 5.100 Datos analisis Tiempo vs i multiple				
Tiempo	T múltiple	Cambio T		
0	77,1	58,4		
5	88,1	11		
10	97,3	9,2		
15	101	3,7	Incremento de temperatura	
20	97,3	-3,7		
25	102,5	5,2		
30	101,9	-0,6		
35	101,6	-0,3		
40	101,9	0,3		
45	101	-0,9		
50	102,3	1,3		
55	102,8	0,5		
60	102,8	0	Periodo de Estabilización	

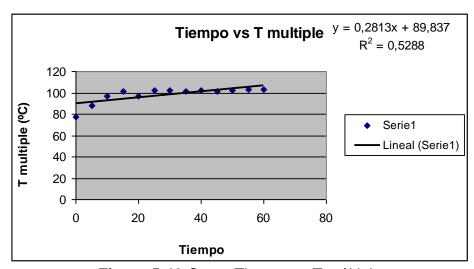


Figura 5.48 Curva Tiempo vs T múltiple

r 0,726636085

Análisis

Como podemos observar se produce un incremento durante los primeros quince minutos de transcurridos las pruebas. Después de este tiempo comienza a producirse una estabilización de las temperaturas, ya que se mantienen en un rango aceptable de trabajo. Se llega a dar la estabilización cuando el motor comienza a calentarse paulatinamente, cuando existe un correcto paso de aire desde las cámaras de combustión para que trabaje eficientemente.

Tabla 5.189 Medidas de regresión Tiempo vs T múltiple

	у	(y-ymedia)	(y-ymedia)^2
	97,3	4,266666667	18,2044444
	102,5	0,933333333	0,871111111
	101,9	0,333333333	0,111111111
	101,6	0,033333333	0,001111111
	101,9	0,333333333	0,111111111
	101	0,566666667	0,321111111
	102,3	0,733333333	0,537777778
	102,8	1,233333333	1,521111111
	102,8	1,233333333	1,521111111
Sumatoria	101,5666667	9,666666667	23,2

Desviación Media	1,074074074	°C
Desviación Estándar	1,702938637	°C
Y Estabilización	101.56666	67°C +/- 1.074074074 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.190 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T múltiple

Sumatoria

Υ	logy	X	x^2	x*logy
77,1	1,887054378	0	0	0
88,1	1,944975908	5	25	9,72487954
97,3	1,98811284	10	100	19,8811284
101	2,004321374	15	225	30,0648206
97,3	1,98811284	20	400	39,7622568
102,5	2,010723865	25	625	50,2680966
101,9	2,008174184	30	900	60,2452255
101,6	2,006893708	35	1225	70,2412798
101,9	2,008174184	40	1600	80,3269674
101	2,004321374	45	2025	90,1944618
102,3	2,009875634	50	2500	100,493782
102,8	2,011993115	55	3025	110,659621
102,8	2,011993115	60	3600	120,719587
1277,6	25,88472652	390	16250	782,582106

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.191 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T múltiple

logb	0,001327541
loga	1,951306584
b	1,003061453

Log Y = 1,951306584 + 0,001327541X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

- PE - 07

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR RADIADOR

Tabla 5.192 Datos análisis ΔT_{AGUA} vs Velocidad del ventilador

	ı	лосл	
ΔT_{AGUA}	Velocidad	Cambio V	
1,1	3,2	-1,88462	
1,1	4,5	1,3	
1,8	5,7	1,2	
0,6	6,1	0,4	Incremento de velocidad
1,3	5,6	-0,5	
1,4	5,7	0,1	
3	5,7	0	
1,7	5,2	-0,5	
2,1	5,2	0	
3,1	5,4	0,2	
1,7	4,7	-0,7	
2,9	4,6	-0,1	
2,6	4,5	-0,1	Periodo de estabilización

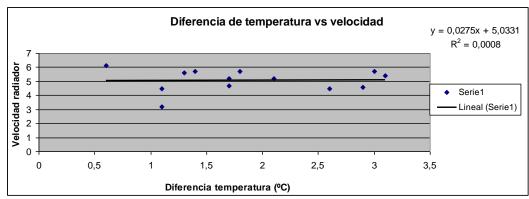


Figura 5.49 Curva diferencia de Temperatura vs Velocidad del radiador r 0,02828427

Análisis

La velocidad tiende a un incremento significativo en las primeras cuatro tomas de la diferencia de temperatura de agua de transcurrido la prueba. Transcurrido esta toma, la velocidad tiende a estabilizar. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación es menor que uno. El ventilador se prende ya que existe un sensor electromecánico que el rato que se prende es que significa que esta pasando refrigerante al motor y procede a mantener su temperatura de estabilización, si el sensor se daña no va aprender el sensor electromecánico por lo tanto no va a pasar agua al radiador, por esto hemos hecho la comparación ya que influye bastante la velocidad del ventilador del radiador con la temperatura del agua.

Tabla 5.193 Medidas de regresión ΔT_{AGUA} vs Velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	5,6	0,42222222	0,1782716
	5,7	0,52222222	0,272716
	5,7	0,52222222	0,272716
	5,2	0,02222222	0,0004938
	5,2	0,02222222	0,0004938
	5,4	0,22222222	0,0493827
	4,7	0,47777778	0,2282716
	4,6	0,57777778	0,3338272
	4,5	0,67777778	0,4593827
Sumatoria	5,177777778	3,466666667	1,617284

Desviación Media	0,385185185 m/s	
Desviación Estándar	0,449622613 m/s	
Y Estabilización	5,177777778 +/-0,385185185	m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.194 Datos del comportamiento de la velocidad en función de la diferencia de ΔT_{AGUA} (Modelo lineal)

	у	x	x^2	Ху
	3,2	1,1	1,21	3,52
	4,5	1,1	1,21	4,95
	5,7	1,8	3,24	10,26
	6,1	0,6	0,36	3,66
	5,6	1,3	1,69	7,28
	5,7	1,4	1,96	7,98
	5,7	3	9	17,1
	5,2	1,7	2,89	8,84
	5,2	2,1	4,41	10,92
	5,4	3,1	9,61	16,74
	4,7	1,7	2,89	7,99
	4,6	2,9	8,41	13,34
	4,5	2,6	6,76	11,7
Sumatoria	66,1	24,4	53,64	124,28

Tabla 5.195 Resultado para la curva del modelo logarítmico ΔT_{AGUA} vs Velocidad del ventilador

b	0,02746175
а	5,033071793

Y = 5,33071793+0,02746175X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.196 Datos análisis ΔT_{AGUA} vs Humedad relativa

		лосл	
$\Delta T_{\scriptscriptstyle AGUA}$	Humedad	Cambio H	
1,1	67	10,46154	Incremento de humedad
1,1	62	-5	
1,8	61	-1	
0,6	58	-3	
1,3	57	-1	
1,4	57	0	
3	55	-2	
1,7	55	0	
2,1	54	-1	
3,1	54	0	
1,7	52	-2	
2,9	52	0	
2,6	51	-1	Periodo de Estabilización

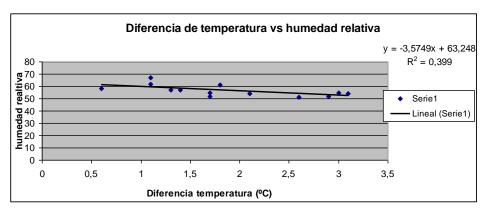


Figura 5.50 Curva diferencia de Temperatura vs Humedad relativa

r	0.63166447

Análisis

En la primera toma existe un decremento de la humedad ya que comienza a descender paulatinamente hasta poder quedarse estable que eso va a suceder durante los próximos minutos. A partir de la siguiente toma comienza a existir una estabilidad de la humedad ya que se mantiene en niveles de 51 - 61 aproximadamente. El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación de curva es menor que uno. Uno de los factores más importantes del clima, que nos interesa, es la <a href="https://www.humedad.nih.gov.ni

Tabla 5.197 Medidas de regresión ΔT_{AGUA} vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	62	6,333333333	40,111111
	61	5,333333333	28,444444
	58	2,333333333	5,4444444
	57	1,333333333	1,7777778
	57	1,333333333	1,7777778
	55	0,666666667	0,444444
	55	0,666666667	0,444444
	54	1,666666667	2,7777778
	54	1,666666667	2,7777778
	52	3,666666667	13,444444
	52	3,666666667	13,444444
	51	4,666666667	21,777778
Sumatoria	55,66666667	33,333333	132,66667

Desviación Media	2,777777778
Desviación Estándar	3,472838329
Y Estabilización	55,6 +/-2,77

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.198 Datos del comportamiento de la humedad en función de la ΔT_{AGUA} (Modelo lineal)

	у	Х	x^2	хy
	67	1,1	1,21	73,7
	62	1,1	1,21	68,2
	61	1,8	3,24	109,8
	58	0,6	0,36	34,8
	57	1,3	1,69	74,1
	57	1,4	1,96	79,8
	55	3	9	165
	55	1,7	2,89	93,5
	54	2,1	4,41	113,4
	54	3,1	9,61	167,4
	52	1,7	2,89	88,4
	52	2,9	8,41	150,8
	51	2,6	6,76	132,6
Sumatoria	735	24,4	53,64	1351,5

Tabla 5.199 Resultado para la curva del modelo lineal $\Delta T_{\rm AGUA}$ vs Humedad relativa

710071	
b	-3,574931346
а	63,24833268

Y = 63,24833268-3,574931346X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la humedad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.200 Datos análisis Tiempo vs T admisión

Table	O.ZOO Batoo	ananoio mo	inpo va i admision
Tiempo	T admisión	Cambio T	
0	41,9	22,5	Decremento de temperatura
5	33	-8,9	
10	31	-2	
15	28,4	-2,6	
20	30,6	2,2	
25	27,9	-2,7	
30	30,6	2,7	
35	28	-2,6	
40	27,1	-0,9	
45	29	1,9	
50	30,5	1,5	
55	30,3	-0,2	
60	30,8	0,5	Periodo de estabilización

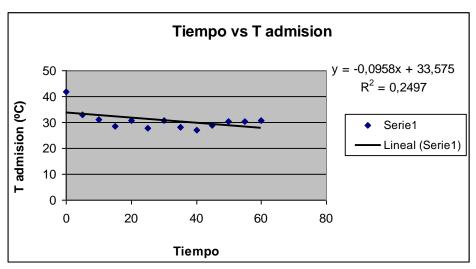


Figura 5.51 Curva Tiempo vs T admisión

r	0,498999

Análisis

Podemos observar que existe un decremento de temperatura al comenzar la prueba. A partir de la segunda toma se comienza a estabilizar la temperatura ya que comienza a entrar más aire al cilindro para que el pistón realice el

recorrido descendente. Fase durante la cual se produce el llenado del cilindro. Se produce mientras la válvula de admisión está abierta y el pistón realiza el recorrido descendente, desde el punto muerto superior (PMS) hasta el punto muerto inferior (PMI). El vacío que deja el pistón se transmite por el conducto de admisión para recoger el aire de la atmósfera e introducirlo al motor. En los motores Otto la admisión se produce con aire y gasolina, mientras que en los motores Diesel la admisión se produce solamente con aire. Lo mismo sucede con los motores de gasolina de inyección directa. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.201 Medidas de regresión Tiempo vs T admisión

	Υ	(y-ymedia)	(y-ymedia)^2
	33	3,233333333	10,45444444
	31	1,233333333	1,521111111
	28,4	1,366666667	1,867777778
	30,6	0,833333333	0,694444444
	27,9	1,866666667	3,48444444
	30,6	0,833333333	0,694444444
	28	1,766666667	3,121111111
	27,1	2,666666667	7,111111111
	29	0,766666667	0,587777778
	30,5	0,733333333	0,537777778
	30,3	0,533333333	0,28444444
	30,8	1,033333333	1,067777778
Sumatoria	29,76666667	16,86666667	31,42666667

Desviación Media	1,40555556	°C	
Desviación Estándar	1,690257287	°C	
Y Estabilización	29.76666667°C +/- 1.405555556 °C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.202 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

	Υ	logy	Х	x^2	x*logy
	41,9	1,622214023	0	0	0
	33	1,51851394	5	25	7,5925697
	31	1,491361694	10	100	14,9136169
	28,4	1,45331834	15	225	21,7997751
	30,6	1,485721426	20	400	29,7144285
	27,9	1,445604203	25	625	36,1401051
	30,6	1,485721426	30	900	44,5716428
	28	1,447158031	35	1225	50,6505311
	27,1	1,432969291	40	1600	57,3187716
	29	1,462397998	45	2025	65,8079099
	30,5	1,484299839	50	2500	74,214992
	30,3	1,481442629	55	3025	81,4793446
	30,8	1,488550717	60	3600	89,313043
Sumatoria	399,1	19,29927356	390	16250	573,51673

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.203 Resultado para la curva del modelo logarítmico Tiempo vs T admisión

7.01.40		
logb	-0,001200324	
loga	1,520569239	
b	0,997239968	

Log Y = 1,520569239-0,001200324X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.204 Datos análisis Tiempo vs T agua

Tiempo	T agua	Cambio T	
0	25,55	6,15	Incremento de temperatura
5	23,55	-2	
10	27,8	4,25	
15	28,4	0,6	
20	28,05	-0,35	
25	29,7	1,65	
30	30	0,3	
35	30,55	0,55	
40	30,55	0	
45	31,35	0,8	
50	30,75	-0,6	
55	31,25	0,5	
60	31,6	0,35	Periodo de estabilización

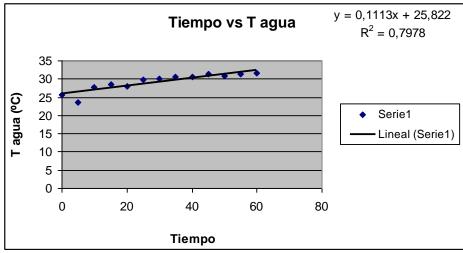


Figura 5.52 Curva Tiempo vs T agua

Análisis

Como podemos observar al comienzo de la prueba existe un decremento de la temperatura ya que recién se comienza a calentar el motor y por lo tanto el sensor electromecánico aun no se activa, a medida que se va calentando el carro el sensor se prende y comienza a pasar refrigerante. A partir de los cinco minutos en adelante comienza a existir un periodo de estabilización que se

comienza a notar a partir de los 30 minutos de que pase prendido el carro. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.205 Medidas de regresión Tiempo vs T agua

	Υ	(y-ymedia)	(y-ymedia)^2
	23,55	5,9125	34,95765625
	27,8	1,6625	2,76390625
	28,4	1,0625	1,12890625
	28,05	1,4125	1,99515625
	29,7	0,2375	0,05640625
	30	0,5375	0,28890625
	30,55	1,0875	1,18265625
	30,55	1,0875	1,18265625
	31,35	1,8875	3,56265625
	30,75	1,2875	1,65765625
	31,25	1,7875	3,19515625
	31,6	2,1375	4,56890625
Sumatoria	29,4625	20,1	56,540625

Desviación Media	1,675	°C	
Desviación Estándar	2,26716934	ô	
Y Estabilización	29.4625°C +/- 1.675 °C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.206 Datos de comportamiento de la temperatura en función del tiempo Tiempo vs T agua

Sumatoria

Υ	logy	X	x^2	x*logy
25,55	1,407390904	0	0	0
23,55	1,371990911	5	25	6,85995456
27,8	1,444044796	10	100	14,440448
28,4	1,45331834	15	225	21,7997751
28,05	1,447932866	20	400	28,9586573
29,7	1,472756449	25	625	36,8189112
30	1,477121255	30	900	44,3136376
30,55	1,485011215	35	1225	51,9753925
30,55	1,485011215	40	1600	59,4004486
31,35	1,496237545	45	2025	67,3306895
30,75	1,48784512	50	2500	74,392256
31,25	1,494850022	55	3025	82,2167512
31,6	1,499687083	60	3600	89,981225
379,1	19,02319772	390	16250	578,488147

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.207 Resultado para la curva del modelo logarítmico

i iempo vs. i. agua		
logb	0,001712575	
loga	1,41194566	
b	1,003951135	

Log Y = 1,41194566+0,001712575X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.208 Datos análisis Tiempo vs T block

			ompo vo i biook
Tiempo	T block	Cambio T	
0	57,6	38,2	Incremento de temperatura
5	54,6	-3	
10	51,1	-3,5	
15	52,6	1,5	
20	53	0,4	
25	55	2	
30	54,1	-0,9	
35	54,4	0,3	
40	54,6	0,2	
45	57,6	3	
50	57,4	-0,2	
55	57,8	0,4	
60	57,9	0,1	Periodo de estabilización

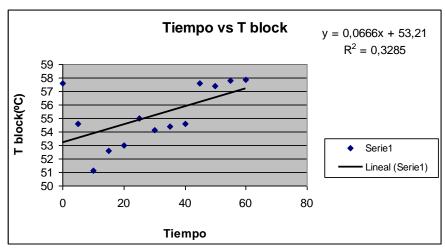


Figura 5.53 Curva Tiempo vs T block

r	0,57271284
---	------------

Existe un decrecimiento de la temperatura del block al comienzo de la prueba. Transcurrido la primera toma, comienza a existir una estabilización de la temperatura del block. Como podemos apreciar el ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.209 Medidas de regresión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	54,6	0,408333333	0,166736111
	51,1	3,908333333	15,27506944
	52,6	2,408333333	5,800069444
	53	2,008333333	4,033402778
	55	0,008333333	6,94444E-05
	54,1	0,908333333	0,825069444
	54,4	0,608333333	0,370069444
	54,6	0,408333333	0,166736111
	57,6	2,591666667	6,716736111
	57,4	2,391666667	5,720069444
	57,8	2,791666667	7,793402778
	57,9	2,891666667	8,361736111
Sumatoria	55,00833333	21,33333333	55,22916667

Desviación Media	1,777777778 °C		
Desviación Estándar	2,24072161 °C		
Y Estabilización	55.00833333°C +/- 1.777777778 °C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.210 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T block

	Υ	logy	Х	x^2	x*logy
	57,6	1,760422483	0	0	0
	54,6	1,737192643	5	25	8,68596321
	51,1	1,7084209	10	100	17,084209
	52,6	1,720985744	15	225	25,8147862
	53	1,72427587	20	400	34,4855174
	55	1,740362689	25	625	43,5090672
	54,1	1,733197265	30	900	51,995918
	54,4	1,7355989	35	1225	60,7459615
	54,6	1,737192643	40	1600	69,4877057
	57,6	1,760422483	45	2025	79,2190118
	57,4	1,758911892	50	2500	87,9455946
	57,8	1,761927838	55	3025	96,9060311
	57,9	1,762678564	60	3600	105,760714
Sumatoria	717,7	22,64158991	390	16250	681,640479

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.211 Resultado para la curva del modelo logarítmico Tiempo vs T block

logb	0,000525886
loga	1,725884178
b	1,001211631

Log Y = 1,725884178 + 0,000525886X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.212 Datos análisis Tiempo vs T d	Tabla
--	-------

	<u>u 0:11 2 2 4 (0)</u>	1	chipo vo i dartei
Tiempo	T carter	Cambio T	
0	66,5	47,1	
5	79,4	12,9	
10	83,2	3,8	
15	87	3,8	
20	88,1	1,1	
25	89,2	1,1	
30	92,1	2,9	
35	92,1	0	
40	92,3	0,2	
45	92,3	0	
50	92,6	0,3	Incremento de temperatura
55	92,3	-0,3	
60	92,2	-0,1	Periodo de estabilización

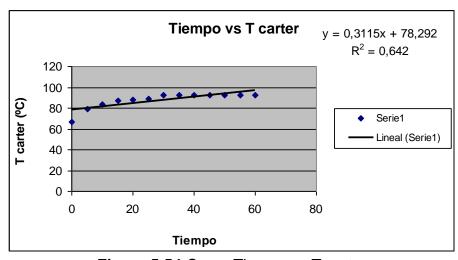


Figura 5.54 Curva Tiempo vs T carter

r	0,80124902

Análisis

Como podemos observar la temperatura del carter tiende a incrementarse durante los primeros 50 minutos de realizadas las pruebas. Transcurridos los

50 minutos, comienza a existir una estabilización de las temperaturas debido al material de que esta hecho el escape, el cual llega hasta una temperatura el cual se va a mantener estable. Como podemos observar el ajuste de la curva es relativamente bueno ya que el coeficiente de correlación lineal sale menor a uno.

Tabla 5.213 Medidas de regresión Tiempo vs T carter

	у	(y-ymedia)	(y-ymedia)^2
	92,3	0,05	0,0025
	92,2	0,05	0,0025
Sumatoria	92,25	0,1	0,005

Desviación Media	0,05	∘C
Desviación Estándar	0,070710678	Ô
Y Estabilización	92.25°C +/- 0.05°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.214 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T carter

	Υ	logy	X	x^2	x*logy
	66,5	1,822821645	0	0	0
	79,4	1,899820502	5	25	9,49910251
	83,2	1,920123326	10	100	19,2012333
	87	1,939519253	15	225	29,0927888
	88,1	1,944975908	20	400	38,8995182
	89,2	1,950364854	25	625	48,7591214
	92,1	1,96425963	30	900	58,9277889
	92,1	1,96425963	35	1225	68,7490871
	92,3	1,965201701	40	1600	78,608068
	92,3	1,965201701	45	2025	88,4340765
	92,6	1,966610987	50	2500	98,3305493
	92,3	1,965201701	55	3025	108,086094
	92,2	1,964730921	60	3600	117,883855
Sumatoria	1139,3	25,23309176	390	16250	764,471283

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.215 Resultado para la curva del modelo logarítmico Tiempo vs T carter

riempo va i cartei		
logb	0,001643633	
loga	1,89169807	
b	1,003791776	

Log Y = 1,89169807 + 0,001643633 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.216 Datos análisis Tiempo vs T escape

	<u></u>		ompo vo i occupo
Tiempo	T escape	Cambio T	
0	46,8	27,4	
5	68,6	21,8	
10	69,5	0,9	
15	70,4	0,9	Incremento de temperatura
20	70,2	-0,2	
25	72,3	2,1	
30	72,5	0,2	
35	72,8	0,3	
40	73,1	0,3	
45	73,3	0,2	
50	72,5	-0,8	
55	73,1	0,6	
60	72,8	-0,3	Periodo de estabilización

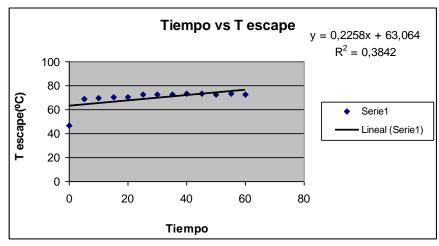


Figura 5.55 Curva Tiempo vs T escape

r	0,61967734
---	------------

Como podemos observar existe un leve incremento durante los quince minutos de realizadas las pruebas. Transcurridos los quince minutos, comienza a existir una estabilización de las temperaturas debido al material de que esta hecho el escape, el cual llega hasta una temperatura el cual se va a mantener estable. Como podemos observar el ajuste de la curva es relativamente bueno ya que el coeficiente de correlación lineal sale menor a uno.

Tabla 5.217 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	70,2	2,311111111	5,341234568
	72,3	0,211111111	0,044567901
	72,5	0,011111111	0,000123457
	72,8	0,288888889	0,08345679
	73,1	0,588888889	0,346790123
	73,3	0,788888889	0,622345679
	72,5	0,011111111	0,000123457
	73,1	0,588888889	0,346790123
	72,8	0,288888889	0,08345679
Sumatoria	72,51111111	5,088888889	6,868888889

Desviación Media	0,565432099	°C
Desviación Estándar	0,926612708	٥C
Y Estabilización	72.51°C +/- 0.	565432099°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.218 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T escape

	Υ	logy	Х	x^2	x*logy
	46,8	1,670245853	0	0	0
	68,6	1,836324116	5	25	9,18162058
	69,5	1,841984805	10	100	18,419848
	70,4	1,847572659	15	225	27,7135899
	70,2	1,846337112	20	400	36,9267422
	72,3	1,859138297	25	625	46,4784574
	72,5	1,860338007	30	900	55,8101402
	72,8	1,862131379	35	1225	65,1745983
	73,1	1,863917377	40	1600	74,5566951
	73,3	1,865103975	45	2025	83,9296789
	72,5	1,860338007	50	2500	93,0169003
	73,1	1,863917377	55	3025	102,515456
	72,8	1,862131379	60	3600	111,727883
Sumatoria	907,9	23,93948034	390	16250	725,451609

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.219 Resultado para la curva del modelo logarítmico Tiempo vs T escape

	JUJUA
logb	0,001597187
loga	1,793582889
b	1,00368443

Log Y = 1,793582889 + 0,001597187 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.220 Datos análisis Tiempo vs T múltiple

1451	d O.ZZO Datos	ananoio m	inpo va i munipie
Tiempo	T múltiple	Cambio T	
0	78,1	58,7	
5	88,1	10	
10	98,3	10,2	
15	102	3,7	
20	98,3	-3,7	Incremento de Temperatura
25	103,5	5,2	
30	101,9	-1,6	
35	101,5	-0,4	
40	101,9	0,4	
45	101,1	-0,8	
50	102,4	1,3	
55	102,7	0,3	
60	102,7	0	Periodo de Estabilización

Tiempo vs T multiple y = 0.2632x + 90.758 $R^2 = 0,4843$ 120 100 T multiple (°C) 80 Serie1 60 Lineal (Serie1) 40 20 0 -20 80 0 40 60 Tiempo

Figura 5.56 Curva Tiempo vs T múltiple

r	0,695701085
---	-------------

Análisis

Como podemos observar se produce un incremento durante los primeros quince minutos de transcurridos las pruebas. Después de este tiempo comienza a producirse una estabilización de las temperaturas, ya que se mantienen en un rango aceptable de trabajo. Se llega a dar la estabilización cuando el motor comienza a calentarse paulatinamente, cuando existe un correcto paso de aire desde las cámaras de combustión para que trabaje eficientemente.

Tabla 5.221 Medidas de dispersión Tiempo vs T múltiple

	у	(y-ymedia)	(y-ymedia)^2
	98,3	3,477777778	12,09493827
	103,5	1,72222222	2,966049383
	101,9	0,12222222	0,014938272
	101,5	0,27777778	0,077160494
	101,9	0,12222222	0,014938272
	101,1	0,67777778	0,459382716
	102,4	0,62222222	0,387160494
	102,7	0,92222222	0,850493827
	102,7	0,92222222	0,850493827
Sumatoria	101,7777778	8,866666667	17,71555556

Desviación Media	0,985185185	°C
Desviación Estándar	1,488100952	°C
Y Estabilización	101.7777778°C	C +/- 0.985185185°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.222 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T múltiple

Sumatoria

Υ	logy	X	x^2	x*logy
78,1	1,892651034	0	0	0
88,1	1,944975908	5	25	9,72487954
98,3	1,992553518	10	100	19,9255352
102	2,008600172	15	225	30,1290026
98,3	1,992553518	20	400	39,8510704
103,5	2,01494035	25	625	50,3735087
101,9	2,008174184	30	900	60,2452255
101,5	2,006466042	35	1225	70,2263115
101,9	2,008174184	40	1600	80,3269674
101,1	2,004751156	45	2025	90,213802
102,4	2,010299957	50	2500	100,514998
102,7	2,011570444	55	3025	110,636374
102,7	2,011570444	60	3600	120,694227
1282,5	25,90728091	390	16250	782,861902

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.223Resultado para la curva del modelo logarítmico Tiempo vs T múltiple

logb	0,001240324
loga	1,955658041
b	1,002860034

Log Y = 1,955658041 + 0,001240324X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

- PE - 08

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.224 Datos para análisis ΔT_{AGUA} vs Humedad relativa

			AGUA
$\Delta T_{\scriptscriptstyle AGUA}$	Humedad	Cambio H	
0,9	71	19,69231	Incremento de humedad
1	64	-7	
2	64	0	
1,3	63	-1	
1	62	-1	
0,8	57	-5	
2,1	54	-3	
2,2	50	-4	
1,6	43	-7	
1,7	43	0	
1,4	34	-9	
1,2	31	-3	
3,4	31	0	Periodo de estabilización

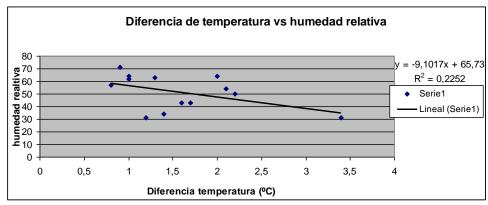


Figura 5.57 Curva diferencia de Temperatura vs Humedad relativa

r	0,47434165

En la primera toma existe un decremento de la humedad ya que comienza a descender paulatinamente hasta poder quedarse estable que eso va a suceder durante los próximos minutos.

A partir de la siguiente toma comienza a existir una estabilidad de la humedad ya que se mantiene en niveles de 31-64 aproximadamente.

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación de curva es menor que uno.

Uno de los factores más importantes del clima, que nos interesa, es la <u>humedad</u>, la presencia de agua en el ambiente, y la frecuencia y el carácter de las precipitaciones.

La cantidad de agua en el aire por metro cúbico no es lo que más interesa (humedad absoluta), sino la humedad relativa, es decir, la diferencia entre la cantidad de agua que contiene el aire y la que puede contener, para una determinada temperatura.

Se mide en tantos por ciento. Una alta humedad relativa, cercana al punto de saturación, permite el aprovechamiento del agua del aire por parte de las plantas.

Tabla 5.225 Medidas de regresión ΔT_{AGUA} vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	64	14,33333333	205,44444
	64	14,33333333	205,44444
	63	13,33333333	177,77778
	62	12,33333333	152,11111
	57	7,333333333	53,777778
	54	4,333333333	18,777778
	50	0,333333333	0,1111111
	43	6,666666667	44,44444
	43	6,666666667	44,44444
	34	15,66666667	245,44444
	31	18,66666667	348,44444
	31	18,66666667	348,44444
Sumatoria	49,66666667	132,66667	1844,6667

Desviación Media	11,0555556	
Desviación Estándar	12,94978647	
Y Estabilización	49.66 +/-11.05	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.226 Datos del comportamiento de la humedad en función de la ΔT_{AGUA} (Modelo lineal)

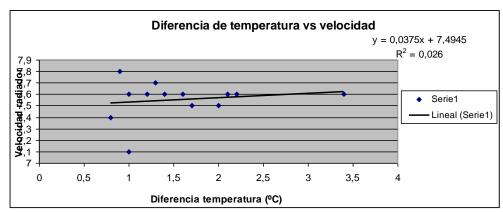
Sumatoria

у	X	x^2	Ху
71	0,9	0,81	63,9
64	1	1	64
64	2	4	128
63	1,3	1,69	81,9
62	1	1	62
57	0,8	0,64	45,6
54	2,1	4,41	113,4
50	2,2	4,84	110
43	1,6	2,56	68,8
43	1,7	2,89	73,1
34	1,4	1,96	47,6
31	1,2	1,44	37,2
31	3,4	11,56	105,4
667	20,6	38,8	1000,9

Tabla 5.227 Resultado para la curva del modelo lineal ΔT_{AGUA} vs Humedad relativa

b	-9,10169915
а	65,73038481

Y = 65,73038481-9,10169915X


Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la humedad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA VS VELOCIDAD DEL VENTILADOR RADIADOR

Tabla 5.228 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

		AOUA	
ΔT_{AGUA}	Velocidad del radiador	Cambio V	
0,9	7,8	0,246154	Incremento de velocidad
1	7,1	-0,7	
2	7,5	0,4	
1,3	7,7	0,2	
1	7,6	-0,1	
0,8	7,4	-0,2	
2,1	7,6	0,2	
2,2	7,6	0	
1,6	7,6	0	
1,7	7,5	-0,1	
1,4	7,6	0,1	
1,2	7,6	0	
3,4	7,6	0	Periodo de estabilización

Figura 5.58 Curva diferencia de Temperatura vs Velocidad del ventilador del radiador

r	0,16124515

Sumat

La velocidad tiende a un decremento significativo en las primera toma de la diferencia de temperatura de agua de transcurrido la prueba. Transcurrido esta toma, la velocidad tiende a estabilizar. El ventilador se prende ya que existe un sensor electromecánico que el rato que se prende es que significa que esta pasando refrigerante al motor y procede a mantener su temperatura de estabilización, si el sensor se daña no va aprender el sensor electromecánico por lo tanto no va a pasar agua al radiador, por esto hemos hecho la comparación ya que influye bastante la velocidad del ventilador del radiador con la temperatura del agua.

Tabla 5.229 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	Υ	(y-ymedia)	(y-ymedia)^2
	7,1	0,433333333	0,1877778
	7,5	0,033333333	0,0011111
	7,7	0,166666667	0,0277778
	7,6	0,066666667	0,0044444
	7,4	0,133333333	0,0177778
	7,6	0,066666667	0,0044444
	7,6	0,066666667	0,0044444
	7,6	0,066666667	0,0044444
	7,5	0,033333333	0,0011111
	7,6	0,066666667	0,0044444
	7,6	0,066666667	0,0044444
	7,6	0,066666667	0,0044444
toria	7,533333333	1,2666667	0,2666667

Desviación Media	0,10555556
Desviación Estándar	0,155699789
Y Estabilización	7.533333333 +/-0.105555556 m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.230 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	у	X	x^2	ху
	7,8	0,9	0,81	7,02
	7,1	1	1	7,1
	7,5	2	4	15
	7,7	1,3	1,69	10,01
	7,6	1	1	7,6
	7,4	0,8	0,64	5,92
	7,6	2,1	4,41	15,96
	7,6	2,2	4,84	16,72
	7,6	1,6	2,56	12,16
	7,5	1,7	2,89	12,75
	7,6	1,4	1,96	10,64
	7,6	1,2	1,44	9,12
	7,6	3,4	11,56	25,84
Sumatoria	98,2	20,6	38,8	155,84

Tabla 5.231Resultado para la curva del modelo lineal ΔT_{AGUA} vs Velocidad del ventilador

b	0,037481259
а	7,494452774

Y = 7,494452774+0,037481259X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.232 Datos para análisis Tiempo vs T admisión

T dbid 0	LOZ Dalos pa		Tiempo vs i admision
Tiempo	T admisión	Cambio T	
0	31	11,9	
5	31,4	0,4	
10	32,5	1,1	Incremento de temperatura
15	31,3	-1,2	
20	31,3	0	
25	31,4	0,1	
30	31,3	-0,1	
35	32,1	0,8	
40	33,7	1,6	
45	34,1	0,4	
50	34,4	0,3	
55	32,7	-1,7	
60	33,2	0,5	Periodo de estabilización

Figura 5.59 Curva Tiempo vs T admisión

r 0,74161985

Podemos observar que existe un incremento de temperatura durante los primeros 10 minutos. Transcurridos los diez minutos existe una estabilización de la temperatura. Fase durante la cual se produce el llenado del cilindro.

Se produce mientras la válvula de admisión está abierta y el pistón realiza el recorrido descendente, desde el punto muerto superior (PMS) hasta el punto muerto inferior (PMI).

El vacío que deja el pistón se transmite por el conducto de admisión para recoger el aire de la atmósfera e introducirlo al motor.

En los motores Otto la admisión se produce con aire y gasolina, mientras que en los motores Diesel la admisión se produce solamente con aire. Lo mismo sucede con los motores de gasolina de inyección directa.

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.233 Medidas de dispersión Tiempo vs T admisión

	у	(y-ymedia)	(y-ymedia)^2
	31,3	1,25	1,5625
	31,3	1,25	1,5625
	31,4	1,15	1,3225
	31,3	1,25	1,5625
	32,1	0,45	0,2025
	33,7	1,15	1,3225
	34,1	1,55	2,4025
	34,4	1,85	3,4225
	32,7	0,15	0,0225
	33,2	0,65	0,4225
Sumatoria	32,55	10,7	13,805

Desviación Media	1,07	°C
Desviación Estándar	1,23850268 °C	
Y Estabilización	32.55°C +/- 1.07 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.234 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

	Υ	logy	X	x^2	x*logy
	31	1,491361694	0	0	0
	31,4	1,496929648	5	25	7,48464824
	32,5	1,511883361	10	100	15,1188336
	31,3	1,495544338	15	225	22,4331651
	31,3	1,495544338	20	400	29,9108868
	31,4	1,496929648	25	625	37,4232412
	31,3	1,495544338	30	900	44,8663301
	32,1	1,506505032	35	1225	52,7276761
	33,7	1,527629901	40	1600	61,105196
	34,1	1,532754379	45	2025	68,9739471
	34,4	1,536558443	50	2500	76,8279221
	32,7	1,514547753	55	3025	83,3001264
	33,2	1,521138084	60	3600	91,268285
Sumatoria	420,4	19,62287095	390	16250	591,440258

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.235 Resultados para la curva del modelo logarítmico Tiempo ys T admisión

ricinpo vo i damision		
logb	0,000605303	
loga	1,491292519	
b	1.001394733	

Log Y = 1,491292519-0,000605303 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.236 Datos análisis Tiempo vs T aqua

Tabla 5:250 Dates analisis mempe vs i agua					
Tiempo	T agua	Cambio T			
0	19,95	0,85			
5	20,2	0,25			
10	21,3	1,1	Incremento de temperatura		
15	21,15	-0,15			
20	19,9	-1,25			
25	20,1	0,2			
30	20,45	0,35			
35	20,6	0,15			
40	22,2	1,6			
45	23,75	1,55			
50	25,2	1,45			
55	24,8	-0,4			
60	23,9	-0,9	Periodo de estabilización		

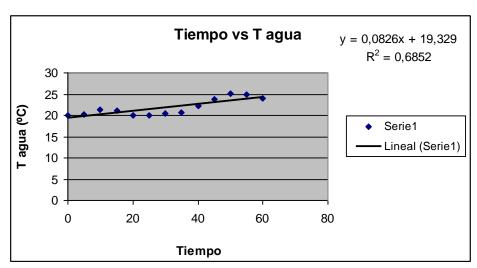


Figura 5.60 Curva Tiempo vs T agua

r	0,827647268

Análisis

Como podemos observar al comienzo de la prueba existe un incremento de la temperatura ya que recién se comienza a calentar el motor y por lo tanto el sensor electromecánico aun no se activa, a medida que se va calentando el carro el sensor se prende y comienza a pasar refrigerante. A partir de los

quince minutos en adelante comienza a existir un periodo de estabilización que se comienza a notar a partir de los 20 minutos de que pase prendido el carro. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.237 Medidas de regresión Tiempo vs T agua

	у	(y-ymedia)	(y-ymedia)^2
	21,15	1,055	1,113025
	19,9	2,305	5,313025
	20,1	2,105	4,431025
	20,45	1,755	3,080025
	20,6	1,605	2,576025
	22,2	0,005	2,5E-05
	23,75	1,545	2,387025
	25,2	2,995	8,970025
	24,8	2,595	6,734025
	23,9	1,695	2,873025
Sumatoria	22,205	17,66	37,47725

Desviación Media	1,766	٥C
Desviación Estándar	2,040622182	°C
Y Estabilización	22.205°C +/- 1.766 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.238 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T agua

	Υ	logy	X	x^2	x*logy
	19,95	1,2999429	0	0	0
	20,2	1,305351369	5	25	6,52675685
	21,3	1,328379603	10	100	13,283796
	21,15	1,325310372	15	225	19,8796556
	19,9	1,298853076	20	400	25,9770615
	20,1	1,303196057	25	625	32,5799014
	20,45	1,310693312	30	900	39,3207994
	20,6	1,31386722	35	1225	45,9853527
	22,2	1,346352974	40	1600	53,854119
	23,75	1,375663614	45	2025	61,9048626
	25,2	1,401400541	50	2500	70,070027
	24,8	1,394451681	55	3025	76,6948424
	23,9	1,378397901	60	3600	82,7038741
Sumatoria	283,5	17,38186062	390	16250	528,781049

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.239 Resultado para la curva del modelo logarítmico Tiempo vs T agua

rieriipo va r agua		
logb	0,001609941	
loga	1,288767982	
b	1,003713906	

Log Y = 1,288767982 + 0,001609941X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.240 Datos para análisis Tiempo vs T block

Tiempo	T Block	Cambio T	
0	50,8	31,7	
5	51,9	1,1	
10	53,5	1,6	Incremento de temperatura
15	53,2	-0,3	
20	56,9	3,7	
25	53,7	-3,2	
30	53,6	-0,1	
35	54,2	0,6	
40	54,9	0,7	
45	55,6	0,7	
50	56,1	0,5	
55	54,2	-1,9	
60	53,6	-0,6	Periodo de estabilización

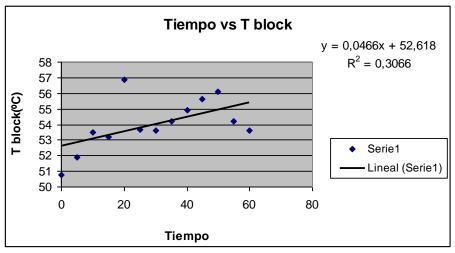


Figura 5.61 Curva Tiempo vs T block

r	0,55317267
---	------------

Existe un incremento de la temperatura del block al comienzo de la prueba durante los 10 primeros minutos. Transcurrido los diez minutos, comienza a existir una estabilización de la temperatura del block. Como podemos apreciar el ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.241 Medidas de regresión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	53,2	1,4	1,96
	56,9	2,3	5,29
	53,7	0,9	0,81
	53,6	1	1
	54,2	0,4	0,16
	54,9	0,3	0,09
	55,6	1	1
	56,1	1,5	2,25
	54,2	0,4	0,16
	53,6	1	1
Sumatoria	54,6	10,2	13,72

Desviación Media	1,02	°C
Desviación Estándar	1,234683945	°C
Y Estabilización	54.6°C +	/- 1.02ºC

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.242 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T block

ı		Hempo vs	DIOCK	•	
	Υ	logy	X	x^2	x*logy
	50,8	1,705863712	0	0	0
	51,9	1,715167358	5	25	8,57583679
	53,5	1,728353782	10	100	17,2835378
	53,2	1,725911632	15	225	25,8886745
	56,9	1,755112266	20	400	35,1022453
	53,7	1,729974286	25	625	43,2493571
	53,6	1,72916479	30	900	51,8749437
	54,2	1,733999287	35	1225	60,689975
	54,9	1,739572344	40	1600	69,5828938
	55,6	1,745074792	45	2025	78,5283656
	56,1	1,748962861	50	2500	87,4481431
	54,2	1,733999287	55	3025	95,3699608
	53,6	1,72916479	60	3600	103,749887
Sumatoria	702,2	22,52032119	390	16250	677,343821

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.243 Resultado para la curva del modelo logarítmico Tiempo vs T block

logb	0,00038114
loga	1,72089821
b	1,000877992

Log Y = 1,72089821 + 0,0003814X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.244 Datos análisis Tiempo vs T carter

			lempe ve i carrei
Tiempo	T carter	Cambio T	
0	64,5	45,4	
5	69,7	5,2	
10	71,7	2	Incremento de temperatura
15	69,3	-2,4	
20	75,1	5,8	
25	73,5	-1,6	
30	74,9	1,4	
35	71,6	-3,3	
40	71,3	-0,3	
45	72,3	1	
50	70,2	-2,1	
55	70,7	0,5	
60	73,1	2,4	Periodo de estabilización

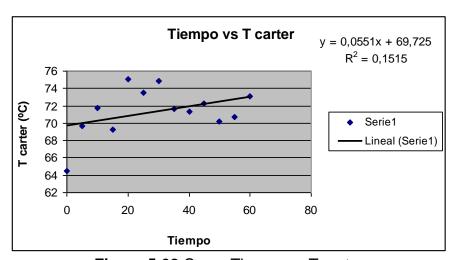


Figura 5.62 Curva Tiempo vs T carter

r	0,38858718
---	------------

Análisis

Como podemos observar la temperatura del carter tiende a incrementarse durante los primeros 10 minutos de realizadas las pruebas. Transcurridos los 10 minutos, comienza a existir una estabilización de las temperaturas debido al material de que esta hecho el escape, el cual llega hasta una temperatura el

cual se va a mantener estable. Como podemos observar el ajuste de la curva es relativamente bueno ya que el coeficiente de correlación lineal sale menor a uno.

Tabla 5.245 Medidas de regresión Tiempo vs T carter

	у	(y-ymedia)	(y-ymedia)^2
	69,3	2,9	8,41
	75,1	2,9	8,41
	73,5	1,3	1,69
	74,9	2,7	7,29
	71,6	0,6	0,36
	71,3	0,9	0,81
	72,3	0,1	0,01
	70,2	2	4
	70,7	1,5	2,25
	73,1	0,9	0,81
Sumatoria	72,2	15,8	34,04

Desviación Media	1,58	°C
Desviación Estándar	1,944793619	°C
Y Estabilización	72.2°C +	/- 1.58ºC

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.246 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T carter

Sumatoria

Υ	logy	x	x^2	x*logy
64,5	1,809559715	0	0	0
69,7	1,843232778	5	25	9,21616389
71,7	1,855519156	10	100	18,5551916
69,3	1,840733235	15	225	27,6109985
75,1	1,875639937	20	400	37,5127987
73,5	1,866287339	25	625	46,6571835
74,9	1,874481818	30	900	56,2344545
71,6	1,854913022	35	1225	64,9219558
71,3	1,85308953	40	1600	74,1235812
72,3	1,859138297	45	2025	83,6612234
70,2	1,846337112	50	2500	92,3168556
70,7	1,849419414	55	3025	101,718068
73,1	1,863917377	60	3600	111,835043
927,9	24,09226873	390	16250	724,363517

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.247 Resultado para la curva del modelo logarítmico Tiempo vs T carter

logb	0,000350649
loga	1,842731956
b	1,000807725

Log Y = 1,842731956+0,000350649X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS TIEMPO VS T ESCAPE

Tabla 5.248 Datos análisis Tiempo vs T escape

			omporto i occapo
	_		
Tiempo	T escape	Cambio T	
0	70,3	51,2	
5	81,9	11,6	
10	85,9	4	Incremento de temperatura
15	84,2	-1,7	
20	88,4	4,2	
25	90,4	2	
30	91	0,6	
35	92,1	1,1	
40	89,8	-2,3	
45	89,2	-0,6	
50	91,7	2,5	
55	84,5	-7,2	
60	84,9	0,4	Periodo de estabilización

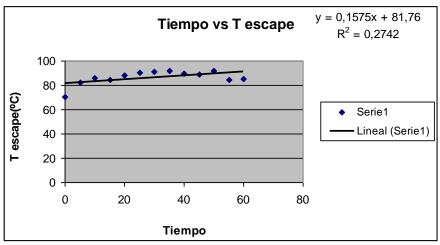


Figura 5.63 Curva Tiempo vs T escape

Como podemos observar existe un leve incremento durante los diez minutos de realizadas las pruebas. Transcurridos los diez minutos, comienza a existir una estabilización de las temperaturas debido al material de que esta hecho el escape, el cual llega hasta una temperatura el cual se va a mantener estable. Como podemos observar el ajuste de la curva es relativamente bueno ya que el coeficiente de correlación lineal sale menor a uno.

Tabla 5.249 Medidas de regresión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	84,2	4,42	19,5364
	88,4	0,22	0,0484
	90,4	1,78	3,1684
	91	2,38	5,6644
	92,1	3,48	12,1104
	89,8	1,18	1,3924
	89,2	0,58	0,3364
	91,7	3,08	9,4864
	84,5	4,12	16,9744
	84,9	3,72	13,8384
Sumatoria	88,62	20,54	82,556

Desviación Media	2,054	°C
Desviación Estándar	3,028677746 °C	
Y Estabilización	88.62°C +	/- 2.054°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.250 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T escape

	Y	logy	Х	x^2	x*logy
	70,3	1,846955325	0	0	0
	81,9	1,913283902	5	25	9,56641951
	85,9	1,933993164	10	100	19,3399316
	84,2	1,925312091	15	225	28,8796814
	88,4	1,946452265	20	400	38,9290453
	90,4	1,95616843	25	625	48,9042108
	91	1,959041392	30	900	58,7712418
	92,1	1,96425963	35	1225	68,7490871
	89,8	1,953276337	40	1600	78,1310535
	89,2	1,950364854	45	2025	87,7664184
	91,7	1,962369336	50	2500	98,1184668
	84,5	1,926856709	55	3025	105,977119
	84,9	1,92890769	60	3600	115,734461
Sumatoria	1124,3	25,16724113	390	16250	758,867137

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.251 Resultados para la curva del modelo logarítmico Tiempo vs T escape

Logb	0,000846132
Loga	1,910557651
В	1,00195019

Log Y = 1,910557651+0,000846132X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.252 Datos análisis Tiempo vs T múltiple

IUD	Tabla 3.232 Datos analisis Tiempo vs T multiple				
Tiempo	T múltiple	Cambio T			
0	75,8	56,7			
5	85,4	9,6			
10	88,9	3,5			
15	90,2	1,3			
20	92,4	2,2			
25	93,4	1	Incremento de temperatura		
30	92,8	-0,6			
35	93,5	0,7			
40	93,4	-0,1			
45	94,4	1			
50	92,1	-2,3			
55	91,2	-0,9			
60	90,6	-0,6	Periodo de estabilización		

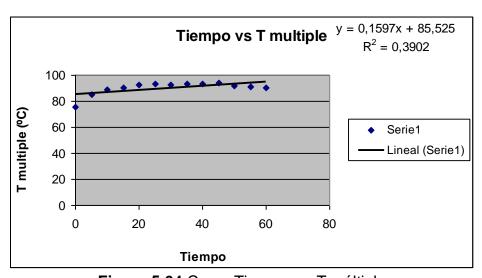


Figura 5.64 Curva Tiempo vs. T múltiple

Como podemos observar se produce un incremento durante los primeros 25 minutos de transcurridos las pruebas. Después de este tiempo comienza a producirse una estabilización de las temperaturas, ya que se mantienen en un rango aceptable de trabajo. Se llega a dar la estabilización cuando el motor comienza a calentarse paulatinamente, cuando existe un correcto paso de aire desde las cámaras de combustión para que trabaje eficientemente. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.253 Medidas de regresión Tiempo vs T múltiple

	Υ	(y-ymedia)	(y-ymedia)^2
	92,8	0,228571429	0,052244898
	93,5	0,928571429	0,862244898
	93,4	0,828571429	0,686530612
	94,4	1,828571429	3,343673469
	92,1	0,471428571	0,222244898
	91,2	1,371428571	1,880816327
	90,6	1,971428571	3,886530612
Sumatoria	92,57142857	7,628571429	10,93428571

Desviación Media	1,089795918	°C
Desviación Estándar	1,349955908	°C
Y Estabilización	92.57142857°C +/- 1.089795918 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.254 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T múltiple

	Υ	logy	X	x^2	x*logy
	75,8	1,879669206	0	0	0
	85,4	1,931457871	5	25	9,65728935
	88,9	1,948901761	10	100	19,4890176
	90,2	1,955206538	15	225	29,3280981
	92,4	1,965671971	20	400	39,3134394
	93,4	1,970346876	25	625	49,2586719
	92,8	1,967547976	30	900	59,0264393
-	93,5	1,970811611	35	1225	68,9784064
	93,4	1,970346876	40	1600	78,813875
	94,4	1,974971994	45	2025	88,8737397
	92,1	1,96425963	50	2500	98,2129815
	91,2	1,959994838	55	3025	107,799716
	90,6	1,957128198	60	3600	117,427692
Sumatoria	1174,1	25,41631535	390	16250	766,179366

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.255 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

logb	0,000810968	
loga	1,930772131	
b	1,001869067	

Log Y = 1,930772131 + 0,000810968X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.256 Datos análisis ΔT_{AGUA} vs Humedad relativa

$\Delta T_{ extit{ iny AGUA}}$	Humedad
0,3	56
4,6	46
1,4	45

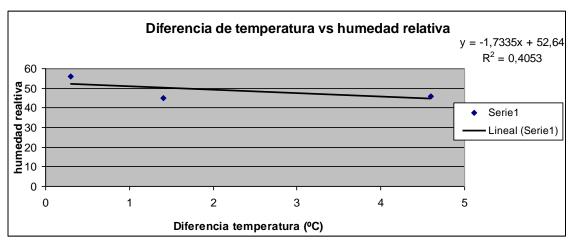


Figura 5.65 Curva Diferencia de temperatura vs Humedad relativa

r	0,6363961

Análisis

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto,

los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.257 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	56	7	49
	46	3	9
	45	4	16
Sumatoria	49	14	74

Desviación Media	4,666666667
Desviación Estándar	6,08276253
Y Estabilización	49 +/-4.66

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.258 Datos del comportamiento de la humedad en función de la ΔT_{ACUA} (Modelo lineal)

	AOUA (
	у	Х	x^2	Xy
	56	0,3	0,09	16,8
	46	4,6	21,16	211,6
	45	1,4	1,96	63
Sumatoria	147	6,3	23,21	291,4

Tabla 5.259 Resultados para la curva del modelo lineal ΔT_{AGUA} vs Humedad relativa

b	-1,733466934
а	52,64028056

Y = 52,64028056-1,733466934 X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.260 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{ extit{AGUA}}$	
	VELOCIDAD
0,3	3,3
4,6	7,2
1,4	6,7

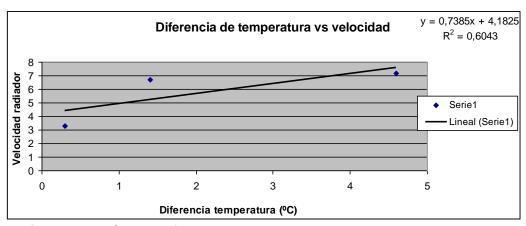


Figura 5.66 Curva Diferencia de Temperatura de Agua vs Velocidad

r	0,77717437
---	------------

Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.261 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

			ΔI_{AGUA}	00.444 40. 10.
		Υ	(y-ymedia)	(y-ymedia)^2
		3,3	2,433333333	5,9211111
		7,2	1,466666667	2,1511111
		6,7	0,966666667	0,9344444
	Sumatoria	5,733333333	4,8666667	9,0066667

Desviación Media	1,62222222		
Desviación Estándar	2,12210587	' 2	
Y Estabilización	5 7333 +/-1 6222	m/s	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.262 Datos del comportamiento de la velocidad en función de la diferencia de ΔT_{AGUA} (Modelo lineal)

	у	Χ	x^2	Ху
	3,3	0,3	0,09	0,99
	7,2	4,6	21,16	33,12
	6,7	1,4	1,96	9,38
Sumatoria	17,2	6,3	23,21	43,49

Tabla 5.263 Resultados para la curva del modelo lineal ΔT_{corr} vs Velocidad del ventilador

AGUA		
b	0,738476954	
а	4,18253173	

Y = 7,494452774+0,037481259X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.264 Datos para análisis Tiempo vs T admisión

Tiempo	T admisión	
0	21,6	
20	45,6	
45	38,9	

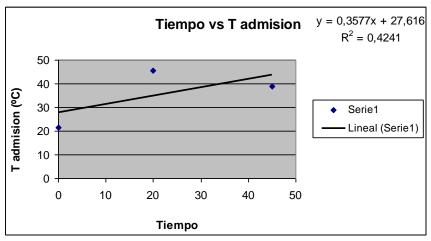


Figura 5.67 Curva Tiempo vs T admisión

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno.

Tabla 5.265 Medidas de dispersión Tiempo vs T admisión

	•		
	у	(y-ymedia)	(y-ymedia)^2
	21,6	13,76666667	189,5211111
	45,6	10,23333333	104,7211111
	38,9	3,533333333	12,4844444
Sumatoria	35,36666667	27,53333333	306,7266667

Desviación Media	9,17777778	°C
Desviación Estándar	12,38399505	Ŝ
Y Estabilización	35.36°C +/- 9.177 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.266 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

	Υ	logy	Х	x^2	x*logy
	21,6	1,334453751	0	0	0
	45,6	1,658964843	20	400	33,1792969
	38,9	1,589949601	45	2025	71,5477321
Sumatoria	106,1	4,583368195	65	2425	104,727029

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.267 Resultados para la curva del modelo logarítmico Tiempo vs T admisión

logb	0,005331854	
loga	1,4122659	
b	1,027864233	

Log Y = 1,4122659-0,005331854X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.268 Datos para análisis Tiempo vs T agua

Tiempo	T Agua
0	20,55
20	52
45	43,9

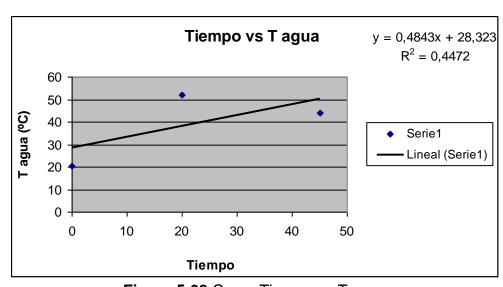


Figura 5.68 Curva Tiempo vs T agua

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.269 Medidas de dispersión Tiempo vs T agua

	у	(y-ymedia)	(y-ymedia)^2
	20,55	18,26666667	333,6711111
	52	13,18333333	173,8002778
	43,9	5,083333333	25,84027778
Sumatoria	38,81666667	36,53333333	533,3116667

Desviación Media	12,17777778	°C
Desviación Estándar	16,32959991	ç
Y Estabilización	38.8166°C +/- 12.177°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.270 Datos para el comportamiento de la temperatura en función del Tiempo vs T agua

	Υ	logy	х	x^2	x*logy
	20,55	1,312811826	0	0	0
	52	1,716003344	20	400	34,3200669
	43,9	1,64246452	45	2025	73,9109034
Sumatoria	116,45	4,67127969	65	2425	108,23097

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.271 Resultados para la curva de modelo logarítmico

l iempo vs	l agua
logb	0,00690483
loga	1,407488584
b	1,01602602

Log Y = 1,407488584+0,00690483X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS TIEMPO VS T BLOCK

Tabla 5.272 Datos para análisis Tiempo vs T block

Tiempo	T block
0	25,1
20	81,6
45	64,6

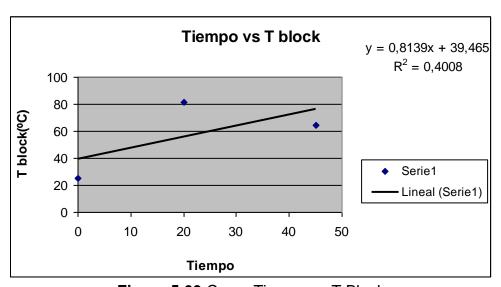


Figura 5.69 Curva Tiempo vs T Block

r	0,63245553
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo.

Tabla 5.273 Medidas de dispersión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	25,1	32	1024
	81,6	24,5	600,25
	64,6	7,5	56,25
Sumatoria	57,1	64	1680,5

Desviación Media	21,33333333	°C
Desviación Estándar	28,98706608	°C
Y Estabilización	57.1°C +/	- 21.33 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.274 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T block

	Υ	logy	Х	x^2	x*logy
	57	1,755874856	0	0	0
	57,8	1,761927838	20	400	35,2385568
	57,5	1,759667845	45	2025	79,185053
Sumatoria	172,3	5,277470539	65	2425	114,42361

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.275 Resultados para la curva del modelo logarítmico Tiempo vs T block

logb	7,71293E-05
loga	1,757485712
b	0,999832607

Log Y = 1,757485712 + 7,71293E-05X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.276 Datos para análisis Tiempo vs T carter

Tiempo	T Carter
0	65,5
20	117,2
45	104,7

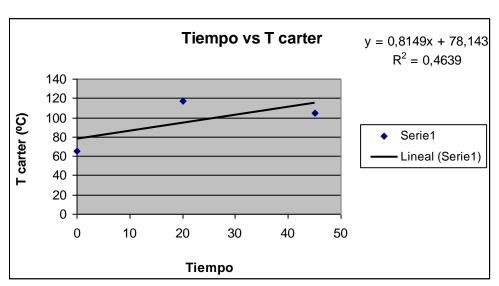


Figura 5.70 Curva Tiempo vs T Carter

r	0,72663608

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del Carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse.

Tabla 5.277 Medidas de dispersión Tiempo vs T carter

	•	•	
	у	(y-ymedia)	(y-ymedia)^2
	65,5	30,3	918,09
	117,2	21,4	457,96
	104,7	8,9	79,21
Sumatoria	95,8	60,6	1455,26

Desviación Media	20,2	°C
Desviación Estándar	26,9746177	°C
Y Estabilización	95.8°C +/- 20.2°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.278 Datos del comportamiento de la temperatura en función del tiempo

Tiempo vs T carter x^2 logy x*logy 65,5 0 1,8162413 0 0 117,2 20 2,068927612 41,3785522 400 104,7 45 2,019946682 90,8976007 2025 Sumatoria 287,4 5,905115593 65 132,276153 2425

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.279 Resultados para la curva del modelo logarítmico Tiempo vs T carter

ricinpo vo i cartoi		
logb	0,004260966	
loga	1,876050943	
b	1,009859525	

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de Carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.280 Datos para análisis Tiempo vs T escape

Tiempo	T escape
0	68
20	235,6
45	150,3

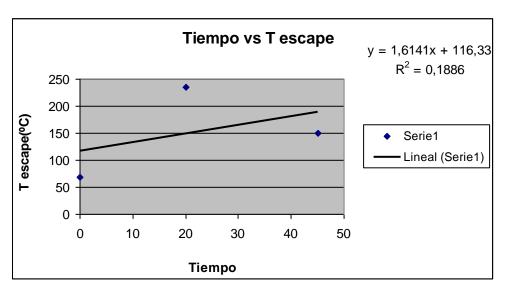


Figura 5.71 Curva Tiempo vs T escape

r	0.43358967
	0,4000001

Análisis

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno. La función del escape es que el pistón expulsa

los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.281 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	68	83,3	6938,89
	235,6	84,3	7106,49
	150,3	1	1
Sumatoria	151,3	168,6	14046,38

Desviación Media	56,2 °C		
Desviación Estándar	83,80447482	ô	
Y Estabilización	151.3°C +/- 56.2°C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.282 Datos del comportamiento de la temperatura en función del tiempo Tiempo ys T escape

	Tiempo va i cadapo			***	v*l = == :
	Y	logy	X	x^2	x*logy
	68	1,832508913	0	0	0
	235,6	2,372175286	20	400	47,4435057
	150,3	2,176958981	45	2025	97,9631541
Sumatoria	453,9	6,381643179	65	2425	145,40666

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.283 Resultado para la curva del modelo logarítmico

Tiempo vs T	escape
logb	0,007020712
loga	1,975098957
b	1,01629716

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.284 Datos para análisis Tiempo vs T múltiple

Tiempo	T múltiple
0	89,5
20	412,3
45	260,5

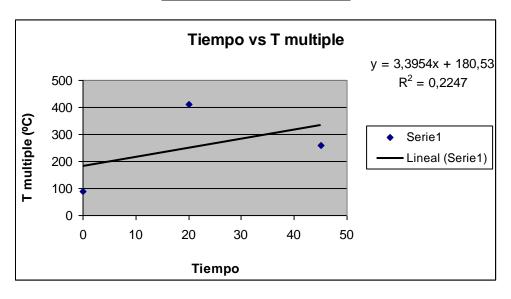


Figura 5.72 Curva Tiempo vs T múltiple

		r	0,473286383
--	--	---	-------------

Análisis

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehículo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura.

Tabla 5.285 Medidas de dispersión Tiempo vs T múltiple

		Tine and de diepe	7101011 110111p	vo i marapio
		Υ	(y-ymedia)	(y-ymedia)^2
		89,5	164,6	27093,16
		412,3	158,2	25027,24
		260,5	6,4	40,96
	Sumatoria	254,1	329,2	52161,36

Desviación Media	109,7333333	°C	
Desviación Estándar	161,4951392	°C	
Y Estabilización	254.1°C +/- 109.7333°C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.286 Datos del comportamiento de la temperatura en función del Tiempo vs T múltiple

	riempo va i manipie				
	Υ	logy	Χ	x^2	x*logy
	89,5	1,951823035	0	0	0
	412,3	2,615213335	20	400	52,3042667
	260,5	2,415807728	45	2025	108,711348
Sumatoria	762,3	6,982844098	65	2425	161,015614

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.287 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

- 1	
logb	0,009561304
loga	2,120453114
b	1,002648047

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

- PM - 02

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.288 Datos para análisis ΔT_{AGUA} vs Humedad relativa

$\Delta T_{ extit{ iny AGUA}}$	Humedad
0,2	62
5,3	48
5	39

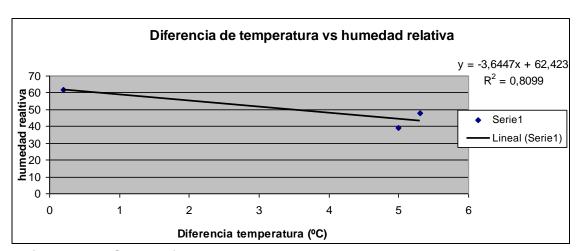


Figura 5.73 Curva diferencia de Temperatura de Agua vs Humedad relativa

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto, los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno

Tabla 5.289 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	62	12,333333	152,11111
	48	1,6666667	2,7777778
	39	10,666667	113,77778
Sumatoria	49,66666667	24,666667	268,66667

Desviación Media	8,22222222	
Desviación Estándar	11,59022577	
Y Estabilización	49.66666667 +/-8.22222	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

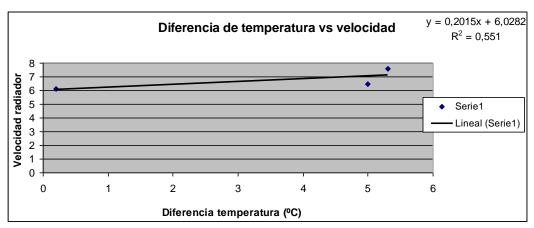
Tabla 5.290 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	у	Х	x^2	Ху
	62	0,2	0,04	12,4
	48	5,3	28,09	254,4
	39	5	25	195
Sumatoria	149	10,5	53,13	461,8

Tabla 5.291 Resultados para la curva del modelo lineal $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa

b	-3,644688645
а	62,42307692

Y = 62,42307692-3,644688645 X


Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.292 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{ extit{ iny AGUA}}$	Velocidad
0,2	6,1
5,3	7,6
5	6,5

Figura 5.74 Curva diferencia de Temperatura de Agua vs Velocidad del ventilador

r	0,74229374

Análisis

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante.

Tabla 5.293 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	6,1	0,633333333	0,4011111
	7,6	0,866666667	0,7511111
	6,5	0,233333333	0,0544444
Sumatoria	6,733333333	1,7333333	1,2066667

Desviación Media	0,57777778		
Desviación Estándar	0,776745347		
Y Estabilización	6.7333 +/-0.577777778	m/s	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.294 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	/!	vioacio ilitical)		
	у	X	x^2	ху
	6,1	0,2	0,04	1,22
	7,6	5,3	28,09	40,28
	6,5	5	25	32,5
Sumatoria	20,2	10,5	53,13	74

Tabla 5.295 Resultados para la curva del modelo lineal ΔT_{AGUA} vs Velocidad del ventilador

b	0,201465201
а	6,028205128

Y = 6,028205128+0,201465201X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.296 Datos para análisis Tiempo vs T admisión

Tiempo	T admisión
0	22,6
19	44,6
40	37,8

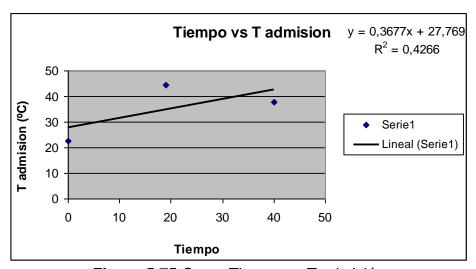


Figura 5.75 Curva Tiempo vs T admisión

_	0.0000075
ľ	0,65268675

Análisis

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno

Tabla 5.297 Medidas de dispersión Tiempo vs T admisión

	у	(y-ymedia)	(y-ymedia)^2
	22,6	12,4	153,76
	44,6	9,6	92,16
	37,8	2,8	7,84
Sumatoria	35	24,8	253,76

Desviación Media	8,266666667	°C	
Desviación Estándar	11,26410227 °C		
Y Estabilización	35°C +/- 8.266666667 °C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.298 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

	Y	logy	Х	x^2	x*logy
	22,6	1,354108439	0	0	0
	44,6	1,649334859	19	361	31,3373623
	37,8	1,5774918	40	1600	63,099672
Sumatoria	105	4,580935098	59	1961	94,4370343

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.299 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

logb	0,005427116
loga	1,420245088
b	1,012574803

Log Y = 1,420245088 + 0,005427116 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.300 Datos para análisis Tiempo vs T agua

Tiempo	T agua
0	20
19	51,65
40	44,2

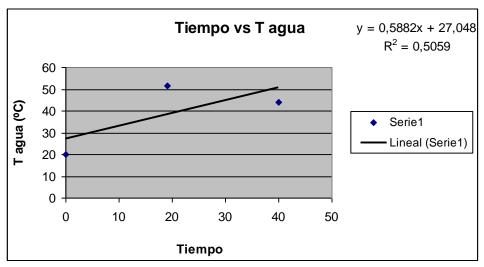


Figura 5.76 Curva Tiempo vs T agua

r 0,71063352

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.301 Medidas de dispersión Tiempo vs T agua

	Υ	(y-ymedia)	(y-ymedia)^2
	20	18,61666667	346,5802778
	51,65	13,03333333	169,8677778
	44,2	5,583333333	31,17361111
Sumatoria	38,61666667	37,23333333	547,6216667

Desviación Media	12,41111111 °C		
Desviación Estándar	16,54723038 °C		
Y estabilización	38.61666667°C +/- 12.4111111°C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.302 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T aqua

			3		
	Y	logy	X	x^2	x*logy
	20	1,301029996	0	0	0
	51,65	1,713070326	19	361	32,5483362
	44,2	1,645422269	40	1600	65,8168908
Sumatoria	115,85	4,659522591	59	1961	98,365227

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.303 Resultados para la curva del modelo logarítmico Tiempo vs T aqua

logb	0,008402934
loga	1,38791649
b	1,019536865

Log Y = 1,387916494+0,008402934 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS TIEMPO VS T BLOCK

Tabla 5.304 Datos para análisis Tiempo vs T block

Tiempo	T block
0	24,4
19	80,9
40	66,1

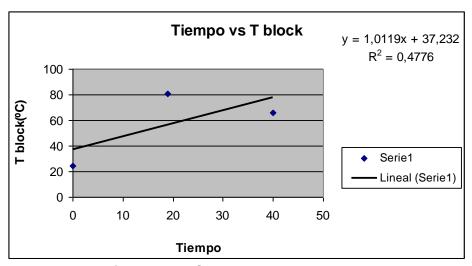


Figura 5.77 Curva Tiempo vs T block

r	0,69065187

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo.

Tabla 5.305 Medidas de dispersión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	24,4	32,73333333	1071,471111
	80,9	23,76666667	564,8544444
	66,1	8,966666667	80,40111111
Sumatoria	57,13333333	65,46666667	1716,726667

Desviación Media	21,82222222 °C	
Desviación Estándar	29,29783837 °C	
Y Estabilización	57.133°C +/- 21.822 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.306 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T block

	Υ	logy	Х	x^2	x*logy
	24,4	1,387389826	0	0	0
	80,9	1,907948522	19	361	36,2510219
	66,1	1,820201459	40	1600	72,8080584
Sumatoria	171,4	5,115539807	59	1961	109,05908

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.307 Resultados para la curva del modelo logarítmico Tiempo ys T block

IIEIIIPO VS I DIOCK			
logb	0,010558032		
loga	1,497538645		
b	1,024608683		

Log Y = 1,497538465 + 0,010558032X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.308 Datos para análisis Tiempo vs T carter

Tiomno	Toortor
Tiempo 0	T carter 64,1
19	117,2
40	101,7

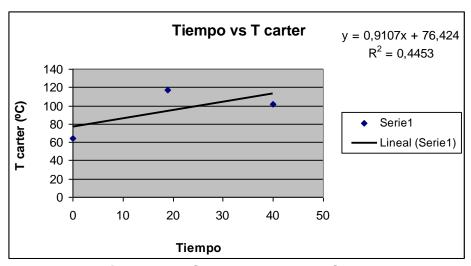


Figura 5.78 Curva Tiempo vs T Carter

|--|

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse.

Tabla 5.309 Medidas de dispersión Tiempo vs T carter

. 45.4 5.50	. abia cicco incarace as dispersion fromps to freath				
	у	(y-ymedia)	(y-ymedia)^2		
	64,1	30,23333333	914,0544444		
	117,2		522,8844444		
	101,7	7,366666667	54,26777778		
Sumatoria	94,33333333	60,46666667	1491,206667		

Desviación Media	20,15555556 °C	
Desviación Estándar	27,3057381 °C	
Y Estabilización	94.3°C +/- 20.15°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.310 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T carter

	Y	Logy	x	x^2	x*logy
	64,1	1,80685803	0	0	0
	117,2	2,068927612	19	361	39,3096246
	101,7	2,007320953	40	1600	80,2928381
Sumatoria	283	5,883106594	59	1961	119,602463

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos

Tabla 5.311 Resultados para la curva del modelo logarítmico Tiempo ys T carter

	Thompo vo i	ourtor	
logb		0,004872647	
loga		1,865206798	
	b	1,011282861	

Log Y = 1,865206798 + 0,004872647X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.312 Datos para análisis Tiempo vs T escape

Tiempo	T escape
0	66
19	230,1
40	149,5

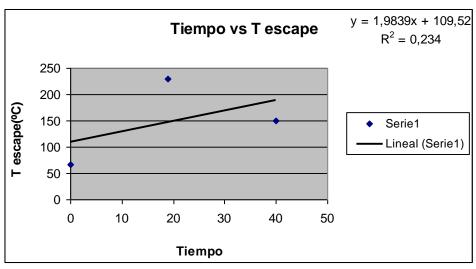


Figura 5.79 Curva tiempo vs. T Escape

r	0,48373546
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno. La función del escape es que el pistón expulsa los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.313 Medidas de dispersión Tiempo vs T escape

	Υ	(y-ymedia)	(y-ymedia)^2
	66	82,53333333	6811,751111
	230,1	81,56666667	6653,121111
	149,5	0,966666667	0,93444444
Sumatoria	148,5333333	165,0666667	13465,80667

Desviación Media	55,02222222	°C
Desviación Estándar	82,05427066	°C
Y Estabilización	148.5333°C +/- 55.0222°	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.314 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T escape

	riompo vo i occapo				
	Y	logy	X	x^2	x*logy
	66	1,819543936	0	0	0
	230,1	2,361916619	19	361	44,8764158
	149,5	2,174641193	40	1600	86,9856477
Sumatoria	445,6	6,356101747	59	1961	131,862063

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.315 Resultados para la curva del modelo logarítmico Tiempo vs T escape

	11011190 10 1	occupo
logb		0,008566273
	loga	1,95023055
	b	1,019920387

Log Y = 1,95023055+0,008566273X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.316 Datos para análisis Tiempo vs T múltiple

Tiempo	T múltiple
0	89,5
19	414,9
40	261,1

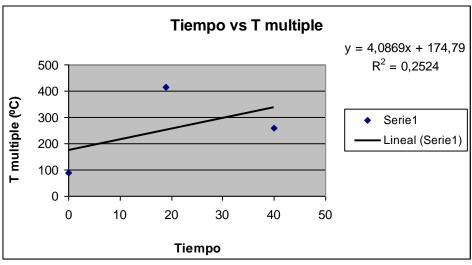


Figura 5.80Curva Tiempo vs T múltiple

r 0,50199601

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehiculo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura.

Tabla 5.317 Medidas de dispersión Tiempo vs T múltiple

	Table 9:017 Mediade de dispersion frempe ve i marap				
		у	(y-ymedia)	(y-ymedia)^2	
		89,5	165,6666667	27445,44444	
		414,9	159,7333333	25514,73778	
		261,1	5,933333333	35,2044444	
	Sumatoria	255,1666667	331,3333333	52995,38667	

Desviación Media	110,444444	°C
Desviación Estándar	162,7811209	°C
Y Estabilización	tabilización 255.1666667°C +/- 110	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.318 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T múltiple

	Y	logy	Х	x^2	x*logy
	89,5	1,951823035	0	0	0
	414,9	2,617943435	19	361	49,7409253
	261,1	2,416806872	40	1600	96,6722749
Sumatoria	765,5	6,986573342	59	1961	146,4132

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.319 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

logb)	0,01	1253861
loga	l	2,10	7531855
b		1,02	6251633

Log Y = 2,107531855+0,011253861X

Modelo Logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.320 Datos para análisis ΔT_{AGUA} vs Humedad relativa

$\Delta T_{ extit{ iny AGUA}}$	Humedad
3	65
2	49
0,4	27

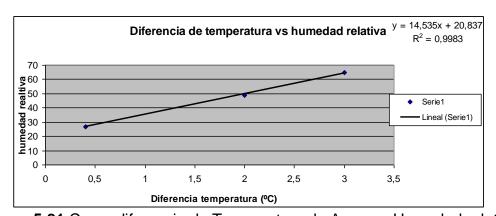


Figura 5.81 Curva diferencia de Temperatura de Agua vs Humedad relativa

r	0,9989995
---	-----------

Análisis

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las

moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto, los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.321 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	65	18	324
	49	2	4
	27	20	400
Sumatoria	47	40	728

Desviación Media	13,33333333	
Desviación Estándar	19,07878403	
Y estabilización	47 +/-13.3333333	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

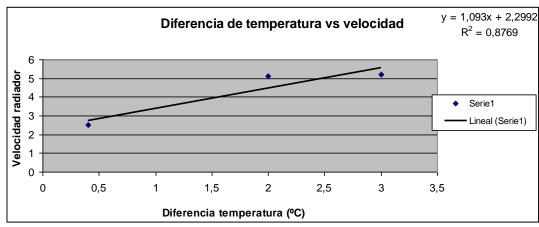
Tabla 5.322 Datos del comportamiento de la humedad en función de la $\Delta T_{\scriptscriptstyle AGUA}$ (Modelo lineal)

	Υ	X	x^2	ху
	65	3	9	195
	49	2	4	98
	27	0,4	0,16	10,8
Sumatoria	141	5,4	13,16	303,8

Tabla 5.323 Resultados de la curva del modelo lineal $\Delta T_{\rm AGUA}$ vs humedad relativa

b	14,53488372
а	20,8372093

Y = 20,8372093+14,53488372X


Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.324 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{ extit{ iny AGUA}}$	Agua
3	5,2
2	5,1
0,4	2,5

Figura 5.82 Curva diferencia de Temperatura de Agua vs Velocidad del ventilador

r	0,93594872
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante.

MEDIDAS DE DISPERSION

Tabla 5.325 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	5,2	0,933333333	0,8711111
	5,1	0,833333333	0,6944444
	2,5	1,766666667	3,1211111
Sumatoria	4,266666667	3,5333333	4,6866667

Desviación Media	1,17777778	
Desviación Estándar	1,530795	
Y Estabilización	4.266666667+/-1.177777778	m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.326 Datos del comportamiento de la velocidad en función de $\Delta T_{\rm AGUA}$ (Modelo lineal)

		110011		
	у	Х	x^2	Ху
	5,2	3	9	15,6
	5,1	2	4	10,2
	2,5	0,4	0,16	1
Sumatoria	12,8	5,4	13,16	26,8

Tabla 5.327 Resultados para la curva del modelo logarítmico ΔT_{AGUA} vs Velocidad del ventilador

b	1,093023256
а	2,299224806

Y = 2,299224806+1,093023256X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.328 Datos para análisis Tiempo vs T admisión

Tiempo	T admisión
0	46,5
39	46,7
74	36,1

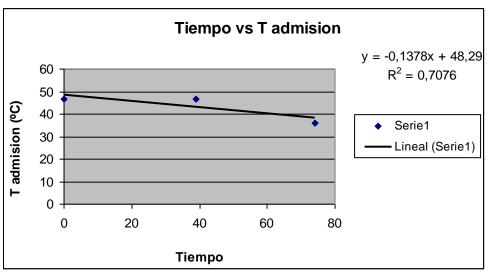


Figura 5.83 Curva Tiempo vs T admisión

r	0,84083292
---	------------

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno.

Tabla 5.329 Medidas de dispersión Tiempo vs T admisión

abia 6:020 Medidas de dispersión mempe va i admisión			
	у	(y-ymedia)	(y-ymedia)^2
	46,5	3,4	11,56
	46,7	3,6	12,96
	36,1	7	49
Sumatoria	43.1	14	73.52

Desviación Media	4,666666667	°C
Desviación Estándar	6,063002556	ô
Y Estabilización	43.1°C +/- 4.6666 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.330 Datos del comportamiento de la temperatura en función del Tiempo vs T admisión

	Y	logy	X	x^2	x*logy
	46,5	1,667452953	0	0	0
	46,7	1,669316881	39	1521	65,1033583
	36,1	1,557507202	74	5476	115,255533
Sumatoria	129,3	4,894277035	113	6997	180,358891

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.331 Resultados para la curva del modelo logarítmico

Tiempo vs T admisión

logb -0,001456657

loga 1,68629308

b 0,996651542

Log Y = 1,68629308-0,001456657 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.332 Datos para análisis Tiempo vs T agua

Tiempo	T agua
0	33,6
39	51
74	43,1

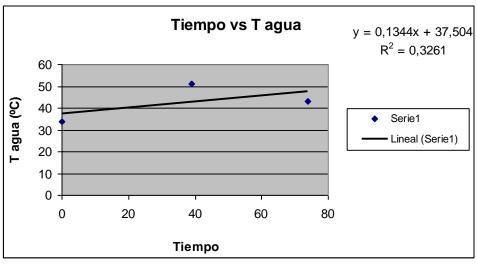


Figura 5.84 Curva Tiempo vs T agua

r	0,570964097

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.333 Medidas de dispersión Tiempo vs T aqua

	у	(y-ymedia)	(y-ymedia)^2
	33,6	8,966666667	80,40111111
	51	8,433333333	71,12111111
	43,1	0,533333333	0,28444444
Sumatoria	42,56666667	17,93333333	151,8066667

Desviación Media	5,97777778	°C
Desviación Estándar	8,712251909	Ô
Y Estabilización	42.56666667°C +/- 5.977777778°C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.334 Datos del comportamiento de la temperatura en función del Tiempo vs T agua

	Y	logy	X	x^2	x*logy
	33,6	1,526339277	0	0	0
	51	1,707570176	39	1521	66,5952369
	43,1	1,63447727	74	5476	120,951318
Sumatoria	127,7	4,868386724	113	6997	187,546555

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.335 Resultados para la curva del modelo logarítmico

Iiempo vs	l agua
logb	0,001521767
loga	1,5654757
b	1,003510144

Log Y = 1,5654757+0,001521767 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.336 Datos para análisis Tiempo vs T block

Tiempo	T block
0	64,5
39	79,3
74	61,9

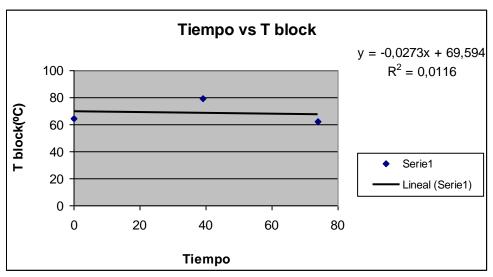


Figura 5.85 Curva Tiempo vs T block

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo.

Tabla 5.337 Medidas de dispersión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	64,5	4,066666667	16,53777778
	79,3	10,73333333	115,2044444
	61,9	6,666666667	44,4444444
Sumatoria	68,56666667	21,46666667	176,1866667

Desviación Media	7,15555556	°C
Desviación Estándar	9,385804885	°C
Y Estabilización	68.56666667°C +/- 7.155555556 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.338 Datos del comportamiento de la temperatura en función del Tiempo vs T block

	Υ	logy	X	x^2	x*logy
	64,5	1,809559715	0	0	0
	79,3	1,899273187	39	1521	74,0716543
	61,9	1,791690649	74	5476	132,585108
Sumatoria	205,7	5,500523551	113	6997	206,656762

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.339 Resultados para la curva del modelo logarítmico Tiempo vs T block

logb	-0,000193247
loga	1,840786809
b	0,999555131

Log Y = 1,840786809 - 0,000193247X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.340 Datos para análisis Tiempo vs T carter

Tiempo	T carter
0	90,3
39	119,4
74	98,2

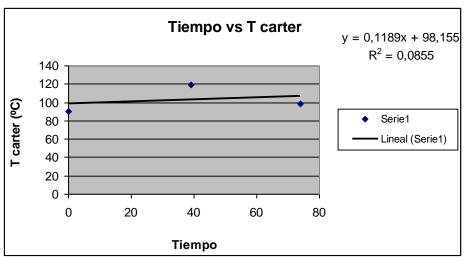


Figura 5.86 Curva Tiempo vs T carter

r	0,29154759
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse

Tabla 5.341 Medidas de dispersión Tiempo vs T carter

	у	(y-ymedia)	(y-ymedia)^2
	90,3	12,33333333	152,1111111
	119,4	16,76666667	281,1211111
	98,2	4,433333333	19,65444444
Sumatoria	102,6333333	33,53333333	452,8866667

Desviación Media	11,17777778	∘C
Desviación Estándar	15,0480342	°C
Y Estabilización	102.63333°C +/- 11.17777778°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.342 Datos del comportamiento de la temperatura en función del Tiempo vs T carter

	Y	logy	Х	x^2	x*logy
	90,3	1,95568775	0	0	0
	119,4	2,077004327	39	1521	81,0031687
	98,2	1,992111488	74	5476	147,41625
Sumatoria	307,9	6,024803565	113	6997	228,419419

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.343 Resultados para la curva del modelo logarítmico Tiempo vs T carter

IIOIIIPO VO I	oartor
logb	0,000541894
loga	1,987856509
b	1,001248536

Log Y = 1,987856509 + 0,000541894X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.344 Datos para análisis Tiempo vs T escape

Tiempo	T escape
0	60,5
39	270,8
74	111,1

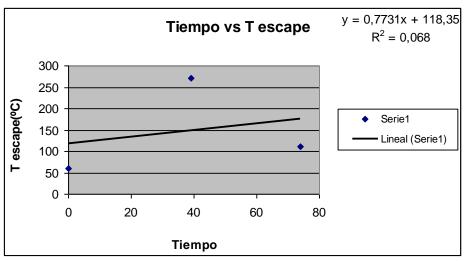


Figura 5.87 Curva Tiempo vs T escape

r	0,2607681
---	-----------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno.

La función del escape es que el pistón expulsa los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.345 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	60,5	86,96666667	7563,201111
	270,8	123,3333333	15211,11111
	111,1	36,36666667	1322,534444
Sumatoria	147,4666667	246,6666667	24096,84667

Desviación Media	82,2222222	°C
Desviación Estándar	109,7653102	°C
Y Estabilización	147.4666667°C +/- 82.2222°C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.346 Datos del comportamiento de la temperatura en función del Tiempo vs T escape

	Υ	logy	X	x^2	x*logy
	60,5	1,781755375	0	0	0
	270,8	2,43264866	39	1521	94,8732977
	111,1	2,045714059	74	5476	151,38284
Sumatoria	442,4	6,260118094	113	6997	246,256138

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.347 Resultados para la curva del modelo logarítmico Tiempo ys T escape

ricitipo vo i	Cooupe
logb	0,00381599
loga	1,942970408
b	1,008825358

Log Y = 1,942970408 + 0,00381599X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.348 Datos para análisis Tiempo vs T múltiple

Tiempo	T múltiple
0	148,3
39	431,6
74	192,6

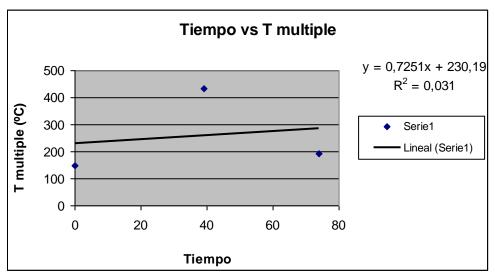


Figura 5.88 Curva Tiempo vs T múltiple

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehiculo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura.

Tabla 5.349 Medidas de dispersión Tiempo vs T múltiple

	у	(y-ymedia)	(y-ymedia)^2
	148,3	109,2	11924,64
	431,6	174,1	30310,81
	192,6	64,9	4212,01
Sumatoria	257,5	348,2	46447,46

Desviación Media	116,0666667	°C
Desviación Estándar	152,3933397	°C
Y Estabilización	257.5°C +/- 1°	16.0666667°C

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.350 Datos del comportamiento de la temperatura en función del Tiempo vs T múltiple

	Υ	logy	Х	x^2	x*logy
	148,3	2,171141151	0	0	0
	431,6	2,635081436	39	1521	102,768176
	192,6	2,284656283	74	5476	169,064565
Sumatoria	772,5	7,09087887	113	6997	271,832741

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.351 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

logb	0,00173059
loga	2,298440735
b	1,003992781

Log Y = 2,298440735 + 0,00173059X

Modelo Logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.352 Datos para análisis ΔT_{AGUA} vs Humedad relativa

$\Delta T_{\scriptscriptstyle AGUA}$	Humedad
2,2	75
1,4	63
2,2	61

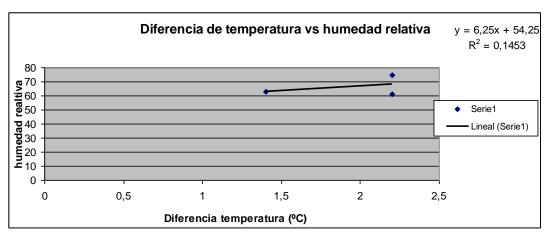


Figura 5.89 Curva diferencia de Temperatura de Agua vs Humedad relativa

r 0,38078866

Análisis

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las

moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto, los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.353 Medidas de dispersión ΔT_{AGUA} vs humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	75	8,6666667	75,111111
	63	3,3333333	11,111111
	61	5,3333333	28,444444
Sumatoria	66,33333333	17,333333	114,66667

Desviación Media	5,777777778
Desviación Estándar	7,571877794
Y Estabilización	66.333333333 +/-5.77778

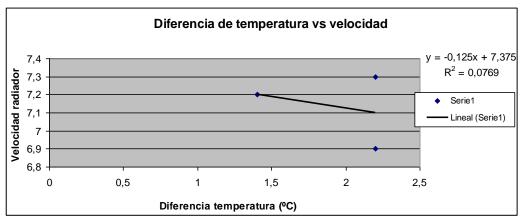
Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.354 Datos del comportamiento de la humedad en función de la ΔT_{AGUA} (Modelo lineal)

	AGU	4 \	,	
	у	x	x^2	ху
	75	2,2	4,84	165
	63	1,4	1,96	88,2
	61	2,2	4,84	134,2
Sumatoria	199	5,8	11,64	387,4

Tabla 5.355 Resultados para la curva del modelo lineal $\Delta T_{\scriptscriptstyle AGUA}$ vs humedad relativa

b	6,25
а	54,25


Y = 54,25+6,25 X **Modelo lineal**

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.356 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{ extit{ iny AGUA}}$	Velocidad
2,2	6,9
1,4	7,2
2,2	7,3

Figura 5.90 Curva diferencia de Temperatura de Agua vs Velocidad del ventilador

r 0,2756809

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante.

Tabla 5.357 Medidas de dispersión ΔT_{AGUA} vs velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	6,9	0,233333333	0,0544444
	7,2	0,066666667	0,0044444
	7,3	0,166666667	0,0277778
Sumatoria	7,133333333	0,4666667	0,0866667

Desviación Media	0,15555556	
Desviación Estándar	0,2081666	
	7.133333333 +/-0.15555556	
Y Estabilización	m/s	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.358 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	NOCH (
	у	x	x^2	xy
	6,9	2,2	4,84	15,18
	7,2	1,4	1,96	10,08
	7,3	2,2	4,84	16,06
Sumatoria	21,4	5,8	11,64	41,32

Tabla 5.359 Resultados para la curva del modelo lineal ΔT_{AGUA} vs Velocidad del ventilador

b	-0,125
а	7,375

Y = 7,375-0,125X **Modelo lineal**

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.360 Datos para análisis Tiempo vs T admisión

Tiempo	T admisión
0	45,3
30	42,2
50	27,4

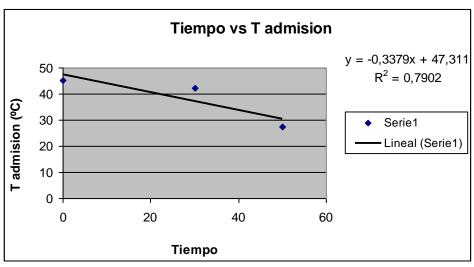


Figura 5.91 Curva Tiempo vs. T admisión

r	0,88881944
---	------------

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno.

Tabla 5.361 Medidas de dispersión Tiempo vs T admisión

	у	(y-ymedia)	(y-ymedia)^2
	45,3	7	49
	42,2	3,9	15,21
	27,4	10,9	118,81
Sumatoria	38,3	21,8	183,02

Desviación Media	7,266666667	°C
Desviación Estándar	9,566085929	ô
Y Estabilización	38.3°C +/- 7.266666667 °	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.362 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T admisión

	Υ	logy	X	x^2	x*logy
	45,3	1,656098202	0	0	0
	42,2	1,625312451	30	900	48,7593735
	27,4	1,437750563	50	2500	71,8875281
Sumatoria	114,9	4,719161216	80	3400	120,646902

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.363 Resultados para la curva del modelo logarítmico Tiempo vs T admision

logb	-0,004103208
loga	1,682472632
b	0,990596506

Log Y = 1,682472632-0,004103208 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.364 Datos para análisis Tiempo vs T agua

Tiempo	T Agua
0	28,2
30	50,3
50	45,3

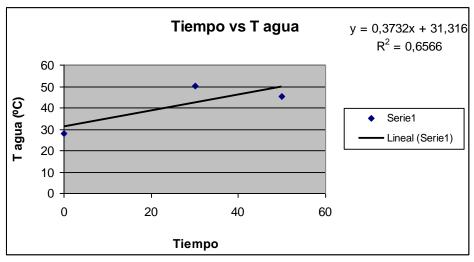


Figura 5.92 Curva Tiempo vs T agua

r	0,809938269
---	-------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.365 Medidas de dispersión Tiempo vs T agua

	у	(y-ymedia)	(y-ymedia)^2
	28,2	13,06666667	170,7377778
	50,3	9,033333333	81,60111111
	45,3	4,033333333	16,26777778
Sumatoria	41,26666667	26,13333333	268,6066667

Desviación Media	8,711111111	°C
Desviación Estándar	11,5889315	°C
Y Estabilización	41.26666667°C +/- 8.711111111°C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.366 Datos del comportamiento de la temperatura en función del Tiempo vs T agua

_	ricinpo va ragua				
	Y	logy	X	x^2	x*logy
	28,2	1,450249108	0	0	0
	50,3	1,701567985	30	900	51,0470396
	45,3	1,656098202	50	2500	82,8049101
Sumatoria	123,8	4,807915295	80	3400	133,85195

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.367 Resultados para la curva del modelo logarítmico

Liempo vs	I agua
logb	0,004453322
loga	1,483883166
b	1,010306907

Log Y = 1,483883166+0,004453322 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.368 Datos para análisis Tiempo vs T block

Tiempo	T block
0	63,9
30	73,4
50	65,9

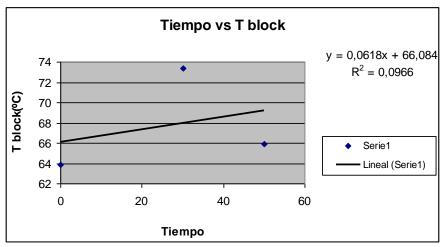


Figura 5.93 Curva Tiempo vs T block

r	0,30983867

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo.

Tabla 5.369 Medidas de dispersión Tiempo vs T block

	Υ	(y-ymedia)	(y-ymedia)^2
	63,9	3,833333333	14,6944444
	73,4	5,666666667	32,11111111
	65,9	1,833333333	3,361111111
Sumatoria	67,73333333	11,33333333	50,16666667

Desviación Media	3,777777778	°C
Desviación Estándar	5,0083264	Ô
Y Estabilización	67.7333333°C +/- 3.777777778°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.370 Datos del comportamiento de la temperatura en función del Tiempo vs T block

	Y	logy	х	x^2	x*logy
	63,9	1,805500858	0	0	0
	73,4	1,86569606	30	900	55,9708818
	65,9	1,818885415	50	2500	90,9442707
Sumatoria	203,2	5,490082333	80	3400	146,915153

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.371 Resultados para la curva del modelo logarítmico Tiempo ys T block

Hompo vo i	DIOOK
logb	0,000404966
loga	1,81922835
b	1,024608683

Log Y = 1,81922835 - 0,000404966X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.372 Datos para análisis Tiempo vs T Carter

Tiempo	T carter
0	81,3
30	119,3
50	104,2

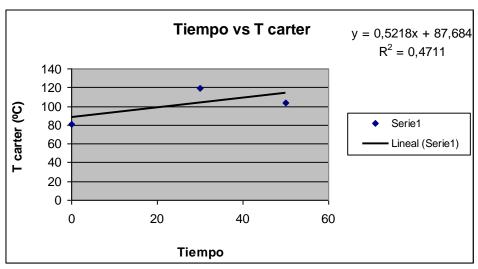


Figura 5.94 Curva Tiempo vs T carter

r	0,6862944

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse

Tabla 5.373 Medidas de dispersión Tiempo vs T Carter

	Y	(y-ymedia)	(y-ymedia)^2
	81,3	20,3	412,09
	119,3	17,7	313,29
	104,2	2,6	6,76
Sumatoria	101,6	40,6	732,14

Desviación Media	13,53333333	°C
Desviación Estándar	19,13295586	°C
Y Estabilización	101.6°C +/- 13.53333333333°C	

Y estabilización se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.374 Datos del comportamiento de la temperatura en función del Tiempo vs T Carter

	Y	Logy	Х	x^2	x*logy
	81,3	1,910090546	0	0	0
	119,3	2,076640444	30	900	62,2992133
	104,2	2,017867719	50	2500	100,893386
Sumatoria	304,8	6,004598708	80	3400	163,192599

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.375 Resultado para la curva del modelo logarítmico Tiempo vs T Carter

logb	0,002423658
loga	1,936902018
b	1,00559628

Log Y = 1,936902018 + 0,002423658X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.376 Datos para análisis Tiempo vs T escape

Tiempo	T escape
0	55,8
30	241,5
50	169,8

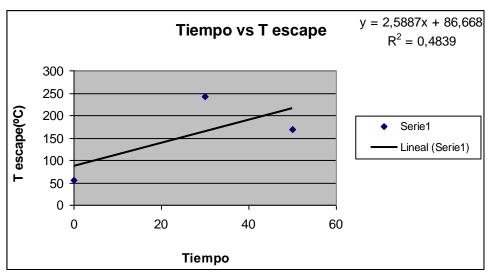


Figura 5.95 Curva Tiempo vs T escape

r	0,69498201
ı.	0,03430201

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno. La función del escape es que el pistón expulsa los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.377 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	55,8	99,9	9980,01
	241,5	85,8	7361,64
	169,8	14,1	198,81
Sumatoria	155,7	199,8	17540,46

Desviación Media	66,6	°C
Desviación Estándar	93,64950614	°C
Y Estabilización	155.7°C +/- 66.6°C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.378 Datos del comportamiento de la temperatura en función del Tiempo vs T escape

	Y	logy	X	x^2	x*logy
	55,8	1,746634199	0	0	0
	241,5	2,382917135	30	900	71,4875141
	169,8	2,229937686	50	2500	111,496884
Sumatoria	467,1	6,35948902	80	3400	182,984398

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.379 Resultados para la curva del modelo logarítmico Tiempo vs T escape

11011100 10 1	oodapo
logb	0,010577388
loga	1,837766
b	1,02465435

Log Y = 1,837766+0,010577388X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.380 Datos para análisis Tiempo vs T múltiple

Tiempo	T múltiple
0	159,3
30	451,3
50	284

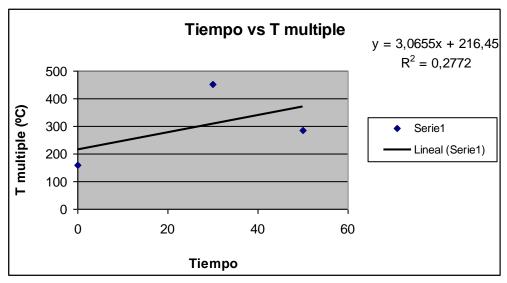


Figura 5.96 Curva Tiempo vs T múltiple

r	0,526307895
---	-------------

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehiculo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura.

Tabla 5.381 Medidas de dispersión Tiempo vs T múltiple

	у	(y-ymedia)	(y-ymedia)^2
	159,3	138,9	19293,21
	451,3	153,1	23439,61
	284	14,2	201,64
Sumatoria	298,2	306,2	42934,46

Desviación Media	102,0666667	°C
Desviación Estándar	146,5169956	°C
Y Estabilización	298.2°C +/- 102.0666667°C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.382 Datos del comportamiento de la temperatura en función del Tiempo vs T múltiple

	Y	Logy	Х	x^2	x*logy
	159,3	2,202215776	0	0	0
	451,3	2,654465334	30	900	79,63396
	284	2,45331834	50	2500	122,665917
Sumatoria	894,6	7,309999449	80	3400	202,299877

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.383 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

logb		0,00	5815704
loga	1	2,28	1581044
b		1,01	3481216

Log Y = 2,281581044+0,005815704X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.384 Datos análisis ΔT_{AGUA} vs humedad relativa

ΔT_{AGUA}	Humedad
1,2	70
5,5	68
2,2	66

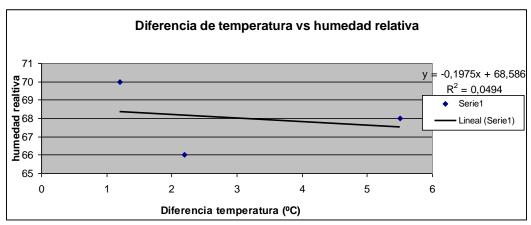


Figura 5.97 Curva diferencia de Temperatura de Agua vs Humedad relativa

r	0,22135944

Análisis

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar

agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto, los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno

Tabla 5.385 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	Υ	(y-ymedia)	(y-ymedia)^2
	70	2	4
	68	0	0
	66	2	4
Sumatoria	68	4	8

Desviación Media	1,333333333	
Desviación Estándar	2	
Y Estabilización	68 +/-1.3333	33333

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

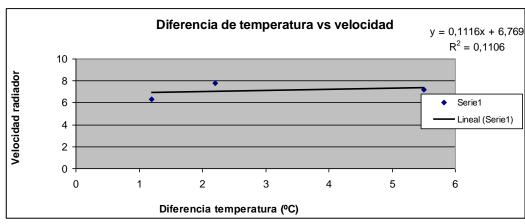
Tabla 5.386 Datos del comportamiento de la humedad en función de la ΔT_{scm} (Modelo lineal)

	— AGUA (************************************			
	у	X	x^2	xy
	70	1,2	1,44	84
	68	5,5	30,25	374
	66	2,2	4,84	145,2
Sumatoria	204	8,9	36,53	603,2

Tabla 5.387 Resultados para la curva del modelo lineal ΔT_{AGUA} vs humedad relativa

AGUA		
b	-0,197498354	
а	68,58591178	

Y = 68,5859-0,197498354 X


Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.388 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{ extit{ iny AGUA}}$	Velocidad
1,2	6,3
5,5	7,2
2,2	7,8

Figura 5.98 Curva diferencia de Temperatura de Agua vs Velocidad del ventilador

r	0,33166248

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante.

Tabla 5.389 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	6,3	0,8	0,64
	7,2	0,1	0,01
	7,8	0,7	0,49
Sumatoria	7,1	1,6	1,14

Desviación Media	0,533333333m/s
Desviación Estándar	0,754983444 m/s
Y Estabilización	7.1 +/-0.5333333333 m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.390 Datos del comportamiento de la velocidad en función de la diferencia de ΔT_{AGUA} (Modelo lineal)

		AGUA \	,	
	у	X	x^2	ху
	6,3	1,2	1,44	7,56
	7,2	5,5	30,25	39,6
	7,8	2,2	4,84	17,16
Sumatoria	21,3	8,9	36,53	64,32

Tabla 5.391 Resultados para la curva del modelo lineal ΔT_{AGUA} vs Velocidad del ventilador

b	0,11158657
а	6,768959842

Y = 6,768959842+0,11158657X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.392 Datos análisis Tiempo vs T admisión

Tiempo	T admisión
0	44,4
27	41,3
49	28,9

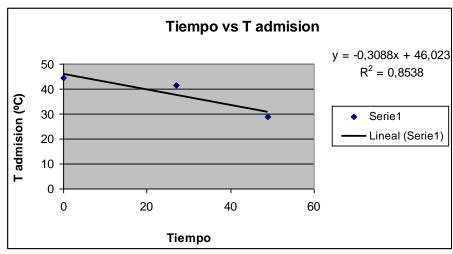


Figura 5.99 Curva Tiempo vs T admisión

r	0,92357999
---	------------

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno.

Tabla 5.393 Medidas de dispersión Tiempo vs T admisión

-	u.o.u	modiade de diepe		10 1 4411110101
		Υ	(y-ymedia)	(y-ymedia)^2
		44,4	6,2	38,44
		41,3	3,1	9,61
		28,9	9,3	86,49
	Sumatoria	38,2	18,6	134,54

Desviación Media	6,2	°C
Desviación Estándar	8,201829064	ô
Y Estabilización	38.2°C -	⊦/- 6.2ºC

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.394 Datos del comportamiento de la temperatura en función del Tiempo vs T admisión

	Y	Logy	Х	x^2	x*logy
	44,4	1,64738297	0	0	0
	41,3	1,615950052	27	729	43,6306514
	28,9	1,460897843	49	2401	71,5839943
Sumatoria	114,6	4,724230865	76	3130	115,214646

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.395 Resultados para la curva del modelo logarítmico

Tiempo vs T admisión

logb -0,003707141

loga 1,668657868

b 0,991500321

Log Y = 1,668657868-0,003707141 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.396 Datos análisis Tiempo vs T agua

Tiempo	T admisión
0	28,5
27	51,25
49	45,6

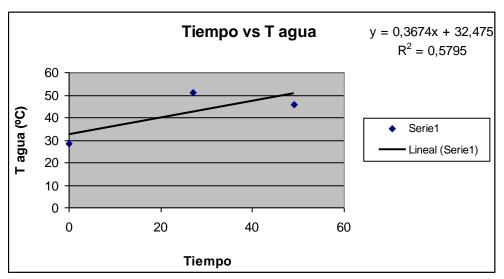


Figura 5.100 Curva Tiempo vs T agua

r 0,760920495

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.397 Medidas de dispersión Tiempo vs T aqua

	у	(y-ymedia)	(y-ymedia)^2
	28,5	13,28333333	176,4469444
	51,25	9,466666667	89,61777778
	45,6	3,816666667	14,56694444
Sumatoria	41,78333333	26,56666667	280,6316667

Desviación Media	8,85555556	٥C	
Desviación Estándar	11,84549844	°C	
Y Estabilización	41.78333333°C +/- 8.855555556°C		

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.398 Datos del comportamiento de la temperatura en función del Tiempo vs T agua

riempo vs r agua					
	Y	logy	X	x^2	x*logy
	28,5	1,45484486	0	0	0
	51,25	1,70969387	27	729	46,1617345
	45,6	1,658964843	49	2401	81,2892773
Sumatoria	125,35	4,823503572	76	3130	127,451012

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.399 Resultados para la curva del modelo logarítmico

Tiempo vs Tagua		
logb	0,004362691	
loga	1,497313029	
b	1,010096092	

Log Y = 1,497313029+0,004362691 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.400 Datos análisis Tiempo vs T block

Tiempo	T block	
0	64,5	
27	74,4	
49	63,9	

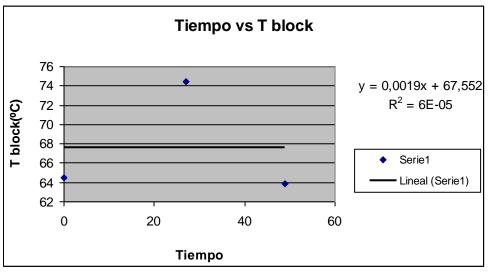


Figura 5.101 Curva tiempo vs T block

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo.

Tabla 5.401 Medidas de dispersión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	64,5	3,1	9,61
	74,4	6,8	46,24
	63,9	3,7	13,69
Sumatoria	67,6	13,6	69,54

Desviación Media	4,533333333	٥C
Desviación Estándar	5,896609195	°C
Y Estabilización	67.6°C +/- 4.533333333 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.402 Datos del comportamiento de la temperatura en función del Tiempo vs T block

	Υ	logy	Х	x^2	x*logy
	64,5	1,809559715	0	0	0
	74,4	1,871572936	27	729	50,5324693
	63,9	1,805500858	49	2401	88,469542
Sumatoria	202,8	5,486633508	76	3130	139,002011

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.403 Resultados para la curva del modelo logarítmico

Herripo va i block			
logb	6,05625E-06		
loga	1,828724411		
b	1,000013945		

Log Y = 1,828724411 - 6,05625E - 06X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.404 Datos para análisis Tiempo vs T carter

Tiempo	T carter
0	84,3
27	115,4
49	102,2

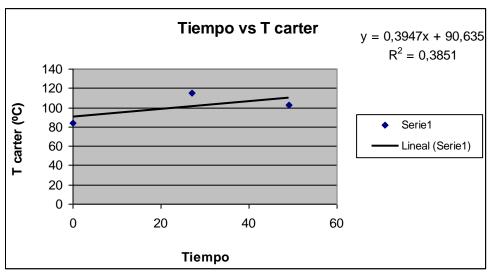


Figura 5.102 Curva Tiempo vs T carter

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse.

Tabla 5.405 Medidas de dispersión Tiempo vs T carter

	Υ	(y-ymedia)	(y-ymedia)^2		
	84.3	16.33333333	266.7777778		
	115.4	14.76666667	218.0544444		
	102.2	1.566666667	2.45444444		
Sumatoria	100.6333333	32.66666667	487.2866667		

Desviación Media	10.88888889	0€
Desviación Estándar	15.60907855	ئ
Y Estabilización	100.6333333°C +/- 10.88888889°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.406 Datos del comportamiento de la temperatura en función del tiempo Tiempo vs T carter

riompo vo i cartoi					
	Υ	logy	X	x^2	x*logy
	84.3	1.925827575	0	0	0
	115.4	2.062205809	27	729	55.6795568
	102.2	2.009450896	49	2401	98.4630939
Sumatoria	301.9	5.997484279	76	3130	154.142651

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.407 Resultados para la curva del modelo logarítmico Tiempo vs T carter

i iompo vo i	oartor
logb	0.001831529
loga	1.952762684
b	1.004226156

Log Y = 1,95762684 + 0,001831529X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.408 Datos para análisis Tiempo vs T escape

Tiempo	T Escape
0	56.9
27	243
49	170.9

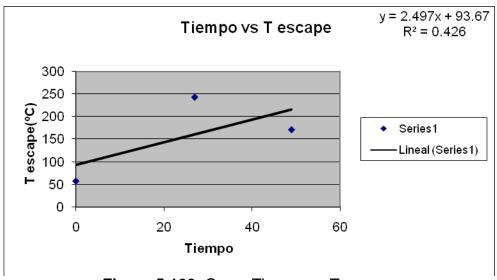


Figura 5.103 Curva Tiempo vs T escape

r	0.65268675
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno. La función del escape es que el pistón expulsa los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.409 Medidas de dispersión Tiempo vs T escape

	21 100 modification and posterior from posterior is occuped		
	Υ	(y-ymedia)	(y-ymedia)^2
	56.9	100.0333333	10006.66778
	243	86.06666667	7407.471111
	170.9	13.96666667	195.0677778
Sumatoria	156.9333333	200.0666667	17609.20667

Desviación Media	66.68888889	οC
Desviación Estándar	93.83284784	Ĉ
Y Estabilización	156.9333333°C +/- 66.68888889°C	°C

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.410 Datos del comportamiento de la temperatura en función del Tiempo vs T escape

	Hompo vo i occapo				
	Y	logy	X	x^2	x*logy
	56.9	1.755112266	0	0	0
	243	2.385606274	27	729	64.4113694
	170.9	2.232742063	49	2401	109.404361
Sumatoria	470.8	6.373460603	76	3130	173.81573

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.411 Resultados para la curva del modelo logarítmico Tiempo vs T escape

monipo vo i	oodapo
logb	0.010255724
loga	1.8646752
b	1.023895712

Log Y = 1,8646752+0,010255724X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.412 Datos para análisis Tiempo vs T múltiple

Tiempo	T multiple
0	189
27	467.9
49	298

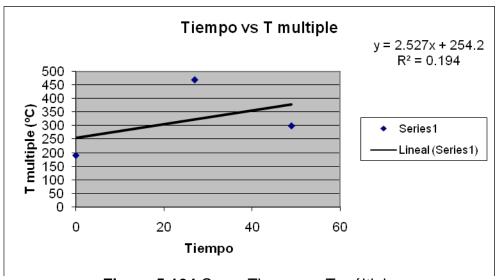


Figura 5.104 Curva Tiempo vs T múltiple

r	0.440454311
	0.770707011

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehiculo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura.

Tabla 5.413 Medidas de dispersión Tiempo vs T múltiple

		Table 1110 modicae de dispersión mempe to i manipie				
		у	(y-ymedia)	(y-ymedia)^2		
		189	129.3	16718.49		
		467.9	149.6	22380.16		
		298	20.3	412.09		
Γ	Sumatoria	318.3	299.2	39510.74		

Desviación Media	99.73333333	∘C	
Desviación Estándar	140.5537975	οĈ	
Y Estabilización	318.3°C +/- 99.73333333°C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.414 Datos del comportamiento de la temperatura en función del Tiempo vs T múltiple

	riompo vo i mampio				
	Y	logy	Х	x^2	x*logy
	189	2.276461804	0	0	0
	467.9	2.670153045	27	729	72.0941322
	298	2.474216264	49	2401	121.236597
Sumatoria	954.9	7.420831113	76	3130	193.330729

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.415 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

ricitipo vo i	manapic
logb	0.004429724
loga	2.361390694
b	1.102520119

Log Y = 2,361390694+0,004429724X

Modelo Logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.416 Datos para análisis ΔT_{AGUA} vs Humedad relativa

ΔT_{AGUA}	Humedad
1.1	71
6.4	67
-0.2	65

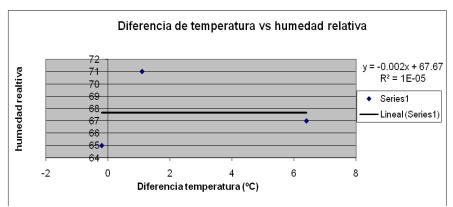


Figura 5.105 Curva diferencia de Temperatura de Agua vs Humedad relativa

r	0.00316228
---	------------

Análisis

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto,

los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.417 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	Y	(y-ymedia)	(y-ymedia)^2
	71	3.3333333	11.111111
	67	0.6666667	0.444444
	65	2.6666667	7.1111111
Sumatoria	67.66666667	6.6666667	18.666667

Desviación Media	2.22222222
Desviación Estándar	3.055050463
Y Estabilización	67.66666667 +/-2.2222

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

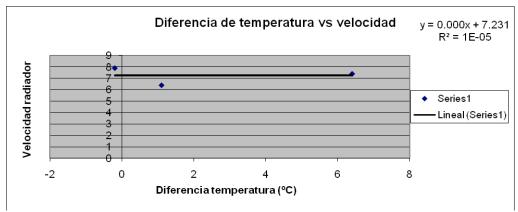
Tabla 5.418 Datos del comportamiento de la humedad en función de la ΔT_{ACUA} (Modelo lineal)

	AGUA	,	/	
	Υ	X	x^2	ху
	71	1.1	1.21	78.1
	67	6.4	40.96	428.8
	65	-0.2	0.04	-13
Sumatoria	203	7.3	42.21	493.9

Tabla 5.419 Resultados para la curva del modelo lineal

ΔT_{AGUA} V	s Humedad relativa	a
b	-0.002727025	
а	67.67330243	

Y = 67,67330243-0,002727025 X


Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.420 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{\scriptscriptstyle AGUA}$	Velocidad
1.1	6.4
6.4	7.4
-0.2	7.9

Figura 5.106 Curva diferencia de Temperatura de Agua vs. Velocidad del ventilador

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante.

Tabla 5.421 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	6.4	0.833333333	0.6944444
	7.4	0.166666667	0.0277778
	7.9	0.666666667	0.444444
Sumatoria	7.233333333	1.6666667	1.1666667

Desviación Media	0.55555556	m/s
Desviación Estándar	0.763762616	m/s
Y Estabilización	7.233333333+/-0.555555556	m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.422 Datos del comportamiento de la velocidad en función de la $\Delta T_{\scriptscriptstyle AGUA}$ (Modelo lineal)

	7.	,		
	Y	Х	x^2	хy
	6.4	1.1	1.21	7.04
	7.4	6.4	40.96	47.36
	7.9	-0.2	0.04	-1.58
Sumatoria	21.7	7.3	42.21	52.82

Tabla 5.423 Resultados para la curva del modelo lineal ΔT_{AGUA} vs velocidad del ventilador

b	0.000681756
а	7.231674393

Y =7,231674393+0,000681756X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.424 Datos para análisis Tiempo vs T admision

Tiempo	T Admisión
0	45
20	42.3
40	28.9

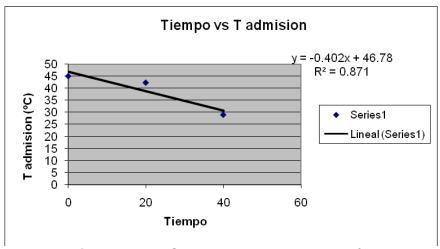


Figura 5.107 Curva Tiempo vs T admisión

r 0.94339811

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno.

Tabla 5.425 Medidas de dispersión Tiempo vs T admision

	у	(y-ymedia)	(y-ymedia)^2
	45	6.266666667	39.27111111
	42.3	3.566666667	12.72111111
	28.9	9.833333333	96.6944444
Sumatoria	38.73333333	19.66666667	148.6866667

Desviación Media	6,55555556	oC
Desviación Estándar	8,622258018	°C
Y Estabilización	38.73333333°C +/- 6.555555556	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.426 Datos del comportamiento de la temperatura en función del Tiempo vs T admisión

	Y	logy	X	x^2	x*logy
	45	1,653212514	0	0	0
	42,3	1,626340367	20	400	32,5268073
	28,9	1,460897843	40	1600	58,4359137
Sumatoria	116,2	4,740450724	60	2000	90,9627211

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.427 Resultados para la curva del modelo logarítmico

Tiempo vs T admisión

logb -0,004807867

loga 1,676307577

b 0,98899053

Log Y = 1,676307577-0,004807867 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.428 Datos para análisis Tiempo vs T agua

Tiempo	T agua
0	28,75
20	51,3
40	45,2

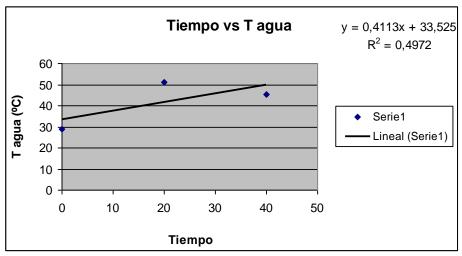


Figura 5.108 Curva tiempo vs T agua

r 0,704982269

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.429 Medidas de dispersión Tiempo vs T agua

	у	(y-ymedia)	(y-ymedia)^2
	28,75	13	169
	51,3	9,55	91,2025
	45,2	3,45	11,9025
Sumatoria	41,75	26	272,105

Desviación Media	8,666666667	°C
Desviación estándar	11,66415449 °C	
Y estabilización	41.75°C +/- 8.666666667°C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.430 Datos del comportamiento de la temperatura en función del Tiempo vs T agua

	Tiempe vs i agua				
	Y	logy	х	x^2	x*logy
	28,75	1,458637849	0	0	0
	51,3	1,710117365	20	400	34,2023473
	45,2	1,655138435	40	1600	66,2055374
Sumatoria	125,25	4,823893649	60	2000	100,407885

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.431 Resultados para la curva del modelo logarítmico

nempo vs. r agua	
logb	0,004912515
loga	1,509714257
b	1,011375701

Log Y = 1,509714257+0,004912515 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.432 Datos para análisis Tiempo vs T block

Tiempo	T Block
0	64,5
20	74,4
40	63,9

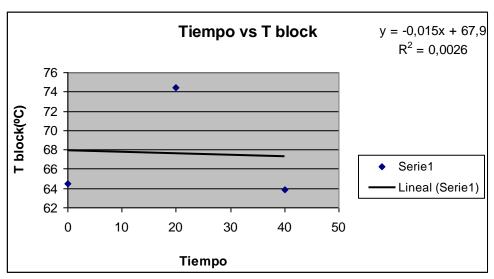


Figura 5.109 Curva Tiempo vs T block

r	0,04472136

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo.

Tabla 5.433 Medidas de dispersión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	64,5	3,1	9,61
	74,4	6,8	46,24
	63,9	3,7	13,69
Sumatoria	67,6	13,6	69,54

Desviación Media	4,533333333	°C
Desviación Estándar	5,896609195	°C
Y Estabilización	67.6°C +/- 4.5333333333°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.434 Datos del comportamiento de la temperatura en función del Tiempo vs T block

	Y	logy	Х	x^2	x*logy
	64,5	1,809559715	0	0	0
	74,4	1,871572936	20	400	37,4314587
	63,9	1,805500858	40	1600	72,2200343
Sumatoria	202,8	5,486633508	60	2000	109,651493

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.435 Resultados para la curva del modelo logarítmico

Hempo vs. i block			
logb	-0,000101471		
loga	1,830907264		
b	0,999766382		

Log Y = 1.830907264 - 0.000101471X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.436 Datos para análisis Tiempo vs T carter

Tiempo	T carter	
0	85	
20	117	
40	102,2	

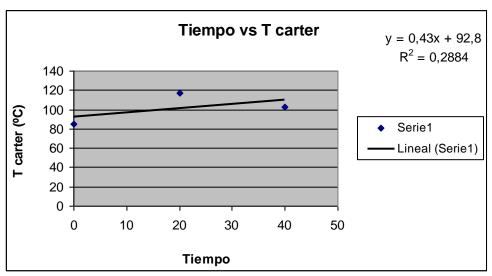


Figura 5.110 Curva Tiempo vs T carter

1 0,0000001	r	0,53665631
-------------	---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse.

Tabla 5.437 Medidas de dispersión Tiempo vs T carter

Table of the interest are dispersion from per very earter				
	у	(y-ymedia)	(y-ymedia)^2	
	85	16,4	268,96	
	117	15,6	243,36	
	102,2	0,8	0,64	
Sumatoria	101,4	32,8	512,96	

Desviación Media	10,93333333	°C
Desviación Estándar	16,01499298	°C
Y Estabilización	101.4°C +/- 10.933333333333	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencia ni histogramas.

Tabla 5.438 Datos del comportamiento de la temperatura en función del Tiempo vs T carter

	The state of the s				
	Y	logy	Х	x^2	x*logy
	85	1,929418926	0	0	0
	117	2,068185862	20	400	41,3637172
	102,2	2,009450896	40	1600	80,3780358
Sumatoria	304,2	6,007055683	60	2000	121,741753

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.439 Resultados para la curva del modelo logarítmico

 Tiempo vs T carter

 logb
 0,002000799

 loga
 1,962335909

 b
 1,004617639

Log Y = 1,962335909 + 0,002000799X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.440 Datos para análisis Tiempo vs T escape

Tiempo	T escape
0	56,9
20	242
40	171

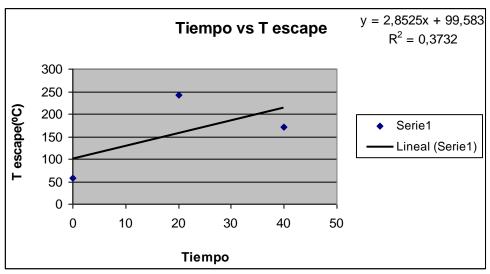


Figura 5.111 Curva Tiempo vs T escape

r	0,61073726
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno. La función del escape es que el pistón expulsa los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.441 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	56,9	99,73333333	9946,737778
	242	85,36666667	7287,467778
	171	14,36666667	206,4011111
Sumatoria	156,6333333	199,4666667	17440,60667

Desviación Media	66,48888889	°C
Desviación Estándar	93,3825644	°C
Y Estabilización	156.6333333°C +/- 6	66.48888889°C

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.442 Datos del comportamiento de la temperatura en función del

	Υ	logy	X	x^2	x*logy
	56,9	1,755112266	0	0	0
	242	2,383815366	20	400	47,6763073
	171	2,23299611	40	1600	89,3198444
Sumatoria	469,9	6,371923743	60	2000	136,996152

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.443 Resultados para la curva del modelo logarítmico

Hompo vo i occupo		
logb	0,011947096	
loga	1,885032659	
b	1,027891077	

Log Y = 1,885032659 + 0,011947096X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.444 Datos para análisis Tiempo vs T múltiple

Tiempo	T múltiple
0	189
20	465,3
40	298

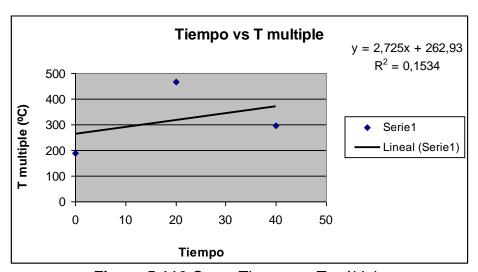


Figura 5.112 Curva Tiempo vs T múltiple

r	0,391152144

Análisis

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehiculo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura

Tabla 5.445 Medidas de dispersión Tiempo vs T múltiple

	у	(y-ymedia)	(y-ymedia)^2	
	189	128,4333333	16495,12111	
	465,3	147,8666667	21864,55111	
	298	19,43333333	377,6544444	
Sumatoria	317,4333333	295,7333333	38737,32667	

Desviación Media	98,57777778	°C
Desviación Estándar	139,1713452	Ô
Y Estabilización	317.4333333°C +/-98.57777778°C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.446 Datos del comportamiento de la temperatura en función del Tiempo vs T múltiple

	Y	logy	X	x^2	x*logy
	189	2,276461804	0	0	0
	465,3	2,667733053	20	400	53,3546611
	298	2,474216264	40	1600	98,9686506
Sumatoria	952,3	7,418411121	60	2000	152,323312

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.447 Resultados para la curva del modelo logarítmico

riempo vs. i muitipie		
logb	0,004943861	
loga	2,373926477	
b	1,011448701	

Log Y = 2,373926477 + 0,004943681X

Modelo Logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.448 Datos análisis ΔT_{AGUA} vs Humedad relativa

$\Delta T_{\scriptscriptstyle AGUA}$	Humedad
3.3	71
4.7	67
-0.6	65

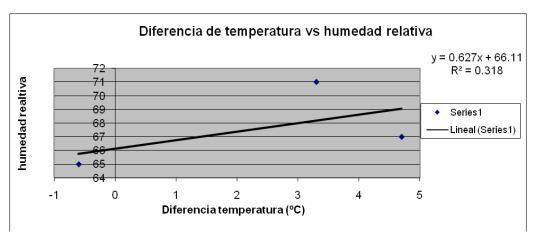


Figura 5.113 Curva diferencia de Temperatura de Agua vs Humedad relativa

r	0.56391489

Análisis

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las

moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto, los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.449 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	Υ	(y-ymedia)	(y-ymedia)^2
	71	3.3333333	11.111111
	67	0.6666667	0.444444
	65	2.6666667	7.1111111
Sumatoria	67.66666667	6.6666667	18.666667

Desviación Media	2.22222222	
Desviación Estándar	3.055050463	
Y Estabilización	67.66666667 +/-2.22222222	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

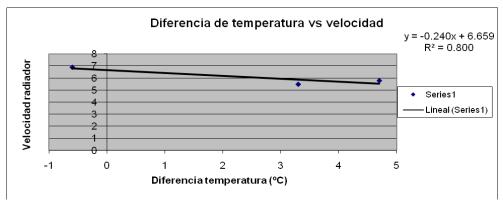
Tabla 5.450 Datos del comportamiento de la humedad en función de la ΔT_{AGUA} (Humedad relativa)

	AGUA	`	,	
	Υ	x	x^2	Ху
	71	3.3	10.89	234.3
	67	4.7	22.09	314.9
	65	-0.6	0.36	-39
Sumatoria	203	7.4	33.34	510.2

Tabla 5.451 Resultados para la curva del modelo logarítmico ΔT_{AGUA} vs Humedad relativa

710071	
b	0.627485639
a	66.11886876

Y = 66,1188876+0,627485639 X


Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.452 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{\scriptscriptstyle AGUA}$	Velocidad
3.3	5.5
4.7	5.8
-0.6	6.9

Figura 5.114 Curva diferencia de Temperatura de Agua vs Velocidad del ventilador

r	0.89442719

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante.

Tabla 5.453 Medidas de dispersión ΔT_{AGIJA} vs Velocidad del ventilador

	'	AGUA	
	Y	(y-ymedia)	(y-ymedia)^2
	5.5	0.566666667	0.3211111
	5.8	0.266666667	0.0711111
	6.9	0.833333333	0.6944444
Sumatoria	6.06666667	1.6666667	1.0866667

Desviación Media	0.55555556	m/s
Desviación Estándar	0.73711148	m/s
Y Estabilización	6.066666667 +/-0.555555556	m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.454 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	у	x	x^2	xy
	5.5	3.3	10.89	18.15
	5.8	4.7	22.09	27.26
	6.9	-0.6	0.36	-4.14
Sumatoria	18.2	7.4	33.34	41.27

Tabla 5.455 Resultados para la curva del modelo lineal ΔT_{ACUA} vs Velocidad del ventilador

AGUA	
b	-0.240167919
а	6.659080866

Y =6,659080866-0,240167919X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTCO TIEMPO VS T ADMISION

Tabla 5.456 Datos para análisis Tiempo vs T admisión

Tiempo	T Admisión
0	49.5
20	34.7
50	32.1

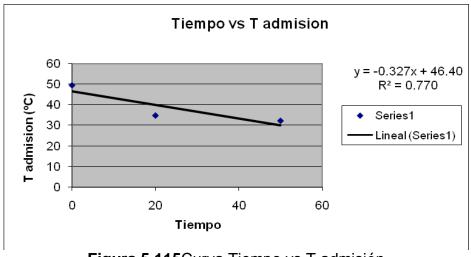


Figura 5.115Curva Tiempo vs T admisión

	0.07740044
ľ	0.87749644

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno.

Tabla 5.457 Medidas de dispersión Tiempo vs T admisión

	Υ	(y-ymedia)	(y-ymedia)^2
	49.5	10.73333333	115.2044444
	34.7	4.066666667	16.53777778
	32.1	6.666666667	44.4444444
Sumatoria	38.76666667	21.46666667	176.1866667

Desviación Media	7.15555556	°C	
Desviación Estándar	9.385804885	°C	
Y Estabilización	38.76666667°C +/- 7.155555556 °C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.458 Datos del comportamiento de la temperatura en función del Tiempo vs T admisión

	Y	logy	х	x^2	x*logy
	49.5	1.694605199	0	0	0
	34.7	1.540329475	20	400	30.8065895
	32.1	1.506505032	50	2500	75.3252516
Sumatoria	116.3	4.741439706	70	2900	106.131841

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.459 Resultados para la curva del modelo logarítmico Tiempo vs T admisión

logb	-0.003554015		
loga	1.663406913		
b	0.991849971		

Log Y = 1,663406913-0,003554015 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.460 Datos para análisis Tiempo vs T agua

Tiempo	•
Tiompo	T agua
0	23.95
20	45.45
50	36.9

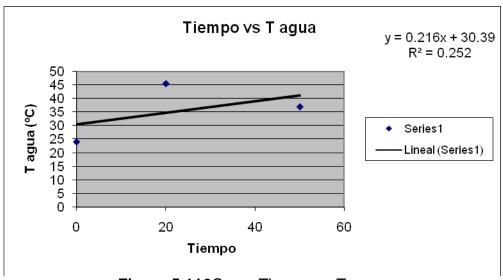


Figura 5.116Curva Tiempo vs T agua

r	0.487852437
---	-------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.461 Medidas de dispersión Tiempo vs T aqua

	у	(y-ymedia)	(y-ymedia)^2
	23.95	11.48333333	131.8669444
	45.45	10.01666667	100.3336111
	36.9	1.466666667	2.151111111
Sumatoria	35.43333333	22.96666667	234.3516667

Desviación Media	7.65555556	°C
Desviación Estándar	10.82477867	°C
Y Estabilización	35.43333°C +/- 7.6555556°C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.462 Datos del comportamiento de la temperatura en función del Tiempo vs T agua

	Y	Logy	Х	x^2	x*logy
	23.95	1.379305518	0	0	0
	45.45	1.657533888	20	400	33.1506778
	36.9	1.567026366	50	2500	78.3513183
Sumatoria	106.3	4.603865771	70	2900	111.501996

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.463 Resultados para la curva del modelo logarítmico

i iempo vs. i. agua		
logb	0.003219838	
loga	1.459492372	
b	1.044107941	

Log Y = 1,459492372+0,003219838 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.464 Datos para análisis Tiempo vs T block

Tiempo	T Block
0	58
20	82
50	67.3

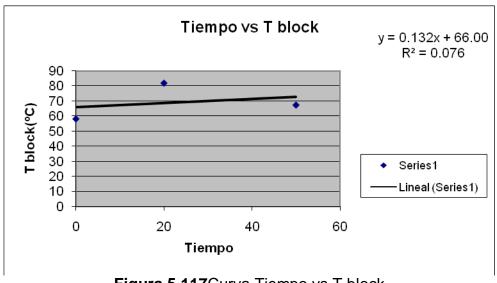


Figura 5.117Curva Tiempo vs T block

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo.

Tabla 5.465 Medidas de dispersión Tiempo vs T block

	Υ	(y-ymedia)	(y-ymedia)^2
	58	11.1	123.21
	82	12.9	166.41
	67.3	1.8	3.24
Sumatoria	69.1	25.8	292.86

Desviación Media	8.6	oC .
Desviación Estándar	12.10082642	°C
Y Estabilización	69.1°C +/- 8.6 °C	

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.466 Datos del comportamiento de la temperatura en función del Tiempo vs T block

	Υ	logy	X	x^2	x*logy
	58	1.763427994	0	0	0
	82	1.913813852	20	400	38.276277
	67.3	1.828015064	50	2500	91.4007532
Sumatoria	207.3	5.50525691	70	2900	129.67703

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.467 Resultados para la curva del modelo logarítmico Tiempo ys T block

rionipo vo i	DIOOK
logb	0.000963976
loga	1.812592874
b	1.002222102

Log Y = 1,812592874 + 0,00093976X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.468 Datos para análisis Tiempo vs T Carter

Tiempo	T Carter
0	68.9
20	123.4
50	106.5

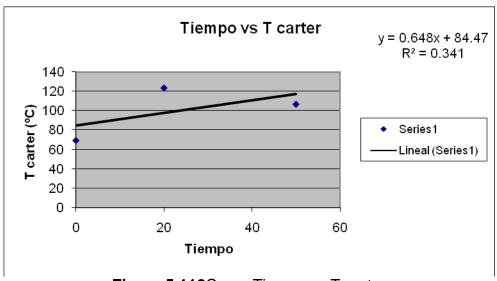


Figura 5.118Curva Tiempo vs T carter

r	0.58395205
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse.

Tabla 5.469 Medidas de dispersión Tiempo vs T Carter

	y	(y-ymedia)	(y-ymedia)^2
	68.9	30.7	942.49
	123.4	23.8	566.44
	106.5	6.9	47.61
Sumatoria	99.6	61.4	1556.54

Desviación Media	20.46666667	°C
Desviación Estándar	27.89749093	°C
Y Estabilización	99.6°C +/- 20	.46666667°C

Y estabilización se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Tabla 5.470 Datos del comportamiento de la temperatura en función del Tiempo vs T carter

	Υ	logy	Х	x^2	x*logy
	68.9	1.838219222	0	0	0
	123.4	2.09131516	20	400	41.8263032
	106.5	2.027349608	50	2500	101.36748
Sumatoria	298.8	5.956883989	70	2900	143.193784

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.471 Resultados para la curva del modelo logarítmico

Hempo va i	Carter
logb	0.00331565
loga	1.908262821
b	1.007663784

Log Y = 1,908262821+0,00331565X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.472 Datos para análisis Tiempo vs T escape

Tiempo	T Escape
0	35.8
20	244.5
50	165.3

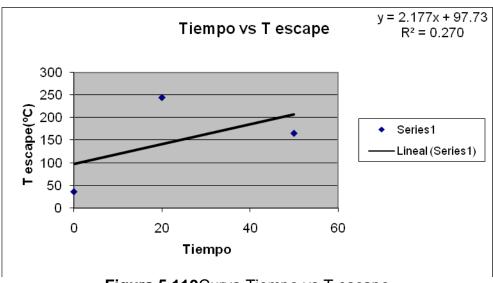


Figura 5.119Curva Tiempo vs T escape

r	0.51961524
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno. La función del escape es que el pistón expulsa los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.473 Medidas de dispersión Tiempo vs T escape

. abia oi	TI O MOGNAGO GO GIOP	orolon mompo i	o i oodapo
	у	(y-ymedia)	(y-ymedia)^2
	35.8	112.7333333	12708.80444
	244.5	95.96666667	9209.601111
	165.3	16.76666667	281.1211111
Sumatoria	148.5333333	225.4666667	22199.52667

Desviación Media	75.15555556	Ŝ
Desviación Estándar	105.3554144	°C
Y Estabilización	148.5333°C +/-	75.15555556°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.474 Datos del comportamiento de la temperatura en función del Tiempo vs T escape

		Tiompo vo i	cccapc		
	Y	logy	X	x^2	x*logy
	35.8	1.553883027	0	0	0
	244.5	2.388278863	20	400	47.7655773
	165.3	2.218272854	50	2500	110.913643
Sumatoria	445.6	6.160434744	70	2900	158.67922

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.475 Resultados para la curva del modelo logarítmico

Tiempo vs T escape

logb 0.011791376

loga 1.778346147

b 1.027522584

Log Y = 1,778346147 + 0,011791376X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.476 Datos para análisis Tiempo vs T múltiple

Tiempo	T múltiple
0	78
20	470
50	312.4

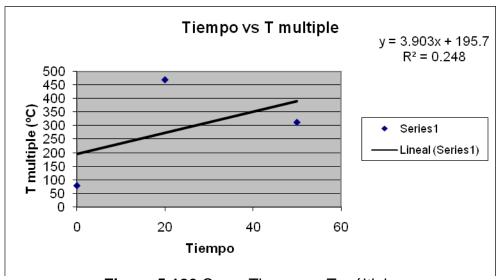


Figura 5.120 Curva Tiempo vs T múltiple

|--|

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehiculo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura.

Tabla 5.477 Medidas de dispersión Tiempo vs T múltiple

	у	(y-ymedia)	(y-ymedia)^2
	78	208.8	43597.44
	470	183.2	33562.24
	312.4	25.6	655.36
Sumatoria	286.8	417.6	77815.04

Desviación Media	139.2	°C
Desviación Estándar	197.2498923	°C
Y Estabilización	286.8°C +	/- 139.2°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.478 Datos del comportamiento de la temperatura en función del Tiempo vs T múltiple

	Υ	logy	X	x^2	x*logy
	78	1.892094603	0	0	0
	470	2.672097858	20	400	53.4419572
	312.4	2.494711025	50	2500	124.735551
Sumatoria	860.4	7.058903486	70	2900	178.177508

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.479 Resultados para la curva del modelo logarítmico

Tiempo vs T	múltiple
logb	0.010634021
loga	2.104840663
b	1.024787976

Log Y = 2,104840663+0,010634201X

Modelo Logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.480 Datos para análisis ΔT_{AGUA} vs Humedad relativa

ΔT_{AGUA}	Humedad
3.3	49
3.7	60
4.4	59

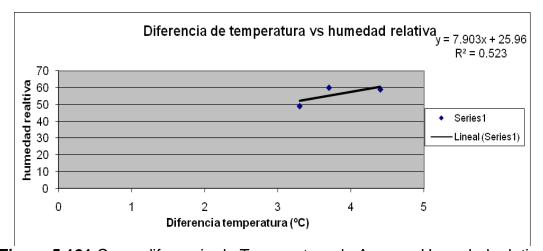


Figura 5.121 Curva diferencia de Temperatura de Agua vs Humedad relativa

r	0.72318739
---	------------

Análisis

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar

agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto, los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.481 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	Υ	(y-ymedia)	(y-ymedia)^2
	49	7	49
	60	4	16
	59	3	9
Sumatoria	56	14	74

Desviación Media	4.666666667	
Desviación Estándar	6.08276253	
Y Estabilización	56 +/-4.6	66666667

Y estabilización se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.482 Datos del comportamiento de la humedad en función de la ΔT_{AGUA} (Modelo lineal)

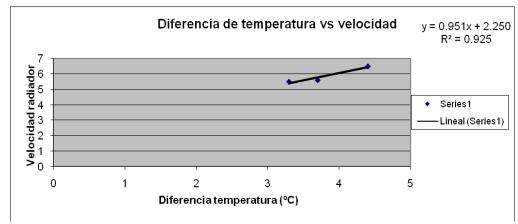
	Y	X	x^2	Ху
	49	3.3	10.89	161.7
	60	3.7	13.69	222
	59	4.4	19.36	259.6
Sumatoria	168	11.4	43.94	643.3

Tabla 5.483 Resultados para la curva del modelo lineal

 $\Delta T_{{\scriptscriptstyle AGUA}}$ vs Humedad relativa

b	7.903225806
а	25.96774194

Y = 25,96774194+7,903225806 X


Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.484 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{ extit{ iny AGUA}}$	Velocidad
3.3	5.5
3.7	5.6
4.4	6.5

Figura 5.122 Curva diferencia de Temperatura de Agua vs Velocidad del ventilador

r 0.9617692

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante.

Tabla 5.485 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	5.5	0.36666667	0.1344444
	5.6	0.266666667	0.0711111
	6.5	0.633333333	0.4011111
Sumatoria	5.86666667	1.2666667	0.6066667

Desviación Media	0.42222222	m/s
Desviación Estándar	0.550757055	m/s
Y Estabilización	5.866666667 +/-0.422222222	m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.486 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	11001	•		
	у	X	x^2	Ху
	5.5	3.3	10.89	18.15
	5.6	3.7	13.69	20.72
	6.5	4.4	19.36	28.6
Sumatoria	17.6	11.4	43.94	67.47

Tabla 5.487 Resultados para la curva del modelo lineal ΔT_{AGUA} vs velocidad del ventilador

b	0.951612903
а	2.250537634

Y =2,250537634+0,951612903X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.488 Datos para análisis Tiempo vs T admisión

Tiempo	T admisión
0	47.5
34	34.7
52	38.1

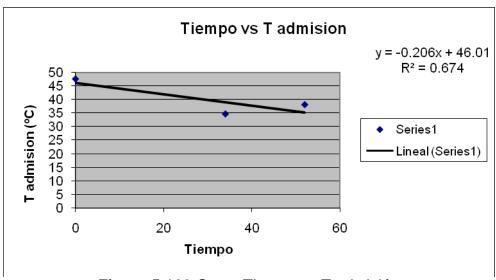


Figura 5.123 Curva Tiempo vs T admisión

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno.

Tabla 5.489 Medidas de dispersión Tiempo vs T admision

iuo	a ortoo moalaac ac alopoi	didit flottipo vo i dalfiloloti		
	Y	(y-ymedia)	(y-ymedia)^2	
	47.5	7.4	54.76	
	34.7	5.4	29.16	
	38.1	2	4	
Sumatoria	40.1	14.8	87.92	

Desviación Media	4.933333333	°C
Desviación Estándar	6.630233782	°C
Y Estabilización	40.1°C +/- 4.933333333°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Tabla 5.490 Datos del comportamiento de la temperatura en función del Tiempo vs T admisión

		riompo vo i darmoion				
		Υ	logy	X	x^2	x*logy
		47.5	1.67669361	0	0	0
		34.7	1.540329475	34	1156	52.3712021
		38.1	1.580924976	52	2704	82.2080987
Ī	Sumatoria	120.3	4.79794806	86	3860	134.579301

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.491 Resultados para la curva del modelo logarítmico

Tiempo vs T admisión

logb -0.002123717

loga 1.660195898

b 0.995121898

Log Y = 1,660195898-0,002123717 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.492 Datos para análisis Tiempo vs T agua

Tiempo	T agua
0	22,95
34	43,95
52	37,4

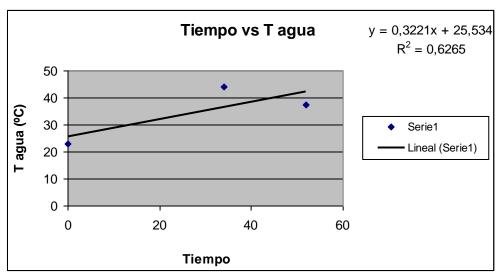


Figura 5.124 Curva Tiempo vs T agua

r	0,791201618
---	-------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.493 Medidas de dispersión Tiempo vs T agua

		у	(y-ymedia)	(y-ymedia)^2
		22,95	11,81666667	139,6336111
		43,95	9,183333333	84,33361111
		37,4	2,633333333	6,93444444
	Sumatoria	34,76666667	23,63333333	230,9016667

Desviación Media	7,87777778	°C
Desviación Estándar	10,74480495	O
Y Estabilización	34.76666667°C +/- 7.877777778°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.494 Datos del comportamiento de la temperatura en función del Tiempo vs T agua

	Hompo vo i agua				
	Υ	logy	Χ	x^2	x*logy
	22,95	1,36078269	0	0	0
	43,95	1,642958879	34	1156	55,8606019
	37,4	1,572871602	52	2704	81,7893233
Sumatoria	104,3	4,576613171	86	3860	137,649925

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.495 Resultados para la curva del modelo logarítmico Tiempo vs T agua

logb	0,0046274		
loga	1,392885582		
b	1,010711949		

Log Y = 1,392885582 + 0,0046274 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.496 Datos para análisis Tiempo vs T block

Tiempo	T block
0	57,8
34	83,5
52	68,3

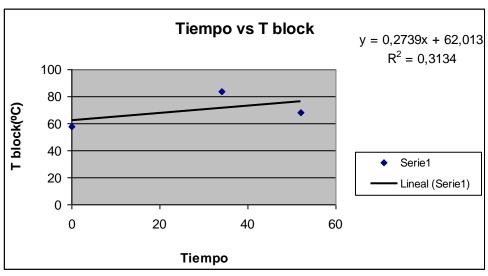


Figura 5.125 Curva Tiempo vs T block

r	0,55946403

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo.

Tabla 5.497 Medidas de dispersión Tiempo vs T block

	у	(y-ymedia)	(y-ymedia)^2
	57,8	12,06666667	145,6044444
	83,5	13,63333333	185,8677778
	68,3	1,566666667	2,45444444
Sumatoria	69,86666667	27,26666667	333,9266667

Desviación Media	9,08888889	°C
Desviación Estándar	12,92142923	°C
Y Estabilización	69.86666667°C +/- 9.088888889°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Tabla 5.498 Datos del comportamiento de la temperatura en función del Tiempo vs T block

	Y	logy	X	x^2	x*logy
	57,8	1,761927838	0	0	0
	83,5	1,921686475	34	1156	65,3373402
	68,3	1,834420704	52	2704	95,3898766
Sumatoria	209,6	5,518035018	86	3860	160,727217

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.499 Resultado para la curva del modelo logarítmico

IIempo vs I	DIOCK
logb	0,001823766
loga	1,787063701
b	1,004208206

Log Y = 1,787063701 + 0,001823766X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.500 Datos para análisis Tiempo vs T carter

Tiempo	T carter
0	67,9
34	121,6
52	107,1

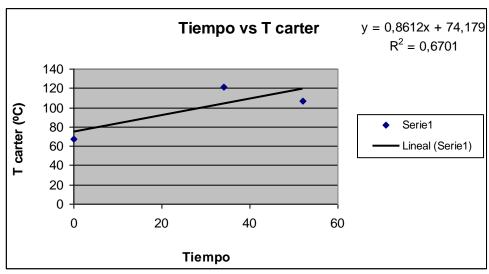


Figura 5.126Curva Tiempo vs T carter

r	0,81853528
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse.

Tabla 5.501 Medidas de dispersión Tiempo vs T carter

i da la cico i modiado do dioporción i			OTOIOTT TTOTTIE	o vo i cartor
		у	(y-ymedia)	(y-ymedia)^2
		67,9	30,96666667	958,9344444
		121,6	22,73333333	516,8044444
		107,1	8,233333333	67,78777778
	Sumatoria	98,86666667	61,93333333	1543,526667

Desviación Media	20,6444444	°C
Desviación Estándar	27,78062874	Ô
Y Estabilización	98.86666667°C +/- 20.64444444°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de Estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.502 Datos del comportamiento de la temperatura en función del Tiempo vs T carter

	Y	logy	X	x^2	x*logy
	67,9	1,831869774	0	0	0
	121,6	2,084933575	34	1156	70,8877415
	107,1	2,029789471	52	2704	105,549052
Sumatoria	296,6	5,94659282	86	3860	176,436794

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.503 Resultados para la curva del modelo logarítmico Tiempo ys T carter

ricilipo va i cartei		
logb	0,004279015	
loga	1,859532504	
b	1,009901495	

Log Y = 1,859532504+0,004279015X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.504 Datos para análisis Tiempo vs T escape

Tiempo	T escape
0	36,8
34	245,5
52	166,3

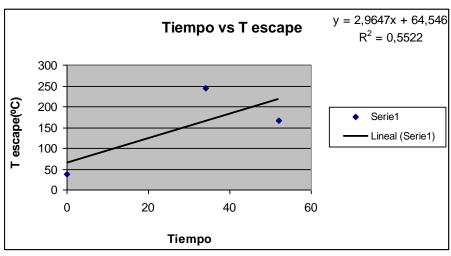


Figura 5.127Curva Tiempo vs T escape

r	0,74296702
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno. La función del escape es que el pistón expulsa los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.505 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2
	36,8	112,7333333	12708,80444
	245,5	95,96666667	9209,601111
	166,3	16,76666667	281,1211111
Sumatoria	149,5333333	225,4666667	22199,52667

Desviación Media	75,15555556	°C	
Desviación Estándar	105,3554144	Ô	
Y Estabilización	149.5333333°C +/- 75.15555556°C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Tabla 5.506 Datos del comportamiento de la temperatura en función del Tiempo ys T escape

	Υ	logy	Х	x^2	x*logy
	36,8	1,565847819	0	0	0
	245,5	2,390051496	34	1156	81,2617509
	166,3	2,220892249	52	2704	115,486397
Sumatoria	448,6	6,176791564	86	3860	196,748148

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos

Tabla 5.507 Resultados para la curva del modelo logarítmico

Tiempo vs T escape

logb 0,014110987

loga 1,654415565

b 1,033025369

Log Y = 1,654415565 + 0,014110987X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.508 Datos para análisis Tiempo vs T múltiple

Tiempo	T múltiple
0	77
34	475
52	314,5

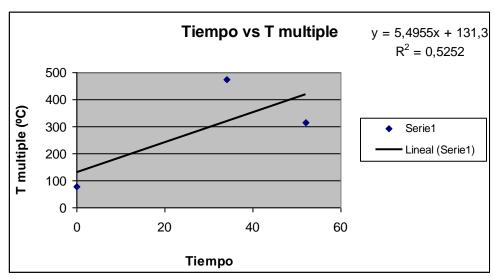


Figura 5.128 Curva Tiempo vs T múltiple

r 0,7245688	37
-------------	----

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehiculo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura.

Tabla 5.509 Medidas de dispersión Tiempo vs T múltiple

	Υ	(y-ymedia)	(y-ymedia)^2
	77	211,8333333	44873,36111
	475	186,1666667	34658,02778
	314,5	25,66666667	658,7777778
Sumatoria	288,8333333	423,6666667	80190,16667

Desviación Media	141,2222222	°C
Desviación Estándar	200,2375672	°C
Y Estabilización	288.8333333°C +/- 141.2222222°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.510 Datos del comportamiento de la temperatura en función del Tiempo vs T múltiple

	Υ	logy	X	x^2	x*logy
	77	1,886490725	0	0	0
	475	2,67669361	34	1156	91,0075827
	314,5	2,49762065	52	2704	129,876274
Sumatoria	866,5	7,060804985	86	3860	220,883857

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.511 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

logb	0,013246257
loga	1,973875617
b	1,030970544

Log Y = 1,973875617 + 0,013246257X

Modelo Logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.512 Datos para análisis ΔT_{AGUA} vs Humedad relativa

ΔT_{AGUA}	Humedad
0,9	58
2,2	58
1	59

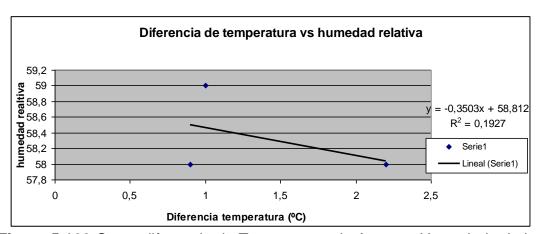


Figura 5.129 Curva diferencia de Temperatura de Agua vs Humedad relativa

	l
r	0,43817805

Análisis

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar

los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno

agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto,

Tabla 5.513 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	58	0,3333333	0,1111111
	58	0,3333333	0,1111111
	59	0,6666667	0,444444
Sumatoria	58,33333333	1,3333333	0,6666667

Desviación Media	0,44444444	
Desviación Estándar	0,577350269	
Y Estabilización	58.3333333333 +/-0.4444444444444	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

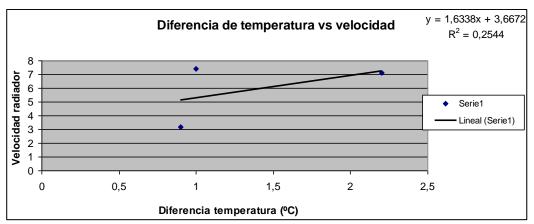
Tabla 5.514 Datos del comportamiento de la humedad en función de la $\Delta T_{\scriptscriptstyle AGUA}$ vs Humedad relativa

	710071			
	у	X	x^2	хy
	58	0,9	0,81	52,2
	58	2,2	4,84	127,6
	59	1	1	59
Sumatoria	175	4,1	6,65	238,8

Tabla 5.515 Resultados para la curva del modelo logarítmico ΔT_{ACM} vs Humedad relativa

AGUA	
b	-0,350318471
а	58,81210191

Y = 58,81210191-0,350318471 X


Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.516 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{ extit{AGUA}}$	Velocidad
0,9	3,2
2,2	7,1
1	7,4

Figura 5.130 Curva diferencia de Temperatura de Agua vs Velocidad del ventilador

r	0,50398413
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante.

Tabla 5.517 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

	у	(y-ymedia)	(y-ymedia)^2
	3,2	2,7	7,29
	7,1	1,2	1,44
	7,4	1,5	2,25
Sumatoria	5,9	5,4	10,98

Desviación Media	1,8	m/s
Desviación estándar	2,343074903	m/s
Y estabilización	5.9 +/-1.8	m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Tabla 5.518 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	Noon (
	у	х	x^2	ху
	3,2	0,9	0,81	2,88
	7,1	2,2	4,84	15,62
	7,4	1	1	7,4
Sumatoria	17,7	4,1	6,65	25,9

Tabla 5.519 Resultados para la curva del modelo lineal

 ΔT_{AGUA} vs Velocidad del ventilador

b	1,633757962
а	3,667197452

Y = 3,667197542 + 1,633757962X

Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

Tabla 5.520 Datos para análisis Tiempo vs T admisión

Tiempo	T admisión	
0	44,9	
42	40,1	
80	36,7	

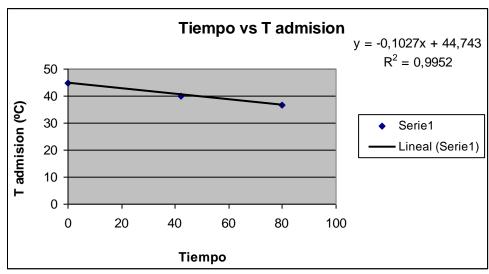


Figura 5.131 Curva Tiempo vs T admisión

r	0,99749687
---	------------

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno.

Tabla 5.521 Medidas de dispersión Tiempo vs T admisión

	у	(y-ymedia)	(y-ymedia)^2
	44,9	4,333333333	18,77777778
	40,1	0,466666667	0,217777778
	36,7	3,866666667	14,95111111
Sumatoria	40,56666667	8,666666667	33,94666667

Desviación Media	2,888888889	°C
Desviación Estándar	4,119870548	°C
Y Estabilización	40.566666	67°C +/- 2.888888889 °C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Tabla 5.522 Datos del comportamiento de la temperatura en función del Tiempo vs T admisión

	у	logy	X	x^2	x*logy
	44,9	1,652246341	0	0	0
	40,1	1,603144373	42	1764	67,3320637
	36,7	1,564666064	80	6400	125,173285
Sumatoria	121,7	4,820056778	122	8164	192,505349

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.523 Resultados para la curva del modelo logarítmico Tiempo vs T admisión

logb	-0,001096053	
loga	1,651258429	
b	0,997479427	

Log Y = 1,651258429-0,001096053 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.524 Datos para análisis Tiempo vs T agua

Tiempo	T agua
0	24,85
42	41,7
80	42,6

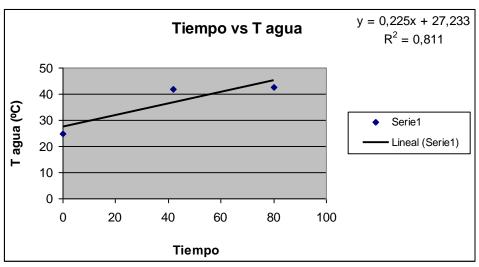


Figura 5.132Curva Tiempo vs T agua

r	0,900555384
---	-------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.525 Medidas de dispersión Tiempo vs T agua

	у	(y-ymedia)	(y-ymedia)^2
	24,85	11,53333333	133,0177778
	41,7	5,316666667	28,26694444
	42,6	6,216666667	38,64694444
Sumatoria	36,38333333	23,06666667	199,9316667

Desviación Media	7,688888889	°C
Desviación Estándar	9,998291521	°C
Y Estabilización	36.38333333	C +/- 7.688888889°C

Y estabilización se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Tabla 5.526 Datos del comportamiento de la temperatura en función del Tiempo ys T agua

	Y	logy	x	x^2	x*logy
	24,85	1,395326393	0	0	0
	41,7	1,620136055	42	1764	68,0457143
	42,6	1,629409599	80	6400	130,352768
Sumatoria	109,15	4,644872047	122	8164	198,398482

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

 Tabla 5.527
 Resultados para la curva del modelo logarítmico

 Tiempo vs T agua

 logb
 0,00296847

 loga
 1,427572914

 b
 1,006858568

Log Y = 1,427572914+0,00296847 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.528 Datos para análisis Tiempo vs T block

Tiempo	T block
0	53,4
42	69,2
80	63,7

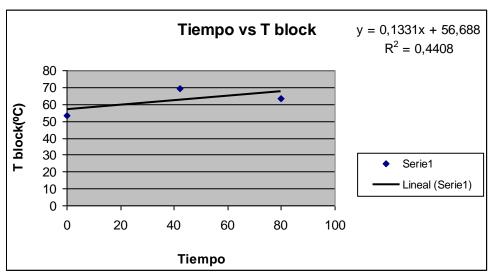


Figura 5.133 Curva Tiempo vs T block

r	0,66332496
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo

Tabla 5.529 Medidas de dispersión Tiempo vs T block

	Υ	(y-ymedia)	(y-ymedia)^2
	53,4	8,7	75,69
	69,2	7,1	50,41
	63,7	1,6	2,56
Sumatoria	62,1	17,4	128,66

Desviación Media	5,8	°C
Desviación Estándar	8,020598481	°C
Y Estabilización	62.1°C +/- 5.8 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Tabla 5.530 Datos del comportamiento de la temperatura en función del Tiempo ys T block

	Y	logy	Х	x^2	x*logy
	53,4	1,727541257	0	0	0
	69,2	1,840106094	42	1764	77,284456
	63,7	1,804139432	80	6400	144,331155
Sumatoria	186,3	5,371786784	122	8164	221,615611

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

 Tabla 5.531
 Resultados para la curva del modelo logarítmico

riempo vs i	DIOCK	
logb	0,000987598	
loga	1,750433266	
b	1,002276616	

Log Y = 1,750433266 + 0,000987598X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.532 Datos para análisis Tiempo vs T carter

Tiempo	T carter
0	63,5
42	105,7
80	106,3

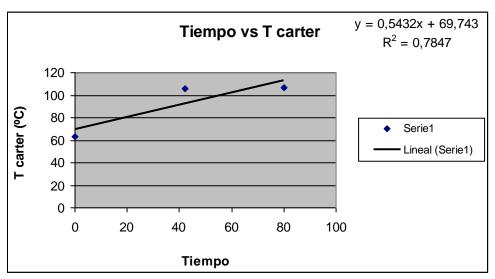


Figura 5.134Curva Tiempo vs T carter

r	0,88543774
---	------------

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse.

Tabla 5.533 Medidas de dispersión Tiempo vs T carter

	у	(y-ymedia)	(y-ymedia)^2
	63,5	28,33333333	802,7777778
	105,7	13,86666667	192,2844444
	106,3	14,46666667	209,2844444
Sumatoria	91,83333333	56,66666667	1204,346667

Desviación Media	18,88888889	°C
Desviación Estándar	24,53922031	Ô
Y Estabilización	91.83333333	°C +/- 18.88888889°C

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de Estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.534 Datos del comportamiento de la temperatura en función del Tiempo vs T carter

	Υ	logy	Х	x^2	x*logy
	63,5	1,802773725	0	0	0
	105,7	2,024074987	42	1764	85,0111495
	106,3	2,026533265	80	6400	162,122661
Sumatoria	275.5	5.853381977	122	8164	247,133811

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.535 Resultados para la curva del modelo logarítmico Tiempo ys T carter

rioripo vo i cartor	
logb	0,00284022
loga	1,835625059
b	1,00656128

Log Y = 1,835625059 + 0,00284022X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.536 Datos para análisis Tiempo vs T escape

Tiempo	T escape
0	29,1
42	145,6
80	161,3

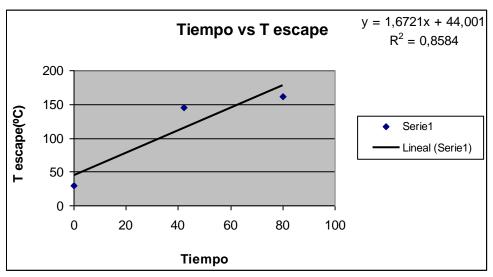


Figura 5.135 Curva Tiempo vs T escape

92628289

Análisis

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno. La función del escape es que el pistón expulsa los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.537 Medidas de dispersión Tiempo vs T escape

	Υ	(y-ymedia)	(y-ymedia)^2
	29,1	82,9	6872,41
	145,6	33,6	1128,96
	161,3	49,3	2430,49
Sumatoria	112	165,8	10431,86

Desviación Media	55,26666667	°C
Desviación Estándar	72,22139572	°C
Y Estabilización	112°C +/- 55.26666667°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.538 Datos del comportamiento de la temperatura en función del

nempo vs i escape					
	Υ	logy	X	x^2	x*logy
	29,1	1,463892989	0	0	0
	145,6	2,163161375	42	1764	90,8527777
	161,3	2,207634367	80	6400	176,610749
Sumatoria	336	5,834688731	122	8164	267,463527

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.539 Resultados para la curva del modelo logarítmico Tiempo ys T escape

	Hellipo va i eacape		
	logb	0,009425328	
	loga	1,561599552	
ſ	b	1,021939835	

Log Y = 1,5615999552 + 0,009425328X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS TMULTIPLE

Tabla 5.540 Datos para análisis Tiempo vs T múltiple

Tiempo	T múltiple
0	69,5
42	302,2
80	269,8

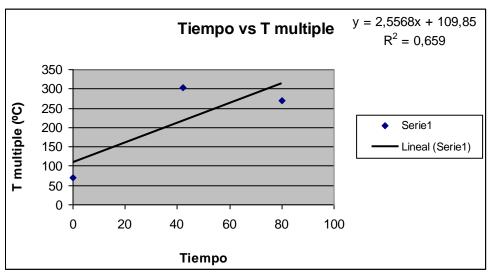


Figura 5 .136 Curva Tiempo vs T múltiple

r	0,81178815

Análisis

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehiculo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura.

 Tabla 5.541
 Medidas de dispersión Tiempo vs T múltiple

	у	(y-ymedia)	(y-ymedia)^2
	69,5	144,3333333	20832,11111
	302,2	88,36666667	7808,667778
	269,8	55,96666667	3132,267778
Sumatoria	213,8333333	288,6666667	31773,04667

Desviación Media	96,2222222	°C
Desviación Estándar	126,0417523	Ô
Y Estabilización	213.8333333°C +/- 96.2222222°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.542 Datos del comportamiento de la temperatura en función del Tiempo vs T múltiple

	Υ	logy	х	x^2	x*logy
	69,5	1,841984805	0	0	0
	302,2	2,48029446	42	1764	104,172367
	269,8	2,431041945	80	6400	194,483356
Sumatoria	641,5	6,75332121	122	8164	298,655723

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.543 Resultados para la curva del modelo logarítmico Tiempo vs T múltiple

1.0	
logb	0,007500206
loga	1,946098684
b	1,017419849

Log Y = 1,946098684 + 0,007500206X

Modelo Logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS HUMEDAD RELATIVA

Tabla 5.544 Datos para análisis ΔT_{AGUA} vs Humedad relativa

ΔT_{AGUA}	Humedad
1,2	63
2	76
0,8	74

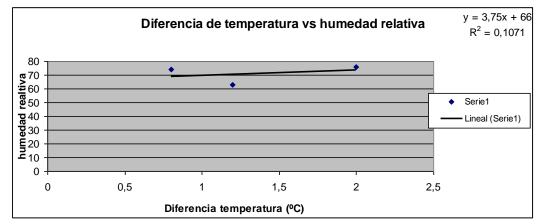


Figura 5 .137 Curva diferencia de Temperatura de Agua vs. Humedad relativa

|--|

Análisis

Cuando el aire tiene un bajo porcentaje de humedad (aire seco) se vuelve ávido de humedad y tiende a tomar agua de los elementos que lo circundan. Por ejemplo: un secador de manos o de cabellos consiste simplemente en una resistencia eléctrica que calienta el aire, en consecuencia, se descomponen las moléculas de agua y el aire resulta más seco, entonces el aire tiende a tomar

agua de las manos o de los cabellos que ponemos a su alcance y, por lo tanto, los seca. De la misma forma un aire seco tomará agua de cualquier otro elemento que contenga un nivel de humedad superior a él, carnes, frutas, verduras, ropa tendida, etc., y como no, del tabaco. Este intercambio de humedad enriquece al aire y seca los elementos expuestos, tanto si se desea como si no. Contrariamente, si el aire tiene un alto porcentaje de humedad (aire húmedo) tendrá entonces la facultad de ceder agua a los elementos que se encuentren más secos. Si el aire alcanza su punto de saturación (100% de humedad) y se sigue enfriando, entonces se produce la decantación del agua, es cuando el agua se hace perceptible a nuestros sentidos, es el rocío que vemos sobre las plantas después de una noche fría, o el agua que moja las paredes de un vaso que contiene un liquido frío y, como no, la propia lluvia. Como podemos observar cuando llagamos al punto más alto de la medición, el cual se encontraba en el Puente 1 de la Autopistas General Rumiñahui la humedad decreció un poco significa que la mitad de los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas la mitad de las moléculas de agua posibles, entonces la humedad relativa del aire es del 50%. Cuando todos los átomos de hidrógeno existentes en el aire estén enlazados con átomos de oxigeno se encontrarán formadas todas las moléculas de agua posibles, entonces la humedad relativa del aire será del 100%, esta situación es llamada punto de saturación o punto de rocío. Cuando el aire se calienta, la humedad relativa disminuye. Cuando el aire se enfría, la humedad relativa aumenta. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno.

Tabla 5.545 Medidas de dispersión ΔT_{AGUA} vs Humedad relativa

	у	(y-ymedia)	(y-ymedia)^2
	63	8	64
	76	5	25
	74	3	9
Sumatoria	71	16	98

Desviación Media	5,333333333	
Desviación Estándar	7	
Y Estabilización	71+/-5.333333333	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

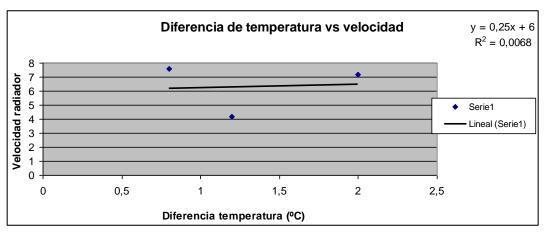
Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.546 Datos del comportamiento de la humedad en función de la ΔT_{AGUA} (modelo lineal)

	AGUA	`	,	
	у	x	x^2	ху
	63	1,2	1,44	75,6
	76	2	4	152
	74	0,8	0,64	59,2
Sumatoria	213	4	6,08	286,8

Tabla 5.547 Resultados para la curva del modelo logarítmico $\Delta T_{\scriptscriptstyle AGUA}$ vs

Humedad relativa			
b	3,75		
а	66		


Y = 66+3,75 X Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la humedad relativa y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO DIFERENCIA DE TEMPERATURA DE AGUA VS VELOCIDAD DEL VENTILADOR DEL RADIADOR

Tabla 5.548 Datos para análisis ΔT_{AGUA} vs Velocidad del ventilador

$\Delta T_{ extit{ iny AGUA}}$	Velocidad
1,2	4,2
2	7,2
0,8	7,6

Figura 5 .138 Curva diferencia de Temperatura de Agua vs Velocidad del ventilador

r	0,07745967
---	------------

Análisis

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Como podemos observar, a lo que llegamos en el punto más el ventilador del radiador está girando mucho más debido a que el motor ya se encuentra caliente, necesita más esfuerzo, por lo tanto el sensor electromecánico ya se encuentra prendido y esta pasando refrigerante.

Tabla 5.549 Medidas de dispersión ΔT_{AGUA} vs Velocidad del ventilador

AGUA			
	у	(y-ymedia)	(y-ymedia)^2
	4,2	2,133333333	4,5511111
	7,2	0,866666667	0,7511111
	7,6	1,266666667	1,6044444
Sumatoria	6,333333333	4,2666667	6,9066667

Desviación Media	1,42222222 m/s	
Desviación Estándar	1,858314649 m	S
Y Estabilización	6.333333 +/-1.42222222	m/s

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.550 Datos del comportamiento de la velocidad en función de la ΔT_{AGUA} (Modelo lineal)

	у	X	x^2	xy
	4,2	1,2	1,44	5,04
	7,2	2	4	14,4
	7,6	0,8	0,64	6,08
Sumatoria	19	4	6,08	25,52

Tabla 5.551 Resultados para la curva del modelo logarítmico ΔT_{AGUA} vs Velocidad del ventilador

b	0,25
а	6

Y =6+0,25X Modelo lineal

Esta ecuación corresponde al comportamiento que tiene la curva en función de la diferencia de temperatura del refrigerante de acuerdo a la velocidad del ventilador del radiador y podemos comprobar que los datos de la velocidad están de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ADMISION

 Tabla 5.552
 Datos para análisis Tiempo vs T admisión

Tiempo	T admisión
0	49,5
40	45,4
68	41,6

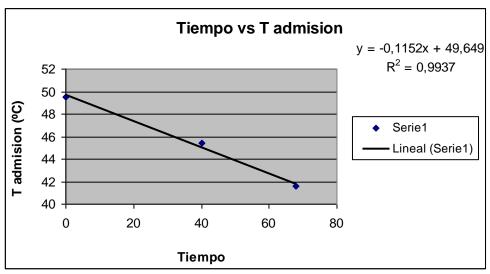


Figura 5.139 Curva Tiempo vs T admisión

r	0,99649385
---	------------

Análisis

Podemos observar que en el punto más alto, es decir en el Puente 1 de la Autopista Rumiñahui la lectura es más alta, debido a que esta entrando más aire ya que el motor se encuentra caliente y necesita mayor esfuerzo para poder soportar la subida hacia dicho sector. El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale menor que uno.

Tabla 5.553 Medidas de dispersión Tiempo vs T admisión

	у	(y-ymedia)	(y-ymedia)^2
	49,5	4	16
	45,4	0,1	0,01
	41,6	3,9	15,21
Sumatoria	45,5	8	31,22

Desviación Media	2,666666667	۰C
Desviación Estándar	3,950949253	°C
Y Estabilización	45.5°C +/- 2.66666667 °C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.554 Datos del comportamiento de la temperatura en función del Tiempo vs T admisión

riempe ve i daniicien					
	Y	logy	Х	x^2	x*logy
	49,5	1,694605199	0	0	0
	45,4	1,657055853	40	1600	66,2822341
	41,6	1,619093331	68	4624	110,098346
Sumatoria	136,5	4,970754382	108	6224	176,380581

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.555 Resultados para la curva del modelo logarítmico Tiempo vs T admisión

logb	-0,001098706
loga	1,696471543
b	0,997473333

Log Y = 1,696471543-0,001098706 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de admisión podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T AGUA

Tabla 5.556 Datos para análisis Tiempo vs T agua

Tiempo	T Agua
0	29,7
40	46,8
68	47,7

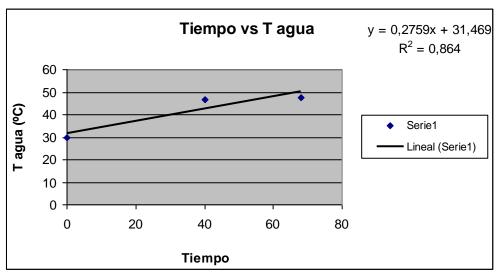


Figura 5.140 Curva Tiempo vs. T agua

r 0,929516003

Análisis

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Al llegar al punto más alto, tenemos una Temperatura mayor a las del punto más bajo, debido a que se prende el sensor electromecánico para que prenda el ventilador y que comience succionar aire fresco del ambiente para pasarlo a través del radiador. Puede ser accionado por el motor del vehículo o por electricidad luego de recibir la orden del sensor electromecánico, al percibir que debe encenderlo o apagarlo de acuerdo con la temperatura del motor.

Tabla 5.557 Medidas de dispersión Tiempo vs T agua

	у	(y-ymedia)	(y-ymedia)^2
	29,7	11,7	136,89
	46,8	5,4	29,16
	47,7	6,3	39,69
Sumatoria	41,4	23,4	205,74

Desviación Media	7,8	°C
Desviación Estándar	10,1424849	°C
Y estabilización	41.4°C +/- 7.8°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.558 Datos del comportamiento de la temperatura en función del Tiempo vs T agua

	Y	logy	X	x^2	x*logy
	29,7	1,472756449	0	0	0
	46,8	1,670245853	40	1600	66,8098341
	47,7	1,678518379	68	4624	114,13925
Sumatoria	124,2	4,821520681	108	6224	180,949084

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.559 Resultados para la curva del modelo logarítmico Tiempo ys T agua

ricilipo va i agua		
logb	0,003156823	
loga	1,49352792	
b	1,007295336	

Log Y = 1,49352792+0,003156823 X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de agua podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T BLOCK

Tabla 5.560 Datos para análisis Tiempo vs T block

Tiempo	T Block
0	58,3
40	76,2
68	69,7

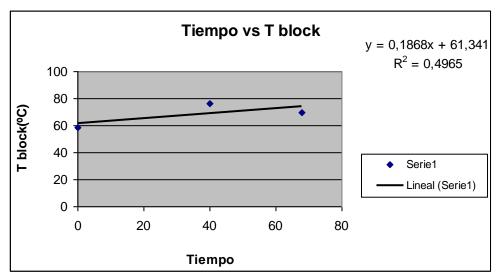


Figura 5.141 Curva Tiempo vs T block

Análisis

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. Llegando al punto más alto donde se realizo la prueba se registró el más alto entre los tres, esto es debido a que el motor esta realizando mayor esfuerzo ya que esta en subida por lo tanto realiza mayor trabajo.

Tabla 5.561 Medidas de dispersión Tiempo vs T block

Table 110 1 modiade de dispersion frempe te i breek				
	у	(y-ymedia)	(y-ymedia)^2	
	58,3	9,766666667	95,38777778	
	76,2	8,133333333	66,15111111	
	69,7	1,633333333	2,667777778	
Sumatoria	68,06666667	19,53333333	164,2066667	

Desviación Media	6,511111111	°C
Desviación Estándar	9,061088971	Ô
Y Estabilización	68.06666667°C +/- 6.511111111°C	

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.562 Datos del comportamiento de la temperatura en función del Tiempo vs T block

	Y	logy	Х	x^2	x*logy
	58,3	1,765668555	0	0	0
	76,2	1,881954971	40	1600	75,2781989
	69,7	1,843232778	68	4624	125,339829
Sumatoria	204,2	5,490856304	108	6224	200,618028

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.563 Resultados para la curva del modelo logarítmico

riempo vs. i block		
logb	0,001261644	
loga	1,784866244	
b	1,002909266	

Log Y = 1,784866244 + 0,001261644X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de block podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T CARTER

Tabla 5.564 Datos para análisis Tiempo vs T carter

Tiempo	T Carter
0	68,8
40	110,3
68	111,2

Figura 5.142 Curva Tiempo vs T carter

r	0,91923882

Análisis

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal es menor que uno. La temperatura del carter en el punto más alto, en este caso el Puente Uno, es alta debido a que el esfuerzo que realiza el motor es demasiado grande, por lo tanto implica que la temperatura tienda a elevarse.

Tabla 5.565 Medidas de dispersión Tiempo vs T carter

	у	(y-ymedia)	(y-ymedia)^2
	68,8	27,96666667	782,1344444
	110,3	13,53333333	183,1511111
	111,2	14,43333333	208,3211111
Sumatoria	96,76666667	55,93333333	1173,606667

Desviación Media	18,6444444	°C	
Desviación Estándar	24,22402389	°C	
Y Estabilización	96.76666667°C +/- 18.64444444°C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de Estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.566 Datos del comportamiento de la temperatura en función del Tiempo vs T carter

riompo vo rioario.					
	Υ	logy	X	x^2	x*logy
	68,8	1,837588438	0	0	0
	110,3	2,042575512	40	1600	81,7030205
	111,2	2,046104787	68	4624	139,135126
Sumatoria	290,3	5,926268738	108	6224	220,838146

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.567 Resultados para la curva del modelo logarítmico Tiempo vs T carter

logb	0,003207394
loga	1,859956743
b	1,007412636

Log Y = 1,859956743+0,003207394X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de carter podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T ESCAPE

Tabla 5.568 Datos para análisis Tiempo vs T escape

Tiempo	T escape
0	34,3
40	150,6
68	167,4

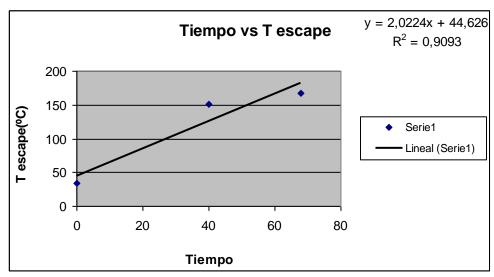


Figura 5.143 Curva Tiempo vs T escape

r	0,95341491

Análisis

El ajuste de la curva es bastante bueno ya que el coeficiente de correlación lineal sale que menor que uno. La función del escape es que el pistón expulsa los gases quemados al exterior dejando el cilindro preparado para un próximo ciclo. El pistón se ha desplazado del P.M.I. al P.M.S. La válvula de admisión permanece cerrada y la de escape abierta. De esta forma termina el ciclo y el cigüeñal ha dado dos vueltas, por lo tanto el aumento de la temperatura se debe a que durante el trayecto quemas gran cantidad de gas quemado, por lo tanto tiende a aumentar la temperatura a lo que llega hacia el punto más alto.

Tabla 5.569 Medidas de dispersión Tiempo vs T escape

	у	(y-ymedia)	(y-ymedia)^2	
	34,3	83,13333333	6911,151111	
	150,6	33,16666667	1100,027778	
	167,4	49,96666667	2496,667778	
Sumatoria	117,4333333	166,2666667	10507,84667	

Desviación Media	55,42222222	°C	
Desviación Estándar	72,48395225	Ô	
Y Estabilización	117.4333333°C +/- 55.42222222°C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.570 Datos del comportamiento de la temperatura en función del

Tiempo vs T escape x^2 x*logy logy 34,3 1,53529412 0 0 150,6 40 2,177824972 1600 87,1129989 167,4 68 2,223755454 4624 151,215371 Sumatoria 352,3 5,936874546 108 6224 238,32837

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.571 Resultado para la curva del modelo logarítmico

riempo vs. r. escape		
logb	0,010531201	
loga	1,599834937	
b	1,024545384	

Log Y = 1,599834937 + 0,010531201X

Modelo logarítmico

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de escape podemos comprobar que los datos de la temperatura que de acuerdo a la curva que se esta presentando ya que existe una variación.

ANALISIS ESTADISTICO TIEMPO VS T MULTIPLE

Tabla 5.572 Datos para análisis Tiempo vs T múltiple

Tiempo	T múltiple
0	74,9
40	323,2
68	285,8

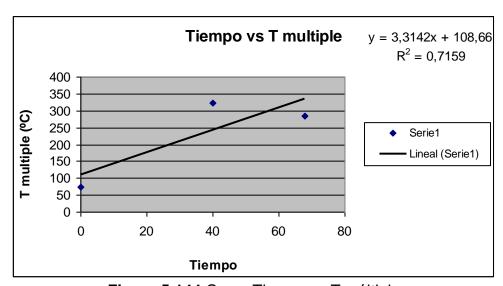


Figura 5.144 Curva Tiempo vs T múltiple

Análisis

El ajuste de la curva es bastante bueno debido a que el coeficiente de correlación lineal es menor que uno. El aumento significativo de temperatura se debe a que el motor esta sujeto a grandes cargas como por ejemplo la aerodinámica, el peso del vehiculo, influye el medio ambiente en que estamos, es por eso y además por el esfuerzo grande que esta haciendo el motor que es lo que hace que llegue a esa temperatura.

Tabla 5.573 Medidas de dispersión Tiempo vs T múltiple

	у	(y-ymedia)	(y-ymedia)^2
	74,9	153,0666667	23429,40444
	323,2	95,23333333	9069,387778
	285,8	57,83333333	3344,694444
Sumatoria	227,9666667	306,1333333	35843,48667

Desviación Media	102,0444444	°C	
Desviación Estándar	133,8721156	Ô	
Y Estabilización	227.9666667°C +/- 102.0444444°C		

<u>Y estabilización</u> se refiere a que entre estos intervalos va a estar el periodo de estabilización.

Nota: La variable no tiende a mantener el comportamiento por lo tanto no se tiene que realizar ni un análisis de frecuencias ni histogramas.

Tabla 5.574 Datos del comportamiento de la temperatura en función del tiempo Tiempo ys T múltiple

	Υ	logy	X	x^2	x*logy
	74,9	1,874481818	0	0	0
	323,2	2,509471352	40	1600	100,378854
	285,8	2,456062224	68	4624	167,012231
Sumatoria	683,9	6,840015394	108	6224	267,391085

El valor de b corresponde al incremento promedio de la temperatura por cada intervalo de cinco minutos.

Tabla 5.575 Resultado para la curva del modelo logarítmico

11011190 10 1	manapio
logb	0,009054166
loga	1,954055165
b	1,021066825

Esta ecuación corresponde al comportamiento que tiene la curva en función del tiempo de acuerdo a la temperatura de múltiple podemos comprobar que los datos de la temperatura están de acuerdo a la curva que se esta presentando ya que existe una variación.

CAPÍTULO 6

CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

- La opacidad del vehículo según el informe dio como resultados un 23%, dicho valor significa que se encuentra dentro de los límites normales y cumple la norma establecida según el INEN que dice que los vehículos del ano 2000 y posteriores no deben superar valores del 50%.
- Durante el transcurso de las pruebas estáticas, pudimos apreciar que la temperatura del motor comenzaba a mantenerse estable a partir de los 30 minutos en adelante como se puede apreciar en los datos tomados los cuales se encuentran detallados en el capítulo 4 y capitulo 5.
- En las pruebas en movimiento pudimos observa que al llegar al punto mas alto, el motor necesita mayor esfuerzo por lo tanto se podrá observar una mayor lectura de temperaturas.
- El análisis estadístico nos demostró que no necesitamos hacer ni histogramas ni distribución de frecuencias ya que la variable no tiende a mantener un comportamiento estable.

- El SIVETEV (Sistema de Verificación Termica de Vehículos) es una herramienta informática el cual va a permitir determinar si el vehiculo contamina o no, y también nos va a permitir saber cuáles serán las causas por las que pueden producir y las posibles soluciones que se deben tomar en cuenta para su posterior reparación.
- Para realizar un análisis de contaminación se debe primero tener toda la información necesaria para iniciar el estudio, es decir saber los limites de contaminación que existen en el Distrito Metropolitano de Quito, las normas que rigen en el Distrito, con el propósito de realizar un buen estudio.
- Las enfermedades respiratorias son producidas también por la emanación indiscriminada de humo contaminante que salen por los tubos de escape, esto es debido a que los vehículos se encuentran mal calibrados o existe algún desperfecto mecánico el cual esta produciendo este tipo de anomalía.
- Si el vehiculo revisado posee sistema de inyección electrónica, se le debe llevar a un taller autorizado para que posteriormente se utilice el Scanner y puedan ser reparadas las anomalías presentadas en cuestión.

6.2 Recomendaciones

 Recomendamos llevar todos los vehículos de la Espe hacia los Centros de Revisión Vehicular de la Corpaire ya que así se podrá garantizar el correcto funcionamiento pero más que todo podremos saber si el vehículo se encuentra en buenas condiciones para ser usado por el alumnado de la Espe.

.

- El programa de mantenimiento preventivo de la sección Transportes debe ser chequeado continuamente ya que al momento de la revisión del automotor según el informe que nos entregaron estaban flojas las abrazaderas que van unidas juntas a los paquetes, por este motivo representa un peligro constante hacia el chofer y posteriormente a los ocupantes del bus.
- La revisión de los buses se la debe efectuar cada seis meses, esto se le debe establecer como una obligatoriedad en la Escuela ya que así se podrá verificar si la sección de Transportes Espe, el área de Mecánica de dicho departamento está haciendo un trabajo eficiente.
- Se les debe dar una capacitación mas exigente a todo el personal de mecánica automotriz de la sección Transportes ya que así podrán actualizar mas sus conocimientos con referencia a su área y sabrán hacer mucho mejor su trabajo de lo que hacen actualmente.
- El SIVETEV debe ser implantado en la ESPE en el área de transportes para poder determinar si los vehículos que tienen a su cargo están aptos para circular o no.
- La ESPE debe implantar como política en su gestión la protección del medio ambiente, obligando a que los vehículos que son de su propiedad, inclusive los de motor a gasolina, deban primero pasar por el SIVETEV, después por la Corpaire, esto con el propósito de preservar el medio ambiente en el cual estamos rodeados.
- Las demás ciudades del país deben tomar conciencia de que el problema de la contaminación es muy grave y deberían tomar correcciones inmediatas para la solución del mismo, por ejemplo la

implantación de los centros de Revisión Vehicular seria una alternativa viable ya que así los propietarios de los vehículos sabrían a ciencia cierta que desperfecto tendría el vehiculo de su propiedad.

- La capacitación al personal que va a manejar el SIVETEV debe ser inmediata, ya que este programa es una opción interesante para poder determinar si la flota de vehículos pertenecientes a la Institución Educativa como la ESPE, se encuentran aptos para la circulación vehicular.
- Recomendamos que para las tomas de datos se debe recoger por lo menos unos ocho datos, con el propósito de tener una mejor apreciación del resultado en cuestión.

BIBLIOGRAFIA

- Dr. J P Holman, Fundamentos de transferencia de Calor, traducido por Dr. Raúl Valenzuela. Primera Edición –Tomo II. México DF. Editorial McGraw-Hill. Derechos reservados 1996
- Robert Bosch GMBH, Técnica de Gases de Escape para motores a diesel y gasolina. Edición 2003-Serie Amarilla
- Dr Jurg Grutter, Control de Emisiones de Gases, Agencia suiza para el desarrollo y la Cooperación
- www.monografias.com, La humedad relativa y su comportamiento en funcion de la temperatura
- www.monografias.com, Sistema de admisión del motor
- www.monografias.com, Motor.com.Co, Sistema de refrigeración del motor
- www.monografias.com, La contaminación
- Dr Yunus A Cengel-Michael Boles. Termodinámica, traducido por Gabriel Nagore Càzares. Segunda Edición-TOMO II. México DF. McGRAW-HILL. Derechos reservados 1996
- Gordon Van Wylen-Richard Sonntag. Fundamentos de Termodinámica, traducido por Ing Xavier Cortes. Segunda Edición, México DF., Editorial Limusa, 1966
- Edgard Obert. Motores de Combustión Interna. Traducido por Ricardo Bernard. Tercera Edición, México D.F., Editorial Limusa, 1981

Anexo No.1

TABLA DISIPADORES TERMICOS

A continuación un cuadro de diferentes disipadores que se tiene que incluye medidas

DISIPADORES TERMICOS				
CODIGO	CODIGO FIGURA APLICACIONES/OBSERVACIONES DIMENSIONES (mm)			
HE101	Α	PARA TO-18 (metálico)	ø MAX=16; h max=10	
291C1-36AP	В	PARA TO-202 / TO-220 CON CLIP DE FIJACION A=22; B=17; h=9		
291C1-80AP	AP B PARA TO-202 / TO-220 CON CLIP DE FIJACION A=22; B=17; h=20			
635-1.25	F PARA TO-66 / TO-3 (NEGRO) A= 45; B= 45; h=32			
HE100	E100 C PARA MICROPROCESADOR (NEGRO) A=54; B=51; h=17		A=54; B=51; h=17	
HE102	С	PARA MICROPROCESADOR (40x40mm) (NEGRO)	A=75; B=50; h=13	
HTS125-P	G	PARA MICROPROCESADOR PENTIUM (NEGRO)	A=53; B=53; h=40	

CODIGO	FIGURA	RESISTENCIA TERMICA R ₀ SA (°C/W) CONVECCION		DAMENICA (MAIL)
CODIGO	FIGURA	NATURAL	FORZADA	DIMENSIONES (mm)
HE 310	Н	6.4	1.8	A=51; B=50; C=21; h=14
HE 320	I	3.3	1.1	A=121; B=38; C=33; h=12
HE 330	I	2	0.65	A=121; B=76; C=33; h=12
HE 500	J	1.85	0.65	A=122; B=38; C=33; h=30
HE 510	J	1.5	0.4	A=122; B=76; C=33; h=30
HE 530	К	0.7	0.19	A=124; B=76; C=31; h=67
HE 540	К	0.58	0.16	A=124; B=141; C=31; h=67
HE 85/2	L	2	0.48	A=112; B=50; C=36; h=34
HE 85/4	L	1.5	0.35	A=112; B=100; C=36; h=34
HE 80/5	М	0.6	0.21	A=103; B=126; C=44; h=102
HS-1 *	Q	3.5	1.3	A=60; B=50; h=37
HS-2 *	Q	3.00	1.15	A=60; B=75; h=37
HS-4 *	R	2.70	0.95	A=45; B=60; h=67
HS-3 *	0	1.5	0.44	A=103; B=76; C=50; h=67
HS-5 *	0	0.7	0.21	A=103; B=126; C=50; h=67
HS-9 **	Р	0.43	0.15	A=125; B=150; C=80; h=135

^{*} Para relays en estado sólido (Serie G280 / G575 / GF / GT / S505 / HGN

^{**} Para relays en estado sólido trifásicos.

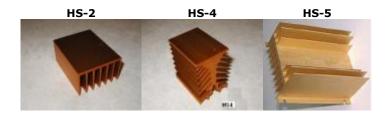

Anexo No.2

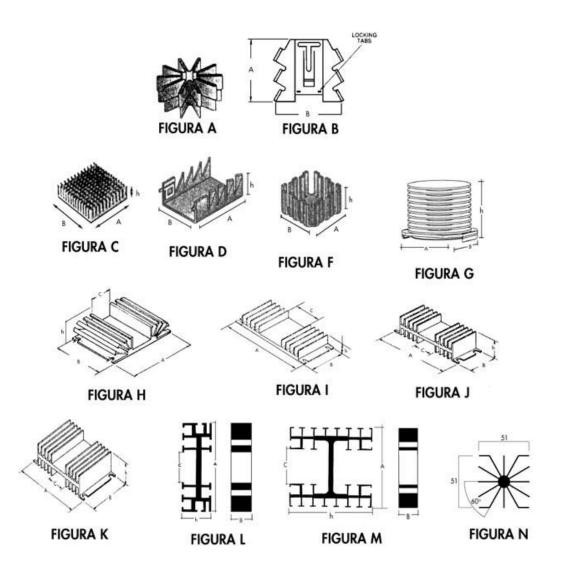
TABLA DISIPADORES PARA RELAY DE ESTADO SÓLIDO

DISIPADORES PARA RELAYS DE ESTADO SOLIDO

para monofásicos G280 - G575 - GF - GT - S505 - HGN (relays de 50 mm de ancho como máximo)

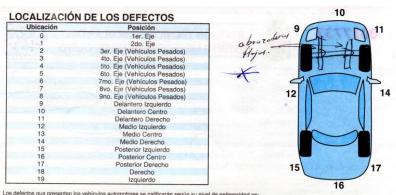
CODIGO	CORRIENTE MAXIMA DEL RELAY (SUGERIDA) (t _{amb} < 40°C)	RESISTENCIA TERMICA R ₀ SA (°C/W) (convección natural)
HS-1	10 A	3.50
HS-2	25 A	3.00
HS-4	40 A	2.70
HS-3	50 A	1.5
HS-5	90 A	0.7

para trifásicos (relays de 80 mm de ancho como máximo)



HS-9

CODIGO	RESISTENCIA TERMICA R⊕SA (°C/W) (convección natural)
HS-9	0.43


HE930T : NIPLE AISLANTE DE TEFLON PARA HE320 / 330 / 500 / 510 / 530 / 540

BARRAS DISIPADORAS				
CODIGO	CODIGO DESCRIPCION			
HE30	BARRA DE 2 METROS (sin anodizar)	Н		
HE32	BARRA DE 2 METROS (sin anodizar)	I		
HE40	BARRA DE 2 METROS (sin anodizar)	N		
HE50	BARRA DE 2 METROS (sin anodizar)	J		
HE53	BARRA DE 2 METROS (sin anodizar)	K		

Anexo No. 3 HOJA DE REVISIÓN CORPAIRE

Los defectos que presenten los vehículos automotores se calificarán según su nivel de peligrosidad en:

Defectos Tipo 1: Aquellos que no involucran un riesgo inminente para la seguridad de los ocupantes del vehículo, para las demás personas y/o para el ambiente, pero que podrian, posteriormente, convertirse en defectos Graves o Peligrosos, debido al deterioro natural o provocado.

Defectos Tipo II: Aquellos que son un riesgo potencial para la seguridad de los ocupantes del vehículo, para las demás personas y/o para el ambiente, si es que están sumados a otros defectos de la misma especie. Estos defectos son revisados nuevamente en cada visita pudiendo cambiar su calificación a Tipo I, a Tipo III o a OK

Defectos Tipo III: Aquellos que representan un riesgo inminente para la seguridad de los ocupantes del vehículo, para las demás personas y/o para el medio

comocardon de Dececiós

sobilida aque la presencia simultánea de varios Defectos graves en uno o en varios subsistemas del vehículo, puede aumentar el riesgo de accidente o la
sabilidad de contaminar el ambiente, se considera la calificación de defectos peligrosos por acumulación de defectos graves, de acuerdo a las siguientes

- elaciones:
 10 Defectos Tipo II en un mismo subsistema generan un Defecto Peligroso.
 10 Defectos Tipo II en la totalidad del vehiculo generan un Defecto Peligroso.
 2 Defectos Tipo II en la totalidad del vehiculo generan un Defecto Peligroso.
 2 Defectos Tipo II en desequilibrio del sistema de Suspensión generan un defecto Peligroso.
 2 Defectos Tipo II en desequilibrio del sistema de Suspensión generan un defecto Peligroso.
 2 Defectos Tipo II en desequilibrio del sistema de frenos generan un defecto Peligroso.
 2 Defectos Tipo II en la eficació del sistema de suspensión en el mismo lado (derecho o izquierdo) generan un defecto Peligroso.
 2 Defectos Tipo II en la aficación del sistema de mismo lado (derecho o izquierdo) generan un defecto Peligroso.

PLAZO ENTRE VISITAS Si el resultado de la revisi isión fue CONDICIONADO, se establece el siguiente plazo para llevar al automotor de regreso a cualquier CRCV, sin recibir sanción alguna:

- Entre la 1ª y 2ª visitas, sin costo si la 2ª visita se realiza dentro de los 45 días calendarios posteriores.

 Entre la 2ª y 3ª visitas, 50% del costo de la revisión, si se realiza dentro de los 30 días calendario posteriores.

 Entre la 3ª y la 4ª visitas, 100% del costo de la revisión, si se realiza dentro de los 30 días calendario posteriores.

Anexo No. 4 DETALLE REVISION CORPAIRE

Revisión Corpaire

La revisión del bus de transporte de personal de la ESPE se la efectuó el día 24 de abril del 2008 en el Centro de Revisión Vehicular de la Corpaire (Corporación para el Mejoramiento del Aire en Quito) ubicado en la Vía a Marianas Sector Carapungo

Fotografía 1 Centro de revisión Vehicular Carapungo

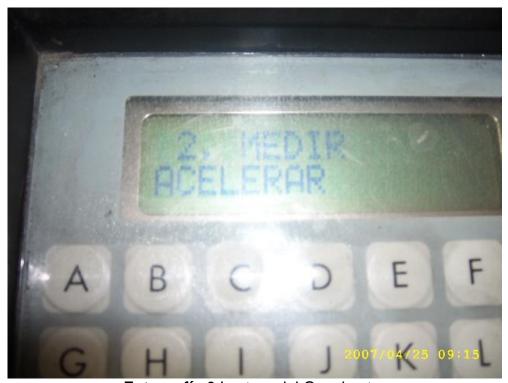
Fotografía 2 Salida de los vehículos de las estaciones de revisión

La revisión que se efectuó dicho día abarca tres estaciones que son las siguientes:

Primera Estación

Medición de Emisiones Contaminantes:

Como el vehiculo es a Diesel se mide la Opacidad


Fotografia3 Opacimetro

Fotografía 4 Colocación del sensor opacimetro en el tubo de escape

Fotografía 5 Lectura del Opacimetro

Fotografía 6 Lectura del Opacimetro

Fotografía 7 Verificación de resultados Computadora Centro de Revisión

El resultado de la medición fue un 22 %, lo cual esta entre los limites normales, ya que la hoja de Corpaire, indica que la opacidad se debe encontrar entre 0<x<29.99, esto quiere decir que el bus en el aspecto del medioambiente se encuentra en condiciones normales que no contamina el medio ambiente

Medición de alineación e intensidad de luces altas y bajas

Este proceso lo realizan con equipo denominado luxo metro

Fotografía 8 Medición de alineación e intensidad de luces altas y bajas

El resultado de estas pruebas fueron los siguientes:

Prueba	Resultado	Parámetro	Observación
Alineación	1,10%	-2,00<=x<=999	OK
horizontal faro			
Conductor			
Intensidad Faro	4,60 Lux	0,01<=x<=135,00	OK
Conductor			
Alineación vertical	5,50 %	-999<=x<=2,50	Tip2
incorrecta faro			
conductor			

Como conclusión el vehiculo en esta prueba en los dos primeros puntos paso sin contratiempos, en cambio en el tercer punto no pasó ya que esta más de los permitido por lo tanto lo clasificaron como un defecto **Tipo 2** que son aquellos que son un riesgo potencial para la seguridad de los ocupantes del vehiculo, para las demás personas o para el ambiente, si es que están sumados a otros defectos de la misma especie. Dichos defectos son revisados nuevamente en cada visita pudiendo cambiar su calificación a Tipo I, Tipo III o a OK

Medición del ruido de escape

La realización de esta prueba se hace con equipo llamado Sonómetro Integral ponderado. La medición del ruido de escape arrojo los siguientes resultados:

Prueba	Resultado	Parámetro	Observación
Ruido de escape	82,72	0,01<=x<=74,99	Superior al limite
			Tipo I

En esta prueba no paso el bus ya que el resultado fue superior al límite, por lo tanto lo catalogaron como defecto Tipo I que son aquellos que no involucran un riesgo inminente para la seguridad de los ocupantes del vehiculo, para las demás personas y/o para el medio ambiente, pero que podrían convertirse en defectos graves o Peligrosos debido al deterioro natural provocado

Fotografía 9 Medición del ruido de escape

Verificación del funcionamiento de luces de freno, reversa, guías, placas, direccionales y de estacionamiento

En esta prueba la verificación que realizaron fue aceptable, ya que todo se encontraba en orden

Verificación de la existencia y estado de placas

Según lo que pudimos constatar en la inspección y lo que nos mencionaron, ellos la realizan visualmente, como resultado las placas se encontraban en perfectas condiciones.

Verificación de las marcas en los parabrisas

Pudimos visualizar en la Inspección junto con el técnico que hacia la revisión, que el parabrisas posterior estaba sin marca, por lo tanto esto es un defecto tipo III, que quiere decir que es un riesgo inminente para la seguridad de los ocupantes del vehiculo, por este motivo el vehiculo no aprobó la revisión en este aspecto

La Corpaire lo único que exige en estos casos es que todos los parabrisas tengan su marca para así poder garantizar la vida de los ocupantes ante un

riesgo inminente que vayan a chocar y sean lanzados por los parabrisas, y en ese mismo instante se produzca una tragedia de enormes consecuencias

El Parabrisas con marcas ayuda en la seguridad de los ocupantes del vehiculo ya que si por algún accidente salen disparados por los parabrisas estos no se revienten totalmente sino que tengan una malla protectora el cual ayuda para que los vidrios chiquitos que salen no sean impactados en la cara del ocupante.

Segunda Estación

Medición de la eficacia del frenado

Esta prueba la realizaron con el Frenó metro de rodillos. Los resultados de esta prueba fueron los siguientes

Prueba	Resultado	Parámetro	Observación
Eficacia del frenado	67%	65<=x<=100	OK

Fotografía 10 Medición de la eficacia del frenado

Como podemos observar el resultado esta dentro de los limites aceptables por lo tanto este parámetro esta correcto

Fotografía 11 Verificación de los resultados en la computadora del centro de revisión

Medición de la eficacia del freno de estacionamiento

Esta prueba la realizan con el frenó metro de rodillos. Los resultados de esta prueba son los siguientes:

Prueba	Resultado	Parámetro	Observación
Eficacia del freno de	37%	20<=x<=100	OK
estacionamiento			

Como podemos observar el resultado esta dentro de los limites normales por lo tanto este parámetro esta correcto

Medición de alineación

Esta prueba se la realiza con una placa detectora de deriva dinámica o alineador al paso. Los resultados de esta fueron los siguientes:

Prueba	Resultado	Parámetro	Observación
Alineación primer	1,70 m/Km	-6,99<=x<=6,99	OK
eje convergencia			

Fotografía 12 Alineación al paso

Fotografía 13 Pruebas que se realizan en los centros de revisión

Medición de la eficiencia de la suspensión y desequilibrio en un mismo eje

Esta prueba se la realizo en un banco de suspensión. Los resultados fueron los siguientes:

Prueba	Resultado	Parámetro	Observación
Desequilibrio de frenado	2.00 %	0<=x<=15	OK
primer eje			
Desequilibrio de frenado en	6.00%	0<=x<=14.99	OK
segundo eje			

Como podemos observar los resultados están dentro de los limites permitidos por lo tanto este parámetro esta correcto

Fotografía 14 Prueba de suspensión

TERCERA ESTACION

En esta estación utilizan lo siguiente

Foso de Inspección Detector de Holguras

Fotografía 15 Foso de Inspección y detector de holguras

Fotografía 16 Inspección de holguras en el foso de inspección

Al momento de realizar esta prueba detectaron que las abrazaderas que unen a los paquetes estaban mal fijadas por lo que le catalogaron como un defecto tipo 3 que son aquellos que representan un riesgo inminente para la seguridad de los ocupantes del vehiculo