

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

"ANÁLISIS DE LOS PARÁMETROS CARACTERÍSTICOS DE UN MOTOR DE COMBUSTIÓN INTERNA CON INYECCIÓN DIRECTA DE HIDRÓGENO"

Proyecto de titulación previo a la obtención del título de:

INGENIERO AUTOMOTRIZ

Director: Ing. Guido Torres Codirector: Ing. Germán Erazo

Sofía Velástegui - Cristian Jesús

- Objetivos del proyecto
- Hidrógeno
- Componentes del sistema
- Funcionamiento del sistema
- Instalación del sistema
- Comparación de rendimiento entre combustibles
- Análisis de emisiones contaminantes
- Relación de consumo de combustible
- Conclusiones
- Recomendaciones

Objetivo principal

 Analizar los parámetros característicos de un motor de combustión interna con inyección directa de hidrógeno para determinar su aplicabilidad como combustible alternativo.

Objetivos específicos

- Implementar un sistema de inyección de hidrógeno en el motor de combustión interna Daewoo de 1800cc del vehículo Chevrolet Optra.
- Realizar una prueba de ruta para determinar el consumo de combustible.
- Realizar pruebas de emisiones contaminantes antes y después de la instalación del sistema de inyección directa de hidrógeno.
- Establecer mediante un estudio el combustible más eficiente, conveniente y amigable con el medio ambiente, dentro de los analizados en la investigación.
- Comparar los parámetros mecánicos característicos del motor Daewoo 1800cc cuando se utiliza gasolina extra, súper y con la inyección directa de hidrógeno.
- Calcular la producción de hidrógeno del sistema en base a las características del generador.

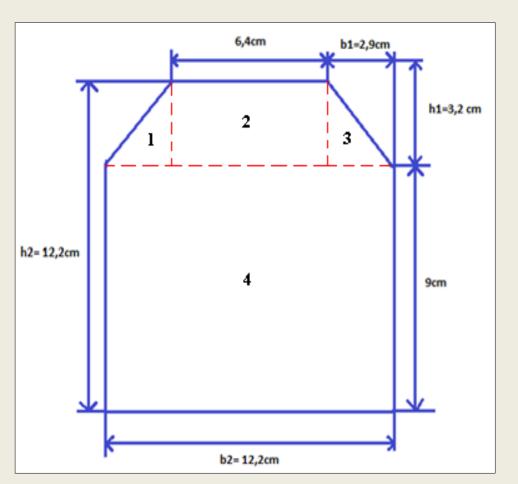
Hidrógeno

- Se encuentra en el 75% de la materia del universo, combinado con otros elementos.
- Un kilogramo de hidrógeno puede liberar más energía que cualquier otro combustible.
- Tres veces más explosivo que la gasolina.
- Funciona como un aditivo, obteniendo mayor energía y potencia en el motor, emisiones más limpias y mejor economía de combustible.

Producción de hidrógeno

- Se logra a partir de la electrólisis
- Entre los electrodos se conecta una fuente de corriente continua.

Cálculo de producción de hidrógeno


	Símbolo	Valor	Unidad
Número de celdas	n	16	
Voltaje utilizado por el generador	V	14	V
Separación entre placas	l	0,15	cm
Resistencia de las pacas	R_T	3,2	Ω
Intensidad del generador	I_g	4,375	Α

	Símbolo	Valor	Unidad
Densidad de hidrógeno	D_H	0,0000838	g/cm ³
Densidad del oxígeno	D_O	0,001429	g/cm ³
Peso molecular del hidrógeno	Pa_H	1,00794	g
Peso molecular del oxígeno	Pa_{O}	15,9994	g
Valencia del hidrógeno	v_H	1	
Valencia del oxígeno	v_{O}	2	

- $A_1 = 4,64cm^2$
- $A_2 = 20,48cm^2$
- $A_3 = 4,64cm^2$
- $A_4 = 109,8cm^2$
- $A_T = 139,56cm^2$
- $A_{TP} = 2232,96cm^2$

 La conductividad es la capacidad de conducir electricidad, los iones cargados positiva y negativamente son los que conducen la corriente.

$$\sigma = \frac{I * l}{V * A}$$

$$\sigma = \frac{9(A)*0.15(cm)}{14(V)*2232.96(cm^2)} = 4.318 \times 10^5 S/cm$$

 La masa generada en la electrólisis se calcula aplicando la ley de Faraday, la cual es directamente proporcional a la cantidad de electricidad y al tiempo que dura la electrólisis.

$$m = \frac{P_a * I * t}{v * F}$$

Para el hidrógeno:

•
$$m_H = \frac{1,00794g/mol*4,375A*60seg}{1*96500 A\cdot seg\cdot mol^{-1}} = 0,002742g$$

Para el oxígeno:

•
$$m_O = \frac{15,9994g/mol*4,375A*60seg}{2*96500 A\cdot seg\cdot mol^{-1}} = 0,02176g$$

El volumen del hidrógeno:

•
$$V_H = \frac{0,002742g}{0,0000838g/cm^3} = 32,72 \text{ cm}^3 = 0,03272 \text{ lt}$$


El volumen del oxígeno:

•
$$V_O = \frac{0.02176g}{0.001429g/cm^3} = 15,228 \ cm^3 = 0.015228 \ lt$$

Introducción de hidrógeno al motor

 Se inyecta en el conducto de admisión cerca de la entrada a los cilindros.

Componentes del sistema

Generador de hidrógeno

- Recipiente hermético, consta de dos salidas y una entrada.
- Contiene placas de acero inoxidable quirúrgico.
- Sistema de sobre demanda, no almacenaje.

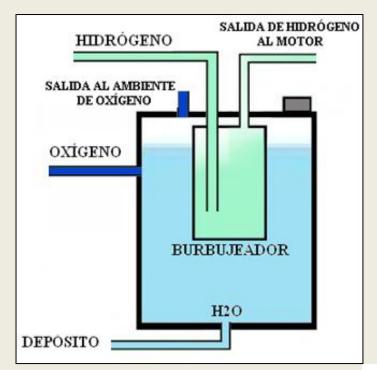
 El generador consta de 16 placas de acero inoxidable 316L que se encuentran conectados entre sí en serie con una distancia de 5 mm, las dimensiones de las placas son de 12.2x12.2x0.125 cm, trabaja con un voltaje de 12 voltios y una corriente de 3,75 A y el electrolito absorbe una corriente de 2 A.

Mangueras

 Se utiliza mangueras de polietileno duro con un espesor de 2mm.

Electrolito

- Sustancia que puede someterse a la electrólisis.
- Los electrolitos contienen iones libres que actúan como conductores eléctricos.
- Solvente en agua para generar una solución capaz de conducir la corriente.


Depósito del electrolito

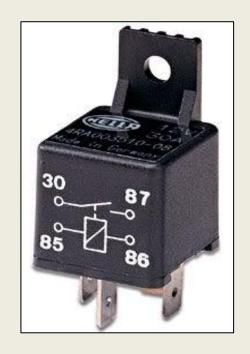
- Almacena y mantiene el nivel del electrolito líquido lo más estable posible.
- Debe resistir una temperatura máxima de 90°C, la humedad, corrosión y vibraciones producidas por el movimiento.

- En el interior del depósito se hallan divisiones.
- Consta de un tapón que mantiene un cierre hermético y evita explosiones.

Hidróxido de Potasio

- También conocido como potasa cáustica, de fórmula química KOH.
- Se emplea como electrolito ya que hace del agua un mejor conductor eléctrico.
- Mantiene a los electrodos limpios.
- Forma electrolito sin sedimentos por su homogeneidad con el agua.

Agua destilada

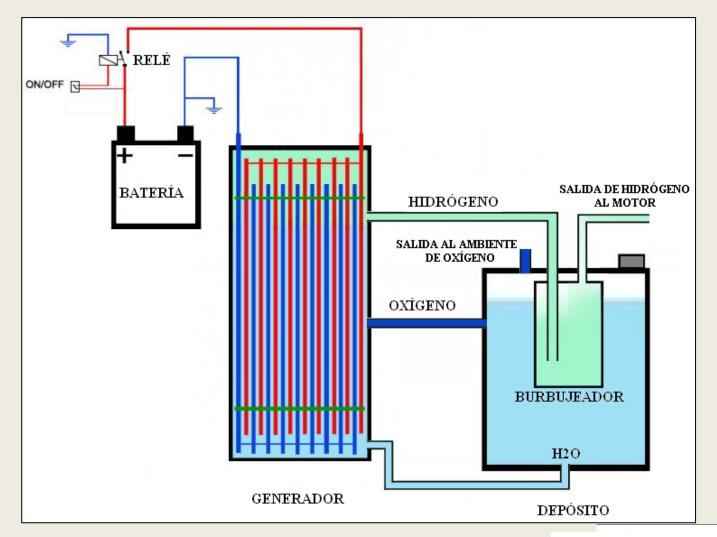

- Purificada mediante destilación. Compuesta por dos átomos de hidrógeno y uno de oxígeno.
- Excelente disolvente, permite el movimiento en su interior de moléculas.

 Carece de muchos iones que producen la conductividad, habitualmente cloruros, calcio, magnesio y fluoruros.

Relé

- Dispositivo electromecánico, que funciona como un interruptor de corriente controlado por un circuito.
- Utilizado para evitar conectar directamente el generador al cable de corriente que viene del switch de encendido, y evitar que pueda sobrecalentarse por el paso de la energía eléctrica.

Cable eléctrico


- En el sistema se utilizan dos tipos de cables:
 - 12 AMG con un diámetro total de 4 mm y un espesor de aislamiento plástico de 1 mm que se emplean desde la batería hacia el generador de hidrógeno.
 - 16 AMG con un diámetro total de 2,5 mm y un espesor de aislamiento de 0,5 mm que se usa desde el depósito hacia el generador y en las conexiones del relé.

Interruptor

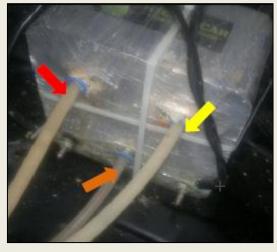
• El sistema utiliza un interruptor unipolar con tecla luminosa de conexión tipo pala, de 10 amperios y 220 voltios.

Funcionamiento del sistema

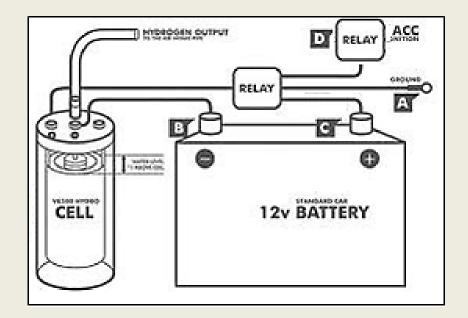
Instalación del sistema

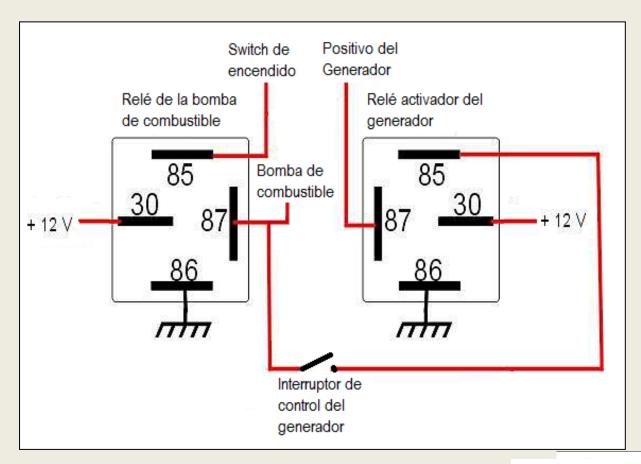
Conexión mecánica

- El generador se fija en una superficie plana con bornes y conexiones visibles.
- El depósito 10 cm arriba del generador para que la gravedad facilite el descenso del electrolito, accesible para completar.
 Se sujeta con amarras plásticas.



• El depósito se conecta al generador por medio de mangueras.


- Perforación de 5 milímetros de diámetro en el conducto de admisión, se coloca acople rápido de sujeción para la manguera de entrada de hidrógeno al motor proveniente del depósito.
- El motor aspira el aire conjuntamente con el hidrógeno y empieza su ciclo de operación normal.


Conexión eléctrica

 Para energizar el sistema se toma un cable de corriente directo de la batería (C) y un cable de señal del relé bomba de de la combustible (D), se conecta el generador al negativo de la batería (B) y se adiciona un interruptor para activación del sistema (A).

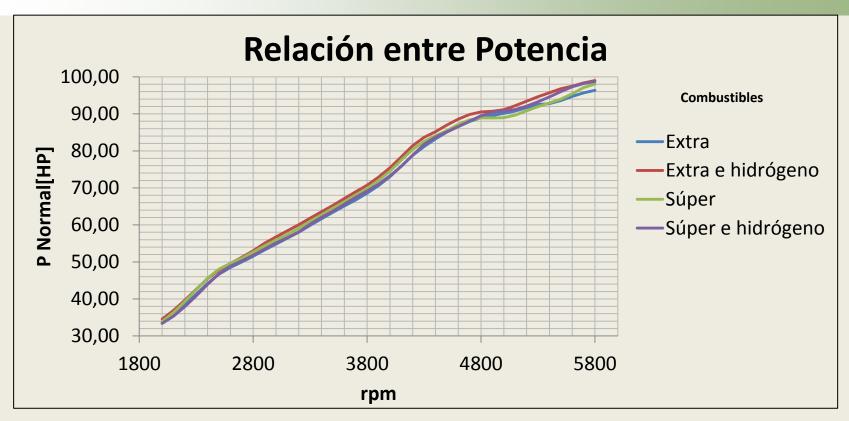
- Se conecta el relé de la bomba al relé del generador.
- Se atornilla al chasis del vehículo.

Preparación electrolito

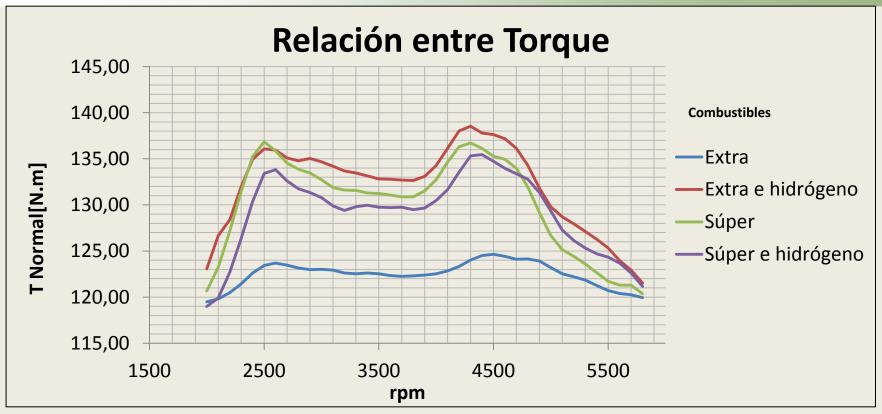
20 gr. KOH en un litro de agua destilada.

Comprobación

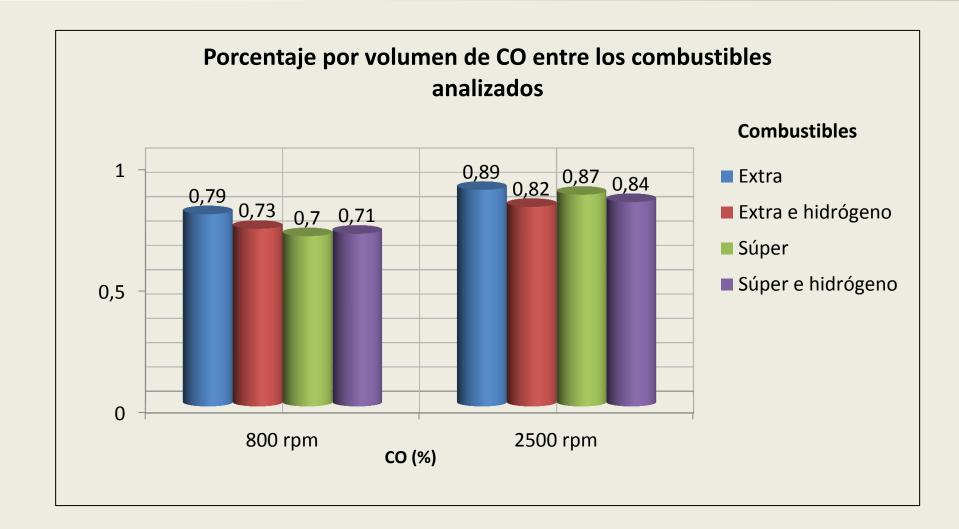
- Activar el sistema generador de hidrógeno.
- Circulación de burbujas al cabo de tres o cuatro minutos.
- Encender burbujas de hidrógeno.


Mantenimiento

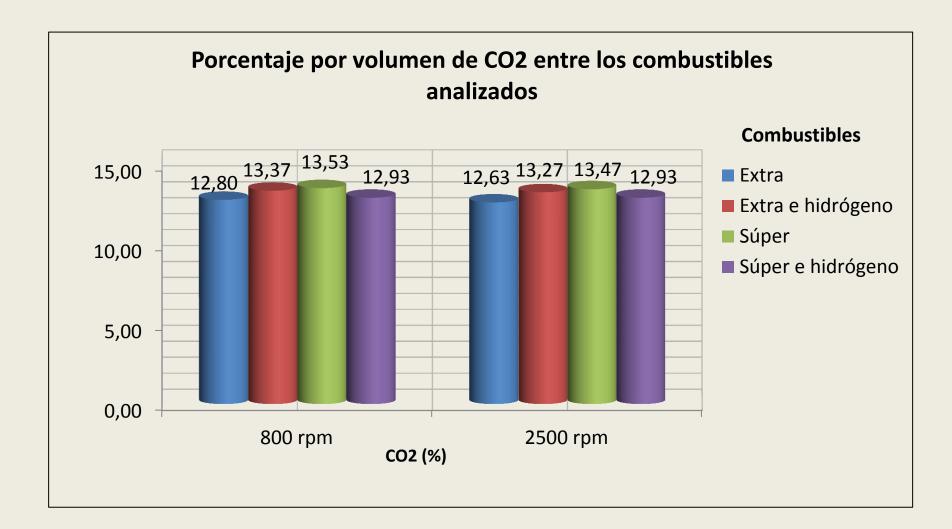
- Motor apagado, generador frío, interruptor desconectado antes de limpiarlo.
- Verificar cantidad de electrolito. Completar con el motor y el sistema encendido.
- Las conexiones eléctricas, mangueras, generador, depósito y cables deben estar en perfecto estado.
- Comprobar con solución jabonosa fugas en las mangueras.
- Limpieza cada seis meses o cuando la coloración de las mangueras se torne de color marrón intenso.
- Desconectar la manguera del colector de admisión y agregar agua con vinagre, funcionamiento de una hora.


Comparación de rendimiento entre combustibles

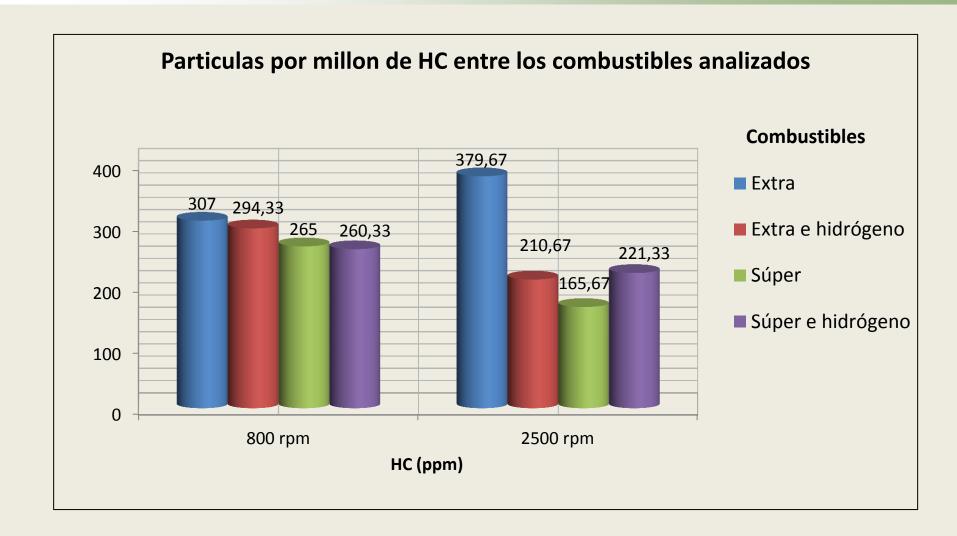
Potencia (HP)	Extra	Extra e hidrógeno	Incremento	Súper	Súper e hidrógeno	Incremento
Máxima (5800 rpm)	96,37	98,99	2,62	98,03	98,73	0,7
Mínima (2000 rpm)	33,53	34,57	1,04	33,9	33,4	-0,5

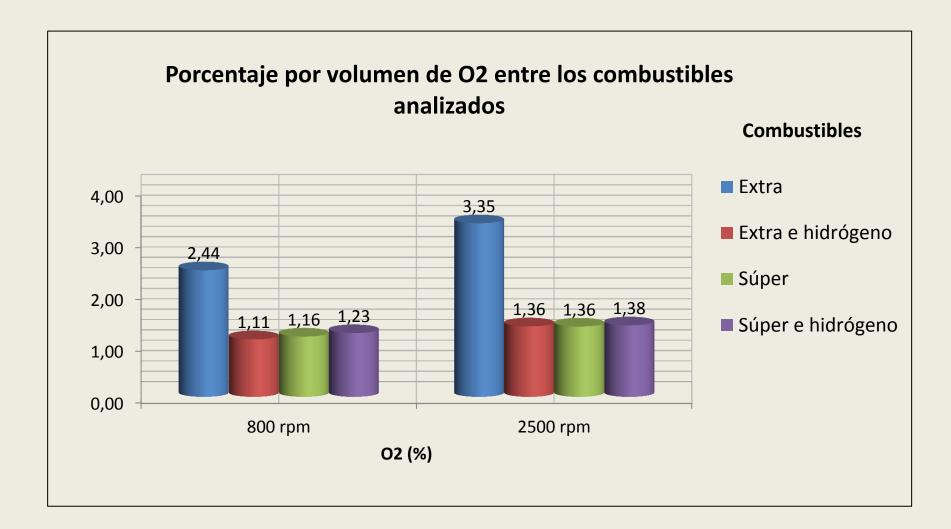


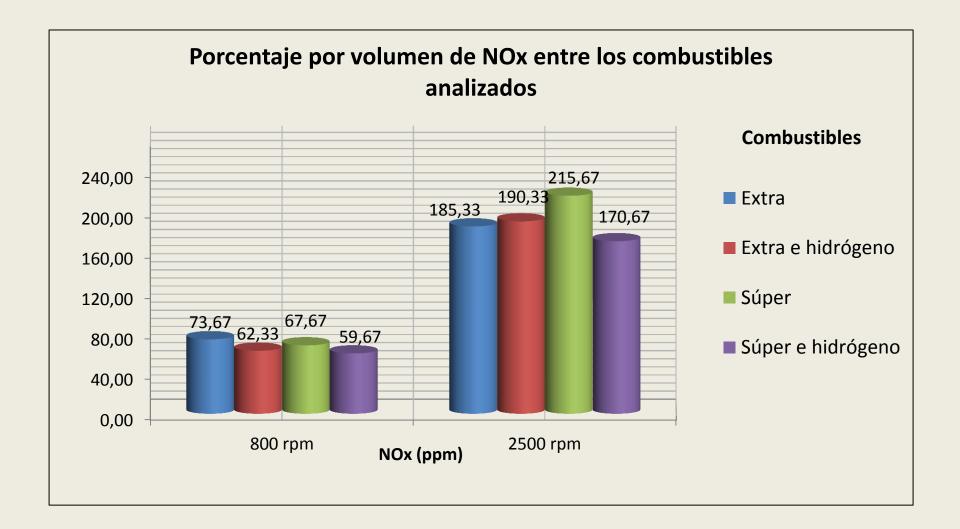
Torque (Nm)	Extra	Extra e hidrógeno	Incremento	Súper	Súper e hidrógeno	Incremento
Máxima (5800 rpm)	124,64	138,52	13,88	135,12	119	-16,12
Mínima (2000 rpm)	119,49	123,06	3,57	120,67	135,45	14,78



Análisis de emisiones contaminantes







Relación de consumo de combustible

Resultados del ensayo

Valores finales

Combustible		Extra	Extra e hidrógeno	(%)	Súper	Súper e hidrógeno	(%)	
P Normal [HP]		96,37	98,99	2,72	98,03	98,73	0,71	
M Normal [Nm]		124,64	138,52	11,14	136,12	135,45	-0,49	
Consumo total [km/gal]		38,611	40,378	4,58	43,425	39,812	-8,32	
			800 RPM					
	CO (%V)	0,79	0,73	-7,59	0,7	0,71	1,43	
	CO ₂ (%V)	12,80	13,37	4,45	13,53	12,93	-4,43	
	HC (ppm)	307,00	294,33	-4,13	265,00	260,33	-1,76	
	O ₂ (%V)	2,44	1,11	-54,51	1,16	1,23	6,03	
Emisiones	NOx (ppm)	73,67	62,33	-15,39	67,67	59,67	-11,82	
contaminantes	2500 RPM							
	CO (%V)	0,89	0,82	-7,87	0,87	0,84	-3,45	
	CO ₂ (%V)	12,63	13,27	5,07	13,47	12,93	-4,01	
	HC (ppm)	379,67	210,67	-44,51	165,67	221,33	33,60	
	O ₂ (%V)	3,35	1,36	-59,40	1,36	1,38	1,47	
	NOx (ppm)	185,33	190,33	2,70	215,67	170,67	-20,87	

Análisis económico

Parámetros	Extra	Extra e hidrógeno	Súper	Súper e hidrógeno			
Recorrido en km por galón	38,61	40,38	43,43	39,81			
Galones consumidos en 800 km	20,71	19,81	18,42	20,09			
Costo del galón	\$ 1,47	\$ 1,47	\$ 2,00	\$ 2,00			
Costo del litro de agua destilada	0	\$ 0,89	0	\$ 0,89			
20 gr de hidróxido de potasio	0	\$ 5,00	0	\$ 5,00			
Costo total							
Gasto total a 800 km	\$ 30,45	\$ 35,01	\$ 36,84	\$ 46,07			

Conclusiones

- El uso de combustible extra e hidrógeno es el combustible con mejor desenvolvimiento debido a que existió aumento de torque, potencia, disminución de las emisiones contaminantes y del consumo de combustible.
- Se concluye que ha existido un incremento en los valores de potencia y torque al utilizar gasolina extra con hidrógeno como combustible alternativo, siendo estos 2,62 HP y 13,29 Nm respectivamente.
- Relativo a súper se observa que la potencia máxima es mayor con el uso de hidrógeno, teniendo un leve aumento de 0,70 HP, contrario al torque que disminuyó 0,67 Nm.

- Al utilizar gasolina extra con hidrógeno la eficiencia en el consumo de combustible se incrementó el rendimiento en 1,767 km por galón.
- En las pruebas de consumo con gasolina súper e hidrogeno no existió mejora ya que gastó 3,613 km más en un galón que con el uso solamente de súper.
- Se determinó que con el uso de combustible extra e hidrógeno en el análisis de las emisiones, CO, O_2 , HC, NO_x tuvieron una disminución de 7,59%; 4,13%; 54,51%; y 15,39% respectivamente, lo que no ocurrió con el CO_2 , que se incrementó en 4,45% en comparación con gasolina extra.
- Las emisiones contaminantes analizadas utilizando combustible súper e hidrógeno que tuvieron una disminución son CO₂ con 4,43%, los HC en 1,76%, los NO_x con 11,82%, y los que aumentaron fueron el CO con 1,43% y el O₂ en 6,03% en relación a los análisis con gasolina súper.

- El consumo de combustible se determinó mediante la ruta Guápulo-CCICEV y viceversa con 30,5 km, usando cinco litros de combustible en cada prueba, teniendo con gasolina extra un consumo de 3 litros, al usar extra con hidrógeno de 2,85 litros, con súper 2,65 litros y con súper e hidrógeno 2,9 litros de gasto de combustible.
- Debido a que la producción de hidrógeno es mínima el motor no obtiene la suficiente cantidad requerida para mejorar radicalmente su rendimiento, a pesar de esto con 0,03272 lt/min se logra incrementar alrededor de 3% de potencia y 12% en el torque, con el combustible extra e hidrógeno que alcanzó el mejor desempeño dentro del análisis, consiguiendo también una disminución de las emisiones contaminantes más tóxicas; por lo que con una producción mayor se percibirían resultados más satisfactorios con la implementación de este sistema.

Recomendaciones

- El vehículo debe estar en perfectas condiciones de funcionamiento, con los mantenimientos respectivos..
- Para realizar las pruebas se debe regir a las pautas de seguridad y procedimientos establecidos en la NTE INEN 2203.2000.
- En las pruebas de consumo de combustible las mangueras del canister deben estar correctamente sujetas al riel de inyectores para impedir fugas de combustible y lecturas erróneas de los valores.

- La seguridad personal debe ser considerada desde la instalación del kit hasta la ejecución de cada una de las pruebas.
- Efectuar un estudio con la implementación de un sensor de oxígeno que permita modificar el voltaje del mismo para controlar la cantidad de combustible según la dosificación de aire e hidrógeno.

Gracias por su atención

