Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://repositorio.espe.edu.ec/handle/21000/36687
Titel: Sistema de Predicción de Riesgo Crediticio mediante el uso de Técnicas y Algoritmos de Minería de Datos Caso Estudio: Fondo Complementario Previsional Cerrado de Cesantía de la Universidad de las Fuerzas Armadas ESPE
Director(es): Campaña Ortega, Eduardo Mauricio
Autor(en): Junia Cando, Mauricio Iván
Sampedro Giler, Francisco Gonzalo
Stichwörter: MINERÍA DE DATOS
RIESGO DE CRÉDITO
PREDICCIÓN DEL RIESGO DE CRÉDITO
METODOLOGÍA DE MINERÍA DE DATOS
HERRAMIENTA DE MINERÍA DE DATOS
Erscheinungsdatum: 2022
Herausgeber: Universidad de las Fuerzas Armadas ESPE. Carrera de Ingeniería de Sistemas e Informática.
Zitierform: Junia Cando, Mauricio Iván y Sampedro Giler, Francisco Gonzalo (2022). Sistema de Predicción de Riesgo Crediticio mediante el uso de Técnicas y Algoritmos de Minería de Datos Caso Estudio: Fondo Complementario Previsional Cerrado de Cesantía de la Universidad de las Fuerzas Armadas ESPE. Carrera de Ingeniería de Sistemas e Informática. Universidad de las Fuerzas Armadas ESPE. Matriz Sangolquí.
Zusammenfassung: Las inversiones y las líneas de crédito son fundamentales para el desarrollo de la economía y están alineados y son base para alcanzar el objetivo del Fondo Complementario Previsional Cerrado de Cesantía de la Universidad de las Fuerzas Armadas ESPE, siendo una organización creada para crear ahorros entre sus participantes y brindarles beneficios y créditos. Las expectativas y aspiraciones financieras de todos los participantes, brinda a los docentes, personal administrativo y de servicios, afiliados antiguos y nuevos las facilidades para iniciar y manejar sus ahorros, que se convertirán en un Fondo para un futuro mejor, Identificar la relación entre los créditos y los requisitos a cumplir por parte de los partícipes permitirá mediante la predicción de riesgo de crédito, mejorar los procesos de otorgamiento de créditos, asegurando que el riesgo crediticio sea lo menor posible. Esta investigación de minería de datos se ha llevado a cabo para identificar las tendencias de bajo riesgo y alto riesgo. riesgo o PNL (préstamos con mora) a partir de los datos históricos y construir un modelo predictivo para ayudar a la gestión del Fondo Complementario Previsional Cerrado de Cesantía de la Universidad de las Fuerzas Armadas ESPE, Para llevar a cabo el experimento se utiliza un modelo de Proceso de Descubrimiento de Conocimiento híbrido de seis pasos, aplicando la metodología SEMMA , se ha utilizado la herramienta Rapidminer, Los datos Los datos requeridos se recogieron de los repositorios de base de datos. Se preprocesaron los datos para para la minería utilizando el software Rapidminer, utilizó tres algoritmos de minería de datos (Gradient Boosted Trees, Deep Learning y Naïve Bayes) para desarrollar el modelo predictivo. Los resultados indicaron que Naive Bayes es el mejor predictor con un 96,0167%.
URI: http://repositorio.espe.edu.ec/handle/21000/36687
Enthalten in den Sammlungen:Tesis - Carrera de Ingeniería en Sistemas e Informática

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
T-ESPE-052812.pdfTESIS3,29 MBAdobe PDFÖffnen/Anzeigen
T-ESPE-052812-D.pdfDEFENSA2,46 MBAdobe PDFÖffnen/Anzeigen
T-ESPE-052812-R.pdfRESUMEN116,74 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.